open Utils;; type equality = int * (* weight *) (Cic.term * (* type *) Cic.term * (* left side *) Cic.term * (* right side *) Utils.comparison) * (* ordering *) Cic.metasenv * (* environment for metas *) Cic.term list (* arguments *) ;; type proof = | BasicProof of Cic.term | ProofBlock of Cic.substitution * UriManager.uri * Cic.term * (Utils.pos * equality) * equality | NoProof ;; let string_of_equality ?env = match env with | None -> ( function | _, (ty, left, right, o), _, _ -> Printf.sprintf "{%s}: %s =(%s) %s" (CicPp.ppterm ty) (CicPp.ppterm left) (string_of_comparison o) (CicPp.ppterm right) ) | Some (_, context, _) -> ( let names = names_of_context context in function | _, (ty, left, right, o), _, _ -> Printf.sprintf "{%s}: %s =(%s) %s" (CicPp.pp ty names) (CicPp.pp left names) (string_of_comparison o) (CicPp.pp right names) ) ;; let prooftable = Hashtbl.create 2001;; let store_proof equality proof = if not (Hashtbl.mem prooftable equality) then Hashtbl.add prooftable equality proof ;; let delete_proof equality = (* Printf.printf "| Removing proof of %s" (string_of_equality equality); *) (* print_newline (); *) Hashtbl.remove prooftable equality ;; let rec build_term_proof equality = (* Printf.printf "build_term_proof %s" (string_of_equality equality); *) (* print_newline (); *) let proof = try Hashtbl.find prooftable equality with Not_found -> NoProof in match proof with | NoProof -> Printf.fprintf stderr "WARNING: no proof for %s\n" (string_of_equality equality); Cic.Implicit None | BasicProof term -> term | ProofBlock (subst, eq_URI, t', (pos, eq), eq') -> (* Printf.printf " ProofBlock: eq = %s, eq' = %s" *) (* (string_of_equality eq) (string_of_equality eq'); *) (* print_newline (); *) let proof' = build_term_proof eq in let eqproof = build_term_proof eq' in let _, (ty, what, other, _), menv', args' = eq in let what, other = if pos = Utils.Left then what, other else other, what in CicMetaSubst.apply_subst subst (Cic.Appl [Cic.Const (eq_URI, []); ty; what; t'; eqproof; other; proof']) ;; let rec metas_of_term = function | Cic.Meta (i, c) -> [i] | Cic.Var (_, ens) | Cic.Const (_, ens) | Cic.MutInd (_, _, ens) | Cic.MutConstruct (_, _, _, ens) -> List.flatten (List.map (fun (u, t) -> metas_of_term t) ens) | Cic.Cast (s, t) | Cic.Prod (_, s, t) | Cic.Lambda (_, s, t) | Cic.LetIn (_, s, t) -> (metas_of_term s) @ (metas_of_term t) | Cic.Appl l -> List.flatten (List.map metas_of_term l) | Cic.MutCase (uri, i, s, t, l) -> (metas_of_term s) @ (metas_of_term t) @ (List.flatten (List.map metas_of_term l)) | Cic.Fix (i, il) -> List.flatten (List.map (fun (s, i, t1, t2) -> (metas_of_term t1) @ (metas_of_term t2)) il) | Cic.CoFix (i, il) -> List.flatten (List.map (fun (s, t1, t2) -> (metas_of_term t1) @ (metas_of_term t2)) il) | _ -> [] ;; exception NotMetaConvertible;; let meta_convertibility_aux table t1 t2 = let module C = Cic in let print_table t = String.concat ", " (List.map (fun (k, v) -> Printf.sprintf "(%d, %d)" k v) t) in let rec aux ((table_l, table_r) as table) t1 t2 = (* Printf.printf "aux %s, %s\ntable_l: %s, table_r: %s\n" *) (* (CicPp.ppterm t1) (CicPp.ppterm t2) *) (* (print_table table_l) (print_table table_r); *) match t1, t2 with | C.Meta (m1, tl1), C.Meta (m2, tl2) -> let m1_binding, table_l = try List.assoc m1 table_l, table_l with Not_found -> m2, (m1, m2)::table_l and m2_binding, table_r = try List.assoc m2 table_r, table_r with Not_found -> m1, (m2, m1)::table_r in (* let m1_binding, m2_binding, table = *) (* let m1b, table = *) (* try List.assoc m1 table, table *) (* with Not_found -> m2, (m1, m2)::table *) (* in *) (* let m2b, table = *) (* try List.assoc m2 table, table *) (* with Not_found -> m1, (m2, m1)::table *) (* in *) (* m1b, m2b, table *) (* in *) (* Printf.printf "table_l: %s\ntable_r: %s\n\n" *) (* (print_table table_l) (print_table table_r); *) if (m1_binding <> m2) || (m2_binding <> m1) then raise NotMetaConvertible else ( try List.fold_left2 (fun res t1 t2 -> match t1, t2 with | None, Some _ | Some _, None -> raise NotMetaConvertible | None, None -> res | Some t1, Some t2 -> (aux res t1 t2)) (table_l, table_r) tl1 tl2 with Invalid_argument _ -> raise NotMetaConvertible ) | C.Var (u1, ens1), C.Var (u2, ens2) | C.Const (u1, ens1), C.Const (u2, ens2) when (UriManager.eq u1 u2) -> aux_ens table ens1 ens2 | C.Cast (s1, t1), C.Cast (s2, t2) | C.Prod (_, s1, t1), C.Prod (_, s2, t2) | C.Lambda (_, s1, t1), C.Lambda (_, s2, t2) | C.LetIn (_, s1, t1), C.LetIn (_, s2, t2) -> let table = aux table s1 s2 in aux table t1 t2 | C.Appl l1, C.Appl l2 -> ( try List.fold_left2 (fun res t1 t2 -> (aux res t1 t2)) table l1 l2 with Invalid_argument _ -> raise NotMetaConvertible ) | C.MutInd (u1, i1, ens1), C.MutInd (u2, i2, ens2) when (UriManager.eq u1 u2) && i1 = i2 -> aux_ens table ens1 ens2 | C.MutConstruct (u1, i1, j1, ens1), C.MutConstruct (u2, i2, j2, ens2) when (UriManager.eq u1 u2) && i1 = i2 && j1 = j2 -> aux_ens table ens1 ens2 | C.MutCase (u1, i1, s1, t1, l1), C.MutCase (u2, i2, s2, t2, l2) when (UriManager.eq u1 u2) && i1 = i2 -> let table = aux table s1 s2 in let table = aux table t1 t2 in ( try List.fold_left2 (fun res t1 t2 -> (aux res t1 t2)) table l1 l2 with Invalid_argument _ -> raise NotMetaConvertible ) | C.Fix (i1, il1), C.Fix (i2, il2) when i1 = i2 -> ( try List.fold_left2 (fun res (n1, i1, s1, t1) (n2, i2, s2, t2) -> if i1 <> i2 then raise NotMetaConvertible else let res = (aux res s1 s2) in aux res t1 t2) table il1 il2 with Invalid_argument _ -> raise NotMetaConvertible ) | C.CoFix (i1, il1), C.CoFix (i2, il2) when i1 = i2 -> ( try List.fold_left2 (fun res (n1, s1, t1) (n2, s2, t2) -> let res = aux res s1 s2 in aux res t1 t2) table il1 il2 with Invalid_argument _ -> raise NotMetaConvertible ) | t1, t2 when t1 = t2 -> table | _, _ -> raise NotMetaConvertible and aux_ens table ens1 ens2 = let cmp (u1, t1) (u2, t2) = compare (UriManager.string_of_uri u1) (UriManager.string_of_uri u2) in let ens1 = List.sort cmp ens1 and ens2 = List.sort cmp ens2 in try List.fold_left2 (fun res (u1, t1) (u2, t2) -> if not (UriManager.eq u1 u2) then raise NotMetaConvertible else aux res t1 t2) table ens1 ens2 with Invalid_argument _ -> raise NotMetaConvertible in aux table t1 t2 ;; let meta_convertibility_eq eq1 eq2 = let _, (ty, left, right, _), _, _ = eq1 and _, (ty', left', right', _), _, _ = eq2 in if ty <> ty' then false else if (left = left') && (right = right') then true else if (left = right') && (right = left') then true else try let table = meta_convertibility_aux ([], []) left left' in let _ = meta_convertibility_aux table right right' in true with NotMetaConvertible -> try let table = meta_convertibility_aux ([], []) left right' in let _ = meta_convertibility_aux table right left' in true with NotMetaConvertible -> false ;; let meta_convertibility t1 t2 = let f t = String.concat ", " (List.map (fun (k, v) -> Printf.sprintf "(%d, %d)" k v) t) in if t1 = t2 then true else try let l, r = meta_convertibility_aux ([], []) t1 t2 in (* Printf.printf "meta_convertibility:\n%s\n%s\n\n" (f l) (f r); *) true with NotMetaConvertible -> false ;; let replace_metas (* context *) term = let module C = Cic in let rec aux = function | C.Meta (i, c) -> (* let irl = *) (* CicMkImplicit.identity_relocation_list_for_metavariable context *) (* in *) (* if c = irl then *) (* C.Implicit (Some (`MetaIndex i)) *) (* else ( *) (* Printf.printf "WARNING: c non e` un identity_relocation_list!\n%s\n" *) (* (String.concat "\n" *) (* (List.map *) (* (function None -> "" | Some t -> CicPp.ppterm t) c)); *) (* C.Meta (i, c) *) (* ) *) C.Implicit (Some (`MetaInfo (i, c))) | C.Var (u, ens) -> C.Var (u, aux_ens ens) | C.Const (u, ens) -> C.Const (u, aux_ens ens) | C.Cast (s, t) -> C.Cast (aux s, aux t) | C.Prod (name, s, t) -> C.Prod (name, aux s, aux t) | C.Lambda (name, s, t) -> C.Lambda (name, aux s, aux t) | C.LetIn (name, s, t) -> C.LetIn (name, aux s, aux t) | C.Appl l -> C.Appl (List.map aux l) | C.MutInd (uri, i, ens) -> C.MutInd (uri, i, aux_ens ens) | C.MutConstruct (uri, i, j, ens) -> C.MutConstruct (uri, i, j, aux_ens ens) | C.MutCase (uri, i, s, t, l) -> C.MutCase (uri, i, aux s, aux t, List.map aux l) | C.Fix (i, il) -> let il' = List.map (fun (s, i, t1, t2) -> (s, i, aux t1, aux t2)) il in C.Fix (i, il') | C.CoFix (i, il) -> let il' = List.map (fun (s, t1, t2) -> (s, aux t1, aux t2)) il in C.CoFix (i, il') | t -> t and aux_ens ens = List.map (fun (u, t) -> (u, aux t)) ens in aux term ;; let restore_metas (* context *) term = let module C = Cic in let rec aux = function | C.Implicit (Some (`MetaInfo (i, c))) -> (* let c = *) (* CicMkImplicit.identity_relocation_list_for_metavariable context *) (* in *) (* C.Meta (i, c) *) (* let local_context:(C.term option) list = *) (* Marshal.from_string mc 0 *) (* in *) (* C.Meta (i, local_context) *) C.Meta (i, c) | C.Var (u, ens) -> C.Var (u, aux_ens ens) | C.Const (u, ens) -> C.Const (u, aux_ens ens) | C.Cast (s, t) -> C.Cast (aux s, aux t) | C.Prod (name, s, t) -> C.Prod (name, aux s, aux t) | C.Lambda (name, s, t) -> C.Lambda (name, aux s, aux t) | C.LetIn (name, s, t) -> C.LetIn (name, aux s, aux t) | C.Appl l -> C.Appl (List.map aux l) | C.MutInd (uri, i, ens) -> C.MutInd (uri, i, aux_ens ens) | C.MutConstruct (uri, i, j, ens) -> C.MutConstruct (uri, i, j, aux_ens ens) | C.MutCase (uri, i, s, t, l) -> C.MutCase (uri, i, aux s, aux t, List.map aux l) | C.Fix (i, il) -> let il' = List.map (fun (s, i, t1, t2) -> (s, i, aux t1, aux t2)) il in C.Fix (i, il') | C.CoFix (i, il) -> let il' = List.map (fun (s, t1, t2) -> (s, aux t1, aux t2)) il in C.CoFix (i, il') | t -> t and aux_ens ens = List.map (fun (u, t) -> (u, aux t)) ens in aux term ;; let rec restore_subst (* context *) subst = List.map (fun (i, (c, t, ty)) -> i, (c, restore_metas (* context *) t, ty)) subst ;; let rec check_irl start = function | [] -> true | None::tl -> check_irl (start+1) tl | (Some (Cic.Rel x))::tl -> if x = start then check_irl (start+1) tl else false | _ -> false ;; let rec is_simple_term = function | Cic.Appl ((Cic.Meta _)::_) -> false | Cic.Appl l -> List.for_all is_simple_term l | Cic.Meta (i, l) -> check_irl 1 l | Cic.Rel _ -> true | _ -> false ;; let lookup_subst meta subst = match meta with | Cic.Meta (i, _) -> ( try let _, (_, t, _) = List.find (fun (m, _) -> m = i) subst in t with Not_found -> meta ) | _ -> assert false ;; let unification_simple metasenv context t1 t2 ugraph = let module C = Cic in let module M = CicMetaSubst in let module U = CicUnification in let lookup = lookup_subst in let rec occurs_check subst what where = (* Printf.printf "occurs_check %s %s" *) (* (CicPp.ppterm what) (CicPp.ppterm where); *) (* print_newline (); *) match where with | t when what = t -> true | C.Appl l -> List.exists (occurs_check subst what) l | C.Meta _ -> let t = lookup where subst in if t <> where then occurs_check subst what t else false | _ -> false in let rec unif subst menv s t = (* Printf.printf "unif %s %s\n%s\n" (CicPp.ppterm s) (CicPp.ppterm t) *) (* (print_subst subst); *) (* print_newline (); *) let s = match s with C.Meta _ -> lookup s subst | _ -> s and t = match t with C.Meta _ -> lookup t subst | _ -> t in (* Printf.printf "after apply_subst: %s %s\n%s" *) (* (CicPp.ppterm s) (CicPp.ppterm t) (print_subst subst); *) (* print_newline (); *) match s, t with | s, t when s = t -> subst, menv | C.Meta (i, _), C.Meta (j, _) when i > j -> unif subst menv t s | C.Meta _, t when occurs_check subst s t -> raise (U.UnificationFailure "Inference.unification.unif") (* | C.Meta (i, l), C.Meta (j, l') -> *) (* let _, _, ty = CicUtil.lookup_meta i menv in *) (* let _, _, ty' = CicUtil.lookup_meta j menv in *) (* let binding1 = lookup s subst in *) (* let binding2 = lookup t subst in *) (* let subst, menv = *) (* if binding1 != s then *) (* if binding2 != t then *) (* unif subst menv binding1 binding2 *) (* else *) (* if binding1 = t then *) (* subst, menv *) (* else *) (* ((j, (context, binding1, ty'))::subst, *) (* List.filter (fun (m, _, _) -> j <> m) menv) *) (* else *) (* if binding2 != t then *) (* if s = binding2 then *) (* subst, menv *) (* else *) (* ((i, (context, binding2, ty))::subst, *) (* List.filter (fun (m, _, _) -> i <> m) menv) *) (* else *) (* ((i, (context, t, ty))::subst, *) (* List.filter (fun (m, _, _) -> i <> m) menv) *) (* in *) (* subst, menv *) | C.Meta (i, l), t -> let _, _, ty = CicUtil.lookup_meta i menv in let subst = if not (List.mem_assoc i subst) then (i, (context, t, ty))::subst else subst in let menv = List.filter (fun (m, _, _) -> i <> m) menv in subst, menv | _, C.Meta _ -> unif subst menv t s | C.Appl (hds::_), C.Appl (hdt::_) when hds <> hdt -> raise (U.UnificationFailure "Inference.unification.unif") | C.Appl (hds::tls), C.Appl (hdt::tlt) -> ( try List.fold_left2 (fun (subst', menv) s t -> unif subst' menv s t) (subst, menv) tls tlt with e -> raise (U.UnificationFailure "Inference.unification.unif") ) | _, _ -> raise (U.UnificationFailure "Inference.unification.unif") in let subst, menv = unif [] metasenv t1 t2 in (* Printf.printf "DONE!: subst = \n%s\n" (print_subst subst); *) (* print_newline (); *) (* let rec fix_term = function *) (* | (C.Meta (i, l) as t) -> *) (* lookup t subst *) (* | C.Appl l -> C.Appl (List.map fix_term l) *) (* | t -> t *) (* in *) (* let rec fix_subst = function *) (* | [] -> [] *) (* | (i, (c, t, ty))::tl -> (i, (c, fix_term t, fix_term ty))::(fix_subst tl) *) (* in *) (* List.rev (fix_subst subst), menv, ugraph *) List.rev subst, menv, ugraph ;; let unification metasenv context t1 t2 ugraph = (* Printf.printf "| unification %s %s\n" (CicPp.ppterm t1) (CicPp.ppterm t2); *) let subst, menv, ug = if not (is_simple_term t1) || not (is_simple_term t2) then CicUnification.fo_unif metasenv context t1 t2 ugraph else unification_simple metasenv context t1 t2 ugraph in let rec fix_term = function | (Cic.Meta (i, l) as t) -> let t' = lookup_subst t subst in if t <> t' then fix_term t' else t | Cic.Appl l -> Cic.Appl (List.map fix_term l) | t -> t in let rec fix_subst = function | [] -> [] | (i, (c, t, ty))::tl -> (i, (c, fix_term t, fix_term ty))::(fix_subst tl) in (* Printf.printf "| subst: %s\n" (print_subst ~prefix:" ; " subst); *) (* print_endline "|"; *) (* fix_subst *) subst, menv, ug ;; (* let unification = CicUnification.fo_unif;; *) exception MatchingFailure;; let matching_simple metasenv context t1 t2 ugraph = let module C = Cic in let module M = CicMetaSubst in let module U = CicUnification in let lookup meta subst = match meta with | C.Meta (i, _) -> ( try let _, (_, t, _) = List.find (fun (m, _) -> m = i) subst in t with Not_found -> meta ) | _ -> assert false in let rec do_match subst menv s t = (* Printf.printf "do_match %s %s\n%s\n" (CicPp.ppterm s) (CicPp.ppterm t) *) (* (print_subst subst); *) (* print_newline (); *) (* let s = match s with C.Meta _ -> lookup s subst | _ -> s *) (* let t = match t with C.Meta _ -> lookup t subst | _ -> t in *) (* Printf.printf "after apply_subst: %s %s\n%s" *) (* (CicPp.ppterm s) (CicPp.ppterm t) (print_subst subst); *) (* print_newline (); *) match s, t with | s, t when s = t -> subst, menv (* | C.Meta (i, _), C.Meta (j, _) when i > j -> *) (* do_match subst menv t s *) (* | C.Meta _, t when occurs_check subst s t -> *) (* raise MatchingFailure *) (* | s, C.Meta _ when occurs_check subst t s -> *) (* raise MatchingFailure *) | s, C.Meta (i, l) -> let filter_menv i menv = List.filter (fun (m, _, _) -> i <> m) menv in let subst, menv = let value = lookup t subst in match value with (* | C.Meta (i', l') when Hashtbl.mem table i' -> *) (* (i', (context, s, ty))::subst, menv (\* filter_menv i' menv *\) *) | value when value = t -> let _, _, ty = CicUtil.lookup_meta i menv in (i, (context, s, ty))::subst, filter_menv i menv | value when value <> s -> raise MatchingFailure | value -> do_match subst menv s value in subst, menv (* else if value <> s then *) (* raise MatchingFailure *) (* else subst *) (* if not (List.mem_assoc i subst) then (i, (context, t, ty))::subst *) (* else subst *) (* in *) (* let menv = List.filter (fun (m, _, _) -> i <> m) menv in *) (* subst, menv *) (* | _, C.Meta _ -> do_match subst menv t s *) (* | C.Appl (hds::_), C.Appl (hdt::_) when hds <> hdt -> *) (* raise MatchingFailure *) | C.Appl ls, C.Appl lt -> ( try List.fold_left2 (fun (subst, menv) s t -> do_match subst menv s t) (subst, menv) ls lt with e -> (* print_endline (Printexc.to_string e); *) (* Printf.printf "NO MATCH: %s %s\n" (CicPp.ppterm s) (CicPp.ppterm t); *) (* print_newline (); *) raise MatchingFailure ) | _, _ -> (* Printf.printf "NO MATCH: %s %s\n" (CicPp.ppterm s) (CicPp.ppterm t); *) (* print_newline (); *) raise MatchingFailure in let subst, menv = do_match [] metasenv t1 t2 in (* Printf.printf "DONE!: subst = \n%s\n" (print_subst subst); *) (* print_newline (); *) subst, menv, ugraph ;; let matching metasenv context t1 t2 ugraph = (* if (is_simple_term t1) && (is_simple_term t2) then *) (* let subst, menv, ug = *) (* matching_simple metasenv context t1 t2 ugraph in *) (* (\* Printf.printf "matching %s %s:\n%s\n" *\) *) (* (\* (CicPp.ppterm t1) (CicPp.ppterm t2) (print_subst subst); *\) *) (* (\* print_newline (); *\) *) (* subst, menv, ug *) (* else *) try let subst, metasenv, ugraph = (* CicUnification.fo_unif metasenv context t1 t2 ugraph *) unification metasenv context t1 t2 ugraph in let t' = CicMetaSubst.apply_subst subst t1 in if not (meta_convertibility t1 t') then raise MatchingFailure else let metas = metas_of_term t1 in let fix_subst = function | (i, (c, Cic.Meta (j, lc), ty)) when List.mem i metas -> (j, (c, Cic.Meta (i, lc), ty)) | s -> s in let subst = List.map fix_subst subst in (* Printf.printf "matching %s %s:\n%s\n" *) (* (CicPp.ppterm t1) (CicPp.ppterm t2) (print_subst subst); *) (* print_newline (); *) subst, metasenv, ugraph with e -> (* Printf.printf "failed to match %s %s\n" *) (* (CicPp.ppterm t1) (CicPp.ppterm t2); *) raise MatchingFailure ;; (* let matching = *) (* let profile = CicUtil.profile "Inference.matching" in *) (* (fun metasenv context t1 t2 ugraph -> *) (* profile (matching metasenv context t1 t2) ugraph) *) (* ;; *) let beta_expand ?(metas_ok=true) ?(match_only=false) what type_of_what where context metasenv ugraph = let module S = CicSubstitution in let module C = Cic in let print_info = false in (* let _ = *) (* let names = names_of_context context in *) (* Printf.printf "beta_expand:\nwhat: %s, %s\nwhere: %s, %s\n" *) (* (CicPp.pp what names) (CicPp.ppterm what) *) (* (CicPp.pp where names) (CicPp.ppterm where); *) (* print_newline (); *) (* in *) (* return value: ((list of all possible beta expansions, subst, metasenv, ugraph), lifted term) *) let rec aux lift_amount term context metasenv subst ugraph = (* Printf.printf "enter aux %s\n" (CicPp.ppterm term); *) let res, lifted_term = match term with | C.Rel m -> [], if m <= lift_amount then C.Rel m else C.Rel (m+1) | C.Var (uri, exp_named_subst) -> let ens', lifted_ens = aux_ens lift_amount exp_named_subst context metasenv subst ugraph in let expansions = List.map (fun (e, s, m, ug) -> (C.Var (uri, e), s, m, ug)) ens' in expansions, C.Var (uri, lifted_ens) | C.Meta (i, l) -> let l', lifted_l = List.fold_right (fun arg (res, lifted_tl) -> match arg with | Some arg -> let arg_res, lifted_arg = aux lift_amount arg context metasenv subst ugraph in let l1 = List.map (fun (a, s, m, ug) -> (Some a)::lifted_tl, s, m, ug) arg_res in (l1 @ (List.map (fun (r, s, m, ug) -> (Some lifted_arg)::r, s, m, ug) res), (Some lifted_arg)::lifted_tl) | None -> (List.map (fun (r, s, m, ug) -> None::r, s, m, ug) res, None::lifted_tl) ) l ([], []) in let e = List.map (fun (l, s, m, ug) -> (C.Meta (i, l), s, m, ug)) l' in e, C.Meta (i, lifted_l) | C.Sort _ | C.Implicit _ as t -> [], t | C.Cast (s, t) -> let l1, lifted_s = aux lift_amount s context metasenv subst ugraph in let l2, lifted_t = aux lift_amount t context metasenv subst ugraph in let l1' = List.map (fun (t, s, m, ug) -> C.Cast (t, lifted_t), s, m, ug) l1 in let l2' = List.map (fun (t, s, m, ug) -> C.Cast (lifted_s, t), s, m, ug) l2 in l1'@l2', C.Cast (lifted_s, lifted_t) | C.Prod (nn, s, t) -> let l1, lifted_s = aux lift_amount s context metasenv subst ugraph in let l2, lifted_t = aux (lift_amount+1) t ((Some (nn, C.Decl s))::context) metasenv subst ugraph in let l1' = List.map (fun (t, s, m, ug) -> C.Prod (nn, t, lifted_t), s, m, ug) l1 in let l2' = List.map (fun (t, s, m, ug) -> C.Prod (nn, lifted_s, t), s, m, ug) l2 in l1'@l2', C.Prod (nn, lifted_s, lifted_t) | C.Lambda (nn, s, t) -> let l1, lifted_s = aux lift_amount s context metasenv subst ugraph in let l2, lifted_t = aux (lift_amount+1) t ((Some (nn, C.Decl s))::context) metasenv subst ugraph in let l1' = List.map (fun (t, s, m, ug) -> C.Lambda (nn, t, lifted_t), s, m, ug) l1 in let l2' = List.map (fun (t, s, m, ug) -> C.Lambda (nn, lifted_s, t), s, m, ug) l2 in l1'@l2', C.Lambda (nn, lifted_s, lifted_t) | C.LetIn (nn, s, t) -> let l1, lifted_s = aux lift_amount s context metasenv subst ugraph in let l2, lifted_t = aux (lift_amount+1) t ((Some (nn, C.Def (s, None)))::context) metasenv subst ugraph in let l1' = List.map (fun (t, s, m, ug) -> C.LetIn (nn, t, lifted_t), s, m, ug) l1 in let l2' = List.map (fun (t, s, m, ug) -> C.LetIn (nn, lifted_s, t), s, m, ug) l2 in l1'@l2', C.LetIn (nn, lifted_s, lifted_t) | C.Appl l -> let l', lifted_l = aux_list lift_amount l context metasenv subst ugraph in (List.map (fun (l, s, m, ug) -> (C.Appl l, s, m, ug)) l', C.Appl lifted_l) | C.Const (uri, exp_named_subst) -> let ens', lifted_ens = aux_ens lift_amount exp_named_subst context metasenv subst ugraph in let expansions = List.map (fun (e, s, m, ug) -> (C.Const (uri, e), s, m, ug)) ens' in (expansions, C.Const (uri, lifted_ens)) | C.MutInd (uri, i ,exp_named_subst) -> let ens', lifted_ens = aux_ens lift_amount exp_named_subst context metasenv subst ugraph in let expansions = List.map (fun (e, s, m, ug) -> (C.MutInd (uri, i, e), s, m, ug)) ens' in (expansions, C.MutInd (uri, i, lifted_ens)) | C.MutConstruct (uri, i, j, exp_named_subst) -> let ens', lifted_ens = aux_ens lift_amount exp_named_subst context metasenv subst ugraph in let expansions = List.map (fun (e, s, m, ug) -> (C.MutConstruct (uri, i, j, e), s, m, ug)) ens' in (expansions, C.MutConstruct (uri, i, j, lifted_ens)) | C.MutCase (sp, i, outt, t, pl) -> let pl_res, lifted_pl = aux_list lift_amount pl context metasenv subst ugraph in let l1, lifted_outt = aux lift_amount outt context metasenv subst ugraph in let l2, lifted_t = aux lift_amount t context metasenv subst ugraph in let l1' = List.map (fun (outt, s, m, ug) -> C.MutCase (sp, i, outt, lifted_t, lifted_pl), s, m, ug) l1 in let l2' = List.map (fun (t, s, m, ug) -> C.MutCase (sp, i, lifted_outt, t, lifted_pl), s, m, ug) l2 in let l3' = List.map (fun (pl, s, m, ug) -> C.MutCase (sp, i, lifted_outt, lifted_t, pl), s, m, ug) pl_res in (l1'@l2'@l3', C.MutCase (sp, i, lifted_outt, lifted_t, lifted_pl)) | C.Fix (i, fl) -> let len = List.length fl in let fl', lifted_fl = List.fold_right (fun (nm, idx, ty, bo) (res, lifted_tl) -> let lifted_ty = S.lift lift_amount ty in let bo_res, lifted_bo = aux (lift_amount+len) bo context metasenv subst ugraph in let l1 = List.map (fun (a, s, m, ug) -> (nm, idx, lifted_ty, a)::lifted_tl, s, m, ug) bo_res in (l1 @ (List.map (fun (r, s, m, ug) -> (nm, idx, lifted_ty, lifted_bo)::r, s, m, ug) res), (nm, idx, lifted_ty, lifted_bo)::lifted_tl) ) fl ([], []) in (List.map (fun (fl, s, m, ug) -> C.Fix (i, fl), s, m, ug) fl', C.Fix (i, lifted_fl)) | C.CoFix (i, fl) -> let len = List.length fl in let fl', lifted_fl = List.fold_right (fun (nm, ty, bo) (res, lifted_tl) -> let lifted_ty = S.lift lift_amount ty in let bo_res, lifted_bo = aux (lift_amount+len) bo context metasenv subst ugraph in let l1 = List.map (fun (a, s, m, ug) -> (nm, lifted_ty, a)::lifted_tl, s, m, ug) bo_res in (l1 @ (List.map (fun (r, s, m, ug) -> (nm, lifted_ty, lifted_bo)::r, s, m, ug) res), (nm, lifted_ty, lifted_bo)::lifted_tl) ) fl ([], []) in (List.map (fun (fl, s, m, ug) -> C.CoFix (i, fl), s, m, ug) fl', C.CoFix (i, lifted_fl)) in let retval = match term with | C.Meta _ when (not metas_ok) -> res, lifted_term | _ -> (* let term' = *) (* if match_only then replace_metas context term *) (* else term *) (* in *) try let subst', metasenv', ugraph' = (* Printf.printf "provo a unificare %s e %s\n" *) (* (CicPp.ppterm (S.lift lift_amount what)) (CicPp.ppterm term); *) if match_only then matching metasenv context term (S.lift lift_amount what) ugraph else CicUnification.fo_unif metasenv context (S.lift lift_amount what) term ugraph in (* Printf.printf "Ok, trovato: %s\n\nwhat: %s" (CicPp.ppterm term) *) (* (CicPp.ppterm (S.lift lift_amount what)); *) (* Printf.printf "substitution:\n%s\n\n" (print_subst subst'); *) (* Printf.printf "metasenv': %s\n" (print_metasenv metasenv'); *) (* Printf.printf "metasenv: %s\n\n" (print_metasenv metasenv); *) (* if match_only then *) (* let t' = CicMetaSubst.apply_subst subst' term in *) (* if not (meta_convertibility term t') then ( *) (* res, lifted_term *) (* ) else ( *) (* let metas = metas_of_term term in *) (* let fix_subst = function *) (* | (i, (c, C.Meta (j, lc), ty)) when List.mem i metas -> *) (* (j, (c, C.Meta (i, lc), ty)) *) (* | s -> s *) (* in *) (* let subst' = List.map fix_subst subst' in *) (* ((C.Rel (1 + lift_amount), subst', metasenv', ugraph')::res, *) (* lifted_term) *) (* ) *) (* else *) ((C.Rel (1 + lift_amount), subst', metasenv', ugraph')::res, lifted_term) with e -> if print_info then ( print_endline ("beta_expand ERROR!: " ^ (Printexc.to_string e)); ); res, lifted_term in (* Printf.printf "exit aux\n"; *) retval and aux_list lift_amount l context metasenv subst ugraph = List.fold_right (fun arg (res, lifted_tl) -> let arg_res, lifted_arg = aux lift_amount arg context metasenv subst ugraph in let l1 = List.map (fun (a, s, m, ug) -> a::lifted_tl, s, m, ug) arg_res in (l1 @ (List.map (fun (r, s, m, ug) -> lifted_arg::r, s, m, ug) res), lifted_arg::lifted_tl) ) l ([], []) and aux_ens lift_amount exp_named_subst context metasenv subst ugraph = List.fold_right (fun (u, arg) (res, lifted_tl) -> let arg_res, lifted_arg = aux lift_amount arg context metasenv subst ugraph in let l1 = List.map (fun (a, s, m, ug) -> (u, a)::lifted_tl, s, m, ug) arg_res in (l1 @ (List.map (fun (r, s, m, ug) -> (u, lifted_arg)::r, s, m, ug) res), (u, lifted_arg)::lifted_tl) ) exp_named_subst ([], []) in let expansions, _ = (* let where = *) (* if match_only then replace_metas (\* context *\) where *) (* else where *) (* in *) if print_info then ( Printf.printf "searching %s inside %s\n" (CicPp.ppterm what) (CicPp.ppterm where); ); aux 0 where context metasenv [] ugraph in let mapfun = (* if match_only then *) (* (fun (term, subst, metasenv, ugraph) -> *) (* let term' = *) (* C.Lambda (C.Anonymous, type_of_what, restore_metas term) *) (* and subst = restore_subst subst in *) (* (term', subst, metasenv, ugraph)) *) (* else *) (fun (term, subst, metasenv, ugraph) -> let term' = C.Lambda (C.Anonymous, type_of_what, term) in (term', subst, metasenv, ugraph)) in List.map mapfun expansions ;; let find_equalities ?(eq_uri=HelmLibraryObjects.Logic.eq_URI) context proof = let module C = Cic in let module S = CicSubstitution in let module T = CicTypeChecker in let newmeta = ProofEngineHelpers.new_meta_of_proof ~proof in let rec aux index newmeta = function | [] -> [], newmeta | (Some (_, C.Decl (term)))::tl -> let do_find context term = match term with | C.Prod (name, s, t) -> (* let newmeta = ProofEngineHelpers.new_meta_of_proof ~proof in *) let (head, newmetas, args, _) = PrimitiveTactics.new_metasenv_for_apply newmeta proof context (S.lift index term) in let newmeta = List.fold_left (fun maxm arg -> match arg with | C.Meta (i, _) -> (max maxm i) | _ -> assert false) newmeta args in let p = if List.length args = 0 then C.Rel index else C.Appl ((C.Rel index)::args) in ( match head with | C.Appl [C.MutInd (uri, _, _); ty; t1; t2] when uri = eq_uri -> Printf.printf "OK: %s\n" (CicPp.ppterm term); let o = !Utils.compare_terms t1 t2 in let w = compute_equality_weight ty t1 t2 in let e = (w, (ty, t1, t2, o), newmetas, args) in store_proof e (BasicProof p); Some e, (newmeta+1) | _ -> None, newmeta ) | C.Appl [C.MutInd (uri, _, _); ty; t1; t2] when uri = eq_uri -> let t1 = S.lift index t1 and t2 = S.lift index t2 in let o = !Utils.compare_terms t1 t2 in let w = compute_equality_weight ty t1 t2 in let e = (w, (ty, t1, t2, o), [], []) in store_proof e (BasicProof (C.Rel index)); Some e, (newmeta+1) | _ -> None, newmeta in ( match do_find context term with | Some p, newmeta -> let tl, newmeta' = (aux (index+1) newmeta tl) in p::tl, max newmeta newmeta' | None, _ -> aux (index+1) newmeta tl ) | _::tl -> aux (index+1) newmeta tl in aux 1 newmeta context ;; let fix_metas newmeta ((weight, (ty, left, right, o), menv, args) as equality) = let table = Hashtbl.create (List.length args) in let newargs, _ = List.fold_right (fun t (newargs, index) -> match t with | Cic.Meta (i, l) -> Hashtbl.add table i index; ((Cic.Meta (index, l))::newargs, index+1) | _ -> assert false) args ([], newmeta) in let repl where = ProofEngineReduction.replace ~equality:(=) ~what:args ~with_what:newargs ~where in let menv' = List.fold_right (fun (i, context, term) menv -> try let index = Hashtbl.find table i in (index, context, term)::menv with Not_found -> (i, context, term)::menv) menv [] in let ty = repl ty and left = repl left and right = repl right in let metas = (metas_of_term left) @ (metas_of_term right) in let menv' = List.filter (fun (i, _, _) -> List.mem i metas) menv' and newargs = List.filter (function Cic.Meta (i, _) -> List.mem i metas | _ -> assert false) newargs in (newmeta + (List.length newargs) + 1, (weight, (ty, left, right, o), menv', newargs)) ;; exception TermIsNotAnEquality;; let equality_of_term ?(eq_uri=HelmLibraryObjects.Logic.eq_URI) proof = function | Cic.Appl [Cic.MutInd (uri, _, _); ty; t1; t2] when uri = eq_uri -> let o = !Utils.compare_terms t1 t2 in let w = compute_equality_weight ty t1 t2 in let e = (w, (ty, t1, t2, o), [], []) in store_proof e (BasicProof proof); e (* (proof, (ty, t1, t2, o), [], []) *) | _ -> raise TermIsNotAnEquality ;; type environment = Cic.metasenv * Cic.context * CicUniv.universe_graph;; (* let superposition_left (metasenv, context, ugraph) target source = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let module CR = CicReduction in (* we assume that target is ground (does not contain metavariables): this * should always be the case (I hope, at least) *) let proof, (eq_ty, left, right, t_order), _, _ = target in let eqproof, (ty, t1, t2, s_order), newmetas, args = source in let compare_terms = !Utils.compare_terms in if eq_ty <> ty then [] else let where, is_left = match t_order (* compare_terms left right *) with | Lt -> right, false | Gt -> left, true | _ -> ( Printf.printf "????????? %s = %s" (CicPp.ppterm left) (CicPp.ppterm right); print_newline (); assert false (* again, for ground terms this shouldn't happen... *) ) in let metasenv' = newmetas @ metasenv in let result = s_order (* compare_terms t1 t2 *) in let res1, res2 = match result with | Gt -> (beta_expand t1 ty where context metasenv' ugraph), [] | Lt -> [], (beta_expand t2 ty where context metasenv' ugraph) | _ -> let res1 = List.filter (fun (t, s, m, ug) -> compare_terms (M.apply_subst s t1) (M.apply_subst s t2) = Gt) (beta_expand t1 ty where context metasenv' ugraph) and res2 = List.filter (fun (t, s, m, ug) -> compare_terms (M.apply_subst s t2) (M.apply_subst s t1) = Gt) (beta_expand t2 ty where context metasenv' ugraph) in res1, res2 in (* let what, other = *) (* if is_left then left, right *) (* else right, left *) (* in *) let build_new what other eq_URI (t, s, m, ug) = let newgoal, newgoalproof = match t with | C.Lambda (nn, ty, bo) -> let bo' = S.subst (M.apply_subst s other) bo in let bo'' = C.Appl ( [C.MutInd (HL.Logic.eq_URI, 0, []); S.lift 1 eq_ty] @ if is_left then [bo'; S.lift 1 right] else [S.lift 1 left; bo']) in let t' = C.Lambda (nn, ty, bo'') in S.subst (M.apply_subst s other) bo, M.apply_subst s (C.Appl [C.Const (eq_URI, []); ty; what; t'; proof; other; eqproof]) | _ -> assert false in let equation = if is_left then (eq_ty, newgoal, right, compare_terms newgoal right) else (eq_ty, left, newgoal, compare_terms left newgoal) in (newgoalproof (* eqproof *), equation, [], []) in let new1 = List.map (build_new t1 t2 HL.Logic.eq_ind_URI) res1 and new2 = List.map (build_new t2 t1 HL.Logic.eq_ind_r_URI) res2 in new1 @ new2 ;; let superposition_right newmeta (metasenv, context, ugraph) target source = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let module CR = CicReduction in let eqproof, (eq_ty, left, right, t_order), newmetas, args = target in let eqp', (ty', t1, t2, s_order), newm', args' = source in let maxmeta = ref newmeta in let compare_terms = !Utils.compare_terms in if eq_ty <> ty' then newmeta, [] else (* let ok term subst other other_eq_side ugraph = *) (* match term with *) (* | C.Lambda (nn, ty, bo) -> *) (* let bo' = S.subst (M.apply_subst subst other) bo in *) (* let res, _ = CR.are_convertible context bo' other_eq_side ugraph in *) (* not res *) (* | _ -> assert false *) (* in *) let condition left right what other (t, s, m, ug) = let subst = M.apply_subst s in let cmp1 = compare_terms (subst what) (subst other) in let cmp2 = compare_terms (subst left) (subst right) in (* cmp1 = Gt && cmp2 = Gt *) cmp1 <> Lt && cmp1 <> Le && cmp2 <> Lt && cmp2 <> Le (* && (ok t s other right ug) *) in let metasenv' = metasenv @ newmetas @ newm' in let beta_expand = beta_expand ~metas_ok:false in let cmp1 = t_order (* compare_terms left right *) and cmp2 = s_order (* compare_terms t1 t2 *) in let res1, res2, res3, res4 = let res l r s t = List.filter (condition l r s t) (beta_expand s eq_ty l context metasenv' ugraph) in match cmp1, cmp2 with | Gt, Gt -> (beta_expand t1 eq_ty left context metasenv' ugraph), [], [], [] | Gt, Lt -> [], (beta_expand t2 eq_ty left context metasenv' ugraph), [], [] | Lt, Gt -> [], [], (beta_expand t1 eq_ty right context metasenv' ugraph), [] | Lt, Lt -> [], [], [], (beta_expand t2 eq_ty right context metasenv' ugraph) | Gt, _ -> let res1 = res left right t1 t2 and res2 = res left right t2 t1 in res1, res2, [], [] | Lt, _ -> let res3 = res right left t1 t2 and res4 = res right left t2 t1 in [], [], res3, res4 | _, Gt -> let res1 = res left right t1 t2 and res3 = res right left t1 t2 in res1, [], res3, [] | _, Lt -> let res2 = res left right t2 t1 and res4 = res right left t2 t1 in [], res2, [], res4 | _, _ -> let res1 = res left right t1 t2 and res2 = res left right t2 t1 and res3 = res right left t1 t2 and res4 = res right left t2 t1 in res1, res2, res3, res4 in let newmetas = newmetas @ newm' in let newargs = args @ args' in let build_new what other is_left eq_URI (t, s, m, ug) = (* let what, other = *) (* if is_left then left, right *) (* else right, left *) (* in *) let newterm, neweqproof = match t with | C.Lambda (nn, ty, bo) -> let bo' = M.apply_subst s (S.subst other bo) in let bo'' = C.Appl ( [C.MutInd (HL.Logic.eq_URI, 0, []); S.lift 1 eq_ty] @ if is_left then [bo'; S.lift 1 right] else [S.lift 1 left; bo']) in let t' = C.Lambda (nn, ty, bo'') in bo', M.apply_subst s (C.Appl [C.Const (eq_URI, []); ty; what; t'; eqproof; other; eqp']) | _ -> assert false in let newmeta, newequality = let left, right = if is_left then (newterm, M.apply_subst s right) else (M.apply_subst s left, newterm) in let neworder = compare_terms left right in fix_metas !maxmeta (neweqproof, (eq_ty, left, right, neworder), newmetas, newargs) in maxmeta := newmeta; newequality in let new1 = List.map (build_new t1 t2 true HL.Logic.eq_ind_URI) res1 and new2 = List.map (build_new t2 t1 true HL.Logic.eq_ind_r_URI) res2 and new3 = List.map (build_new t1 t2 false HL.Logic.eq_ind_URI) res3 and new4 = List.map (build_new t2 t1 false HL.Logic.eq_ind_r_URI) res4 in let ok = function | _, (_, left, right, _), _, _ -> not (fst (CR.are_convertible context left right ugraph)) in (!maxmeta, (List.filter ok (new1 @ new2 @ new3 @ new4))) ;; *) let is_identity ((_, context, ugraph) as env) = function | ((_, (ty, left, right, _), _, _) as equality) -> let res = (left = right || (fst (CicReduction.are_convertible context left right ugraph))) in (* if res then ( *) (* Printf.printf "is_identity: %s" (string_of_equality ~env equality); *) (* print_newline (); *) (* ); *) res ;; (* let demodulation newmeta (metasenv, context, ugraph) target source = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let module CR = CicReduction in let proof, (eq_ty, left, right, t_order), metas, args = target and proof', (ty, t1, t2, s_order), metas', args' = source in let compare_terms = !Utils.compare_terms in if eq_ty <> ty then newmeta, target else let first_step, get_params = match s_order (* compare_terms t1 t2 *) with | Gt -> 1, (function | 1 -> true, t1, t2, HL.Logic.eq_ind_URI | 0 -> false, t1, t2, HL.Logic.eq_ind_URI | _ -> assert false) | Lt -> 1, (function | 1 -> true, t2, t1, HL.Logic.eq_ind_r_URI | 0 -> false, t2, t1, HL.Logic.eq_ind_r_URI | _ -> assert false) | _ -> let first_step = 3 in let get_params step = match step with | 3 -> true, t1, t2, HL.Logic.eq_ind_URI | 2 -> false, t1, t2, HL.Logic.eq_ind_URI | 1 -> true, t2, t1, HL.Logic.eq_ind_r_URI | 0 -> false, t2, t1, HL.Logic.eq_ind_r_URI | _ -> assert false in first_step, get_params in let rec demodulate newmeta step metasenv target = let proof, (eq_ty, left, right, t_order), metas, args = target in let is_left, what, other, eq_URI = get_params step in let env = metasenv, context, ugraph in let names = names_of_context context in (* Printf.printf *) (* "demodulate\ntarget: %s\nwhat: %s\nother: %s\nis_left: %s\n" *) (* (string_of_equality ~env target) (CicPp.pp what names) *) (* (CicPp.pp other names) (string_of_bool is_left); *) (* Printf.printf "step: %d" step; *) (* print_newline (); *) let ok (t, s, m, ug) = compare_terms (M.apply_subst s what) (M.apply_subst s other) = Gt in let res = let r = (beta_expand ~metas_ok:false ~match_only:true what ty (if is_left then left else right) context (metasenv @ metas) ugraph) in (* let m' = metas_of_term what *) (* and m'' = metas_of_term (if is_left then left else right) in *) (* if (List.mem 527 m'') && (List.mem 6 m') then ( *) (* Printf.printf *) (* "demodulate\ntarget: %s\nwhat: %s\nother: %s\nis_left: %s\n" *) (* (string_of_equality ~env target) (CicPp.pp what names) *) (* (CicPp.pp other names) (string_of_bool is_left); *) (* Printf.printf "step: %d" step; *) (* print_newline (); *) (* print_endline "res:"; *) (* List.iter (fun (t, s, m, ug) -> print_endline (CicPp.pp t names)) r; *) (* print_newline (); *) (* Printf.printf "metasenv:\n%s\n" (print_metasenv (metasenv @ metas)); *) (* print_newline (); *) (* ); *) List.filter ok r in match res with | [] -> if step = 0 then newmeta, target else demodulate newmeta (step-1) metasenv target | (t, s, m, ug)::_ -> let newterm, newproof = match t with | C.Lambda (nn, ty, bo) -> (* let bo' = M.apply_subst s (S.subst other bo) in *) let bo' = S.subst (M.apply_subst s other) bo in let bo'' = C.Appl ( [C.MutInd (HL.Logic.eq_URI, 0, []); S.lift 1 eq_ty] @ if is_left then [bo'; S.lift 1 right] else [S.lift 1 left; bo']) in let t' = C.Lambda (nn, ty, bo'') in (* M.apply_subst s (S.subst other bo), *) bo', M.apply_subst s (C.Appl [C.Const (eq_URI, []); ty; what; t'; proof; other; proof']) | _ -> assert false in let newmeta, newtarget = let left, right = (* if is_left then (newterm, M.apply_subst s right) *) (* else (M.apply_subst s left, newterm) in *) if is_left then newterm, right else left, newterm in let neworder = compare_terms left right in (* let newmetasenv = metasenv @ metas in *) (* let newargs = args @ args' in *) (* fix_metas newmeta *) (* (newproof, (eq_ty, left, right), newmetasenv, newargs) *) let m = (metas_of_term left) @ (metas_of_term right) in let newmetasenv = List.filter (fun (i, _, _) -> List.mem i m) metas and newargs = List.filter (function C.Meta (i, _) -> List.mem i m | _ -> assert false) args in newmeta, (newproof, (eq_ty, left, right, neworder), newmetasenv, newargs) in (* Printf.printf *) (* "demodulate, newtarget: %s\ntarget was: %s\n" *) (* (string_of_equality ~env newtarget) *) (* (string_of_equality ~env target); *) (* (\* let _, _, newm, newa = newtarget in *\) *) (* (\* Printf.printf "newmetasenv:\n%s\nnewargs:\n%s\n" *\) *) (* (\* (print_metasenv newm) *\) *) (* (\* (String.concat "\n" (List.map CicPp.ppterm newa)); *\) *) (* print_newline (); *) if is_identity env newtarget then newmeta, newtarget else demodulate newmeta first_step metasenv newtarget in demodulate newmeta first_step (metasenv @ metas') target ;; (* let demodulation newmeta env target source = newmeta, target ;; *) let subsumption env target source = let _, (ty, tl, tr, _), tmetas, _ = target and _, (ty', sl, sr, _), smetas, _ = source in if ty <> ty' then false else let metasenv, context, ugraph = env in let metasenv = metasenv @ tmetas @ smetas in let names = names_of_context context in let samesubst subst subst' = (* Printf.printf "samesubst:\nsubst: %s\nsubst': %s\n" *) (* (print_subst subst) (print_subst subst'); *) (* print_newline (); *) let tbl = Hashtbl.create (List.length subst) in List.iter (fun (m, (c, t1, t2)) -> Hashtbl.add tbl m (c, t1, t2)) subst; List.for_all (fun (m, (c, t1, t2)) -> try let c', t1', t2' = Hashtbl.find tbl m in if (c = c') && (t1 = t1') && (t2 = t2') then true else false with Not_found -> true) subst' in let subsaux left right left' right' = try let subst, menv, ug = matching metasenv context left left' ugraph and subst', menv', ug' = matching metasenv context right right' ugraph in (* Printf.printf "left = right: %s = %s\n" *) (* (CicPp.pp left names) (CicPp.pp right names); *) (* Printf.printf "left' = right': %s = %s\n" *) (* (CicPp.pp left' names) (CicPp.pp right' names); *) samesubst subst subst' with e -> (* print_endline (Printexc.to_string e); *) false in let res = if subsaux tl tr sl sr then true else subsaux tl tr sr sl in if res then ( Printf.printf "subsumption!:\ntarget: %s\nsource: %s\n" (string_of_equality ~env target) (string_of_equality ~env source); print_newline (); ); res ;; *) let extract_differing_subterms t1 t2 = let module C = Cic in let rec aux t1 t2 = match t1, t2 with | C.Appl l1, C.Appl l2 when (List.length l1) <> (List.length l2) -> [(t1, t2)] | C.Appl (h1::tl1), C.Appl (h2::tl2) -> let res = List.concat (List.map2 aux tl1 tl2) in if h1 <> h2 then if res = [] then [(h1, h2)] else [(t1, t2)] else if List.length res > 1 then [(t1, t2)] else res | t1, t2 -> if t1 <> t2 then [(t1, t2)] else [] in let res = aux t1 t2 in match res with | hd::[] -> Some hd | _ -> None ;;