(* Copyright (C) 2003-2005, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) module C = Cic module E = CicEnvironment module Un = CicUniv module TC = CicTypeChecker module D = Deannotate module UM = UriManager module Rd = CicReduction (* helpers ******************************************************************) let cic = D.deannotate_term let rec list_sub start length = function | _ :: tl when start > 0 -> list_sub (pred start) length tl | hd :: tl when length > 0 -> hd :: list_sub start (pred length) tl | _ -> [] (* proof construction *******************************************************) let lift k n = let rec lift_xns k (uri, t) = uri, lift_term k t and lift_ms k = function | None -> None | Some t -> Some (lift_term k t) and lift_fix len k (id, name, i, ty, bo) = id, name, i, lift_term k ty, lift_term (k + len) bo and lift_cofix len k (id, name, ty, bo) = id, name, lift_term k ty, lift_term (k + len) bo and lift_term k = function | C.ASort _ as t -> t | C.AImplicit _ as t -> t | C.ARel (id, rid, m, b) as t -> if m < k then t else if m + n > 0 then C.ARel (id, rid, m + n, b) else assert false | C.AConst (id, uri, xnss) -> C.AConst (id, uri, List.map (lift_xns k) xnss) | C.AVar (id, uri, xnss) -> C.AVar (id, uri, List.map (lift_xns k) xnss) | C.AMutInd (id, uri, tyno, xnss) -> C.AMutInd (id, uri, tyno, List.map (lift_xns k) xnss) | C.AMutConstruct (id, uri, tyno, consno, xnss) -> C.AMutConstruct (id, uri,tyno,consno, List.map (lift_xns k) xnss) | C.AMeta (id, i, mss) -> C.AMeta(id, i, List.map (lift_ms k) mss) | C.AAppl (id, ts) -> C.AAppl (id, List.map (lift_term k) ts) | C.ACast (id, te, ty) -> C.ACast (id, lift_term k te, lift_term k ty) | C.AMutCase (id, sp, i, outty, t, pl) -> C.AMutCase (id, sp, i, lift_term k outty, lift_term k t, List.map (lift_term k) pl) | C.AProd (id, n, s, t) -> C.AProd (id, n, lift_term k s, lift_term (succ k) t) | C.ALambda (id, n, s, t) -> C.ALambda (id, n, lift_term k s, lift_term (succ k) t) | C.ALetIn (id, n, s, t) -> C.ALetIn (id, n, lift_term k s, lift_term (succ k) t) | C.AFix (id, i, fl) -> C.AFix (id, i, List.map (lift_fix (List.length fl) k) fl) | C.ACoFix (id, i, fl) -> C.ACoFix (id, i, List.map (lift_cofix (List.length fl) k) fl) in lift_term k let clear_absts m = let rec aux k n = function | C.AImplicit (_, None) as t -> t | C.ALambda (id, s, v, t) when k > 0 -> C.ALambda (id, s, v, aux (pred k) n t) | C.ALambda (_, _, _, t) when n > 0 -> aux 0 (pred n) (lift 1 (-1) t) | t when n > 0 -> Printf.eprintf "CLEAR: %u %s\n" n (CicPp.ppterm (cic t)); assert false | t -> t in aux m let hole id = C.AImplicit (id, Some `Hole) let meta id = C.AImplicit (id, None) let anon = C.Anonymous let generalize n = let is_meta = let map b = function | C.AImplicit (_, None) when b -> b | _ -> false in List.fold_left map true in let rec gen_fix len k (id, name, i, ty, bo) = id, name, i, gen_term k ty, gen_term (k + len) bo and gen_cofix len k (id, name, ty, bo) = id, name, gen_term k ty, gen_term (k + len) bo and gen_term k = function | C.ASort (id, _) | C.AImplicit (id, _) | C.AConst (id, _, _) | C.AVar (id, _, _) | C.AMutInd (id, _, _, _) | C.AMutConstruct (id, _, _, _, _) | C.AMeta (id, _, _) -> meta id | C.ARel (id, _, m, _) -> if m = succ (k - n) then hole id else meta id | C.AAppl (id, ts) -> let ts = List.map (gen_term k) ts in if is_meta ts then meta id else C.AAppl (id, ts) | C.ACast (id, te, ty) -> let te, ty = gen_term k te, gen_term k ty in if is_meta [te; ty] then meta id else C.ACast (id, te, ty) | C.AMutCase (id, sp, i, outty, t, pl) -> let outty, t, pl = gen_term k outty, gen_term k t, List.map (gen_term k) pl in if is_meta (outty :: t :: pl) then meta id else hole id (* C.AMutCase (id, sp, i, outty, t, pl) *) | C.AProd (id, _, s, t) -> let s, t = gen_term k s, gen_term (succ k) t in if is_meta [s; t] then meta id else C.AProd (id, anon, s, t) | C.ALambda (id, _, s, t) -> let s, t = gen_term k s, gen_term (succ k) t in if is_meta [s; t] then meta id else C.ALambda (id, anon, s, t) | C.ALetIn (id, _, s, t) -> let s, t = gen_term k s, gen_term (succ k) t in if is_meta [s; t] then meta id else C.ALetIn (id, anon, s, t) | C.AFix (id, i, fl) -> C.AFix (id, i, List.map (gen_fix (List.length fl) k) fl) | C.ACoFix (id, i, fl) -> C.ACoFix (id, i, List.map (gen_cofix (List.length fl) k) fl) in gen_term 0 let mk_pattern rpsno predicate = let body = generalize rpsno predicate in clear_absts 0 rpsno body