(* Copyright (C) 2003-2005, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) module C = Cic module I = CicInspect module D = Deannotate module S = CicSubstitution module TC = CicTypeChecker module Un = CicUniv module UM = UriManager module Obj = LibraryObjects module HObj = HelmLibraryObjects module A = Cic2acic module Ut = CicUtil module E = CicEnvironment module Pp = CicPp module PEH = ProofEngineHelpers module HEL = HExtlib module Cl = ProceduralClassify module T = ProceduralTypes module Cn = ProceduralConversion type status = { sorts : (C.id, A.sort_kind) Hashtbl.t; types : (C.id, A.anntypes) Hashtbl.t; prefix: string; max_depth: int option; depth: int; context: C.context; intros: string list; case: int list } (* helpers ******************************************************************) let cic = D.deannotate_term let split2_last l1 l2 = try let n = pred (List.length l1) in let before1, after1 = HEL.split_nth n l1 in let before2, after2 = HEL.split_nth n l2 in before1, before2, List.hd after1, List.hd after2 with Invalid_argument _ -> failwith "A2P.split2_last" let string_of_head = function | C.ASort _ -> "sort" | C.AConst _ -> "const" | C.AMutInd _ -> "mutind" | C.AMutConstruct _ -> "mutconstruct" | C.AVar _ -> "var" | C.ARel _ -> "rel" | C.AProd _ -> "prod" | C.ALambda _ -> "lambda" | C.ALetIn _ -> "letin" | C.AFix _ -> "fix" | C.ACoFix _ -> "cofix" | C.AAppl _ -> "appl" | C.ACast _ -> "cast" | C.AMutCase _ -> "mutcase" | C.AMeta _ -> "meta" | C.AImplicit _ -> "implict" let clear st = {st with intros = []} let next st = {(clear st) with depth = succ st.depth} let add st entry intro = {st with context = entry :: st.context; intros = intro :: st.intros} let push st = {st with case = 1 :: st.case} let inc st = {st with case = match st.case with | [] -> assert false | hd :: tl -> succ hd :: tl } let case st str = let case = String.concat "." (List.rev_map string_of_int st.case) in Printf.sprintf "case %s: %s" case str let test_depth st = try let msg = Printf.sprintf "Depth %u: " st.depth in match st.max_depth with | None -> true, "" | Some d -> if st.depth < d then true, msg else false, "DEPTH EXCEDED: " with Invalid_argument _ -> failwith "A2P.test_depth" let is_rewrite_right = function | C.AConst (_, uri, []) -> UM.eq uri HObj.Logic.eq_ind_r_URI || Obj.is_eq_ind_r_URI uri | _ -> false let is_rewrite_left = function | C.AConst (_, uri, []) -> UM.eq uri HObj.Logic.eq_ind_URI || Obj.is_eq_ind_URI uri | _ -> false let is_fwd_rewrite_right hd tl = if is_rewrite_right hd then match List.nth tl 3 with | C.ARel _ -> true | _ -> false else false let is_fwd_rewrite_left hd tl = if is_rewrite_left hd then match List.nth tl 3 with | C.ARel _ -> true | _ -> false else false let get_inner_types st v = try let id = Ut.id_of_annterm v in try match Hashtbl.find st.types id with | {A.annsynthesized = st; A.annexpected = Some et} -> Some (st, et) | {A.annsynthesized = st; A.annexpected = None} -> Some (st, st) with Not_found -> None with Invalid_argument _ -> failwith "A2P.get_inner_types" (* let get_inner_sort st v = try let id = Ut.id_of_annterm v in try Hashtbl.find st.sorts id with Not_found -> `Type (CicUniv.fresh()) with Invalid_argument _ -> failwith "A2P.get_sort" *) let get_type msg st bo = try let ty, _ = TC.type_of_aux' [] st.context (cic bo) Un.empty_ugraph in ty with e -> failwith (msg ^ ": " ^ Printexc.to_string e) let get_entry st id = let rec aux = function | [] -> assert false | Some (C.Name name, e) :: _ when name = id -> e | _ :: tl -> aux tl in aux st.context let get_ind_names uri tno = try let ts = match E.get_obj Un.empty_ugraph uri with | C.InductiveDefinition (ts, _, _, _), _ -> ts | _ -> assert false in match List.nth ts tno with | (_, _, _, cs) -> List.map fst cs with Invalid_argument _ -> failwith "A2P.get_ind_names" (* proof construction *******************************************************) let unused_premise = "UNUSED" let mk_exp_args hd tl classes synth = let meta id = C.AImplicit (id, None) in let map v (cl, b) = if I.overlaps synth cl && b then v else meta "" in let rec aux = function | [] -> [] | hd :: tl -> if hd = meta "" then aux tl else List.rev (hd :: tl) in let args = T.list_rev_map2 map tl classes in let args = aux args in if args = [] then hd else C.AAppl ("", hd :: args) let convert st ?name v = match get_inner_types st v with | None -> [] | Some (sty, ety) -> let e = Cn.hole "" in let csty, cety = cic sty, cic ety in if Ut.alpha_equivalence csty cety then [] else match name with | None -> [T.Change (sty, ety, None, e, "")] | Some (id, i) -> begin match get_entry st id with | C.Def _ -> [T.ClearBody (id, "")] | C.Decl w -> let w = S.lift i w in if Ut.alpha_equivalence csty w then [] else [T.Note (Pp.ppterm csty); T.Note (Pp.ppterm w); T.Change (sty, ety, Some (id, id), e, "")] end let get_intro = function | C.Anonymous -> unused_premise | C.Name s -> s let mk_intros st script = if st.intros = [] then script else let count = List.length st.intros in T.Intros (Some count, List.rev st.intros, "") :: script let mk_arg st = function | C.ARel (_, _, i, name) as what -> convert st ~name:(name, i) what | _ -> [] let mk_fwd_rewrite st dtext name tl direction = assert (List.length tl = 6); let what, where, predicate = List.nth tl 5, List.nth tl 3, List.nth tl 2 in let e = Cn.mk_pattern 1 predicate in match where with | C.ARel (_, _, _, premise) -> let script = mk_arg st what in let where = Some (premise, name) in T.Rewrite (direction, what, where, e, dtext) :: script | _ -> assert false let mk_rewrite st dtext what qs tl direction = assert (List.length tl = 5); let predicate = List.nth tl 2 in let e = Cn.mk_pattern 1 predicate in [T.Rewrite (direction, what, None, e, dtext); T.Branch (qs, "")] let rec proc_lambda st name v t = let entry = Some (name, C.Decl (cic v)) in let intro = get_intro name in proc_proof (add st entry intro) t and proc_letin st what name v t = let intro = get_intro name in let proceed, dtext = test_depth st in let script = if proceed then let hyp, rqv = match get_inner_types st v with | Some (ity, _) -> let rqv = match v with | C.AAppl (_, hd :: tl) when is_fwd_rewrite_right hd tl -> mk_fwd_rewrite st dtext intro tl true | C.AAppl (_, hd :: tl) when is_fwd_rewrite_left hd tl -> mk_fwd_rewrite st dtext intro tl false | v -> let qs = [proc_proof (next st) v; [T.Id ""]] in [T.Branch (qs, ""); T.Cut (intro, ity, dtext)] in C.Decl (cic ity), rqv | None -> C.Def (cic v, None), [T.LetIn (intro, v, dtext)] in let entry = Some (name, hyp) in let qt = proc_proof (next (add st entry intro)) t in List.rev_append rqv qt else [T.Apply (what, dtext)] in mk_intros st script and proc_rel st what = let _, dtext = test_depth st in let text = "assumption" in let script = [T.Apply (what, dtext ^ text)] in mk_intros st script and proc_mutconstruct st what = let _, dtext = test_depth st in let script = [T.Apply (what, dtext)] in mk_intros st script and proc_appl st what hd tl = let proceed, dtext = test_depth st in let script = if proceed then let ty = get_type "TC2" st hd in let classes, rc = Cl.classify st.context ty in let goal_arity = match get_inner_types st what with | None -> 0 | Some (ity, _) -> snd (PEH.split_with_whd (st.context, cic ity)) in let parsno, argsno = List.length classes, List.length tl in let decurry = parsno - argsno in let diff = goal_arity - decurry in if diff < 0 then failwith (Printf.sprintf "NOT TOTAL: %i %s |--- %s" diff (Pp.ppcontext st.context) (Pp.ppterm (cic hd))); let rec mk_synth a n = if n < 0 then a else mk_synth (I.S.add n a) (pred n) in let synth = mk_synth I.S.empty decurry in let text = "" (* Printf.sprintf "%u %s" parsno (Cl.to_string h) *) in let script = List.rev (mk_arg st hd) @ convert st what in match rc with | Some (i, j, uri, tyno) -> let classes, tl, _, where = split2_last classes tl in let script = List.rev (mk_arg st where) @ script in let synth = I.S.add 1 synth in let names = get_ind_names uri tyno in let qs = proc_bkd_proofs (next st) synth names classes tl in if is_rewrite_right hd then script @ mk_rewrite st dtext where qs tl false else if is_rewrite_left hd then script @ mk_rewrite st dtext where qs tl true else let predicate = List.nth tl (parsno - i) in let e = Cn.mk_pattern j predicate in let using = Some hd in script @ [T.Elim (where, using, e, dtext ^ text); T.Branch (qs, "")] | None -> let qs = proc_bkd_proofs (next st) synth [] classes tl in let hd = mk_exp_args hd tl classes synth in script @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")] else [T.Apply (what, dtext)] in mk_intros st script and proc_other st what = let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head what) in let script = [T.Note text] in mk_intros st script and proc_proof st = function | C.ALambda (_, name, w, t) -> proc_lambda st name w t | C.ALetIn (_, name, v, t) as what -> proc_letin st what name v t | C.ARel _ as what -> proc_rel st what | C.AMutConstruct _ as what -> proc_mutconstruct st what | C.AAppl (_, hd :: tl) as what -> proc_appl st what hd tl | what -> proc_other st what and proc_bkd_proofs st synth names classes ts = try let get_note = let names = ref (names, push st) in fun f -> match !names with | [], st -> fun _ -> f st | "" :: tl, st -> names := tl, st; fun _ -> f st | hd :: tl, st -> let note = case st hd in names := tl, inc st; fun b -> if b then T.Note note :: f st else f st in let _, dtext = test_depth st in let aux (inv, _) v = if I.overlaps synth inv then None else if I.S.is_empty inv then Some (get_note (fun st -> proc_proof st v)) else Some (fun _ -> [T.Apply (v, dtext ^ "dependent")]) in let ps = T.list_map2_filter aux classes ts in let b = List.length ps > 1 in List.rev_map (fun f -> f b) ps with Invalid_argument s -> failwith ("A2P.proc_bkd_proofs: " ^ s) (* object costruction *******************************************************) let is_theorem pars = List.mem (`Flavour `Theorem) pars || List.mem (`Flavour `Fact) pars || List.mem (`Flavour `Remark) pars || List.mem (`Flavour `Lemma) pars let proc_obj st = function | C.AConstant (_, _, s, Some v, t, [], pars) when is_theorem pars -> let ast = proc_proof st v in let count = T.count_steps 0 ast in let text = Printf.sprintf "tactics: %u" count in T.Theorem (s, t, "") :: ast @ [T.Qed text] | _ -> failwith "not a theorem" (* interface functions ******************************************************) let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types ?depth prefix aobj = let st = { sorts = ids_to_inner_sorts; types = ids_to_inner_types; prefix = prefix; max_depth = depth; depth = 0; context = []; intros = []; case = [] } in HLog.debug "Procedural: level 2 transformation"; let steps = proc_obj st aobj in HLog.debug "Procedural: grafite rendering"; List.rev (T.render_steps [] steps)