(* Copyright (C) 2004, HELM Team.
*
* This file is part of HELM, an Hypertextual, Electronic
* Library of Mathematics, developed at the Computer Science
* Department, University of Bologna, Italy.
*
* HELM is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* HELM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HELM; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*
* For details, see the HELM World-Wide-Web page,
* http://helm.cs.unibo.it/
*)
let debug = true
let debug_print s =
if debug then begin
prerr_endline "";
prerr_endline s;
prerr_endline ""
end
(** if set to true each number will have a different insance number and can
* thus be interpreted differently than others *)
let use_fresh_num_instances = false
open Printf
open DisambiguateTypes
exception Parse_error of Token.flocation * string
let fresh_num_instance =
let n = ref 0 in
if use_fresh_num_instances then
(fun () -> incr n; !n)
else
(fun () -> 0)
let choice_of_uri uri =
let term = CicUtil.term_of_uri uri in
(uri, (fun _ _ _ -> term))
let grammar = Grammar.gcreate CicTextualLexer2.cic_lexer
let term = Grammar.Entry.create grammar "term"
let term0 = Grammar.Entry.create grammar "term0"
let tactic = Grammar.Entry.create grammar "tactic"
let tactical = Grammar.Entry.create grammar "tactical"
let tactical0 = Grammar.Entry.create grammar "tactical0"
let command = Grammar.Entry.create grammar "command"
let script = Grammar.Entry.create grammar "script"
let return_term loc term = CicAst.AttributedTerm (`Loc loc, term)
let return_tactic loc tactic = TacticAst.LocatedTactic (loc, tactic)
let return_tactical loc tactical = TacticAst.LocatedTactical (loc, tactical)
let return_command loc cmd = cmd (* TODO ZACK FIXME uhm ... why we drop loc? *)
let fail floc msg =
let (x, y) = CicAst.loc_of_floc floc in
failwith (Printf.sprintf "Error at characters %d - %d: %s" x y msg)
let name_of_string = function
| "_" -> Cic.Anonymous
| s -> Cic.Name s
let int_opt = function
| None -> None
| Some lexeme -> Some (int_of_string lexeme)
(** the uri of an inductive type (a ".ind" uri) is not meaningful without an
* xpointer. Still, it's likely that an user who wrote "cic:/blabla/foo.ind"
* actually meant "cic:/blabla/foo.ind#xpointer(1/1)", i.e. the first inductive
* type in a block of mutual inductive types.
*
* This function performs the expansion foo.ind -> foo#xpointer..., if needed
*)
let ind_expansion uri =
let len = String.length uri in
if len >= 4 && String.sub uri (len - 4) 4 = ".ind" then
uri ^ "#xpointer(1/1)"
else
uri
EXTEND
GLOBAL: term term0 tactic tactical tactical0 command script;
int: [
[ num = NUM ->
try
int_of_string num
with Failure _ -> raise (Parse_error (loc, "integer literal expected"))
]
];
meta_subst: [
[ s = SYMBOL "_" -> None
| t = term -> Some t ]
];
binder: [
[ SYMBOL <:unicode> (* λ *) -> `Lambda
| SYMBOL <:unicode> (* Π *) -> `Pi
| SYMBOL <:unicode> (* ∃ *) -> `Exists
| SYMBOL <:unicode> (* ∀ *) -> `Forall ]
];
sort: [
[ "Prop" -> `Prop
| "Set" -> `Set
| "Type" -> `Type
| "CProp" -> `CProp ]
];
typed_name: [
[ PAREN "("; i = IDENT; SYMBOL ":"; typ = term; PAREN ")" ->
(name_of_string i, Some typ)
| i = IDENT -> (name_of_string i, None)
]
];
subst: [
[ subst = OPT [
SYMBOL "\\subst"; (* to avoid catching frequent "a [1]" cases *)
PAREN "[";
substs = LIST1 [
i = IDENT; SYMBOL <:unicode> (* ≔ *); t = term -> (i, t)
] SEP SYMBOL ";";
PAREN "]" ->
substs
] -> subst
]
];
substituted_name: [ (* a subs.name is an explicit substitution subject *)
[ s = IDENT; subst = subst -> CicAst.Ident (s, subst)
| s = URI; subst = subst -> CicAst.Uri (ind_expansion s, subst)
]
];
name: [ (* as substituted_name with no explicit substitution *)
[ s = [ IDENT | SYMBOL ] -> s ]
];
pattern: [
[ n = name -> (n, [])
| PAREN "("; head = name; vars = LIST1 typed_name; PAREN ")" ->
(head, vars)
]
];
constructor: [ [ name = IDENT; SYMBOL ":"; typ = term -> (name, typ) ] ];
term0: [ [ t = term; EOI -> return_term loc t ] ];
term:
[ "letin" NONA
[ "let"; var = typed_name;
SYMBOL "="; (* SYMBOL <:unicode> (* ≝ *); *)
t1 = term; "in"; t2 = term ->
return_term loc (CicAst.LetIn (var, t1, t2))
| "let"; ind_kind = [ "corec" -> `CoInductive | "rec"-> `Inductive ];
defs = LIST1 [
var = typed_name;
index = OPT [ PAREN "("; index = NUM; PAREN ")" ->
int_of_string index
];
SYMBOL "="; (* SYMBOL <:unicode> (* ≝ *); *)
t1 = term ->
(var, t1, (match index with None -> 0 | Some i -> i))
] SEP "and";
"in"; body = term ->
return_term loc (CicAst.LetRec (ind_kind, defs, body))
]
| "binder" RIGHTA
[
b = binder;
(vars, typ) =
[ vars = LIST1 IDENT SEP SYMBOL ",";
typ = OPT [ SYMBOL ":"; t = term -> t ] -> (vars, typ)
| PAREN "("; vars = LIST1 IDENT SEP SYMBOL ",";
typ = OPT [ SYMBOL ":"; t = term -> t ]; PAREN ")" -> (vars, typ)
];
SYMBOL "."; body = term ->
let binder =
List.fold_right
(fun var body ->
let name = name_of_string var in
CicAst.Binder (b, (name, typ), body))
vars body
in
return_term loc binder
| t1 = term; SYMBOL <:unicode> (* → *); t2 = term ->
return_term loc
(CicAst.Binder (`Pi, (Cic.Anonymous, Some t1), t2))
]
| "logic_add" LEFTA [ (* nothing here by default *) ]
| "logic_mult" LEFTA [ (* nothing here by default *) ]
| "logic_inv" NONA [ (* nothing here by default *) ]
| "relop" LEFTA
[ t1 = term; SYMBOL "="; t2 = term ->
return_term loc (CicAst.Appl [CicAst.Symbol ("eq", 0); t1; t2])
]
| "add" LEFTA [ (* nothing here by default *) ]
| "mult" LEFTA [ (* nothing here by default *) ]
| "power" LEFTA [ (* nothing here by default *) ]
| "inv" NONA [ (* nothing here by default *) ]
| "apply" LEFTA
[ t1 = term; t2 = term ->
let rec aux = function
| CicAst.Appl (hd :: tl) -> aux hd @ tl
| term -> [term]
in
CicAst.Appl (aux t1 @ [t2])
]
| "simple" NONA
[ sort = sort -> CicAst.Sort sort
| n = substituted_name -> return_term loc n
| i = NUM -> return_term loc (CicAst.Num (i, (fresh_num_instance ())))
| IMPLICIT -> return_term loc CicAst.Implicit
| m = META;
substs = [
PAREN "["; substs = LIST0 meta_subst SEP SYMBOL ";" ; PAREN "]" ->
substs
] ->
let index =
try
int_of_string (String.sub m 1 (String.length m - 1))
with Failure "int_of_string" ->
fail loc ("Invalid meta variable number: " ^ m)
in
return_term loc (CicAst.Meta (index, substs))
| outtyp = OPT [ PAREN "["; typ = term; PAREN "]" -> typ ];
"match"; t = term;
indty_ident = OPT [ SYMBOL ":"; id = IDENT -> id ];
"with";
PAREN "[";
patterns = LIST0 [
lhs = pattern; SYMBOL <:unicode> (* ⇒ *); rhs = term ->
((lhs: CicAst.case_pattern), rhs)
] SEP SYMBOL "|";
PAREN "]" ->
return_term loc
(CicAst.Case (t, indty_ident, outtyp, patterns))
| PAREN "("; t1 = term; SYMBOL ":"; t2 = term; PAREN ")" ->
return_term loc (CicAst.Appl [CicAst.Symbol ("cast", 0); t1; t2])
| PAREN "("; t = term; PAREN ")" -> return_term loc t
]
];
tactic_where: [
[ where = OPT [ "in"; ident = IDENT -> ident ] -> where ]
];
tactic_term: [ [ t = term -> t ] ];
ident_list0: [
[ PAREN "["; idents = LIST0 IDENT SEP SYMBOL ";"; PAREN "]" -> idents ]
];
ident_list1: [
[ PAREN "["; idents = LIST1 IDENT SEP SYMBOL ";"; PAREN "]" -> idents ]
];
reduction_kind: [
[ [ IDENT "reduce" | IDENT "Reduce" ] -> `Reduce
| [ IDENT "simplify" | IDENT "Simplify" ] -> `Simpl
| [ IDENT "whd" | IDENT "Whd" ] -> `Whd ]
];
tactic: [
[ [ IDENT "absurd" | IDENT "Absurd" ]; t = tactic_term ->
return_tactic loc (TacticAst.Absurd t)
| [ IDENT "apply" | IDENT "Apply" ]; t = tactic_term ->
return_tactic loc (TacticAst.Apply t)
| [ IDENT "assumption" | IDENT "Assumption" ] ->
return_tactic loc TacticAst.Assumption
| [ IDENT "auto" | IDENT "Auto" ] -> return_tactic loc TacticAst.Auto
| [ IDENT "change" | IDENT "Change" ];
t1 = tactic_term; "with"; t2 = tactic_term;
where = tactic_where ->
return_tactic loc (TacticAst.Change (t1, t2, where))
(* TODO Change_pattern *)
| [ IDENT "contradiction" | IDENT "Contradiction" ] ->
return_tactic loc TacticAst.Contradiction
| [ IDENT "cut" | IDENT "Cut" ];
t = tactic_term -> return_tactic loc (TacticAst.Cut t)
| [ IDENT "decompose" | IDENT "Decompose" ];
principles = ident_list1; where = IDENT ->
return_tactic loc (TacticAst.Decompose (where, principles))
| [ IDENT "discriminate" | IDENT "Discriminate" ];
hyp = IDENT ->
return_tactic loc (TacticAst.Discriminate hyp)
| [ IDENT "elimType" | IDENT "ElimType" ]; t = tactic_term ->
return_tactic loc (TacticAst.ElimType t)
| [ IDENT "elim" | IDENT "Elim" ];
t1 = tactic_term;
using = OPT [ "using"; using = tactic_term -> using ] ->
return_tactic loc (TacticAst.Elim (t1, using))
| [ IDENT "exact" | IDENT "Exact" ]; t = tactic_term ->
return_tactic loc (TacticAst.Exact t)
| [ IDENT "exists" | IDENT "Exists" ] ->
return_tactic loc TacticAst.Exists
| [ IDENT "fold" | IDENT "Fold" ];
kind = reduction_kind; t = tactic_term ->
return_tactic loc (TacticAst.Fold (kind, t))
| [ IDENT "fourier" | IDENT "Fourier" ] ->
return_tactic loc TacticAst.Fourier
| [ IDENT "hint" | IDENT "Hint" ] -> return_tactic loc TacticAst.Hint
| [ IDENT "injection" | IDENT "Injection" ]; ident = IDENT ->
return_tactic loc (TacticAst.Injection ident)
| [ IDENT "intros" | IDENT "Intros" ];
num = OPT [ num = int -> num ];
idents = OPT ident_list0 ->
let idents = match idents with None -> [] | Some idents -> idents in
return_tactic loc (TacticAst.Intros (num, idents))
| [ IDENT "intro" | IDENT "Intro" ] ->
return_tactic loc (TacticAst.Intros (Some 1, []))
| [ IDENT "left" | IDENT "Left" ] -> return_tactic loc TacticAst.Left
| [ "let" | "Let" ];
t = tactic_term; "in"; where = IDENT ->
return_tactic loc (TacticAst.LetIn (t, where))
| kind = reduction_kind;
pat = OPT [
"in"; pat = [ IDENT "goal" -> `Goal | IDENT "hyp" -> `Everywhere ] ->
pat
];
terms = LIST0 term SEP SYMBOL "," ->
let tac =
(match (pat, terms) with
| None, [] -> TacticAst.Reduce (kind, None)
| None, terms -> TacticAst.Reduce (kind, Some (terms, `Goal))
| Some pat, [] -> TacticAst.Reduce (kind, Some ([], pat))
| Some pat, terms -> TacticAst.Reduce (kind, Some (terms, pat)))
in
return_tactic loc tac
| [ IDENT "reflexivity" | IDENT "Reflexivity" ] ->
return_tactic loc TacticAst.Reflexivity
| [ IDENT "replace" | IDENT "Replace" ];
t1 = tactic_term; "with"; t2 = tactic_term ->
return_tactic loc (TacticAst.Replace (t1, t2))
(* TODO Rewrite *)
(* TODO Replace_pattern *)
| [ IDENT "right" | IDENT "Right" ] -> return_tactic loc TacticAst.Right
| [ IDENT "ring" | IDENT "Ring" ] -> return_tactic loc TacticAst.Ring
| [ IDENT "split" | IDENT "Split" ] -> return_tactic loc TacticAst.Split
| [ IDENT "symmetry" | IDENT "Symmetry" ] ->
return_tactic loc TacticAst.Symmetry
| [ IDENT "transitivity" | IDENT "Transitivity" ];
t = tactic_term ->
return_tactic loc (TacticAst.Transitivity t)
]
];
tactical0: [ [ t = tactical; SYMBOL ";;" -> return_tactical loc t ] ];
tactical:
[ "command" NONA
[ cmd = command -> return_tactical loc (TacticAst.Command cmd) ]
| "sequence" LEFTA
[ tactics = LIST1 NEXT SEP SYMBOL ";" ->
return_tactical loc (TacticAst.Seq tactics)
]
| "then" NONA
[ tac = tactical;
PAREN "["; tacs = LIST0 tactical SEP SYMBOL ";"; PAREN "]" ->
return_tactical loc (TacticAst.Then (tac, tacs))
]
| "loops" RIGHTA
[ [ IDENT "do" | IDENT "Do" ]; count = int; tac = tactical ->
return_tactical loc (TacticAst.Do (count, tac))
| [ IDENT "repeat" | IDENT "Repeat" ]; tac = tactical ->
return_tactical loc (TacticAst.Repeat tac)
]
| "simple" NONA
[ [ IDENT "tries" | IDENT "Tries" ];
PAREN "["; tacs = LIST0 tactical SEP SYMBOL ";"; PAREN "]" ->
return_tactical loc (TacticAst.Tries tacs)
| [ IDENT "try" | IDENT "Try" ]; tac = NEXT ->
return_tactical loc (TacticAst.Try tac)
| [ IDENT "fail" | IDENT "Fail" ] -> return_tactical loc TacticAst.Fail
| [ IDENT "id" | IDENT "Id" ] -> return_tactical loc TacticAst.IdTac
| PAREN "("; tac = tactical; PAREN ")" -> return_tactical loc tac
| tac = tactic -> return_tactical loc (TacticAst.Tactic tac)
]
];
theorem_flavour: [ (* all flavours but Goal *)
[ [ IDENT "definition" | IDENT "Definition" ] -> `Definition
| [ IDENT "fact" | IDENT "Fact" ] -> `Fact
| [ IDENT "lemma" | IDENT "Lemma" ] -> `Lemma
| [ IDENT "remark" | IDENT "Remark" ] -> `Remark
| [ IDENT "theorem" | IDENT "Theorem" ] -> `Theorem
]
];
inductive_spec: [ [
fst_name = IDENT; params = LIST0 [
PAREN "("; names = LIST1 IDENT SEP SYMBOL ","; SYMBOL ":";
typ = term; PAREN ")" -> (names, typ) ];
SYMBOL ":"; fst_typ = term; SYMBOL <:unicode>; OPT SYMBOL "|";
fst_constructors = LIST0 constructor SEP SYMBOL "|";
tl = OPT [ "with";
types = LIST1 [
name = IDENT; SYMBOL ":"; typ = term; SYMBOL <:unicode>;
OPT SYMBOL "|"; constructors = LIST0 constructor SEP SYMBOL "|" ->
(name, true, typ, constructors) ] SEP "with" -> types
] ->
let params =
List.fold_right
(fun (names, typ) acc ->
(List.map (fun name -> (name, typ)) names) @ acc)
params []
in
let fst_ind_type = (fst_name, true, fst_typ, fst_constructors) in
let tl_ind_types = match tl with None -> [] | Some types -> types in
let ind_types = fst_ind_type :: tl_ind_types in
(params, ind_types)
] ];
command: [
[ [ IDENT "abort" | IDENT "Abort" ] -> return_command loc TacticAst.Abort
| [ IDENT "proof" | IDENT "Proof" ] -> return_command loc TacticAst.Proof
| [ IDENT "quit" | IDENT "Quit" ] -> return_command loc TacticAst.Quit
| [ IDENT "qed" | IDENT "Qed" ] ->
return_command loc (TacticAst.Qed None)
| [ IDENT "save" | IDENT "Save" ]; name = IDENT ->
return_command loc (TacticAst.Qed (Some name))
| flavour = theorem_flavour; name = OPT IDENT; SYMBOL ":"; typ = term;
body = OPT [ SYMBOL <:unicode> (* ≝ *); body = term -> body ] ->
return_command loc (TacticAst.Theorem (flavour, name, typ, body))
| [ IDENT "inductive" | IDENT "Inductive" ]; spec = inductive_spec ->
let (params, ind_types) = spec in
return_command loc (TacticAst.Inductive (params, ind_types))
| [ IDENT "coinductive" | IDENT "CoInductive" ]; spec = inductive_spec ->
let (params, ind_types) = spec in
let ind_types = (* set inductive flags to false (coinductive) *)
List.map (fun (name, _, term, ctors) -> (name, false, term, ctors))
ind_types
in
return_command loc (TacticAst.Inductive (params, ind_types))
| [ IDENT "goal" | IDENT "Goal" ]; typ = term;
body = OPT [ SYMBOL <:unicode> (* ≝ *); body = term -> body ] ->
return_command loc (TacticAst.Theorem (`Goal, None, typ, body))
| [ IDENT "undo" | IDENT "Undo" ]; steps = OPT NUM ->
return_command loc (TacticAst.Undo (int_opt steps))
| [ IDENT "redo" | IDENT "Redo" ]; steps = OPT NUM ->
return_command loc (TacticAst.Redo (int_opt steps))
| [ IDENT "baseuri" | IDENT "Baseuri" ]; uri = OPT QSTRING ->
return_command loc (TacticAst.Baseuri uri)
| [ IDENT "check" | IDENT "Check" ]; t = term ->
return_command loc (TacticAst.Check t)
]
];
script_entry: [
[ cmd = tactical0 -> Command cmd
| s = COMMENT -> Comment (loc, s)
]
];
script: [ [ entries = LIST0 script_entry; EOI -> (loc, entries) ] ];
END
let exc_located_wrapper f =
try
f ()
with
| Stdpp.Exc_located (floc, Stream.Error msg) ->
raise (Parse_error (floc, msg))
| Stdpp.Exc_located (floc, exn) ->
raise (Parse_error (floc, (Printexc.to_string exn)))
let parse_term stream =
exc_located_wrapper (fun () -> (Grammar.Entry.parse term0 stream))
let parse_tactic stream =
exc_located_wrapper (fun () -> (Grammar.Entry.parse tactic stream))
let parse_tactical stream =
exc_located_wrapper (fun () -> (Grammar.Entry.parse tactical0 stream))
let parse_script stream =
exc_located_wrapper (fun () -> (Grammar.Entry.parse script stream))
(**/**)
(** {2 Interface for gTopLevel} *)
module EnvironmentP3 =
struct
type t = environment
let empty = ""
let aliases_grammar = Grammar.gcreate CicTextualLexer2.cic_lexer
let aliases = Grammar.Entry.create aliases_grammar "aliases"
let to_string env =
let aliases =
Environment.fold
(fun domain_item (dsc, _) acc ->
let s =
match domain_item with
| Id id -> sprintf "alias id %s = %s" id dsc
| Symbol (symb, instance) ->
sprintf "alias symbol \"%s\" (instance %d) = \"%s\""
symb instance dsc
| Num instance ->
sprintf "alias num (instance %d) = \"%s\"" instance dsc
in
s :: acc)
env []
in
String.concat "\n" (List.sort compare aliases)
EXTEND
GLOBAL: aliases;
aliases: [ (* build an environment from an aliases list *)
[ aliases = LIST0 alias; EOI ->
List.fold_left
(fun env (domain_item, codomain_item) ->
Environment.add domain_item codomain_item env)
Environment.empty aliases
]
];
alias: [ (* return a pair from an alias *)
[ IDENT "alias";
choice =
[ IDENT "id"; id = IDENT; SYMBOL "="; uri = URI ->
(Id id, choice_of_uri uri)
| IDENT "symbol"; symbol = QSTRING;
PAREN "("; IDENT "instance"; instance = NUM; PAREN ")";
SYMBOL "="; dsc = QSTRING ->
(Symbol (symbol, int_of_string instance),
DisambiguateChoices.lookup_symbol_by_dsc symbol dsc)
| IDENT "num";
PAREN "("; IDENT "instance"; instance = NUM; PAREN ")";
SYMBOL "="; dsc = QSTRING ->
(Num (int_of_string instance),
DisambiguateChoices.lookup_num_by_dsc dsc)
] -> choice ]
];
END
let of_string s =
if s = empty then
Environment.empty
else
exc_located_wrapper
(fun () -> Grammar.Entry.parse aliases (Stream.of_string s))
end
(* vim:set encoding=utf8: *)