(* Copyright (C) 2003-2005, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) module C = Cic module Un = CicUniv module S = CicSubstitution module R = CicReduction module TC = CicTypeChecker module DTI = DoubleTypeInference module HEL = HExtlib (* helper functions *********************************************************) let identity x = x let comp f g x = f (g x) let get_type c t = let ty, _ = TC.type_of_aux' [] c t Un.empty_ugraph in ty let is_proof c t = match (get_type c (get_type c t)) with | C.Sort C.Prop -> true | _ -> false let is_not_atomic = function | C.Sort _ | C.Rel _ | C.Const _ | C.Var _ | C.MutInd _ | C.MutConstruct _ -> false | _ -> true let split c t = let add s v c = Some (s, C.Decl v) :: c in let rec aux whd a n c = function | C.Prod (s, v, t) -> aux false (v :: a) (succ n) (add s v c) t | v when whd -> v :: a, n | v -> aux true a n c (R.whd ~delta:true c v) in aux false [] 0 c t let add g htbl t proof decurry = if proof then C.CicHash.add htbl t decurry; g t proof decurry let find g htbl t = try let decurry = C.CicHash.find htbl t in g t true decurry with Not_found -> g t false 0 (* term preprocessing *******************************************************) let expanded_premise = "EXPANDED" let defined_premise = "DEFINED" let eta_expand n t = let ty = C.Implicit None in let name i = Printf.sprintf "%s%u" expanded_premise i in let lambda i t = C.Lambda (C.Name (name i), ty, t) in let arg i n = C.Rel (n - i) in let rec aux i f a = if i >= n then f, a else aux (succ i) (comp f (lambda i)) (arg i n :: a) in let absts, args = aux 0 identity [] in absts (C.Appl (S.lift n t :: args)) let eta_fix t proof decurry = if proof && decurry > 0 then eta_expand decurry t else t let rec pp_cast g ht es c t v = if es then pp_proof g ht es c t else find g ht t and pp_lambda g ht es c name v t = let name = if DTI.does_not_occur 1 t then C.Anonymous else name in let entry = Some (name, C.Decl v) in let g t _ decurry = let t = eta_fix t true decurry in g (C.Lambda (name, v, t)) true 0 in if es then pp_proof g ht es (entry :: c) t else find g ht t and pp_letin g ht es c name v t = let entry = Some (name, C.Def (v, None)) in let g t _ decurry = if DTI.does_not_occur 1 t then g (S.lift (-1) t) true decurry else let g v proof d = match v with | C.LetIn (mame, w, u) when proof -> let x = C.LetIn (mame, w, C.LetIn (name, u, S.lift_from 2 1 t)) in pp_proof g ht false c x | v -> let v = eta_fix v proof d in g (C.LetIn (name, v, t)) true decurry in if es then pp_term g ht es c v else find g ht v in if es then pp_proof g ht es (entry :: c) t else find g ht t and pp_appl_one g ht es c t v = let g t _ decurry = let g v proof d = match t, v with | t, C.LetIn (mame, w, u) when proof -> let x = C.LetIn (mame, w, C.Appl [S.lift 1 t; u]) in pp_proof g ht false c x | C.LetIn (mame, w, u), v -> let x = C.LetIn (mame, w, C.Appl [u; S.lift 1 v]) in pp_proof g ht false c x | C.Appl ts, v when decurry > 0 -> let v = eta_fix v proof d in g (C.Appl (List.append ts [v])) true (pred decurry) | t, v when is_not_atomic t -> let mame = C.Name defined_premise in let x = C.LetIn (mame, t, C.Appl [C.Rel 1; S.lift 1 v]) in pp_proof g ht false c x | t, v -> let _, premsno = split c (get_type c t) in let v = eta_fix v proof d in g (C.Appl [t; v]) true (pred premsno) in if es then pp_term g ht es c v else find g ht v in if es then pp_proof g ht es c t else find g ht t and pp_appl g ht es c t = function | [] -> pp_proof g ht es c t | [v] -> pp_appl_one g ht es c t v | v1 :: v2 :: vs -> let x = C.Appl (C.Appl [t; v1] :: v2 :: vs) in pp_proof g ht es c x and pp_proof g ht es c t = let g t proof decurry = add g ht t proof decurry in match t with | C.Cast (t, v) -> pp_cast g ht es c t v | C.Lambda (name, v, t) -> pp_lambda g ht es c name v t | C.LetIn (name, v, t) -> pp_letin g ht es c name v t | C.Appl (t :: vs) -> pp_appl g ht es c t vs | t -> g t true 0 and pp_term g ht es c t = if is_proof c t then pp_proof g ht es c t else g t false 0 (* object preprocessing *****************************************************) let pp_obj = function | C.Constant (name, Some bo, ty, pars, attrs) -> let g bo proof decurry = let bo = eta_fix bo proof decurry in C.Constant (name, Some bo, ty, pars, attrs) in let ht = C.CicHash.create 1 in pp_term g ht true [] bo | obj -> obj