(* Copyright (C) 2003-2005, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) module C = Cic module R = CicReduction module D = Deannotate module Int = struct type t = int let compare = compare end module S = Set.Make (Int) type conclusion = (int * int) option (* debugging ****************************************************************) let string_of_entry inverse = if S.mem 0 inverse then "C" else if S.is_empty inverse then "I" else "P" let to_string (classes, rc) = let linearize = String.concat " " (List.map string_of_entry classes) in match rc with | None -> linearize | Some (i, j) -> Printf.sprintf "%s %u %u" linearize i j let out_table b = let map i (_, inverse) = let map i tl = Printf.sprintf "%2u" i :: tl in let iset = String.concat " " (S.fold map inverse []) in Printf.eprintf "%2u|%s\n" i iset in Array.iteri map b; prerr_newline () (****************************************************************************) let id x = x let rec list_fold_left g map = function | [] -> g | hd :: tl -> map (list_fold_left g map tl) hd let get_rels h t = let rec aux d g = function | C.Sort _ | C.Implicit _ -> g | C.Rel i -> if i < d then g else fun a -> g (S.add (i - d + h + 1) a) | C.Appl ss -> list_fold_left g (aux d) ss | C.Const (_, ss) | C.MutInd (_, _, ss) | C.MutConstruct (_, _, _, ss) | C.Var (_, ss) -> let map g (_, t) = aux d g t in list_fold_left g map ss | C.Meta (_, ss) -> let map g = function | None -> g | Some t -> aux d g t in list_fold_left g map ss | C.Cast (t1, t2) -> aux d (aux d g t2) t1 | C.LetIn (_, t1, t2) | C.Lambda (_, t1, t2) | C.Prod (_, t1, t2) -> aux d (aux (succ d) g t2) t1 | C.MutCase (_, _, t1, t2, ss) -> aux d (aux d (list_fold_left g (aux d) ss) t2) t1 | C.Fix (_, ss) -> let k = List.length ss in let map g (_, _, t1, t2) = aux d (aux (d + k) g t2) t1 in list_fold_left g map ss | C.CoFix (_, ss) -> let k = List.length ss in let map g (_, t1, t2) = aux d (aux (d + k) g t2) t1 in list_fold_left g map ss in let g a = a in aux 1 g t S.empty let split c t = let add s v c = Some (s, C.Decl v) :: c in let rec aux whd a n c = function | C.Prod (s, v, t) -> aux false (v :: a) (succ n) (add s v c) t | v when whd -> v :: a, n | v -> aux true a n c (R.whd ~delta:true c v) in aux false [] 0 c t let classify_conclusion = function | C.Rel i -> Some (i, 0) | C.Appl (C.Rel i :: tl) -> Some (i, List.length tl) | _ -> None let classify c t = try let vs, h = split c t in let rc = classify_conclusion (List.hd vs) in let map (b, h) v = (get_rels h v, S.empty) :: b, succ h in let l, h = List.fold_left map ([], 0) vs in let b = Array.of_list (List.rev l) in let mk_closure b h = let map j = if j < h then S.union (fst b.(j)) else id in for i = pred h downto 0 do let direct, unused = b.(i) in b.(i) <- S.fold map direct direct, unused done; b in let b = mk_closure b h in let rec mk_inverse i direct = if S.is_empty direct then () else let j = S.choose direct in if j < h then let unused, inverse = b.(j) in b.(j) <- unused, S.add i inverse else (); mk_inverse i (S.remove j direct) in let map i (direct, _) = mk_inverse i direct in Array.iteri map b; (* out_table b; *) List.rev_map snd (List.tl (Array.to_list b)), rc with Invalid_argument _ -> failwith "Classify.classify" let overlaps s1 s2 = let predicate x = S.mem x s1 in S.exists predicate s2