\
\(\*
\*\)
\(\*\*
\*\*\)
theorem
definition
lemma
fact
remark
alias
coercion
coinductive
corec
in
inductive
let
match
qed
rec
record
with
\[
\|
\]
\{
\}
Set
Prop
Type
absurd
apply
assumption
auto
change
contradiction
cut
decompose
discriminate
elim
elimType
exact
exists
fold
fourier
goal
injection
intro
intros
left
letin
normalize
reduce
reflexivity
replace
rewrite
right
ring
symmetry
simplify
split
transitivity
whd
print
check
hint
quit
set
elim
hint
instance
locate
match
def
forall
lambda
to
exists
Rightarrow
Assign
land
lor
subst
"
"