(******************************************************************************) (* *) (* PROJECT HELM *) (* *) (* Claudio Sacerdoti Coen *) (* 11/04/2000 *) (* *) (* *) (******************************************************************************) (* functions to parse an XPath to retrieve the annotation *) exception WrongXPath of string;; let rec get_annotation_of_inductiveFun f xpath = let module C = Cic in match (xpath,f) with 1::tl,(_,_,ty,_) -> get_annotation_of_term ty tl | 2::tl,(_,_,_,te) -> get_annotation_of_term te tl | l,_ -> raise (WrongXPath (List.fold_right (fun n i -> string_of_int n ^ i) l "")) and get_annotation_of_coinductiveFun f xpath = let module C = Cic in match (xpath,f) with 1::tl,(_,ty,_) -> get_annotation_of_term ty tl | 2::tl,(_,_,te) -> get_annotation_of_term te tl | l,_ -> raise (WrongXPath (List.fold_right (fun n i -> string_of_int n ^ i) l "")) and get_annotation_of_inductiveType ty xpath = let module C = Cic in match (xpath,ty) with 1::tl,(_,_,arity,_) -> get_annotation_of_term arity tl | n::tl,(_,_,_,cons) when n <= List.length cons + 1 -> let (_,ty,_) = List.nth cons (n-2) in get_annotation_of_term ty tl | l,_ -> raise (WrongXPath (List.fold_right (fun n i -> string_of_int n ^ i) l "")) and get_annotation_of_term term xpath = let module C = Cic in match (xpath,term) with [],C.ARel (_,ann,_,_) -> ann | [],C.AVar (_,ann,_) -> ann | [],C.AMeta (_,ann,_) -> ann | [],C.ASort (_,ann,_) -> ann | [],C.AImplicit (_,ann) -> ann | [],C.ACast (_,ann,_,_) -> ann | 1::tl,C.ACast (_,_,te,_) -> get_annotation_of_term te tl | 2::tl,C.ACast (_,_,_,ty) -> get_annotation_of_term ty tl | [],C.AProd (_,ann,_,_,_) -> ann | 1::tl,C.AProd (_,_,_,so,_) -> get_annotation_of_term so tl | 2::tl,C.AProd (_,_,_,_,ta) -> get_annotation_of_term ta tl | [],C.ALambda (_,ann,_,_,_) -> ann | 1::tl,C.ALambda (_,_,_,so,_) -> get_annotation_of_term so tl | 2::tl,C.ALambda (_,_,_,_,ta) -> get_annotation_of_term ta tl | [],C.AAppl (_,ann,_) -> ann | n::tl,C.AAppl (_,_,l) when n <= List.length l -> get_annotation_of_term (List.nth l (n-1)) tl | [],C.AConst (_,ann,_,_) -> ann | [],C.AAbst (_,ann,_) -> ann | [],C.AMutInd (_,ann,_,_,_) -> ann | [],C.AMutConstruct (_,ann,_,_,_,_) -> ann | [],C.AMutCase (_,ann,_,_,_,_,_,_) -> ann | 1::tl,C.AMutCase (_,_,_,_,_,outt,_,_) -> get_annotation_of_term outt tl | 2::tl,C.AMutCase (_,_,_,_,_,_,te,_) -> get_annotation_of_term te tl | n::tl,C.AMutCase (_,_,_,_,_,_,_,pl) when n <= List.length pl -> get_annotation_of_term (List.nth pl (n-1)) tl | [],C.AFix (_,ann,_,_) -> ann | n::tl,C.AFix (_,_,_,fl) when n <= List.length fl -> get_annotation_of_inductiveFun (List.nth fl (n-1)) tl | [],C.ACoFix (_,ann,_,_) -> ann | n::tl,C.ACoFix (_,_,_,fl) when n <= List.length fl -> get_annotation_of_coinductiveFun (List.nth fl (n-1)) tl | l,_ -> raise (WrongXPath (List.fold_right (fun n i -> string_of_int n ^ i) l "")) ;; let get_annotation (annobj,_) xpath = let module C = Cic in match (xpath,annobj) with [],C.ADefinition (_,ann,_,_,_,_) -> ann | 1::tl,C.ADefinition (_,_,_,bo,_,_) -> get_annotation_of_term bo tl | 2::tl,C.ADefinition (_,_,_,_,ty,_) -> get_annotation_of_term ty tl | [],C.AAxiom (_,ann,_,_,_) -> ann | 1::tl,C.AAxiom (_,_,_,ty,_) -> get_annotation_of_term ty tl | [],C.AVariable (_,ann,_,_) -> ann | 1::tl,C.AVariable (_,_,_,ty) -> get_annotation_of_term ty tl | [],C.ACurrentProof (_,ann,_,_,_,_) -> ann | n::tl,C.ACurrentProof (_,ann,_,conjs,_,_) when n <= List.length conjs -> get_annotation_of_term (snd (List.nth conjs (n-1))) tl | n::tl,C.ACurrentProof (_,ann,_,conjs,bo,_) when n = List.length conjs + 1 -> get_annotation_of_term bo tl | n::tl,C.ACurrentProof (_,ann,_,conjs,_,ty) when n = List.length conjs + 2 -> get_annotation_of_term ty tl | [],C.AInductiveDefinition (_,ann,_,_,_) -> ann | n::tl,C.AInductiveDefinition (_,_,tys,_,_) when n <= List.length tys -> get_annotation_of_inductiveType (List.nth tys (n-1)) tl | l,_ -> raise (WrongXPath (List.fold_right (fun n i -> string_of_int n ^ i) l "")) ;;