(* Copyright (C) 2003-2005, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) module C = Cic module I = CicInspect module D = Deannotate module DTI = DoubleTypeInference module TC = CicTypeChecker module Un = CicUniv module UM = UriManager module Obj = LibraryObjects module HObj = HelmLibraryObjects module A = Cic2acic module Ut = CicUtil module E = CicEnvironment module PER = ProofEngineReduction module Cl = ProceduralClassify module M = ProceduralMode module T = ProceduralTypes module Cn = ProceduralConversion type status = { sorts : (C.id, A.sort_kind) Hashtbl.t; types : (C.id, A.anntypes) Hashtbl.t; prefix: string; max_depth: int option; depth: int; context: C.context; intros: string list } (* helpers ******************************************************************) let identity x = x let comp f g x = f (g x) let cic = D.deannotate_term let split2_last l1 l2 = try let n = pred (List.length l1) in let before1, after1 = T.list_split n l1 in let before2, after2 = T.list_split n l2 in before1, before2, List.hd after1, List.hd after2 with Invalid_argument _ -> failwith "A2P.split2_last" let string_of_head = function | C.ASort _ -> "sort" | C.AConst _ -> "const" | C.AMutInd _ -> "mutind" | C.AMutConstruct _ -> "mutconstruct" | C.AVar _ -> "var" | C.ARel _ -> "rel" | C.AProd _ -> "prod" | C.ALambda _ -> "lambda" | C.ALetIn _ -> "letin" | C.AFix _ -> "fix" | C.ACoFix _ -> "cofix" | C.AAppl _ -> "appl" | C.ACast _ -> "cast" | C.AMutCase _ -> "mutcase" | C.AMeta _ -> "meta" | C.AImplicit _ -> "implict" let clear st = {st with intros = []} let next st = {(clear st) with depth = succ st.depth} let add st entry intro = {st with context = entry :: st.context; intros = intro :: st.intros} let test_depth st = try let msg = Printf.sprintf "Depth %u: " st.depth in match st.max_depth with | None -> true, "" | Some d -> if st.depth < d then true, msg else false, "DEPTH EXCEDED: " with Invalid_argument _ -> failwith "A2P.test_depth" let is_rewrite_right = function | C.AConst (_, uri, []) -> UM.eq uri HObj.Logic.eq_ind_r_URI || Obj.is_eq_ind_r_URI uri | _ -> false let is_rewrite_left = function | C.AConst (_, uri, []) -> UM.eq uri HObj.Logic.eq_ind_URI || Obj.is_eq_ind_URI uri | _ -> false let is_fwd_rewrite_right hd tl = if is_rewrite_right hd then match List.nth tl 3 with | C.ARel _ -> true | _ -> false else false let is_fwd_rewrite_left hd tl = if is_rewrite_left hd then match List.nth tl 3 with | C.ARel _ -> true | _ -> false else false (* let get_ind_name uri tno xcno = try let ts = match E.get_obj Un.empty_ugraph uri with | C.InductiveDefinition (ts, _, _,_), _ -> ts | _ -> assert false in let tname, cs = match List.nth ts tno with | (name, _, _, cs) -> name, cs in match xcno with | None -> tname | Some cno -> fst (List.nth cs (pred cno)) with Invalid_argument _ -> failwith "A2P.get_ind_name" *) let get_inner_types st v = try let id = Ut.id_of_annterm v in try match Hashtbl.find st.types id with | {A.annsynthesized = st; A.annexpected = Some et} -> Some (st, et) | {A.annsynthesized = st; A.annexpected = None} -> Some (st, st) with Not_found -> None with Invalid_argument _ -> failwith "A2P.get_inner_types" let get_inner_sort st v = try let id = Ut.id_of_annterm v in try Hashtbl.find st.sorts id with Not_found -> `Type (CicUniv.fresh()) with Invalid_argument _ -> failwith "A2P.get_sort" (* proof construction *******************************************************) let unused_premise = "UNUSED" let defined_premise = "DEFINED" let expanded_premise = "EXPANDED" let convert st ?name v = match get_inner_types st v with | None -> [] | Some (st, et) -> let cst, cet = cic st, cic et in if PER.alpha_equivalence cst cet then [] else let e = Cn.mk_pattern [] (T.mk_arel 1 "") in match name with | None -> [T.Change (st, et, None, e, "")] | Some id -> [T.Change (st, et, Some (id, id), e, ""); T.ClearBody (id, "")] let eta_expand n t = let id = Ut.id_of_annterm t in let ty = C.AImplicit ("", None) in let name i = Printf.sprintf "%s%u" expanded_premise i in let lambda i t = C.ALambda (id, C.Name (name i), ty, t) in let arg i n = T.mk_arel (n - i) (name (n - i - 1)) in let rec aux i f a = if i >= n then f, a else aux (succ i) (comp f (lambda i)) (arg i n :: a) in let absts, args = aux 0 identity [] in match Cn.lift 1 n t with | C.AAppl (id, ts) -> absts (C.AAppl (id, ts @ args)) | t -> absts (C.AAppl ("", t :: args)) let appl_expand n = function | C.AAppl (id, ts) -> let before, after = T.list_split (List.length ts + n) ts in C.AAppl (id, C.AAppl ("", before) :: after) | _ -> assert false let get_intro name t = try match name with | C.Anonymous -> unused_premise | C.Name s -> if DTI.does_not_occur 1 (cic t) then unused_premise else s with Invalid_argument _ -> failwith "A2P.get_intro" let mk_intros st script = try if st.intros = [] then script else let count = List.length st.intros in T.Intros (Some count, List.rev st.intros, "") :: script with Invalid_argument _ -> failwith "A2P.mk_intros" let rec mk_atomic st dtext what = if T.is_atomic what then match what with | C.ARel (_, _, _, name) -> convert st ~name what, what | _ -> [], what else let name = defined_premise in let script = convert st ~name what in script @ mk_fwd_proof st dtext name what, T.mk_arel 0 name and mk_fwd_rewrite st dtext name tl direction = let what, where = List.nth tl 5, List.nth tl 3 in let rps, predicate = [List.nth tl 4], List.nth tl 2 in let e = Cn.mk_pattern rps predicate in match where with | C.ARel (_, _, _, premise) -> let script, what = mk_atomic st dtext what in T.Rewrite (direction, what, Some (premise, name), e, dtext) :: script | _ -> assert false and mk_fwd_proof st dtext name = function | C.ALetIn (_, n, v, t) -> let entry = Some (n, C.Def (cic v, None)) in let intro = get_intro n t in let qt = mk_fwd_proof (add st entry intro) dtext name t in let qv = mk_fwd_proof st "" intro v in List.append qt qv | C.AAppl (_, hd :: tl) as v -> if is_fwd_rewrite_right hd tl then mk_fwd_rewrite st dtext name tl true else if is_fwd_rewrite_left hd tl then mk_fwd_rewrite st dtext name tl false else let ty, _ = TC.type_of_aux' [] st.context (cic hd) Un.empty_ugraph in begin match get_inner_types st v with | Some (ity, _) when M.bkd st.context ty -> let qs = [[T.Id ""]; mk_proof (next st) v] in [T.Branch (qs, ""); T.Cut (name, ity, dtext)] | _ -> let (classes, rc) as h = Cl.classify st.context ty in let text = Printf.sprintf "%u %s" (List.length classes) (Cl.to_string h) in [T.LetIn (name, v, dtext ^ text)] end | C.AMutCase (id, uri, tyno, outty, arg, cases) as v -> begin match Cn.mk_ind st.context id uri tyno outty arg cases with | None -> [T.LetIn (name, v, dtext)] | Some v -> mk_fwd_proof st dtext name v end | C.ACast (_, v, _) -> mk_fwd_proof st dtext name v | v -> match get_inner_types st v with | Some (ity, _) -> let qs = [[T.Id ""]; mk_proof (next st) v] in [T.Branch (qs, ""); T.Cut (name, ity, dtext)] | _ -> [T.LetIn (name, v, dtext)] and mk_proof st = function | C.ALambda (_, name, v, t) -> let entry = Some (name, C.Decl (cic v)) in let intro = get_intro name t in mk_proof (add st entry intro) t | C.ALetIn (_, name, v, t) as what -> let proceed, dtext = test_depth st in let script = if proceed then let entry = Some (name, C.Def (cic v, None)) in let intro = get_intro name t in let q = mk_proof (next (add st entry intro)) t in List.rev_append (mk_fwd_proof st dtext intro v) q else [T.Apply (what, dtext)] in mk_intros st script | C.ARel _ as what -> let _, dtext = test_depth st in let text = "assumption" in let script = [T.Apply (what, dtext ^ text)] in mk_intros st script | C.AMutConstruct _ as what -> let _, dtext = test_depth st in let script = [T.Apply (what, dtext)] in mk_intros st script | C.AAppl (_, hd :: tl) as t -> let proceed, dtext = test_depth st in let script = if proceed then let ty, _ = TC.type_of_aux' [] st.context (cic hd) Un.empty_ugraph in let (classes, rc) as h = Cl.classify st.context ty in let premises, _ = Cl.split st.context ty in let decurry = List.length classes - List.length tl in if decurry < 0 then mk_proof (clear st) (appl_expand decurry t) else if decurry > 0 then mk_proof (clear st) (eta_expand decurry t) else let synth = I.S.singleton 0 in let text = Printf.sprintf "%u %s" (List.length classes) (Cl.to_string h) in match rc with | Some (i, j) when i > 1 && i <= List.length classes && M.is_eliminator premises -> let classes, tl, _, what = split2_last classes tl in let script, what = mk_atomic st dtext what in let synth = I.S.add 1 synth in let qs = mk_bkd_proofs (next st) synth classes tl in if is_rewrite_right hd then let rps, predicate = [List.nth tl 4], List.nth tl 2 in let e = Cn.mk_pattern rps predicate in List.rev script @ convert st t @ [T.Rewrite (false, what, None, e, dtext); T.Branch (qs, "")] else if is_rewrite_left hd then let rps, predicate = [List.nth tl 4], List.nth tl 2 in let e = Cn.mk_pattern rps predicate in List.rev script @ convert st t @ [T.Rewrite (true, what, None, e, dtext); T.Branch (qs, "")] else let using = Some hd in List.rev script @ convert st t @ [T.Elim (what, using, dtext ^ text); T.Branch (qs, "")] | _ -> let qs = mk_bkd_proofs (next st) synth classes tl in let script, hd = mk_atomic st dtext hd in List.rev script @ convert st t @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")] else [T.Apply (t, dtext)] in mk_intros st script | C.AMutCase (id, uri, tyno, outty, arg, cases) -> begin match Cn.mk_ind st.context id uri tyno outty arg cases with | _ (* None *) -> let text = Printf.sprintf "%s" "UNEXPANDED: mutcase" in let script = [T.Note text] in mk_intros st script (* | Some t -> mk_proof st t *) end | C.ACast (_, t, _) -> mk_proof st t | t -> let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head t) in let script = [T.Note text] in mk_intros st script and mk_bkd_proofs st synth classes ts = try let _, dtext = test_depth st in let aux inv v = if I.overlaps synth inv then None else if I.S.is_empty inv then Some (mk_proof st v) else Some [T.Apply (v, dtext ^ "dependent")] in T.list_map2_filter aux classes ts with Invalid_argument _ -> failwith "A2P.mk_bkd_proofs" (* object costruction *******************************************************) let is_theorem pars = List.mem (`Flavour `Theorem) pars || List.mem (`Flavour `Fact) pars || List.mem (`Flavour `Remark) pars || List.mem (`Flavour `Lemma) pars let mk_obj st = function | C.AConstant (_, _, s, Some v, t, [], pars) when is_theorem pars -> let ast = mk_proof st v in let count = T.count_steps 0 ast in let text = Printf.sprintf "tactics: %u" count in T.Theorem (s, t, text) :: ast @ [T.Qed ""] | _ -> failwith "not a theorem" (* interface functions ******************************************************) let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types ?depth prefix aobj = let st = { sorts = ids_to_inner_sorts; types = ids_to_inner_types; prefix = prefix; max_depth = depth; depth = 0; context = []; intros = [] } in HLog.debug "Level 2 transformation"; let steps = mk_obj st aobj in HLog.debug "grafite rendering"; List.rev (T.render_steps [] steps)