CLASH, statistics insufficient 4578: Facts: 4578: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 4578: Id : 3, {_}: multiply ?5 ?6 =?= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6 4578: Id : 4, {_}: add (multiply ?8 ?9) ?10 =<= multiply (add ?8 ?10) (add ?9 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10 4578: Id : 5, {_}: add ?12 (multiply ?13 ?14) =<= multiply (add ?12 ?13) (add ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14 4578: Id : 6, {_}: multiply (add ?16 ?17) ?18 =<= add (multiply ?16 ?18) (multiply ?17 ?18) [18, 17, 16] by distributivity3 ?16 ?17 ?18 4578: Id : 7, {_}: multiply ?20 (add ?21 ?22) =<= add (multiply ?20 ?21) (multiply ?20 ?22) [22, 21, 20] by distributivity4 ?20 ?21 ?22 4578: Id : 8, {_}: add ?24 (inverse ?24) =>= multiplicative_identity [24] by additive_inverse1 ?24 4578: Id : 9, {_}: add (inverse ?26) ?26 =>= multiplicative_identity [26] by additive_inverse2 ?26 4578: Id : 10, {_}: multiply ?28 (inverse ?28) =>= additive_identity [28] by multiplicative_inverse1 ?28 4578: Id : 11, {_}: multiply (inverse ?30) ?30 =>= additive_identity [30] by multiplicative_inverse2 ?30 4578: Id : 12, {_}: multiply ?32 multiplicative_identity =>= ?32 [32] by multiplicative_id1 ?32 4578: Id : 13, {_}: multiply multiplicative_identity ?34 =>= ?34 [34] by multiplicative_id2 ?34 4578: Id : 14, {_}: add ?36 additive_identity =>= ?36 [36] by additive_id1 ?36 4578: Id : 15, {_}: add additive_identity ?38 =>= ?38 [38] by additive_id2 ?38 4578: Goal: 4578: Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity 4578: Order: 4578: nrkbo 4578: Leaf order: 4578: additive_identity 4 0 0 4578: multiplicative_identity 4 0 0 4578: inverse 4 1 0 4578: add 16 2 0 multiply 4578: multiply 20 2 4 0,2add 4578: c 2 0 2 2,2,2 4578: b 2 0 2 1,2,2 4578: a 2 0 2 1,2 CLASH, statistics insufficient 4579: Facts: 4579: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 4579: Id : 3, {_}: multiply ?5 ?6 =?= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6 4579: Id : 4, {_}: add (multiply ?8 ?9) ?10 =<= multiply (add ?8 ?10) (add ?9 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10 4579: Id : 5, {_}: add ?12 (multiply ?13 ?14) =<= multiply (add ?12 ?13) (add ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14 4579: Id : 6, {_}: multiply (add ?16 ?17) ?18 =<= add (multiply ?16 ?18) (multiply ?17 ?18) [18, 17, 16] by distributivity3 ?16 ?17 ?18 4579: Id : 7, {_}: multiply ?20 (add ?21 ?22) =<= add (multiply ?20 ?21) (multiply ?20 ?22) [22, 21, 20] by distributivity4 ?20 ?21 ?22 4579: Id : 8, {_}: add ?24 (inverse ?24) =>= multiplicative_identity [24] by additive_inverse1 ?24 4579: Id : 9, {_}: add (inverse ?26) ?26 =>= multiplicative_identity [26] by additive_inverse2 ?26 4579: Id : 10, {_}: multiply ?28 (inverse ?28) =>= additive_identity [28] by multiplicative_inverse1 ?28 4579: Id : 11, {_}: multiply (inverse ?30) ?30 =>= additive_identity [30] by multiplicative_inverse2 ?30 4579: Id : 12, {_}: multiply ?32 multiplicative_identity =>= ?32 [32] by multiplicative_id1 ?32 4579: Id : 13, {_}: multiply multiplicative_identity ?34 =>= ?34 [34] by multiplicative_id2 ?34 4579: Id : 14, {_}: add ?36 additive_identity =>= ?36 [36] by additive_id1 ?36 4579: Id : 15, {_}: add additive_identity ?38 =>= ?38 [38] by additive_id2 ?38 4579: Goal: 4579: Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity 4579: Order: 4579: kbo 4579: Leaf order: 4579: additive_identity 4 0 0 4579: multiplicative_identity 4 0 0 4579: inverse 4 1 0 4579: add 16 2 0 multiply 4579: multiply 20 2 4 0,2add 4579: c 2 0 2 2,2,2 4579: b 2 0 2 1,2,2 4579: a 2 0 2 1,2 CLASH, statistics insufficient 4580: Facts: 4580: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 4580: Id : 3, {_}: multiply ?5 ?6 =?= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6 4580: Id : 4, {_}: add (multiply ?8 ?9) ?10 =<= multiply (add ?8 ?10) (add ?9 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10 4580: Id : 5, {_}: add ?12 (multiply ?13 ?14) =<= multiply (add ?12 ?13) (add ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14 4580: Id : 6, {_}: multiply (add ?16 ?17) ?18 =>= add (multiply ?16 ?18) (multiply ?17 ?18) [18, 17, 16] by distributivity3 ?16 ?17 ?18 4580: Id : 7, {_}: multiply ?20 (add ?21 ?22) =>= add (multiply ?20 ?21) (multiply ?20 ?22) [22, 21, 20] by distributivity4 ?20 ?21 ?22 4580: Id : 8, {_}: add ?24 (inverse ?24) =>= multiplicative_identity [24] by additive_inverse1 ?24 4580: Id : 9, {_}: add (inverse ?26) ?26 =>= multiplicative_identity [26] by additive_inverse2 ?26 4580: Id : 10, {_}: multiply ?28 (inverse ?28) =>= additive_identity [28] by multiplicative_inverse1 ?28 4580: Id : 11, {_}: multiply (inverse ?30) ?30 =>= additive_identity [30] by multiplicative_inverse2 ?30 4580: Id : 12, {_}: multiply ?32 multiplicative_identity =>= ?32 [32] by multiplicative_id1 ?32 4580: Id : 13, {_}: multiply multiplicative_identity ?34 =>= ?34 [34] by multiplicative_id2 ?34 4580: Id : 14, {_}: add ?36 additive_identity =>= ?36 [36] by additive_id1 ?36 4580: Id : 15, {_}: add additive_identity ?38 =>= ?38 [38] by additive_id2 ?38 4580: Goal: 4580: Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity 4580: Order: 4580: lpo 4580: Leaf order: 4580: additive_identity 4 0 0 4580: multiplicative_identity 4 0 0 4580: inverse 4 1 0 4580: add 16 2 0 multiply 4580: multiply 20 2 4 0,2add 4580: c 2 0 2 2,2,2 4580: b 2 0 2 1,2,2 4580: a 2 0 2 1,2 Statistics : Max weight : 22 Found proof, 16.914436s % SZS status Unsatisfiable for BOO007-2.p % SZS output start CNFRefutation for BOO007-2.p Id : 12, {_}: multiply ?32 multiplicative_identity =>= ?32 [32] by multiplicative_id1 ?32 Id : 7, {_}: multiply ?20 (add ?21 ?22) =<= add (multiply ?20 ?21) (multiply ?20 ?22) [22, 21, 20] by distributivity4 ?20 ?21 ?22 Id : 15, {_}: add additive_identity ?38 =>= ?38 [38] by additive_id2 ?38 Id : 14, {_}: add ?36 additive_identity =>= ?36 [36] by additive_id1 ?36 Id : 10, {_}: multiply ?28 (inverse ?28) =>= additive_identity [28] by multiplicative_inverse1 ?28 Id : 13, {_}: multiply multiplicative_identity ?34 =>= ?34 [34] by multiplicative_id2 ?34 Id : 8, {_}: add ?24 (inverse ?24) =>= multiplicative_identity [24] by additive_inverse1 ?24 Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 Id : 31, {_}: add (multiply ?78 ?79) ?80 =<= multiply (add ?78 ?80) (add ?79 ?80) [80, 79, 78] by distributivity1 ?78 ?79 ?80 Id : 5, {_}: add ?12 (multiply ?13 ?14) =<= multiply (add ?12 ?13) (add ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14 Id : 3, {_}: multiply ?5 ?6 =?= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6 Id : 6, {_}: multiply (add ?16 ?17) ?18 =<= add (multiply ?16 ?18) (multiply ?17 ?18) [18, 17, 16] by distributivity3 ?16 ?17 ?18 Id : 4, {_}: add (multiply ?8 ?9) ?10 =<= multiply (add ?8 ?10) (add ?9 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10 Id : 65, {_}: add (multiply ?156 (multiply ?157 ?158)) (multiply ?159 ?158) =<= multiply (add ?156 (multiply ?159 ?158)) (multiply (add ?157 ?159) ?158) [159, 158, 157, 156] by Super 4 with 6 at 2,3 Id : 46, {_}: multiply (add ?110 ?111) (add ?110 ?112) =>= add ?110 (multiply ?112 ?111) [112, 111, 110] by Super 3 with 5 at 3 Id : 58, {_}: add ?110 (multiply ?111 ?112) =?= add ?110 (multiply ?112 ?111) [112, 111, 110] by Demod 46 with 5 at 2 Id : 32, {_}: add (multiply ?82 ?83) ?84 =<= multiply (add ?82 ?84) (add ?84 ?83) [84, 83, 82] by Super 31 with 2 at 2,3 Id : 121, {_}: add ?333 (multiply (inverse ?333) ?334) =>= multiply multiplicative_identity (add ?333 ?334) [334, 333] by Super 5 with 8 at 1,3 Id : 2169, {_}: add ?2910 (multiply (inverse ?2910) ?2911) =>= add ?2910 ?2911 [2911, 2910] by Demod 121 with 13 at 3 Id : 2179, {_}: add ?2938 additive_identity =<= add ?2938 (inverse (inverse ?2938)) [2938] by Super 2169 with 10 at 2,2 Id : 2230, {_}: ?2938 =<= add ?2938 (inverse (inverse ?2938)) [2938] by Demod 2179 with 14 at 2 Id : 2429, {_}: add (multiply ?3159 (inverse (inverse ?3160))) ?3160 =>= multiply (add ?3159 ?3160) ?3160 [3160, 3159] by Super 32 with 2230 at 2,3 Id : 2455, {_}: add ?3160 (multiply ?3159 (inverse (inverse ?3160))) =>= multiply (add ?3159 ?3160) ?3160 [3159, 3160] by Demod 2429 with 2 at 2 Id : 2456, {_}: add ?3160 (multiply ?3159 (inverse (inverse ?3160))) =>= multiply ?3160 (add ?3159 ?3160) [3159, 3160] by Demod 2455 with 3 at 3 Id : 248, {_}: add (multiply additive_identity ?467) ?468 =<= multiply ?468 (add ?467 ?468) [468, 467] by Super 4 with 15 at 1,3 Id : 2457, {_}: add ?3160 (multiply ?3159 (inverse (inverse ?3160))) =>= add (multiply additive_identity ?3159) ?3160 [3159, 3160] by Demod 2456 with 248 at 3 Id : 120, {_}: add ?330 (multiply ?331 (inverse ?330)) =>= multiply (add ?330 ?331) multiplicative_identity [331, 330] by Super 5 with 8 at 2,3 Id : 124, {_}: add ?330 (multiply ?331 (inverse ?330)) =>= multiply multiplicative_identity (add ?330 ?331) [331, 330] by Demod 120 with 3 at 3 Id : 3170, {_}: add ?330 (multiply ?331 (inverse ?330)) =>= add ?330 ?331 [331, 330] by Demod 124 with 13 at 3 Id : 144, {_}: multiply ?347 (add (inverse ?347) ?348) =>= add additive_identity (multiply ?347 ?348) [348, 347] by Super 7 with 10 at 1,3 Id : 3378, {_}: multiply ?4138 (add (inverse ?4138) ?4139) =>= multiply ?4138 ?4139 [4139, 4138] by Demod 144 with 15 at 3 Id : 3399, {_}: multiply ?4195 (inverse ?4195) =<= multiply ?4195 (inverse (inverse (inverse ?4195))) [4195] by Super 3378 with 2230 at 2,2 Id : 3488, {_}: additive_identity =<= multiply ?4195 (inverse (inverse (inverse ?4195))) [4195] by Demod 3399 with 10 at 2 Id : 3900, {_}: add (inverse (inverse ?4844)) additive_identity =?= add (inverse (inverse ?4844)) ?4844 [4844] by Super 3170 with 3488 at 2,2 Id : 3924, {_}: add additive_identity (inverse (inverse ?4844)) =<= add (inverse (inverse ?4844)) ?4844 [4844] by Demod 3900 with 2 at 2 Id : 3925, {_}: add additive_identity (inverse (inverse ?4844)) =?= add ?4844 (inverse (inverse ?4844)) [4844] by Demod 3924 with 2 at 3 Id : 3926, {_}: inverse (inverse ?4844) =<= add ?4844 (inverse (inverse ?4844)) [4844] by Demod 3925 with 15 at 2 Id : 3927, {_}: inverse (inverse ?4844) =>= ?4844 [4844] by Demod 3926 with 2230 at 3 Id : 6845, {_}: add ?3160 (multiply ?3159 ?3160) =?= add (multiply additive_identity ?3159) ?3160 [3159, 3160] by Demod 2457 with 3927 at 2,2,2 Id : 1130, {_}: add (multiply additive_identity ?1671) ?1672 =<= multiply ?1672 (add ?1671 ?1672) [1672, 1671] by Super 4 with 15 at 1,3 Id : 1134, {_}: add (multiply additive_identity ?1683) (inverse ?1683) =>= multiply (inverse ?1683) multiplicative_identity [1683] by Super 1130 with 8 at 2,3 Id : 1186, {_}: add (inverse ?1683) (multiply additive_identity ?1683) =>= multiply (inverse ?1683) multiplicative_identity [1683] by Demod 1134 with 2 at 2 Id : 1187, {_}: add (inverse ?1683) (multiply additive_identity ?1683) =>= multiply multiplicative_identity (inverse ?1683) [1683] by Demod 1186 with 3 at 3 Id : 1188, {_}: add (inverse ?1683) (multiply additive_identity ?1683) =>= inverse ?1683 [1683] by Demod 1187 with 13 at 3 Id : 3360, {_}: multiply ?347 (add (inverse ?347) ?348) =>= multiply ?347 ?348 [348, 347] by Demod 144 with 15 at 3 Id : 3364, {_}: add (inverse (add (inverse additive_identity) ?4095)) (multiply additive_identity ?4095) =>= inverse (add (inverse additive_identity) ?4095) [4095] by Super 1188 with 3360 at 2,2 Id : 3442, {_}: add (multiply additive_identity ?4095) (inverse (add (inverse additive_identity) ?4095)) =>= inverse (add (inverse additive_identity) ?4095) [4095] by Demod 3364 with 2 at 2 Id : 249, {_}: inverse additive_identity =>= multiplicative_identity [] by Super 8 with 15 at 2 Id : 3443, {_}: add (multiply additive_identity ?4095) (inverse (add (inverse additive_identity) ?4095)) =>= inverse (add multiplicative_identity ?4095) [4095] by Demod 3442 with 249 at 1,1,3 Id : 3444, {_}: add (multiply additive_identity ?4095) (inverse (add multiplicative_identity ?4095)) =>= inverse (add multiplicative_identity ?4095) [4095] by Demod 3443 with 249 at 1,1,2,2 Id : 2180, {_}: add ?2940 (inverse ?2940) =>= add ?2940 multiplicative_identity [2940] by Super 2169 with 12 at 2,2 Id : 2231, {_}: multiplicative_identity =<= add ?2940 multiplicative_identity [2940] by Demod 2180 with 8 at 2 Id : 2263, {_}: add multiplicative_identity ?3015 =>= multiplicative_identity [3015] by Super 2 with 2231 at 3 Id : 3445, {_}: add (multiply additive_identity ?4095) (inverse (add multiplicative_identity ?4095)) =>= inverse multiplicative_identity [4095] by Demod 3444 with 2263 at 1,3 Id : 3446, {_}: add (multiply additive_identity ?4095) (inverse multiplicative_identity) =>= inverse multiplicative_identity [4095] by Demod 3445 with 2263 at 1,2,2 Id : 191, {_}: inverse multiplicative_identity =>= additive_identity [] by Super 10 with 13 at 2 Id : 3447, {_}: add (multiply additive_identity ?4095) (inverse multiplicative_identity) =>= additive_identity [4095] by Demod 3446 with 191 at 3 Id : 3448, {_}: add (inverse multiplicative_identity) (multiply additive_identity ?4095) =>= additive_identity [4095] by Demod 3447 with 2 at 2 Id : 3449, {_}: add additive_identity (multiply additive_identity ?4095) =>= additive_identity [4095] by Demod 3448 with 191 at 1,2 Id : 3450, {_}: multiply additive_identity ?4095 =>= additive_identity [4095] by Demod 3449 with 15 at 2 Id : 6846, {_}: add ?3160 (multiply ?3159 ?3160) =>= add additive_identity ?3160 [3159, 3160] by Demod 6845 with 3450 at 1,3 Id : 6847, {_}: add ?3160 (multiply ?3159 ?3160) =>= ?3160 [3159, 3160] by Demod 6846 with 15 at 3 Id : 6852, {_}: add ?8316 (multiply ?8316 ?8317) =>= ?8316 [8317, 8316] by Super 58 with 6847 at 3 Id : 7003, {_}: add (multiply ?8541 (multiply ?8542 ?8543)) (multiply ?8541 ?8543) =>= multiply ?8541 (multiply (add ?8542 ?8541) ?8543) [8543, 8542, 8541] by Super 65 with 6852 at 1,3 Id : 7114, {_}: add (multiply ?8541 ?8543) (multiply ?8541 (multiply ?8542 ?8543)) =>= multiply ?8541 (multiply (add ?8542 ?8541) ?8543) [8542, 8543, 8541] by Demod 7003 with 2 at 2 Id : 7115, {_}: multiply ?8541 (add ?8543 (multiply ?8542 ?8543)) =?= multiply ?8541 (multiply (add ?8542 ?8541) ?8543) [8542, 8543, 8541] by Demod 7114 with 7 at 2 Id : 21444, {_}: multiply ?30534 ?30535 =<= multiply ?30534 (multiply (add ?30536 ?30534) ?30535) [30536, 30535, 30534] by Demod 7115 with 6847 at 2,2 Id : 21466, {_}: multiply (multiply ?30625 ?30626) ?30627 =<= multiply (multiply ?30625 ?30626) (multiply ?30626 ?30627) [30627, 30626, 30625] by Super 21444 with 6847 at 1,2,3 Id : 147, {_}: multiply (add ?355 ?356) (inverse ?355) =>= add additive_identity (multiply ?356 (inverse ?355)) [356, 355] by Super 6 with 10 at 1,3 Id : 152, {_}: multiply (inverse ?355) (add ?355 ?356) =>= add additive_identity (multiply ?356 (inverse ?355)) [356, 355] by Demod 147 with 3 at 2 Id : 4375, {_}: multiply (inverse ?355) (add ?355 ?356) =>= multiply ?356 (inverse ?355) [356, 355] by Demod 152 with 15 at 3 Id : 532, {_}: add (multiply ?866 ?867) ?868 =<= multiply (add ?866 ?868) (add ?868 ?867) [868, 867, 866] by Super 31 with 2 at 2,3 Id : 547, {_}: add (multiply ?925 ?926) (inverse ?925) =?= multiply multiplicative_identity (add (inverse ?925) ?926) [926, 925] by Super 532 with 8 at 1,3 Id : 583, {_}: add (inverse ?925) (multiply ?925 ?926) =?= multiply multiplicative_identity (add (inverse ?925) ?926) [926, 925] by Demod 547 with 2 at 2 Id : 584, {_}: add (inverse ?925) (multiply ?925 ?926) =>= add (inverse ?925) ?926 [926, 925] by Demod 583 with 13 at 3 Id : 4646, {_}: multiply (inverse (inverse ?5719)) (add (inverse ?5719) ?5720) =>= multiply (multiply ?5719 ?5720) (inverse (inverse ?5719)) [5720, 5719] by Super 4375 with 584 at 2,2 Id : 4685, {_}: multiply ?5720 (inverse (inverse ?5719)) =<= multiply (multiply ?5719 ?5720) (inverse (inverse ?5719)) [5719, 5720] by Demod 4646 with 4375 at 2 Id : 4686, {_}: multiply ?5720 (inverse (inverse ?5719)) =<= multiply (inverse (inverse ?5719)) (multiply ?5719 ?5720) [5719, 5720] by Demod 4685 with 3 at 3 Id : 4687, {_}: multiply ?5720 ?5719 =<= multiply (inverse (inverse ?5719)) (multiply ?5719 ?5720) [5719, 5720] by Demod 4686 with 3927 at 2,2 Id : 4688, {_}: multiply ?5720 ?5719 =<= multiply ?5719 (multiply ?5719 ?5720) [5719, 5720] by Demod 4687 with 3927 at 1,3 Id : 21467, {_}: multiply (multiply ?30629 ?30630) ?30631 =<= multiply (multiply ?30629 ?30630) (multiply ?30629 ?30631) [30631, 30630, 30629] by Super 21444 with 6852 at 1,2,3 Id : 36399, {_}: multiply (multiply ?58815 ?58816) (multiply ?58815 ?58817) =<= multiply (multiply ?58815 ?58817) (multiply (multiply ?58815 ?58817) ?58816) [58817, 58816, 58815] by Super 4688 with 21467 at 2,3 Id : 36627, {_}: multiply (multiply ?58815 ?58816) ?58817 =<= multiply (multiply ?58815 ?58817) (multiply (multiply ?58815 ?58817) ?58816) [58817, 58816, 58815] by Demod 36399 with 21467 at 2 Id : 36628, {_}: multiply (multiply ?58815 ?58816) ?58817 =>= multiply ?58816 (multiply ?58815 ?58817) [58817, 58816, 58815] by Demod 36627 with 4688 at 3 Id : 36893, {_}: multiply ?30626 (multiply ?30625 ?30627) =<= multiply (multiply ?30625 ?30626) (multiply ?30626 ?30627) [30627, 30625, 30626] by Demod 21466 with 36628 at 2 Id : 36894, {_}: multiply ?30626 (multiply ?30625 ?30627) =<= multiply ?30626 (multiply ?30625 (multiply ?30626 ?30627)) [30627, 30625, 30626] by Demod 36893 with 36628 at 3 Id : 3522, {_}: add additive_identity ?468 =<= multiply ?468 (add ?467 ?468) [467, 468] by Demod 248 with 3450 at 1,2 Id : 3543, {_}: ?468 =<= multiply ?468 (add ?467 ?468) [467, 468] by Demod 3522 with 15 at 2 Id : 7020, {_}: add (multiply ?8599 (multiply ?8600 ?8601)) ?8600 =>= multiply (add ?8599 ?8600) ?8600 [8601, 8600, 8599] by Super 32 with 6852 at 2,3 Id : 7087, {_}: add ?8600 (multiply ?8599 (multiply ?8600 ?8601)) =>= multiply (add ?8599 ?8600) ?8600 [8601, 8599, 8600] by Demod 7020 with 2 at 2 Id : 7088, {_}: add ?8600 (multiply ?8599 (multiply ?8600 ?8601)) =>= multiply ?8600 (add ?8599 ?8600) [8601, 8599, 8600] by Demod 7087 with 3 at 3 Id : 7089, {_}: add ?8600 (multiply ?8599 (multiply ?8600 ?8601)) =>= ?8600 [8601, 8599, 8600] by Demod 7088 with 3543 at 3 Id : 20142, {_}: multiply ?27776 (multiply ?27777 ?27778) =<= multiply (multiply ?27776 (multiply ?27777 ?27778)) ?27777 [27778, 27777, 27776] by Super 3543 with 7089 at 2,3 Id : 20329, {_}: multiply ?27776 (multiply ?27777 ?27778) =<= multiply ?27777 (multiply ?27776 (multiply ?27777 ?27778)) [27778, 27777, 27776] by Demod 20142 with 3 at 3 Id : 36895, {_}: multiply ?30626 (multiply ?30625 ?30627) =?= multiply ?30625 (multiply ?30626 ?30627) [30627, 30625, 30626] by Demod 36894 with 20329 at 3 Id : 34, {_}: add (multiply ?90 ?91) ?92 =<= multiply (add ?92 ?90) (add ?91 ?92) [92, 91, 90] by Super 31 with 2 at 1,3 Id : 6868, {_}: add (multiply (multiply ?8366 ?8367) ?8368) ?8367 =>= multiply ?8367 (add ?8368 ?8367) [8368, 8367, 8366] by Super 34 with 6847 at 1,3 Id : 6940, {_}: add ?8367 (multiply (multiply ?8366 ?8367) ?8368) =>= multiply ?8367 (add ?8368 ?8367) [8368, 8366, 8367] by Demod 6868 with 2 at 2 Id : 6941, {_}: add ?8367 (multiply (multiply ?8366 ?8367) ?8368) =>= ?8367 [8368, 8366, 8367] by Demod 6940 with 3543 at 3 Id : 19816, {_}: multiply (multiply ?27180 ?27181) ?27182 =<= multiply (multiply (multiply ?27180 ?27181) ?27182) ?27181 [27182, 27181, 27180] by Super 3543 with 6941 at 2,3 Id : 19977, {_}: multiply (multiply ?27180 ?27181) ?27182 =<= multiply ?27181 (multiply (multiply ?27180 ?27181) ?27182) [27182, 27181, 27180] by Demod 19816 with 3 at 3 Id : 36891, {_}: multiply ?27181 (multiply ?27180 ?27182) =<= multiply ?27181 (multiply (multiply ?27180 ?27181) ?27182) [27182, 27180, 27181] by Demod 19977 with 36628 at 2 Id : 36892, {_}: multiply ?27181 (multiply ?27180 ?27182) =<= multiply ?27181 (multiply ?27181 (multiply ?27180 ?27182)) [27182, 27180, 27181] by Demod 36891 with 36628 at 2,3 Id : 36900, {_}: multiply ?27181 (multiply ?27180 ?27182) =?= multiply (multiply ?27180 ?27182) ?27181 [27182, 27180, 27181] by Demod 36892 with 4688 at 3 Id : 36901, {_}: multiply ?27181 (multiply ?27180 ?27182) =?= multiply ?27182 (multiply ?27180 ?27181) [27182, 27180, 27181] by Demod 36900 with 36628 at 3 Id : 37364, {_}: multiply c (multiply b a) =?= multiply c (multiply b a) [] by Demod 37363 with 3 at 2,2 Id : 37363, {_}: multiply c (multiply a b) =?= multiply c (multiply b a) [] by Demod 37362 with 3 at 2,3 Id : 37362, {_}: multiply c (multiply a b) =?= multiply c (multiply a b) [] by Demod 37361 with 36901 at 2 Id : 37361, {_}: multiply b (multiply a c) =>= multiply c (multiply a b) [] by Demod 37360 with 3 at 3 Id : 37360, {_}: multiply b (multiply a c) =<= multiply (multiply a b) c [] by Demod 1 with 36895 at 2 Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity % SZS output end CNFRefutation for BOO007-2.p 4579: solved BOO007-2.p in 8.372523 using kbo 4579: status Unsatisfiable for BOO007-2.p CLASH, statistics insufficient 4588: Facts: 4588: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 4588: Id : 3, {_}: multiply ?5 ?6 =?= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6 4588: Id : 4, {_}: add ?8 (multiply ?9 ?10) =<= multiply (add ?8 ?9) (add ?8 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10 4588: Id : 5, {_}: multiply ?12 (add ?13 ?14) =<= add (multiply ?12 ?13) (multiply ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14 4588: Id : 6, {_}: add ?16 additive_identity =>= ?16 [16] by additive_id1 ?16 4588: Id : 7, {_}: multiply ?18 multiplicative_identity =>= ?18 [18] by multiplicative_id1 ?18 4588: Id : 8, {_}: add ?20 (inverse ?20) =>= multiplicative_identity [20] by additive_inverse1 ?20 4588: Id : 9, {_}: multiply ?22 (inverse ?22) =>= additive_identity [22] by multiplicative_inverse1 ?22 4588: Goal: 4588: Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity 4588: Order: 4588: nrkbo 4588: Leaf order: 4588: inverse 2 1 0 4588: multiplicative_identity 2 0 0 4588: additive_identity 2 0 0 4588: add 9 2 0 multiply 4588: multiply 13 2 4 0,2add 4588: c 2 0 2 2,2,2 4588: b 2 0 2 1,2,2 4588: a 2 0 2 1,2 CLASH, statistics insufficient 4589: Facts: 4589: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 4589: Id : 3, {_}: multiply ?5 ?6 =?= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6 4589: Id : 4, {_}: add ?8 (multiply ?9 ?10) =<= multiply (add ?8 ?9) (add ?8 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10 4589: Id : 5, {_}: multiply ?12 (add ?13 ?14) =<= add (multiply ?12 ?13) (multiply ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14 4589: Id : 6, {_}: add ?16 additive_identity =>= ?16 [16] by additive_id1 ?16 4589: Id : 7, {_}: multiply ?18 multiplicative_identity =>= ?18 [18] by multiplicative_id1 ?18 4589: Id : 8, {_}: add ?20 (inverse ?20) =>= multiplicative_identity [20] by additive_inverse1 ?20 4589: Id : 9, {_}: multiply ?22 (inverse ?22) =>= additive_identity [22] by multiplicative_inverse1 ?22 4589: Goal: 4589: Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity 4589: Order: 4589: kbo 4589: Leaf order: 4589: inverse 2 1 0 4589: multiplicative_identity 2 0 0 4589: additive_identity 2 0 0 4589: add 9 2 0 multiply 4589: multiply 13 2 4 0,2add 4589: c 2 0 2 2,2,2 4589: b 2 0 2 1,2,2 4589: a 2 0 2 1,2 CLASH, statistics insufficient 4590: Facts: 4590: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 4590: Id : 3, {_}: multiply ?5 ?6 =?= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6 4590: Id : 4, {_}: add ?8 (multiply ?9 ?10) =<= multiply (add ?8 ?9) (add ?8 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10 4590: Id : 5, {_}: multiply ?12 (add ?13 ?14) =>= add (multiply ?12 ?13) (multiply ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14 4590: Id : 6, {_}: add ?16 additive_identity =>= ?16 [16] by additive_id1 ?16 4590: Id : 7, {_}: multiply ?18 multiplicative_identity =>= ?18 [18] by multiplicative_id1 ?18 4590: Id : 8, {_}: add ?20 (inverse ?20) =>= multiplicative_identity [20] by additive_inverse1 ?20 4590: Id : 9, {_}: multiply ?22 (inverse ?22) =>= additive_identity [22] by multiplicative_inverse1 ?22 4590: Goal: 4590: Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity 4590: Order: 4590: lpo 4590: Leaf order: 4590: inverse 2 1 0 4590: multiplicative_identity 2 0 0 4590: additive_identity 2 0 0 4590: add 9 2 0 multiply 4590: multiply 13 2 4 0,2add 4590: c 2 0 2 2,2,2 4590: b 2 0 2 1,2,2 4590: a 2 0 2 1,2 Statistics : Max weight : 25 Found proof, 23.495904s % SZS status Unsatisfiable for BOO007-4.p % SZS output start CNFRefutation for BOO007-4.p Id : 44, {_}: multiply ?112 (add ?113 ?114) =<= add (multiply ?112 ?113) (multiply ?112 ?114) [114, 113, 112] by distributivity2 ?112 ?113 ?114 Id : 4, {_}: add ?8 (multiply ?9 ?10) =<= multiply (add ?8 ?9) (add ?8 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10 Id : 9, {_}: multiply ?22 (inverse ?22) =>= additive_identity [22] by multiplicative_inverse1 ?22 Id : 5, {_}: multiply ?12 (add ?13 ?14) =<= add (multiply ?12 ?13) (multiply ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14 Id : 7, {_}: multiply ?18 multiplicative_identity =>= ?18 [18] by multiplicative_id1 ?18 Id : 3, {_}: multiply ?5 ?6 =?= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6 Id : 8, {_}: add ?20 (inverse ?20) =>= multiplicative_identity [20] by additive_inverse1 ?20 Id : 6, {_}: add ?16 additive_identity =>= ?16 [16] by additive_id1 ?16 Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 Id : 25, {_}: add ?62 (multiply ?63 ?64) =<= multiply (add ?62 ?63) (add ?62 ?64) [64, 63, 62] by distributivity1 ?62 ?63 ?64 Id : 516, {_}: add ?742 (multiply ?743 ?744) =<= multiply (add ?742 ?743) (add ?744 ?742) [744, 743, 742] by Super 25 with 2 at 2,3 Id : 530, {_}: add ?796 (multiply additive_identity ?797) =<= multiply ?796 (add ?797 ?796) [797, 796] by Super 516 with 6 at 1,3 Id : 1019, {_}: add ?1448 (multiply additive_identity ?1449) =<= multiply ?1448 (add ?1449 ?1448) [1449, 1448] by Super 516 with 6 at 1,3 Id : 1024, {_}: add (inverse ?1462) (multiply additive_identity ?1462) =>= multiply (inverse ?1462) multiplicative_identity [1462] by Super 1019 with 8 at 2,3 Id : 1064, {_}: add (inverse ?1462) (multiply additive_identity ?1462) =>= multiply multiplicative_identity (inverse ?1462) [1462] by Demod 1024 with 3 at 3 Id : 75, {_}: multiply multiplicative_identity ?178 =>= ?178 [178] by Super 3 with 7 at 3 Id : 1065, {_}: add (inverse ?1462) (multiply additive_identity ?1462) =>= inverse ?1462 [1462] by Demod 1064 with 75 at 3 Id : 97, {_}: multiply ?204 (add (inverse ?204) ?205) =>= add additive_identity (multiply ?204 ?205) [205, 204] by Super 5 with 9 at 1,3 Id : 63, {_}: add additive_identity ?160 =>= ?160 [160] by Super 2 with 6 at 3 Id : 2714, {_}: multiply ?204 (add (inverse ?204) ?205) =>= multiply ?204 ?205 [205, 204] by Demod 97 with 63 at 3 Id : 2718, {_}: add (inverse (add (inverse additive_identity) ?3390)) (multiply additive_identity ?3390) =>= inverse (add (inverse additive_identity) ?3390) [3390] by Super 1065 with 2714 at 2,2 Id : 2791, {_}: add (multiply additive_identity ?3390) (inverse (add (inverse additive_identity) ?3390)) =>= inverse (add (inverse additive_identity) ?3390) [3390] by Demod 2718 with 2 at 2 Id : 184, {_}: inverse additive_identity =>= multiplicative_identity [] by Super 8 with 63 at 2 Id : 2792, {_}: add (multiply additive_identity ?3390) (inverse (add (inverse additive_identity) ?3390)) =>= inverse (add multiplicative_identity ?3390) [3390] by Demod 2791 with 184 at 1,1,3 Id : 2793, {_}: add (multiply additive_identity ?3390) (inverse (add multiplicative_identity ?3390)) =>= inverse (add multiplicative_identity ?3390) [3390] by Demod 2792 with 184 at 1,1,2,2 Id : 86, {_}: add ?193 (multiply (inverse ?193) ?194) =>= multiply multiplicative_identity (add ?193 ?194) [194, 193] by Super 4 with 8 at 1,3 Id : 1836, {_}: add ?2310 (multiply (inverse ?2310) ?2311) =>= add ?2310 ?2311 [2311, 2310] by Demod 86 with 75 at 3 Id : 1846, {_}: add ?2338 (inverse ?2338) =>= add ?2338 multiplicative_identity [2338] by Super 1836 with 7 at 2,2 Id : 1890, {_}: multiplicative_identity =<= add ?2338 multiplicative_identity [2338] by Demod 1846 with 8 at 2 Id : 1917, {_}: add multiplicative_identity ?2407 =>= multiplicative_identity [2407] by Super 2 with 1890 at 3 Id : 2794, {_}: add (multiply additive_identity ?3390) (inverse (add multiplicative_identity ?3390)) =>= inverse multiplicative_identity [3390] by Demod 2793 with 1917 at 1,3 Id : 2795, {_}: add (multiply additive_identity ?3390) (inverse multiplicative_identity) =>= inverse multiplicative_identity [3390] by Demod 2794 with 1917 at 1,2,2 Id : 476, {_}: inverse multiplicative_identity =>= additive_identity [] by Super 9 with 75 at 2 Id : 2796, {_}: add (multiply additive_identity ?3390) (inverse multiplicative_identity) =>= additive_identity [3390] by Demod 2795 with 476 at 3 Id : 2797, {_}: add (inverse multiplicative_identity) (multiply additive_identity ?3390) =>= additive_identity [3390] by Demod 2796 with 2 at 2 Id : 2798, {_}: add additive_identity (multiply additive_identity ?3390) =>= additive_identity [3390] by Demod 2797 with 476 at 1,2 Id : 2799, {_}: multiply additive_identity ?3390 =>= additive_identity [3390] by Demod 2798 with 63 at 2 Id : 2854, {_}: add ?796 additive_identity =<= multiply ?796 (add ?797 ?796) [797, 796] by Demod 530 with 2799 at 2,2 Id : 2870, {_}: ?796 =<= multiply ?796 (add ?797 ?796) [797, 796] by Demod 2854 with 6 at 2 Id : 2113, {_}: add (multiply ?2595 ?2596) (multiply ?2597 (multiply ?2595 ?2598)) =<= multiply (add (multiply ?2595 ?2596) ?2597) (multiply ?2595 (add ?2596 ?2598)) [2598, 2597, 2596, 2595] by Super 4 with 5 at 2,3 Id : 2126, {_}: add (multiply ?2655 multiplicative_identity) (multiply ?2656 (multiply ?2655 ?2657)) =?= multiply (add (multiply ?2655 multiplicative_identity) ?2656) (multiply ?2655 multiplicative_identity) [2657, 2656, 2655] by Super 2113 with 1917 at 2,2,3 Id : 2201, {_}: add ?2655 (multiply ?2656 (multiply ?2655 ?2657)) =?= multiply (add (multiply ?2655 multiplicative_identity) ?2656) (multiply ?2655 multiplicative_identity) [2657, 2656, 2655] by Demod 2126 with 7 at 1,2 Id : 2202, {_}: add ?2655 (multiply ?2656 (multiply ?2655 ?2657)) =?= multiply (multiply ?2655 multiplicative_identity) (add (multiply ?2655 multiplicative_identity) ?2656) [2657, 2656, 2655] by Demod 2201 with 3 at 3 Id : 62, {_}: add ?157 (multiply additive_identity ?158) =<= multiply ?157 (add ?157 ?158) [158, 157] by Super 4 with 6 at 1,3 Id : 2203, {_}: add ?2655 (multiply ?2656 (multiply ?2655 ?2657)) =?= add (multiply ?2655 multiplicative_identity) (multiply additive_identity ?2656) [2657, 2656, 2655] by Demod 2202 with 62 at 3 Id : 2204, {_}: add ?2655 (multiply ?2656 (multiply ?2655 ?2657)) =>= add ?2655 (multiply additive_identity ?2656) [2657, 2656, 2655] by Demod 2203 with 7 at 1,3 Id : 12654, {_}: add ?2655 (multiply ?2656 (multiply ?2655 ?2657)) =>= add ?2655 additive_identity [2657, 2656, 2655] by Demod 2204 with 2799 at 2,3 Id : 12655, {_}: add ?2655 (multiply ?2656 (multiply ?2655 ?2657)) =>= ?2655 [2657, 2656, 2655] by Demod 12654 with 6 at 3 Id : 12666, {_}: multiply ?15534 (multiply ?15535 ?15536) =<= multiply (multiply ?15534 (multiply ?15535 ?15536)) ?15535 [15536, 15535, 15534] by Super 2870 with 12655 at 2,3 Id : 21339, {_}: multiply ?30912 (multiply ?30913 ?30914) =<= multiply ?30913 (multiply ?30912 (multiply ?30913 ?30914)) [30914, 30913, 30912] by Demod 12666 with 3 at 3 Id : 21342, {_}: multiply ?30924 (multiply ?30925 ?30926) =<= multiply ?30925 (multiply ?30924 (multiply ?30926 ?30925)) [30926, 30925, 30924] by Super 21339 with 3 at 2,2,3 Id : 28, {_}: add ?74 (multiply ?75 ?76) =<= multiply (add ?75 ?74) (add ?74 ?76) [76, 75, 74] by Super 25 with 2 at 1,3 Id : 4808, {_}: multiply ?5796 (add ?5797 ?5798) =<= add (multiply ?5796 ?5797) (multiply ?5798 ?5796) [5798, 5797, 5796] by Super 44 with 3 at 2,3 Id : 4837, {_}: multiply ?5913 (add multiplicative_identity ?5914) =?= add ?5913 (multiply ?5914 ?5913) [5914, 5913] by Super 4808 with 7 at 1,3 Id : 4917, {_}: multiply ?5913 multiplicative_identity =<= add ?5913 (multiply ?5914 ?5913) [5914, 5913] by Demod 4837 with 1917 at 2,2 Id : 4918, {_}: ?5913 =<= add ?5913 (multiply ?5914 ?5913) [5914, 5913] by Demod 4917 with 7 at 2 Id : 5091, {_}: add ?6286 (multiply ?6287 (multiply ?6288 ?6286)) =>= multiply (add ?6287 ?6286) ?6286 [6288, 6287, 6286] by Super 28 with 4918 at 2,3 Id : 5151, {_}: add ?6286 (multiply ?6287 (multiply ?6288 ?6286)) =>= multiply ?6286 (add ?6287 ?6286) [6288, 6287, 6286] by Demod 5091 with 3 at 3 Id : 5152, {_}: add ?6286 (multiply ?6287 (multiply ?6288 ?6286)) =>= ?6286 [6288, 6287, 6286] by Demod 5151 with 2870 at 3 Id : 19536, {_}: multiply ?27546 (multiply ?27547 ?27548) =<= multiply (multiply ?27546 (multiply ?27547 ?27548)) ?27548 [27548, 27547, 27546] by Super 2870 with 5152 at 2,3 Id : 19689, {_}: multiply ?27546 (multiply ?27547 ?27548) =<= multiply ?27548 (multiply ?27546 (multiply ?27547 ?27548)) [27548, 27547, 27546] by Demod 19536 with 3 at 3 Id : 31289, {_}: multiply ?30924 (multiply ?30925 ?30926) =?= multiply ?30924 (multiply ?30926 ?30925) [30926, 30925, 30924] by Demod 21342 with 19689 at 3 Id : 521, {_}: add (inverse ?761) (multiply ?762 ?761) =?= multiply (add (inverse ?761) ?762) multiplicative_identity [762, 761] by Super 516 with 8 at 2,3 Id : 550, {_}: add (inverse ?761) (multiply ?762 ?761) =?= multiply multiplicative_identity (add (inverse ?761) ?762) [762, 761] by Demod 521 with 3 at 3 Id : 551, {_}: add (inverse ?761) (multiply ?762 ?761) =>= add (inverse ?761) ?762 [762, 761] by Demod 550 with 75 at 3 Id : 3740, {_}: multiply ?4638 (add (inverse ?4638) ?4639) =>= multiply ?4638 (multiply ?4639 ?4638) [4639, 4638] by Super 2714 with 551 at 2,2 Id : 3782, {_}: multiply ?4638 ?4639 =<= multiply ?4638 (multiply ?4639 ?4638) [4639, 4638] by Demod 3740 with 2714 at 2 Id : 3863, {_}: multiply ?4768 (add ?4769 (multiply ?4770 ?4768)) =>= add (multiply ?4768 ?4769) (multiply ?4768 ?4770) [4770, 4769, 4768] by Super 5 with 3782 at 2,3 Id : 15840, {_}: multiply ?20984 (add ?20985 (multiply ?20986 ?20984)) =>= multiply ?20984 (add ?20985 ?20986) [20986, 20985, 20984] by Demod 3863 with 5 at 3 Id : 15903, {_}: multiply ?21234 (multiply ?21235 (add ?21236 ?21234)) =?= multiply ?21234 (add (multiply ?21235 ?21236) ?21235) [21236, 21235, 21234] by Super 15840 with 5 at 2,2 Id : 16059, {_}: multiply ?21234 (multiply ?21235 (add ?21236 ?21234)) =?= multiply ?21234 (add ?21235 (multiply ?21235 ?21236)) [21236, 21235, 21234] by Demod 15903 with 2 at 2,3 Id : 4814, {_}: multiply ?5818 (add ?5819 multiplicative_identity) =?= add (multiply ?5818 ?5819) ?5818 [5819, 5818] by Super 4808 with 75 at 2,3 Id : 4891, {_}: multiply ?5818 multiplicative_identity =<= add (multiply ?5818 ?5819) ?5818 [5819, 5818] by Demod 4814 with 1890 at 2,2 Id : 4892, {_}: multiply ?5818 multiplicative_identity =<= add ?5818 (multiply ?5818 ?5819) [5819, 5818] by Demod 4891 with 2 at 3 Id : 4893, {_}: ?5818 =<= add ?5818 (multiply ?5818 ?5819) [5819, 5818] by Demod 4892 with 7 at 2 Id : 26804, {_}: multiply ?40743 (multiply ?40744 (add ?40745 ?40743)) =>= multiply ?40743 ?40744 [40745, 40744, 40743] by Demod 16059 with 4893 at 2,3 Id : 26854, {_}: multiply (multiply ?40962 ?40963) (multiply ?40964 ?40962) =>= multiply (multiply ?40962 ?40963) ?40964 [40964, 40963, 40962] by Super 26804 with 4893 at 2,2,2 Id : 38294, {_}: multiply (multiply ?63621 ?63622) (multiply ?63621 ?63623) =>= multiply (multiply ?63621 ?63622) ?63623 [63623, 63622, 63621] by Super 31289 with 26854 at 3 Id : 26855, {_}: multiply (multiply ?40966 ?40967) (multiply ?40968 ?40967) =>= multiply (multiply ?40966 ?40967) ?40968 [40968, 40967, 40966] by Super 26804 with 4918 at 2,2,2 Id : 38958, {_}: multiply (multiply ?65058 ?65059) (multiply ?65059 ?65060) =>= multiply (multiply ?65058 ?65059) ?65060 [65060, 65059, 65058] by Super 31289 with 26855 at 3 Id : 38330, {_}: multiply (multiply ?63784 ?63785) (multiply ?63785 ?63786) =>= multiply (multiply ?63785 ?63786) ?63784 [63786, 63785, 63784] by Super 3 with 26854 at 3 Id : 46713, {_}: multiply (multiply ?65059 ?65060) ?65058 =?= multiply (multiply ?65058 ?65059) ?65060 [65058, 65060, 65059] by Demod 38958 with 38330 at 2 Id : 46797, {_}: multiply ?81775 (multiply ?81776 ?81777) =<= multiply (multiply ?81775 ?81776) ?81777 [81777, 81776, 81775] by Super 3 with 46713 at 3 Id : 47389, {_}: multiply ?63621 (multiply ?63622 (multiply ?63621 ?63623)) =>= multiply (multiply ?63621 ?63622) ?63623 [63623, 63622, 63621] by Demod 38294 with 46797 at 2 Id : 47390, {_}: multiply ?63621 (multiply ?63622 (multiply ?63621 ?63623)) =>= multiply ?63621 (multiply ?63622 ?63623) [63623, 63622, 63621] by Demod 47389 with 46797 at 3 Id : 12809, {_}: multiply ?15534 (multiply ?15535 ?15536) =<= multiply ?15535 (multiply ?15534 (multiply ?15535 ?15536)) [15536, 15535, 15534] by Demod 12666 with 3 at 3 Id : 47391, {_}: multiply ?63622 (multiply ?63621 ?63623) =?= multiply ?63621 (multiply ?63622 ?63623) [63623, 63621, 63622] by Demod 47390 with 12809 at 2 Id : 47371, {_}: multiply ?40962 (multiply ?40963 (multiply ?40964 ?40962)) =>= multiply (multiply ?40962 ?40963) ?40964 [40964, 40963, 40962] by Demod 26854 with 46797 at 2 Id : 47372, {_}: multiply ?40962 (multiply ?40963 (multiply ?40964 ?40962)) =>= multiply ?40962 (multiply ?40963 ?40964) [40964, 40963, 40962] by Demod 47371 with 46797 at 3 Id : 47409, {_}: multiply ?40963 (multiply ?40964 ?40962) =?= multiply ?40962 (multiply ?40963 ?40964) [40962, 40964, 40963] by Demod 47372 with 19689 at 2 Id : 47847, {_}: multiply c (multiply b a) =?= multiply c (multiply b a) [] by Demod 47846 with 3 at 2,3 Id : 47846, {_}: multiply c (multiply b a) =?= multiply c (multiply a b) [] by Demod 47845 with 47409 at 2 Id : 47845, {_}: multiply b (multiply a c) =>= multiply c (multiply a b) [] by Demod 47844 with 3 at 3 Id : 47844, {_}: multiply b (multiply a c) =<= multiply (multiply a b) c [] by Demod 1 with 47391 at 2 Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity % SZS output end CNFRefutation for BOO007-4.p 4589: solved BOO007-4.p in 11.664728 using kbo 4589: status Unsatisfiable for BOO007-4.p CLASH, statistics insufficient 4606: Facts: 4606: Id : 2, {_}: add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) =>= multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2)) [4, 3, 2] by distributivity ?2 ?3 ?4 4606: Id : 3, {_}: add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6 [8, 7, 6] by l1 ?6 ?7 ?8 4606: Id : 4, {_}: add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11 [12, 11, 10] by l3 ?10 ?11 ?12 4606: Id : 5, {_}: multiply (add ?14 (inverse ?14)) ?15 =>= ?15 [15, 14] by property3 ?14 ?15 4606: Id : 6, {_}: multiply ?17 (add ?18 (add ?17 ?19)) =>= ?17 [19, 18, 17] by l2 ?17 ?18 ?19 4606: Id : 7, {_}: multiply (multiply (add ?21 ?22) (add ?22 ?23)) ?22 =>= ?22 [23, 22, 21] by l4 ?21 ?22 ?23 4606: Id : 8, {_}: add (multiply ?25 (inverse ?25)) ?26 =>= ?26 [26, 25] by property3_dual ?25 ?26 4606: Id : 9, {_}: add ?28 (inverse ?28) =>= n1 [28] by additive_inverse ?28 4606: Id : 10, {_}: multiply ?30 (inverse ?30) =>= n0 [30] by multiplicative_inverse ?30 4606: Id : 11, {_}: add (add ?32 ?33) ?34 =?= add ?32 (add ?33 ?34) [34, 33, 32] by associativity_of_add ?32 ?33 ?34 4606: Id : 12, {_}: multiply (multiply ?36 ?37) ?38 =?= multiply ?36 (multiply ?37 ?38) [38, 37, 36] by associativity_of_multiply ?36 ?37 ?38 4606: Goal: 4606: Id : 1, {_}: multiply a (add b c) =<= add (multiply b a) (multiply c a) [] by prove_multiply_add_property 4606: Order: 4606: nrkbo 4606: Leaf order: 4606: n0 1 0 0 4606: n1 1 0 0 4606: inverse 4 1 0 4606: multiply 22 2 3 0,2add 4606: add 21 2 2 0,2,2multiply 4606: c 2 0 2 2,2,2 4606: b 2 0 2 1,2,2 4606: a 3 0 3 1,2 CLASH, statistics insufficient 4607: Facts: 4607: Id : 2, {_}: add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) =>= multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2)) [4, 3, 2] by distributivity ?2 ?3 ?4 4607: Id : 3, {_}: add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6 [8, 7, 6] by l1 ?6 ?7 ?8 4607: Id : 4, {_}: add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11 [12, 11, 10] by l3 ?10 ?11 ?12 4607: Id : 5, {_}: multiply (add ?14 (inverse ?14)) ?15 =>= ?15 [15, 14] by property3 ?14 ?15 4607: Id : 6, {_}: multiply ?17 (add ?18 (add ?17 ?19)) =>= ?17 [19, 18, 17] by l2 ?17 ?18 ?19 4607: Id : 7, {_}: multiply (multiply (add ?21 ?22) (add ?22 ?23)) ?22 =>= ?22 [23, 22, 21] by l4 ?21 ?22 ?23 4607: Id : 8, {_}: add (multiply ?25 (inverse ?25)) ?26 =>= ?26 [26, 25] by property3_dual ?25 ?26 4607: Id : 9, {_}: add ?28 (inverse ?28) =>= n1 [28] by additive_inverse ?28 4607: Id : 10, {_}: multiply ?30 (inverse ?30) =>= n0 [30] by multiplicative_inverse ?30 4607: Id : 11, {_}: add (add ?32 ?33) ?34 =>= add ?32 (add ?33 ?34) [34, 33, 32] by associativity_of_add ?32 ?33 ?34 CLASH, statistics insufficient 4608: Facts: 4608: Id : 2, {_}: add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) =>= multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2)) [4, 3, 2] by distributivity ?2 ?3 ?4 4608: Id : 3, {_}: add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6 [8, 7, 6] by l1 ?6 ?7 ?8 4608: Id : 4, {_}: add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11 [12, 11, 10] by l3 ?10 ?11 ?12 4608: Id : 5, {_}: multiply (add ?14 (inverse ?14)) ?15 =>= ?15 [15, 14] by property3 ?14 ?15 4608: Id : 6, {_}: multiply ?17 (add ?18 (add ?17 ?19)) =>= ?17 [19, 18, 17] by l2 ?17 ?18 ?19 4608: Id : 7, {_}: multiply (multiply (add ?21 ?22) (add ?22 ?23)) ?22 =>= ?22 [23, 22, 21] by l4 ?21 ?22 ?23 4608: Id : 8, {_}: add (multiply ?25 (inverse ?25)) ?26 =>= ?26 [26, 25] by property3_dual ?25 ?26 4608: Id : 9, {_}: add ?28 (inverse ?28) =>= n1 [28] by additive_inverse ?28 4608: Id : 10, {_}: multiply ?30 (inverse ?30) =>= n0 [30] by multiplicative_inverse ?30 4608: Id : 11, {_}: add (add ?32 ?33) ?34 =>= add ?32 (add ?33 ?34) [34, 33, 32] by associativity_of_add ?32 ?33 ?34 4607: Id : 12, {_}: multiply (multiply ?36 ?37) ?38 =>= multiply ?36 (multiply ?37 ?38) [38, 37, 36] by associativity_of_multiply ?36 ?37 ?38 4607: Goal: 4607: Id : 1, {_}: multiply a (add b c) =<= add (multiply b a) (multiply c a) [] by prove_multiply_add_property 4607: Order: 4607: kbo 4607: Leaf order: 4607: n0 1 0 0 4607: n1 1 0 0 4607: inverse 4 1 0 4607: multiply 22 2 3 0,2add 4607: add 21 2 2 0,2,2multiply 4607: c 2 0 2 2,2,2 4607: b 2 0 2 1,2,2 4607: a 3 0 3 1,2 4608: Id : 12, {_}: multiply (multiply ?36 ?37) ?38 =>= multiply ?36 (multiply ?37 ?38) [38, 37, 36] by associativity_of_multiply ?36 ?37 ?38 4608: Goal: 4608: Id : 1, {_}: multiply a (add b c) =<= add (multiply b a) (multiply c a) [] by prove_multiply_add_property 4608: Order: 4608: lpo 4608: Leaf order: 4608: n0 1 0 0 4608: n1 1 0 0 4608: inverse 4 1 0 4608: multiply 22 2 3 0,2add 4608: add 21 2 2 0,2,2multiply 4608: c 2 0 2 2,2,2 4608: b 2 0 2 1,2,2 4608: a 3 0 3 1,2 Statistics : Max weight : 29 Found proof, 44.648027s % SZS status Unsatisfiable for BOO031-1.p % SZS output start CNFRefutation for BOO031-1.p Id : 7, {_}: multiply (multiply (add ?21 ?22) (add ?22 ?23)) ?22 =>= ?22 [23, 22, 21] by l4 ?21 ?22 ?23 Id : 10, {_}: multiply ?30 (inverse ?30) =>= n0 [30] by multiplicative_inverse ?30 Id : 8, {_}: add (multiply ?25 (inverse ?25)) ?26 =>= ?26 [26, 25] by property3_dual ?25 ?26 Id : 12, {_}: multiply (multiply ?36 ?37) ?38 =>= multiply ?36 (multiply ?37 ?38) [38, 37, 36] by associativity_of_multiply ?36 ?37 ?38 Id : 52, {_}: multiply (multiply (add ?189 ?190) (add ?190 ?191)) ?190 =>= ?190 [191, 190, 189] by l4 ?189 ?190 ?191 Id : 9, {_}: add ?28 (inverse ?28) =>= n1 [28] by additive_inverse ?28 Id : 5, {_}: multiply (add ?14 (inverse ?14)) ?15 =>= ?15 [15, 14] by property3 ?14 ?15 Id : 2, {_}: add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) =>= multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2)) [4, 3, 2] by distributivity ?2 ?3 ?4 Id : 18, {_}: add (add (multiply ?58 ?59) (multiply ?59 ?60)) ?59 =>= ?59 [60, 59, 58] by l3 ?58 ?59 ?60 Id : 11, {_}: add (add ?32 ?33) ?34 =>= add ?32 (add ?33 ?34) [34, 33, 32] by associativity_of_add ?32 ?33 ?34 Id : 4, {_}: add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11 [12, 11, 10] by l3 ?10 ?11 ?12 Id : 37, {_}: multiply ?128 (add ?129 (add ?128 ?130)) =>= ?128 [130, 129, 128] by l2 ?128 ?129 ?130 Id : 6, {_}: multiply ?17 (add ?18 (add ?17 ?19)) =>= ?17 [19, 18, 17] by l2 ?17 ?18 ?19 Id : 3, {_}: add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6 [8, 7, 6] by l1 ?6 ?7 ?8 Id : 35, {_}: add ?121 (multiply ?122 ?121) =>= ?121 [122, 121] by Super 3 with 6 at 2,2,2 Id : 42, {_}: multiply ?149 (add ?149 ?150) =>= ?149 [150, 149] by Super 37 with 4 at 2,2 Id : 1579, {_}: add (add ?2436 ?2437) ?2436 =>= add ?2436 ?2437 [2437, 2436] by Super 35 with 42 at 2,2 Id : 1609, {_}: add ?2436 (add ?2437 ?2436) =>= add ?2436 ?2437 [2437, 2436] by Demod 1579 with 11 at 2 Id : 19, {_}: add (multiply ?62 ?63) ?63 =>= ?63 [63, 62] by Super 18 with 3 at 1,2 Id : 39, {_}: multiply ?137 (add ?138 ?137) =>= ?137 [138, 137] by Super 37 with 3 at 2,2,2 Id : 1363, {_}: add ?2089 (add ?2090 ?2089) =>= add ?2090 ?2089 [2090, 2089] by Super 19 with 39 at 1,2 Id : 2844, {_}: add ?2437 ?2436 =?= add ?2436 ?2437 [2436, 2437] by Demod 1609 with 1363 at 2 Id : 32, {_}: add (multiply (add ?106 (add ?107 ?108)) ?109) (add (multiply ?109 ?107) ?107) =<= multiply (add (add ?106 (add ?107 ?108)) ?109) (multiply (add ?109 ?107) (add ?107 (add ?106 (add ?107 ?108)))) [109, 108, 107, 106] by Super 2 with 6 at 2,2,2 Id : 5786, {_}: add (multiply (add ?106 (add ?107 ?108)) ?109) (add ?107 (multiply ?109 ?107)) =<= multiply (add (add ?106 (add ?107 ?108)) ?109) (multiply (add ?109 ?107) (add ?107 (add ?106 (add ?107 ?108)))) [109, 108, 107, 106] by Demod 32 with 2844 at 2,2 Id : 5787, {_}: add (multiply (add ?106 (add ?107 ?108)) ?109) (add ?107 (multiply ?109 ?107)) =<= multiply (add ?106 (add (add ?107 ?108) ?109)) (multiply (add ?109 ?107) (add ?107 (add ?106 (add ?107 ?108)))) [109, 108, 107, 106] by Demod 5786 with 11 at 1,3 Id : 1088, {_}: add (multiply ?1721 ?1722) ?1722 =>= ?1722 [1722, 1721] by Super 18 with 3 at 1,2 Id : 1091, {_}: add ?1730 (add ?1731 (add ?1730 ?1732)) =>= add ?1731 (add ?1730 ?1732) [1732, 1731, 1730] by Super 1088 with 6 at 1,2 Id : 5788, {_}: add (multiply (add ?106 (add ?107 ?108)) ?109) (add ?107 (multiply ?109 ?107)) =<= multiply (add ?106 (add (add ?107 ?108) ?109)) (multiply (add ?109 ?107) (add ?106 (add ?107 ?108))) [109, 108, 107, 106] by Demod 5787 with 1091 at 2,2,3 Id : 5789, {_}: add (multiply (add ?106 (add ?107 ?108)) ?109) ?107 =<= multiply (add ?106 (add (add ?107 ?108) ?109)) (multiply (add ?109 ?107) (add ?106 (add ?107 ?108))) [109, 108, 107, 106] by Demod 5788 with 35 at 2,2 Id : 5790, {_}: add (multiply (add ?106 (add ?107 ?108)) ?109) ?107 =<= multiply (add ?106 (add ?107 (add ?108 ?109))) (multiply (add ?109 ?107) (add ?106 (add ?107 ?108))) [109, 108, 107, 106] by Demod 5789 with 11 at 2,1,3 Id : 5814, {_}: add ?7785 (multiply (add ?7786 (add ?7785 ?7787)) ?7788) =<= multiply (add ?7786 (add ?7785 (add ?7787 ?7788))) (multiply (add ?7788 ?7785) (add ?7786 (add ?7785 ?7787))) [7788, 7787, 7786, 7785] by Demod 5790 with 2844 at 2 Id : 79, {_}: multiply n1 ?15 =>= ?15 [15] by Demod 5 with 9 at 1,2 Id : 1095, {_}: add ?1743 ?1743 =>= ?1743 [1743] by Super 1088 with 79 at 1,2 Id : 5853, {_}: add ?7982 (multiply (add (add ?7982 ?7983) (add ?7982 ?7983)) ?7984) =<= multiply (add (add ?7982 ?7983) (add ?7982 (add ?7983 ?7984))) (multiply (add ?7984 ?7982) (add ?7982 ?7983)) [7984, 7983, 7982] by Super 5814 with 1095 at 2,2,3 Id : 6183, {_}: add ?7982 (multiply (add ?7982 (add ?7983 (add ?7982 ?7983))) ?7984) =<= multiply (add (add ?7982 ?7983) (add ?7982 (add ?7983 ?7984))) (multiply (add ?7984 ?7982) (add ?7982 ?7983)) [7984, 7983, 7982] by Demod 5853 with 11 at 1,2,2 Id : 1663, {_}: multiply (add ?2570 ?2571) ?2571 =>= ?2571 [2571, 2570] by Super 52 with 6 at 1,2 Id : 1673, {_}: multiply ?2601 (multiply ?2602 ?2601) =>= multiply ?2602 ?2601 [2602, 2601] by Super 1663 with 35 at 1,2 Id : 1365, {_}: multiply ?2095 (add ?2096 ?2095) =>= ?2095 [2096, 2095] by Super 37 with 3 at 2,2,2 Id : 22, {_}: add ?71 (multiply ?71 ?72) =>= ?71 [72, 71] by Super 3 with 5 at 2,2 Id : 1374, {_}: multiply (multiply ?2123 ?2124) ?2123 =>= multiply ?2123 ?2124 [2124, 2123] by Super 1365 with 22 at 2,2 Id : 1408, {_}: multiply ?2123 (multiply ?2124 ?2123) =>= multiply ?2123 ?2124 [2124, 2123] by Demod 1374 with 12 at 2 Id : 2987, {_}: multiply ?2601 ?2602 =?= multiply ?2602 ?2601 [2602, 2601] by Demod 1673 with 1408 at 2 Id : 6184, {_}: add ?7982 (multiply (add ?7982 (add ?7983 (add ?7982 ?7983))) ?7984) =<= multiply (multiply (add ?7984 ?7982) (add ?7982 ?7983)) (add (add ?7982 ?7983) (add ?7982 (add ?7983 ?7984))) [7984, 7983, 7982] by Demod 6183 with 2987 at 3 Id : 6185, {_}: add ?7982 (multiply (add ?7983 (add ?7982 ?7983)) ?7984) =<= multiply (multiply (add ?7984 ?7982) (add ?7982 ?7983)) (add (add ?7982 ?7983) (add ?7982 (add ?7983 ?7984))) [7984, 7983, 7982] by Demod 6184 with 1091 at 1,2,2 Id : 6186, {_}: add ?7982 (multiply (add ?7983 (add ?7982 ?7983)) ?7984) =<= multiply (add ?7984 ?7982) (multiply (add ?7982 ?7983) (add (add ?7982 ?7983) (add ?7982 (add ?7983 ?7984)))) [7984, 7983, 7982] by Demod 6185 with 12 at 3 Id : 6187, {_}: add ?7982 (multiply (add ?7982 ?7983) ?7984) =<= multiply (add ?7984 ?7982) (multiply (add ?7982 ?7983) (add (add ?7982 ?7983) (add ?7982 (add ?7983 ?7984)))) [7984, 7983, 7982] by Demod 6186 with 1363 at 1,2,2 Id : 13074, {_}: add ?18195 (multiply (add ?18195 ?18196) ?18197) =>= multiply (add ?18197 ?18195) (add ?18195 ?18196) [18197, 18196, 18195] by Demod 6187 with 42 at 2,3 Id : 16401, {_}: add ?22734 (multiply (add ?22735 ?22734) ?22736) =>= multiply (add ?22736 ?22734) (add ?22734 ?22735) [22736, 22735, 22734] by Super 13074 with 2844 at 1,2,2 Id : 18162, {_}: add ?24925 (multiply ?24926 (add ?24927 ?24925)) =>= multiply (add ?24926 ?24925) (add ?24925 ?24927) [24927, 24926, 24925] by Super 16401 with 2987 at 2,2 Id : 18171, {_}: add (multiply ?24963 ?24964) (multiply ?24965 ?24964) =<= multiply (add ?24965 (multiply ?24963 ?24964)) (add (multiply ?24963 ?24964) ?24964) [24965, 24964, 24963] by Super 18162 with 35 at 2,2,2 Id : 18379, {_}: add (multiply ?24963 ?24964) (multiply ?24965 ?24964) =<= multiply (add ?24965 (multiply ?24963 ?24964)) (add ?24964 (multiply ?24963 ?24964)) [24965, 24964, 24963] by Demod 18171 with 2844 at 2,3 Id : 18380, {_}: add (multiply ?24963 ?24964) (multiply ?24965 ?24964) =>= multiply (add ?24965 (multiply ?24963 ?24964)) ?24964 [24965, 24964, 24963] by Demod 18379 with 35 at 2,3 Id : 18381, {_}: add (multiply ?24963 ?24964) (multiply ?24965 ?24964) =>= multiply ?24964 (add ?24965 (multiply ?24963 ?24964)) [24965, 24964, 24963] by Demod 18380 with 2987 at 3 Id : 1575, {_}: multiply ?2421 ?2422 =<= multiply ?2421 (multiply (add ?2421 ?2423) ?2422) [2423, 2422, 2421] by Super 12 with 42 at 1,2 Id : 16456, {_}: add ?22968 (multiply ?22969 (add ?22970 ?22968)) =>= multiply (add ?22969 ?22968) (add ?22968 ?22970) [22970, 22969, 22968] by Super 16401 with 2987 at 2,2 Id : 1247, {_}: add ?1879 ?1880 =<= add ?1879 (add (multiply ?1879 ?1881) ?1880) [1881, 1880, 1879] by Super 11 with 22 at 1,2 Id : 6619, {_}: multiply (multiply ?8607 ?8608) (add ?8607 ?8609) =>= multiply ?8607 ?8608 [8609, 8608, 8607] by Super 6 with 1247 at 2,2 Id : 6763, {_}: multiply ?8607 (multiply ?8608 (add ?8607 ?8609)) =>= multiply ?8607 ?8608 [8609, 8608, 8607] by Demod 6619 with 12 at 2 Id : 65, {_}: add (multiply ?237 ?238) (multiply (inverse ?238) ?237) =<= multiply (add ?237 ?238) (multiply (add ?238 (inverse ?238)) (add (inverse ?238) ?237)) [238, 237] by Super 2 with 8 at 2,2 Id : 76, {_}: add (multiply ?237 ?238) (multiply (inverse ?238) ?237) =>= multiply (add ?237 ?238) (add (inverse ?238) ?237) [238, 237] by Demod 65 with 5 at 2,3 Id : 18170, {_}: add (multiply ?24959 ?24960) (multiply ?24961 ?24959) =<= multiply (add ?24961 (multiply ?24959 ?24960)) (add (multiply ?24959 ?24960) ?24959) [24961, 24960, 24959] by Super 18162 with 22 at 2,2,2 Id : 18376, {_}: add (multiply ?24959 ?24960) (multiply ?24961 ?24959) =<= multiply (add ?24961 (multiply ?24959 ?24960)) (add ?24959 (multiply ?24959 ?24960)) [24961, 24960, 24959] by Demod 18170 with 2844 at 2,3 Id : 18377, {_}: add (multiply ?24959 ?24960) (multiply ?24961 ?24959) =>= multiply (add ?24961 (multiply ?24959 ?24960)) ?24959 [24961, 24960, 24959] by Demod 18376 with 22 at 2,3 Id : 18378, {_}: add (multiply ?24959 ?24960) (multiply ?24961 ?24959) =>= multiply ?24959 (add ?24961 (multiply ?24959 ?24960)) [24961, 24960, 24959] by Demod 18377 with 2987 at 3 Id : 22657, {_}: multiply ?237 (add (inverse ?238) (multiply ?237 ?238)) =<= multiply (add ?237 ?238) (add (inverse ?238) ?237) [238, 237] by Demod 76 with 18378 at 2 Id : 22699, {_}: multiply (inverse ?30910) (multiply ?30911 (add (inverse ?30910) (multiply ?30911 ?30910))) =>= multiply (inverse ?30910) (add ?30911 ?30910) [30911, 30910] by Super 6763 with 22657 at 2,2 Id : 22814, {_}: multiply (inverse ?30910) ?30911 =<= multiply (inverse ?30910) (add ?30911 ?30910) [30911, 30910] by Demod 22699 with 6763 at 2 Id : 23609, {_}: add ?31619 (multiply (inverse ?31619) ?31620) =<= multiply (add (inverse ?31619) ?31619) (add ?31619 ?31620) [31620, 31619] by Super 16456 with 22814 at 2,2 Id : 23775, {_}: add ?31619 (multiply (inverse ?31619) ?31620) =<= multiply (add ?31619 (inverse ?31619)) (add ?31619 ?31620) [31620, 31619] by Demod 23609 with 2844 at 1,3 Id : 23776, {_}: add ?31619 (multiply (inverse ?31619) ?31620) =>= multiply n1 (add ?31619 ?31620) [31620, 31619] by Demod 23775 with 9 at 1,3 Id : 24286, {_}: add ?32553 (multiply (inverse ?32553) ?32554) =>= add ?32553 ?32554 [32554, 32553] by Demod 23776 with 79 at 3 Id : 13130, {_}: add ?18432 (multiply ?18433 (add ?18432 ?18434)) =>= multiply (add ?18433 ?18432) (add ?18432 ?18434) [18434, 18433, 18432] by Super 13074 with 2987 at 2,2 Id : 22705, {_}: multiply ?30931 (add (inverse ?30932) (multiply ?30931 ?30932)) =<= multiply (add ?30931 ?30932) (add (inverse ?30932) ?30931) [30932, 30931] by Demod 76 with 18378 at 2 Id : 22751, {_}: multiply ?31084 (add (inverse (inverse ?31084)) (multiply ?31084 (inverse ?31084))) =>= multiply n1 (add (inverse (inverse ?31084)) ?31084) [31084] by Super 22705 with 9 at 1,3 Id : 23065, {_}: multiply ?31084 (add (inverse (inverse ?31084)) n0) =?= multiply n1 (add (inverse (inverse ?31084)) ?31084) [31084] by Demod 22751 with 10 at 2,2,2 Id : 23066, {_}: multiply ?31084 (add (inverse (inverse ?31084)) n0) =>= add (inverse (inverse ?31084)) ?31084 [31084] by Demod 23065 with 79 at 3 Id : 130, {_}: multiply (add ?21 ?22) (multiply (add ?22 ?23) ?22) =>= ?22 [23, 22, 21] by Demod 7 with 12 at 2 Id : 89, {_}: n0 =<= inverse n1 [] by Super 79 with 10 at 2 Id : 360, {_}: add n1 n0 =>= n1 [] by Super 9 with 89 at 2,2 Id : 382, {_}: multiply n1 (multiply (add n0 ?765) n0) =>= n0 [765] by Super 130 with 360 at 1,2 Id : 422, {_}: multiply (add n0 ?765) n0 =>= n0 [765] by Demod 382 with 79 at 2 Id : 88, {_}: add n0 ?26 =>= ?26 [26] by Demod 8 with 10 at 1,2 Id : 423, {_}: multiply ?765 n0 =>= n0 [765] by Demod 422 with 88 at 1,2 Id : 831, {_}: add ?1448 (multiply ?1449 n0) =>= ?1448 [1449, 1448] by Super 3 with 423 at 2,2,2 Id : 867, {_}: add ?1448 n0 =>= ?1448 [1448] by Demod 831 with 423 at 2,2 Id : 23067, {_}: multiply ?31084 (inverse (inverse ?31084)) =<= add (inverse (inverse ?31084)) ?31084 [31084] by Demod 23066 with 867 at 2,2 Id : 23068, {_}: multiply ?31084 (inverse (inverse ?31084)) =<= add ?31084 (inverse (inverse ?31084)) [31084] by Demod 23067 with 2844 at 3 Id : 23215, {_}: add ?31334 (multiply ?31335 (multiply ?31334 (inverse (inverse ?31334)))) =>= multiply (add ?31335 ?31334) (add ?31334 (inverse (inverse ?31334))) [31335, 31334] by Super 13130 with 23068 at 2,2,2 Id : 23280, {_}: ?31334 =<= multiply (add ?31335 ?31334) (add ?31334 (inverse (inverse ?31334))) [31335, 31334] by Demod 23215 with 3 at 2 Id : 23281, {_}: ?31334 =<= multiply (add ?31335 ?31334) (multiply ?31334 (inverse (inverse ?31334))) [31335, 31334] by Demod 23280 with 23068 at 2,3 Id : 2547, {_}: multiply (multiply ?3698 ?3699) ?3700 =<= multiply ?3698 (multiply (multiply ?3699 ?3698) ?3700) [3700, 3699, 3698] by Super 12 with 1408 at 1,2 Id : 2578, {_}: multiply ?3698 (multiply ?3699 ?3700) =<= multiply ?3698 (multiply (multiply ?3699 ?3698) ?3700) [3700, 3699, 3698] by Demod 2547 with 12 at 2 Id : 2579, {_}: multiply ?3698 (multiply ?3699 ?3700) =<= multiply ?3698 (multiply ?3699 (multiply ?3698 ?3700)) [3700, 3699, 3698] by Demod 2578 with 12 at 2,3 Id : 1667, {_}: multiply ?2583 (multiply ?2584 (multiply ?2583 ?2585)) =>= multiply ?2584 (multiply ?2583 ?2585) [2585, 2584, 2583] by Super 1663 with 3 at 1,2 Id : 12236, {_}: multiply ?3698 (multiply ?3699 ?3700) =?= multiply ?3699 (multiply ?3698 ?3700) [3700, 3699, 3698] by Demod 2579 with 1667 at 3 Id : 23282, {_}: ?31334 =<= multiply ?31334 (multiply (add ?31335 ?31334) (inverse (inverse ?31334))) [31335, 31334] by Demod 23281 with 12236 at 3 Id : 1360, {_}: multiply ?2077 ?2078 =<= multiply ?2077 (multiply (add ?2079 ?2077) ?2078) [2079, 2078, 2077] by Super 12 with 39 at 1,2 Id : 23283, {_}: ?31334 =<= multiply ?31334 (inverse (inverse ?31334)) [31334] by Demod 23282 with 1360 at 3 Id : 23386, {_}: add (inverse (inverse ?31435)) ?31435 =>= inverse (inverse ?31435) [31435] by Super 35 with 23283 at 2,2 Id : 23494, {_}: add ?31435 (inverse (inverse ?31435)) =>= inverse (inverse ?31435) [31435] by Demod 23386 with 2844 at 2 Id : 23374, {_}: ?31084 =<= add ?31084 (inverse (inverse ?31084)) [31084] by Demod 23068 with 23283 at 2 Id : 23495, {_}: ?31435 =<= inverse (inverse ?31435) [31435] by Demod 23494 with 23374 at 2 Id : 24293, {_}: add (inverse ?32572) (multiply ?32572 ?32573) =>= add (inverse ?32572) ?32573 [32573, 32572] by Super 24286 with 23495 at 1,2,2 Id : 23619, {_}: multiply (multiply (inverse ?31653) ?31654) ?31655 =<= multiply (inverse ?31653) (multiply (add ?31654 ?31653) ?31655) [31655, 31654, 31653] by Super 12 with 22814 at 1,2 Id : 23754, {_}: multiply (inverse ?31653) (multiply ?31654 ?31655) =<= multiply (inverse ?31653) (multiply (add ?31654 ?31653) ?31655) [31655, 31654, 31653] by Demod 23619 with 12 at 2 Id : 77768, {_}: add (inverse (inverse ?103133)) (multiply (inverse ?103133) (multiply ?103134 ?103135)) =>= add (inverse (inverse ?103133)) (multiply (add ?103134 ?103133) ?103135) [103135, 103134, 103133] by Super 24293 with 23754 at 2,2 Id : 78028, {_}: add (inverse (inverse ?103133)) (multiply ?103134 ?103135) =<= add (inverse (inverse ?103133)) (multiply (add ?103134 ?103133) ?103135) [103135, 103134, 103133] by Demod 77768 with 24293 at 2 Id : 78029, {_}: add (inverse (inverse ?103133)) (multiply ?103134 ?103135) =?= add ?103133 (multiply (add ?103134 ?103133) ?103135) [103135, 103134, 103133] by Demod 78028 with 23495 at 1,3 Id : 78030, {_}: add ?103133 (multiply ?103134 ?103135) =<= add ?103133 (multiply (add ?103134 ?103133) ?103135) [103135, 103134, 103133] by Demod 78029 with 23495 at 1,2 Id : 13094, {_}: add ?18275 (multiply (add ?18276 ?18275) ?18277) =>= multiply (add ?18277 ?18275) (add ?18275 ?18276) [18277, 18276, 18275] by Super 13074 with 2844 at 1,2,2 Id : 78031, {_}: add ?103133 (multiply ?103134 ?103135) =<= multiply (add ?103135 ?103133) (add ?103133 ?103134) [103135, 103134, 103133] by Demod 78030 with 13094 at 3 Id : 78812, {_}: multiply ?104288 (add ?104289 ?104290) =<= multiply ?104288 (add ?104289 (multiply ?104290 ?104288)) [104290, 104289, 104288] by Super 1575 with 78031 at 2,3 Id : 80954, {_}: add (multiply ?24963 ?24964) (multiply ?24965 ?24964) =>= multiply ?24964 (add ?24965 ?24963) [24965, 24964, 24963] by Demod 18381 with 78812 at 3 Id : 81595, {_}: multiply a (add c b) =?= multiply a (add c b) [] by Demod 81594 with 2844 at 2,3 Id : 81594, {_}: multiply a (add c b) =?= multiply a (add b c) [] by Demod 81593 with 80954 at 3 Id : 81593, {_}: multiply a (add c b) =<= add (multiply c a) (multiply b a) [] by Demod 81592 with 2844 at 3 Id : 81592, {_}: multiply a (add c b) =<= add (multiply b a) (multiply c a) [] by Demod 1 with 2844 at 2,2 Id : 1, {_}: multiply a (add b c) =<= add (multiply b a) (multiply c a) [] by prove_multiply_add_property % SZS output end CNFRefutation for BOO031-1.p 4607: solved BOO031-1.p in 22.309393 using kbo 4607: status Unsatisfiable for BOO031-1.p NO CLASH, using fixed ground order 4619: Facts: 4619: Id : 2, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 4619: Goal: 4619: Id : 1, {_}: add b a =>= add a b [] by huntinton_1 4619: Order: 4619: nrkbo 4619: Leaf order: 4619: inverse 7 1 0 4619: add 8 2 2 0,2 4619: a 2 0 2 2,2 4619: b 2 0 2 1,2 NO CLASH, using fixed ground order 4620: Facts: 4620: Id : 2, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 4620: Goal: 4620: Id : 1, {_}: add b a =>= add a b [] by huntinton_1 4620: Order: 4620: kbo 4620: Leaf order: 4620: inverse 7 1 0 4620: add 8 2 2 0,2 4620: a 2 0 2 2,2 4620: b 2 0 2 1,2 NO CLASH, using fixed ground order 4621: Facts: 4621: Id : 2, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 4621: Goal: 4621: Id : 1, {_}: add b a =>= add a b [] by huntinton_1 4621: Order: 4621: lpo 4621: Leaf order: 4621: inverse 7 1 0 4621: add 8 2 2 0,2 4621: a 2 0 2 2,2 4621: b 2 0 2 1,2 Statistics : Max weight : 70 Found proof, 56.468020s % SZS status Unsatisfiable for BOO072-1.p % SZS output start CNFRefutation for BOO072-1.p Id : 3, {_}: inverse (add (inverse (add (inverse (add ?7 ?8)) ?9)) (inverse (add ?7 (inverse (add (inverse ?9) (inverse (add ?9 ?10))))))) =>= ?9 [10, 9, 8, 7] by dn1 ?7 ?8 ?9 ?10 Id : 2, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 Id : 15, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?74)) ?75)) ?74)) ?76)) (inverse ?74))) ?74) =>= inverse ?74 [76, 75, 74] by Super 3 with 2 at 2,1,2 Id : 20, {_}: inverse (add (inverse (add ?104 (inverse ?104))) ?104) =>= inverse ?104 [104] by Super 15 with 2 at 1,1,1,1,2 Id : 99, {_}: inverse (add (inverse ?355) (inverse (add ?355 (inverse (add (inverse ?355) (inverse (add ?355 ?356))))))) =>= ?355 [356, 355] by Super 2 with 20 at 1,1,2 Id : 136, {_}: inverse (add (inverse (add (inverse (add ?450 ?451)) ?452)) (inverse (add ?450 ?452))) =>= ?452 [452, 451, 450] by Super 2 with 99 at 2,1,2,1,2 Id : 536, {_}: inverse (add (inverse (add (inverse (add ?1808 ?1809)) ?1810)) (inverse (add ?1808 ?1810))) =>= ?1810 [1810, 1809, 1808] by Super 2 with 99 at 2,1,2,1,2 Id : 550, {_}: inverse (add (inverse (add ?1882 ?1883)) (inverse (add (inverse ?1882) ?1883))) =>= ?1883 [1883, 1882] by Super 536 with 99 at 1,1,1,1,2 Id : 724, {_}: inverse (add ?2517 (inverse (add ?2518 (inverse (add (inverse ?2518) ?2517))))) =>= inverse (add (inverse ?2518) ?2517) [2518, 2517] by Super 136 with 550 at 1,1,2 Id : 1584, {_}: inverse (add (inverse ?4978) (inverse (add ?4978 (inverse (add (inverse ?4978) (inverse ?4978)))))) =>= ?4978 [4978] by Super 99 with 724 at 2,1,2,1,2 Id : 1652, {_}: inverse (add (inverse ?4978) (inverse ?4978)) =>= ?4978 [4978] by Demod 1584 with 724 at 2 Id : 763, {_}: inverse (add (inverse (add ?2736 ?2737)) (inverse (add (inverse ?2736) ?2737))) =>= ?2737 [2737, 2736] by Super 536 with 99 at 1,1,1,1,2 Id : 144, {_}: inverse (add (inverse ?482) (inverse (add ?482 (inverse (add (inverse ?482) (inverse (add ?482 ?483))))))) =>= ?482 [483, 482] by Super 2 with 20 at 1,1,2 Id : 155, {_}: inverse (add (inverse ?528) (inverse (add ?528 ?528))) =>= ?528 [528] by Super 144 with 99 at 2,1,2,1,2 Id : 782, {_}: inverse (add (inverse (add ?2830 (inverse (add ?2830 ?2830)))) ?2830) =>= inverse (add ?2830 ?2830) [2830] by Super 763 with 155 at 2,1,2 Id : 871, {_}: inverse (add (inverse (add ?3076 ?3076)) (inverse (add ?3076 ?3076))) =>= ?3076 [3076] by Super 136 with 782 at 1,1,2 Id : 1724, {_}: add ?3076 ?3076 =>= ?3076 [3076] by Demod 871 with 1652 at 2 Id : 1754, {_}: inverse (inverse ?5284) =>= ?5284 [5284] by Demod 1652 with 1724 at 1,2 Id : 1761, {_}: inverse ?5314 =<= add (inverse (add ?5315 ?5314)) (inverse (add (inverse ?5315) ?5314)) [5315, 5314] by Super 1754 with 550 at 1,2 Id : 1733, {_}: inverse (inverse ?4978) =>= ?4978 [4978] by Demod 1652 with 1724 at 1,2 Id : 6, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?26)) ?27)) ?26)) ?28)) (inverse ?26))) ?26) =>= inverse ?26 [28, 27, 26] by Super 3 with 2 at 2,1,2 Id : 1734, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add ?26 ?27)) ?26)) ?28)) (inverse ?26))) ?26) =>= inverse ?26 [28, 27, 26] by Demod 6 with 1733 at 1,1,1,1,1,1,1,1,1,1,2 Id : 921, {_}: inverse (add ?3102 (inverse (add ?3102 (inverse (add ?3102 ?3102))))) =>= inverse (add ?3102 ?3102) [3102] by Super 136 with 871 at 1,1,2 Id : 1725, {_}: inverse (add ?3102 (inverse (add ?3102 (inverse ?3102)))) =>= inverse (add ?3102 ?3102) [3102] by Demod 921 with 1724 at 1,2,1,2,1,2 Id : 1726, {_}: inverse (add ?3102 (inverse (add ?3102 (inverse ?3102)))) =>= inverse ?3102 [3102] by Demod 1725 with 1724 at 1,3 Id : 1763, {_}: inverse (inverse ?5320) =<= add ?5320 (inverse (add ?5320 (inverse ?5320))) [5320] by Super 1754 with 1726 at 1,2 Id : 1786, {_}: ?5320 =<= add ?5320 (inverse (add ?5320 (inverse ?5320))) [5320] by Demod 1763 with 1733 at 2 Id : 2715, {_}: inverse (add (inverse (add (inverse ?7389) (inverse (inverse ?7389)))) (inverse (add ?7389 (inverse (inverse ?7389))))) =>= inverse (add (inverse ?7389) (inverse (add (inverse ?7389) (inverse (inverse ?7389))))) [7389] by Super 724 with 1786 at 1,2,1,2,1,2 Id : 2755, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse (add ?7389 (inverse (inverse ?7389))))) =>= inverse (add (inverse ?7389) (inverse (add (inverse ?7389) (inverse (inverse ?7389))))) [7389] by Demod 2715 with 1733 at 2,1,1,1,2 Id : 2756, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse (add ?7389 ?7389))) =?= inverse (add (inverse ?7389) (inverse (add (inverse ?7389) (inverse (inverse ?7389))))) [7389] by Demod 2755 with 1733 at 2,1,2,1,2 Id : 2757, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse (add ?7389 ?7389))) =>= inverse (inverse ?7389) [7389] by Demod 2756 with 1786 at 1,3 Id : 2758, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse ?7389)) =>= inverse (inverse ?7389) [7389] by Demod 2757 with 1724 at 1,2,1,2 Id : 2759, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse ?7389)) =>= ?7389 [7389] by Demod 2758 with 1733 at 3 Id : 2920, {_}: inverse ?7714 =<= add (inverse (add (inverse ?7714) ?7714)) (inverse ?7714) [7714] by Super 1733 with 2759 at 1,2 Id : 3142, {_}: inverse (add (inverse (add (inverse (add (inverse (inverse ?8118)) ?8119)) (inverse (inverse ?8118)))) (inverse ?8118)) =>= inverse (inverse ?8118) [8119, 8118] by Super 1734 with 2920 at 1,1,1,1,1,1,1,2 Id : 3172, {_}: inverse (add (inverse (add (inverse (add ?8118 ?8119)) (inverse (inverse ?8118)))) (inverse ?8118)) =>= inverse (inverse ?8118) [8119, 8118] by Demod 3142 with 1733 at 1,1,1,1,1,1,2 Id : 3173, {_}: inverse (add (inverse (add (inverse (add ?8118 ?8119)) ?8118)) (inverse ?8118)) =>= inverse (inverse ?8118) [8119, 8118] by Demod 3172 with 1733 at 2,1,1,1,2 Id : 8100, {_}: inverse (add (inverse (add (inverse (add ?15581 ?15582)) ?15581)) (inverse ?15581)) =>= ?15581 [15582, 15581] by Demod 3173 with 1733 at 3 Id : 8144, {_}: inverse (add ?15759 (inverse (inverse (add ?15760 ?15759)))) =>= inverse (add ?15760 ?15759) [15760, 15759] by Super 8100 with 136 at 1,1,2 Id : 8459, {_}: inverse (add ?16264 (add ?16265 ?16264)) =>= inverse (add ?16265 ?16264) [16265, 16264] by Demod 8144 with 1733 at 2,1,2 Id : 1749, {_}: inverse (add (inverse (add (inverse ?5262) ?5263)) (inverse (add ?5262 ?5263))) =>= ?5263 [5263, 5262] by Super 550 with 1733 at 1,1,2,1,2 Id : 5602, {_}: inverse ?11750 =<= add (inverse (add (inverse ?11751) ?11750)) (inverse (add ?11751 ?11750)) [11751, 11750] by Super 1733 with 1749 at 1,2 Id : 8468, {_}: inverse (add (inverse (add ?16285 ?16286)) (inverse ?16286)) =<= inverse (add (inverse (add (inverse ?16285) ?16286)) (inverse (add ?16285 ?16286))) [16286, 16285] by Super 8459 with 5602 at 2,1,2 Id : 8598, {_}: inverse (add (inverse (add ?16285 ?16286)) (inverse ?16286)) =>= inverse (inverse ?16286) [16286, 16285] by Demod 8468 with 5602 at 1,3 Id : 8599, {_}: inverse (add (inverse (add ?16285 ?16286)) (inverse ?16286)) =>= ?16286 [16286, 16285] by Demod 8598 with 1733 at 3 Id : 8791, {_}: inverse ?16774 =<= add (inverse (add ?16775 ?16774)) (inverse ?16774) [16775, 16774] by Super 1733 with 8599 at 1,2 Id : 10568, {_}: inverse (add (inverse (inverse ?20566)) (inverse (add ?20567 (inverse ?20566)))) =>= inverse ?20566 [20567, 20566] by Super 136 with 8791 at 1,1,1,2 Id : 10805, {_}: inverse (add ?20566 (inverse (add ?20567 (inverse ?20566)))) =>= inverse ?20566 [20567, 20566] by Demod 10568 with 1733 at 1,1,2 Id : 11153, {_}: inverse (inverse ?21486) =<= add ?21486 (inverse (add ?21487 (inverse ?21486))) [21487, 21486] by Super 1733 with 10805 at 1,2 Id : 11260, {_}: ?21486 =<= add ?21486 (inverse (add ?21487 (inverse ?21486))) [21487, 21486] by Demod 11153 with 1733 at 2 Id : 12127, {_}: inverse (inverse (add ?22871 (inverse (inverse ?22872)))) =<= add (inverse (add ?22872 (inverse (add ?22871 (inverse (inverse ?22872)))))) (inverse (inverse ?22872)) [22872, 22871] by Super 1761 with 11260 at 1,2,3 Id : 12312, {_}: add ?22871 (inverse (inverse ?22872)) =<= add (inverse (add ?22872 (inverse (add ?22871 (inverse (inverse ?22872)))))) (inverse (inverse ?22872)) [22872, 22871] by Demod 12127 with 1733 at 2 Id : 12313, {_}: add ?22871 (inverse (inverse ?22872)) =<= add (inverse (add ?22872 (inverse (add ?22871 ?22872)))) (inverse (inverse ?22872)) [22872, 22871] by Demod 12312 with 1733 at 2,1,2,1,1,3 Id : 12314, {_}: add ?22871 (inverse (inverse ?22872)) =<= add (inverse (add ?22872 (inverse (add ?22871 ?22872)))) ?22872 [22872, 22871] by Demod 12313 with 1733 at 2,3 Id : 12315, {_}: add ?22871 ?22872 =<= add (inverse (add ?22872 (inverse (add ?22871 ?22872)))) ?22872 [22872, 22871] by Demod 12314 with 1733 at 2,2 Id : 12, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?59)) (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?60)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58))))))) ?61)) ?57)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) =>= ?57 [61, 60, 59, 58, 57] by Super 2 with 6 at 2,1,2 Id : 3710, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse ?57) (inverse (add ?57 ?58)))) ?59)) (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?60)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58))))))) ?61)) ?57)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) =>= ?57 [61, 60, 59, 58, 57] by Demod 12 with 1733 at 1,1,1,1,1,1,1,1,1,1,1,1,1,1,2 Id : 3711, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse ?57) (inverse (add ?57 ?58)))) ?59)) (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?60)) (add (inverse ?57) (inverse (add ?57 ?58))))) ?61)) ?57)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) =>= ?57 [61, 60, 59, 58, 57] by Demod 3710 with 1733 at 2,1,1,1,1,1,1,1,2 Id : 3712, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse ?57) (inverse (add ?57 ?58)))) ?59)) (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?60)) (add (inverse ?57) (inverse (add ?57 ?58))))) ?61)) ?57)) (add (inverse ?57) (inverse (add ?57 ?58)))) =>= ?57 [61, 60, 59, 58, 57] by Demod 3711 with 1733 at 2,1,2 Id : 10590, {_}: inverse (add (inverse (inverse ?20667)) (add (inverse (inverse ?20667)) (inverse (add (inverse ?20667) ?20668)))) =>= inverse ?20667 [20668, 20667] by Super 3712 with 8791 at 1,1,1,2 Id : 10753, {_}: inverse (add ?20667 (add (inverse (inverse ?20667)) (inverse (add (inverse ?20667) ?20668)))) =>= inverse ?20667 [20668, 20667] by Demod 10590 with 1733 at 1,1,2 Id : 10754, {_}: inverse (add ?20667 (add ?20667 (inverse (add (inverse ?20667) ?20668)))) =>= inverse ?20667 [20668, 20667] by Demod 10753 with 1733 at 1,2,1,2 Id : 15430, {_}: inverse (inverse ?28103) =<= add ?28103 (add ?28103 (inverse (add (inverse ?28103) ?28104))) [28104, 28103] by Super 1733 with 10754 at 1,2 Id : 15735, {_}: ?28103 =<= add ?28103 (add ?28103 (inverse (add (inverse ?28103) ?28104))) [28104, 28103] by Demod 15430 with 1733 at 2 Id : 1762, {_}: inverse (inverse (add (inverse ?5317) ?5318)) =<= add ?5318 (inverse (add ?5317 (inverse (add (inverse ?5317) ?5318)))) [5318, 5317] by Super 1754 with 724 at 1,2 Id : 1785, {_}: add (inverse ?5317) ?5318 =<= add ?5318 (inverse (add ?5317 (inverse (add (inverse ?5317) ?5318)))) [5318, 5317] by Demod 1762 with 1733 at 2 Id : 11176, {_}: inverse (add ?21600 (inverse (add ?21601 (inverse ?21600)))) =>= inverse ?21600 [21601, 21600] by Demod 10568 with 1733 at 1,1,2 Id : 11183, {_}: inverse (add (inverse ?21642) (inverse (add ?21643 ?21642))) =>= inverse (inverse ?21642) [21643, 21642] by Super 11176 with 1733 at 2,1,2,1,2 Id : 11564, {_}: inverse (add (inverse ?21642) (inverse (add ?21643 ?21642))) =>= ?21642 [21643, 21642] by Demod 11183 with 1733 at 3 Id : 13294, {_}: inverse ?24726 =<= add (inverse ?24726) (inverse (add ?24727 ?24726)) [24727, 24726] by Super 1733 with 11564 at 1,2 Id : 13313, {_}: inverse (add (inverse ?24792) (inverse (add ?24792 ?24793))) =<= add (inverse (add (inverse ?24792) (inverse (add ?24792 ?24793)))) ?24792 [24793, 24792] by Super 13294 with 3712 at 2,3 Id : 16466, {_}: add (inverse (add (inverse ?29660) (inverse (add ?29660 ?29661)))) ?29660 =<= add ?29660 (inverse (add (add (inverse ?29660) (inverse (add ?29660 ?29661))) (inverse (inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))))))) [29661, 29660] by Super 1785 with 13313 at 1,2,1,2,3 Id : 16829, {_}: inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))) =<= add ?29660 (inverse (add (add (inverse ?29660) (inverse (add ?29660 ?29661))) (inverse (inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))))))) [29661, 29660] by Demod 16466 with 13313 at 2 Id : 16830, {_}: inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))) =<= add ?29660 (inverse (add (add (inverse ?29660) (inverse (add ?29660 ?29661))) (add (inverse ?29660) (inverse (add ?29660 ?29661))))) [29661, 29660] by Demod 16829 with 1733 at 2,1,2,3 Id : 16831, {_}: inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))) =<= add ?29660 (inverse (add (inverse ?29660) (inverse (add ?29660 ?29661)))) [29661, 29660] by Demod 16830 with 1724 at 1,2,3 Id : 17624, {_}: ?31105 =<= add ?31105 (inverse (add (inverse ?31105) (inverse (add ?31105 ?31106)))) [31106, 31105] by Super 15735 with 16831 at 2,3 Id : 17680, {_}: ?31105 =<= inverse (add (inverse ?31105) (inverse (add ?31105 ?31106))) [31106, 31105] by Demod 17624 with 16831 at 3 Id : 18257, {_}: add ?31431 ?31432 =<= add (add ?31431 ?31432) ?31431 [31432, 31431] by Super 11260 with 17680 at 2,3 Id : 18514, {_}: add (add ?31834 ?31835) ?31834 =<= add (inverse (add ?31834 (inverse (add ?31834 ?31835)))) ?31834 [31835, 31834] by Super 12315 with 18257 at 1,2,1,1,3 Id : 19938, {_}: add ?34185 ?34186 =<= add (inverse (add ?34185 (inverse (add ?34185 ?34186)))) ?34185 [34186, 34185] by Demod 18514 with 18257 at 2 Id : 8365, {_}: inverse (add ?15759 (add ?15760 ?15759)) =>= inverse (add ?15760 ?15759) [15760, 15759] by Demod 8144 with 1733 at 2,1,2 Id : 8391, {_}: inverse (inverse (add ?15887 ?15888)) =<= add ?15888 (add ?15887 ?15888) [15888, 15887] by Super 1733 with 8365 at 1,2 Id : 8543, {_}: add ?15887 ?15888 =<= add ?15888 (add ?15887 ?15888) [15888, 15887] by Demod 8391 with 1733 at 2 Id : 15853, {_}: add ?28715 (add ?28715 (inverse (add (inverse ?28715) ?28716))) =?= add (add ?28715 (inverse (add (inverse ?28715) ?28716))) ?28715 [28716, 28715] by Super 8543 with 15735 at 2,3 Id : 16108, {_}: ?28715 =<= add (add ?28715 (inverse (add (inverse ?28715) ?28716))) ?28715 [28716, 28715] by Demod 15853 with 15735 at 2 Id : 18478, {_}: ?28715 =<= add ?28715 (inverse (add (inverse ?28715) ?28716)) [28716, 28715] by Demod 16108 with 18257 at 3 Id : 18480, {_}: add (inverse ?5317) ?5318 =?= add ?5318 (inverse ?5317) [5318, 5317] by Demod 1785 with 18478 at 1,2,3 Id : 20385, {_}: add ?34911 ?34912 =<= add (inverse (add (inverse (add ?34911 ?34912)) ?34911)) ?34911 [34912, 34911] by Super 19938 with 18480 at 1,1,3 Id : 20390, {_}: add ?34925 (add ?34926 ?34925) =<= add (inverse (add (inverse (add ?34926 ?34925)) ?34925)) ?34925 [34926, 34925] by Super 20385 with 8543 at 1,1,1,1,3 Id : 20500, {_}: add ?34926 ?34925 =<= add (inverse (add (inverse (add ?34926 ?34925)) ?34925)) ?34925 [34925, 34926] by Demod 20390 with 8543 at 2 Id : 5906, {_}: inverse (add (inverse (inverse ?12265)) (inverse (add (inverse ?12266) (inverse (add ?12266 ?12265))))) =>= inverse (add ?12266 ?12265) [12266, 12265] by Super 136 with 5602 at 1,1,1,2 Id : 6067, {_}: inverse (add ?12265 (inverse (add (inverse ?12266) (inverse (add ?12266 ?12265))))) =>= inverse (add ?12266 ?12265) [12266, 12265] by Demod 5906 with 1733 at 1,1,2 Id : 15857, {_}: add (inverse ?28730) (add (inverse ?28730) (inverse (add (inverse (inverse ?28730)) ?28731))) =<= add (add (inverse ?28730) (inverse (add (inverse (inverse ?28730)) ?28731))) (inverse (add ?28730 (inverse (inverse ?28730)))) [28731, 28730] by Super 1785 with 15735 at 1,2,1,2,3 Id : 16100, {_}: inverse ?28730 =<= add (add (inverse ?28730) (inverse (add (inverse (inverse ?28730)) ?28731))) (inverse (add ?28730 (inverse (inverse ?28730)))) [28731, 28730] by Demod 15857 with 15735 at 2 Id : 16101, {_}: inverse ?28730 =<= add (add (inverse ?28730) (inverse (add ?28730 ?28731))) (inverse (add ?28730 (inverse (inverse ?28730)))) [28731, 28730] by Demod 16100 with 1733 at 1,1,2,1,3 Id : 16102, {_}: inverse ?28730 =<= add (add (inverse ?28730) (inverse (add ?28730 ?28731))) (inverse (add ?28730 ?28730)) [28731, 28730] by Demod 16101 with 1733 at 2,1,2,3 Id : 16103, {_}: inverse ?28730 =<= add (add (inverse ?28730) (inverse (add ?28730 ?28731))) (inverse ?28730) [28731, 28730] by Demod 16102 with 1724 at 1,2,3 Id : 18477, {_}: inverse ?28730 =<= add (inverse ?28730) (inverse (add ?28730 ?28731)) [28731, 28730] by Demod 16103 with 18257 at 3 Id : 21222, {_}: inverse (add ?12265 (inverse (inverse ?12266))) =>= inverse (add ?12266 ?12265) [12266, 12265] by Demod 6067 with 18477 at 1,2,1,2 Id : 21223, {_}: inverse (add ?12265 ?12266) =?= inverse (add ?12266 ?12265) [12266, 12265] by Demod 21222 with 1733 at 2,1,2 Id : 21386, {_}: add ?36951 ?36952 =<= add (inverse (add (inverse (add ?36952 ?36951)) ?36952)) ?36952 [36952, 36951] by Super 20500 with 21223 at 1,1,1,3 Id : 19969, {_}: add ?34289 ?34290 =<= add (inverse (add (inverse (add ?34289 ?34290)) ?34289)) ?34289 [34290, 34289] by Super 19938 with 18480 at 1,1,3 Id : 21454, {_}: add ?36951 ?36952 =?= add ?36952 ?36951 [36952, 36951] by Demod 21386 with 19969 at 3 Id : 21981, {_}: add a b === add a b [] by Demod 1 with 21454 at 2 Id : 1, {_}: add b a =>= add a b [] by huntinton_1 % SZS output end CNFRefutation for BOO072-1.p 4619: solved BOO072-1.p in 9.46059 using nrkbo 4619: status Unsatisfiable for BOO072-1.p NO CLASH, using fixed ground order 4637: Facts: 4637: Id : 2, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 4637: Goal: 4637: Id : 1, {_}: add (add a b) c =>= add a (add b c) [] by huntinton_2 4637: Order: 4637: nrkbo 4637: Leaf order: 4637: inverse 7 1 0 4637: c 2 0 2 2,2 4637: add 10 2 4 0,2 4637: b 2 0 2 2,1,2 4637: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 4638: Facts: 4638: Id : 2, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 4638: Goal: 4638: Id : 1, {_}: add (add a b) c =>= add a (add b c) [] by huntinton_2 4638: Order: 4638: kbo 4638: Leaf order: 4638: inverse 7 1 0 4638: c 2 0 2 2,2 4638: add 10 2 4 0,2 4638: b 2 0 2 2,1,2 4638: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 4639: Facts: 4639: Id : 2, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 4639: Goal: 4639: Id : 1, {_}: add (add a b) c =>= add a (add b c) [] by huntinton_2 4639: Order: 4639: lpo 4639: Leaf order: 4639: inverse 7 1 0 4639: c 2 0 2 2,2 4639: add 10 2 4 0,2 4639: b 2 0 2 2,1,2 4639: a 2 0 2 1,1,2 % SZS status Timeout for BOO073-1.p NO CLASH, using fixed ground order 4666: Facts: 4666: Id : 2, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 4666: Goal: 4666: Id : 1, {_}: add (inverse (add (inverse a) b)) (inverse (add (inverse a) (inverse b))) =>= a [] by huntinton_3 4666: Order: 4666: nrkbo 4666: Leaf order: 4666: add 9 2 3 0,2 4666: b 2 0 2 2,1,1,2 4666: inverse 12 1 5 0,1,2 4666: a 3 0 3 1,1,1,1,2 NO CLASH, using fixed ground order 4667: Facts: 4667: Id : 2, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 4667: Goal: 4667: Id : 1, {_}: add (inverse (add (inverse a) b)) (inverse (add (inverse a) (inverse b))) =>= a [] by huntinton_3 4667: Order: 4667: kbo 4667: Leaf order: 4667: add 9 2 3 0,2 4667: b 2 0 2 2,1,1,2 4667: inverse 12 1 5 0,1,2 4667: a 3 0 3 1,1,1,1,2 NO CLASH, using fixed ground order 4668: Facts: 4668: Id : 2, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 4668: Goal: 4668: Id : 1, {_}: add (inverse (add (inverse a) b)) (inverse (add (inverse a) (inverse b))) =>= a [] by huntinton_3 4668: Order: 4668: lpo 4668: Leaf order: 4668: add 9 2 3 0,2 4668: b 2 0 2 2,1,1,2 4668: inverse 12 1 5 0,1,2 4668: a 3 0 3 1,1,1,1,2 Statistics : Max weight : 70 Found proof, 17.395929s % SZS status Unsatisfiable for BOO074-1.p % SZS output start CNFRefutation for BOO074-1.p Id : 3, {_}: inverse (add (inverse (add (inverse (add ?7 ?8)) ?9)) (inverse (add ?7 (inverse (add (inverse ?9) (inverse (add ?9 ?10))))))) =>= ?9 [10, 9, 8, 7] by dn1 ?7 ?8 ?9 ?10 Id : 2, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 Id : 15, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?74)) ?75)) ?74)) ?76)) (inverse ?74))) ?74) =>= inverse ?74 [76, 75, 74] by Super 3 with 2 at 2,1,2 Id : 20, {_}: inverse (add (inverse (add ?104 (inverse ?104))) ?104) =>= inverse ?104 [104] by Super 15 with 2 at 1,1,1,1,2 Id : 99, {_}: inverse (add (inverse ?355) (inverse (add ?355 (inverse (add (inverse ?355) (inverse (add ?355 ?356))))))) =>= ?355 [356, 355] by Super 2 with 20 at 1,1,2 Id : 136, {_}: inverse (add (inverse (add (inverse (add ?450 ?451)) ?452)) (inverse (add ?450 ?452))) =>= ?452 [452, 451, 450] by Super 2 with 99 at 2,1,2,1,2 Id : 536, {_}: inverse (add (inverse (add (inverse (add ?1808 ?1809)) ?1810)) (inverse (add ?1808 ?1810))) =>= ?1810 [1810, 1809, 1808] by Super 2 with 99 at 2,1,2,1,2 Id : 550, {_}: inverse (add (inverse (add ?1882 ?1883)) (inverse (add (inverse ?1882) ?1883))) =>= ?1883 [1883, 1882] by Super 536 with 99 at 1,1,1,1,2 Id : 724, {_}: inverse (add ?2517 (inverse (add ?2518 (inverse (add (inverse ?2518) ?2517))))) =>= inverse (add (inverse ?2518) ?2517) [2518, 2517] by Super 136 with 550 at 1,1,2 Id : 1584, {_}: inverse (add (inverse ?4978) (inverse (add ?4978 (inverse (add (inverse ?4978) (inverse ?4978)))))) =>= ?4978 [4978] by Super 99 with 724 at 2,1,2,1,2 Id : 1652, {_}: inverse (add (inverse ?4978) (inverse ?4978)) =>= ?4978 [4978] by Demod 1584 with 724 at 2 Id : 763, {_}: inverse (add (inverse (add ?2736 ?2737)) (inverse (add (inverse ?2736) ?2737))) =>= ?2737 [2737, 2736] by Super 536 with 99 at 1,1,1,1,2 Id : 144, {_}: inverse (add (inverse ?482) (inverse (add ?482 (inverse (add (inverse ?482) (inverse (add ?482 ?483))))))) =>= ?482 [483, 482] by Super 2 with 20 at 1,1,2 Id : 155, {_}: inverse (add (inverse ?528) (inverse (add ?528 ?528))) =>= ?528 [528] by Super 144 with 99 at 2,1,2,1,2 Id : 782, {_}: inverse (add (inverse (add ?2830 (inverse (add ?2830 ?2830)))) ?2830) =>= inverse (add ?2830 ?2830) [2830] by Super 763 with 155 at 2,1,2 Id : 871, {_}: inverse (add (inverse (add ?3076 ?3076)) (inverse (add ?3076 ?3076))) =>= ?3076 [3076] by Super 136 with 782 at 1,1,2 Id : 1724, {_}: add ?3076 ?3076 =>= ?3076 [3076] by Demod 871 with 1652 at 2 Id : 1754, {_}: inverse (inverse ?5284) =>= ?5284 [5284] by Demod 1652 with 1724 at 1,2 Id : 1762, {_}: inverse (inverse (add (inverse ?5317) ?5318)) =<= add ?5318 (inverse (add ?5317 (inverse (add (inverse ?5317) ?5318)))) [5318, 5317] by Super 1754 with 724 at 1,2 Id : 1733, {_}: inverse (inverse ?4978) =>= ?4978 [4978] by Demod 1652 with 1724 at 1,2 Id : 1785, {_}: add (inverse ?5317) ?5318 =<= add ?5318 (inverse (add ?5317 (inverse (add (inverse ?5317) ?5318)))) [5318, 5317] by Demod 1762 with 1733 at 2 Id : 6, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?26)) ?27)) ?26)) ?28)) (inverse ?26))) ?26) =>= inverse ?26 [28, 27, 26] by Super 3 with 2 at 2,1,2 Id : 1734, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add ?26 ?27)) ?26)) ?28)) (inverse ?26))) ?26) =>= inverse ?26 [28, 27, 26] by Demod 6 with 1733 at 1,1,1,1,1,1,1,1,1,1,2 Id : 921, {_}: inverse (add ?3102 (inverse (add ?3102 (inverse (add ?3102 ?3102))))) =>= inverse (add ?3102 ?3102) [3102] by Super 136 with 871 at 1,1,2 Id : 1725, {_}: inverse (add ?3102 (inverse (add ?3102 (inverse ?3102)))) =>= inverse (add ?3102 ?3102) [3102] by Demod 921 with 1724 at 1,2,1,2,1,2 Id : 1726, {_}: inverse (add ?3102 (inverse (add ?3102 (inverse ?3102)))) =>= inverse ?3102 [3102] by Demod 1725 with 1724 at 1,3 Id : 1763, {_}: inverse (inverse ?5320) =<= add ?5320 (inverse (add ?5320 (inverse ?5320))) [5320] by Super 1754 with 1726 at 1,2 Id : 1786, {_}: ?5320 =<= add ?5320 (inverse (add ?5320 (inverse ?5320))) [5320] by Demod 1763 with 1733 at 2 Id : 2715, {_}: inverse (add (inverse (add (inverse ?7389) (inverse (inverse ?7389)))) (inverse (add ?7389 (inverse (inverse ?7389))))) =>= inverse (add (inverse ?7389) (inverse (add (inverse ?7389) (inverse (inverse ?7389))))) [7389] by Super 724 with 1786 at 1,2,1,2,1,2 Id : 2755, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse (add ?7389 (inverse (inverse ?7389))))) =>= inverse (add (inverse ?7389) (inverse (add (inverse ?7389) (inverse (inverse ?7389))))) [7389] by Demod 2715 with 1733 at 2,1,1,1,2 Id : 2756, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse (add ?7389 ?7389))) =?= inverse (add (inverse ?7389) (inverse (add (inverse ?7389) (inverse (inverse ?7389))))) [7389] by Demod 2755 with 1733 at 2,1,2,1,2 Id : 2757, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse (add ?7389 ?7389))) =>= inverse (inverse ?7389) [7389] by Demod 2756 with 1786 at 1,3 Id : 2758, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse ?7389)) =>= inverse (inverse ?7389) [7389] by Demod 2757 with 1724 at 1,2,1,2 Id : 2759, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse ?7389)) =>= ?7389 [7389] by Demod 2758 with 1733 at 3 Id : 2920, {_}: inverse ?7714 =<= add (inverse (add (inverse ?7714) ?7714)) (inverse ?7714) [7714] by Super 1733 with 2759 at 1,2 Id : 3142, {_}: inverse (add (inverse (add (inverse (add (inverse (inverse ?8118)) ?8119)) (inverse (inverse ?8118)))) (inverse ?8118)) =>= inverse (inverse ?8118) [8119, 8118] by Super 1734 with 2920 at 1,1,1,1,1,1,1,2 Id : 3172, {_}: inverse (add (inverse (add (inverse (add ?8118 ?8119)) (inverse (inverse ?8118)))) (inverse ?8118)) =>= inverse (inverse ?8118) [8119, 8118] by Demod 3142 with 1733 at 1,1,1,1,1,1,2 Id : 3173, {_}: inverse (add (inverse (add (inverse (add ?8118 ?8119)) ?8118)) (inverse ?8118)) =>= inverse (inverse ?8118) [8119, 8118] by Demod 3172 with 1733 at 2,1,1,1,2 Id : 8100, {_}: inverse (add (inverse (add (inverse (add ?15581 ?15582)) ?15581)) (inverse ?15581)) =>= ?15581 [15582, 15581] by Demod 3173 with 1733 at 3 Id : 8144, {_}: inverse (add ?15759 (inverse (inverse (add ?15760 ?15759)))) =>= inverse (add ?15760 ?15759) [15760, 15759] by Super 8100 with 136 at 1,1,2 Id : 8365, {_}: inverse (add ?15759 (add ?15760 ?15759)) =>= inverse (add ?15760 ?15759) [15760, 15759] by Demod 8144 with 1733 at 2,1,2 Id : 8391, {_}: inverse (inverse (add ?15887 ?15888)) =?= add ?15888 (add ?15887 ?15888) [15888, 15887] by Super 1733 with 8365 at 1,2 Id : 8543, {_}: add ?15887 ?15888 =<= add ?15888 (add ?15887 ?15888) [15888, 15887] by Demod 8391 with 1733 at 2 Id : 12, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?59)) (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?60)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58))))))) ?61)) ?57)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) =>= ?57 [61, 60, 59, 58, 57] by Super 2 with 6 at 2,1,2 Id : 3710, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse ?57) (inverse (add ?57 ?58)))) ?59)) (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?60)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58))))))) ?61)) ?57)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) =>= ?57 [61, 60, 59, 58, 57] by Demod 12 with 1733 at 1,1,1,1,1,1,1,1,1,1,1,1,1,1,2 Id : 3711, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse ?57) (inverse (add ?57 ?58)))) ?59)) (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?60)) (add (inverse ?57) (inverse (add ?57 ?58))))) ?61)) ?57)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) =>= ?57 [61, 60, 59, 58, 57] by Demod 3710 with 1733 at 2,1,1,1,1,1,1,1,2 Id : 3712, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse ?57) (inverse (add ?57 ?58)))) ?59)) (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?60)) (add (inverse ?57) (inverse (add ?57 ?58))))) ?61)) ?57)) (add (inverse ?57) (inverse (add ?57 ?58)))) =>= ?57 [61, 60, 59, 58, 57] by Demod 3711 with 1733 at 2,1,2 Id : 8459, {_}: inverse (add ?16264 (add ?16265 ?16264)) =>= inverse (add ?16265 ?16264) [16265, 16264] by Demod 8144 with 1733 at 2,1,2 Id : 1749, {_}: inverse (add (inverse (add (inverse ?5262) ?5263)) (inverse (add ?5262 ?5263))) =>= ?5263 [5263, 5262] by Super 550 with 1733 at 1,1,2,1,2 Id : 5602, {_}: inverse ?11750 =<= add (inverse (add (inverse ?11751) ?11750)) (inverse (add ?11751 ?11750)) [11751, 11750] by Super 1733 with 1749 at 1,2 Id : 8468, {_}: inverse (add (inverse (add ?16285 ?16286)) (inverse ?16286)) =<= inverse (add (inverse (add (inverse ?16285) ?16286)) (inverse (add ?16285 ?16286))) [16286, 16285] by Super 8459 with 5602 at 2,1,2 Id : 8598, {_}: inverse (add (inverse (add ?16285 ?16286)) (inverse ?16286)) =>= inverse (inverse ?16286) [16286, 16285] by Demod 8468 with 5602 at 1,3 Id : 8599, {_}: inverse (add (inverse (add ?16285 ?16286)) (inverse ?16286)) =>= ?16286 [16286, 16285] by Demod 8598 with 1733 at 3 Id : 8791, {_}: inverse ?16774 =<= add (inverse (add ?16775 ?16774)) (inverse ?16774) [16775, 16774] by Super 1733 with 8599 at 1,2 Id : 10590, {_}: inverse (add (inverse (inverse ?20667)) (add (inverse (inverse ?20667)) (inverse (add (inverse ?20667) ?20668)))) =>= inverse ?20667 [20668, 20667] by Super 3712 with 8791 at 1,1,1,2 Id : 10753, {_}: inverse (add ?20667 (add (inverse (inverse ?20667)) (inverse (add (inverse ?20667) ?20668)))) =>= inverse ?20667 [20668, 20667] by Demod 10590 with 1733 at 1,1,2 Id : 10754, {_}: inverse (add ?20667 (add ?20667 (inverse (add (inverse ?20667) ?20668)))) =>= inverse ?20667 [20668, 20667] by Demod 10753 with 1733 at 1,2,1,2 Id : 15430, {_}: inverse (inverse ?28103) =<= add ?28103 (add ?28103 (inverse (add (inverse ?28103) ?28104))) [28104, 28103] by Super 1733 with 10754 at 1,2 Id : 15735, {_}: ?28103 =<= add ?28103 (add ?28103 (inverse (add (inverse ?28103) ?28104))) [28104, 28103] by Demod 15430 with 1733 at 2 Id : 15853, {_}: add ?28715 (add ?28715 (inverse (add (inverse ?28715) ?28716))) =?= add (add ?28715 (inverse (add (inverse ?28715) ?28716))) ?28715 [28716, 28715] by Super 8543 with 15735 at 2,3 Id : 16108, {_}: ?28715 =<= add (add ?28715 (inverse (add (inverse ?28715) ?28716))) ?28715 [28716, 28715] by Demod 15853 with 15735 at 2 Id : 10568, {_}: inverse (add (inverse (inverse ?20566)) (inverse (add ?20567 (inverse ?20566)))) =>= inverse ?20566 [20567, 20566] by Super 136 with 8791 at 1,1,1,2 Id : 10805, {_}: inverse (add ?20566 (inverse (add ?20567 (inverse ?20566)))) =>= inverse ?20566 [20567, 20566] by Demod 10568 with 1733 at 1,1,2 Id : 11153, {_}: inverse (inverse ?21486) =<= add ?21486 (inverse (add ?21487 (inverse ?21486))) [21487, 21486] by Super 1733 with 10805 at 1,2 Id : 11260, {_}: ?21486 =<= add ?21486 (inverse (add ?21487 (inverse ?21486))) [21487, 21486] by Demod 11153 with 1733 at 2 Id : 11176, {_}: inverse (add ?21600 (inverse (add ?21601 (inverse ?21600)))) =>= inverse ?21600 [21601, 21600] by Demod 10568 with 1733 at 1,1,2 Id : 11183, {_}: inverse (add (inverse ?21642) (inverse (add ?21643 ?21642))) =>= inverse (inverse ?21642) [21643, 21642] by Super 11176 with 1733 at 2,1,2,1,2 Id : 11564, {_}: inverse (add (inverse ?21642) (inverse (add ?21643 ?21642))) =>= ?21642 [21643, 21642] by Demod 11183 with 1733 at 3 Id : 13294, {_}: inverse ?24726 =<= add (inverse ?24726) (inverse (add ?24727 ?24726)) [24727, 24726] by Super 1733 with 11564 at 1,2 Id : 13313, {_}: inverse (add (inverse ?24792) (inverse (add ?24792 ?24793))) =<= add (inverse (add (inverse ?24792) (inverse (add ?24792 ?24793)))) ?24792 [24793, 24792] by Super 13294 with 3712 at 2,3 Id : 16466, {_}: add (inverse (add (inverse ?29660) (inverse (add ?29660 ?29661)))) ?29660 =<= add ?29660 (inverse (add (add (inverse ?29660) (inverse (add ?29660 ?29661))) (inverse (inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))))))) [29661, 29660] by Super 1785 with 13313 at 1,2,1,2,3 Id : 16829, {_}: inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))) =<= add ?29660 (inverse (add (add (inverse ?29660) (inverse (add ?29660 ?29661))) (inverse (inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))))))) [29661, 29660] by Demod 16466 with 13313 at 2 Id : 16830, {_}: inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))) =<= add ?29660 (inverse (add (add (inverse ?29660) (inverse (add ?29660 ?29661))) (add (inverse ?29660) (inverse (add ?29660 ?29661))))) [29661, 29660] by Demod 16829 with 1733 at 2,1,2,3 Id : 16831, {_}: inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))) =<= add ?29660 (inverse (add (inverse ?29660) (inverse (add ?29660 ?29661)))) [29661, 29660] by Demod 16830 with 1724 at 1,2,3 Id : 17624, {_}: ?31105 =<= add ?31105 (inverse (add (inverse ?31105) (inverse (add ?31105 ?31106)))) [31106, 31105] by Super 15735 with 16831 at 2,3 Id : 17680, {_}: ?31105 =<= inverse (add (inverse ?31105) (inverse (add ?31105 ?31106))) [31106, 31105] by Demod 17624 with 16831 at 3 Id : 18257, {_}: add ?31431 ?31432 =<= add (add ?31431 ?31432) ?31431 [31432, 31431] by Super 11260 with 17680 at 2,3 Id : 18478, {_}: ?28715 =<= add ?28715 (inverse (add (inverse ?28715) ?28716)) [28716, 28715] by Demod 16108 with 18257 at 3 Id : 18480, {_}: add (inverse ?5317) ?5318 =?= add ?5318 (inverse ?5317) [5318, 5317] by Demod 1785 with 18478 at 1,2,3 Id : 1761, {_}: inverse ?5314 =<= add (inverse (add ?5315 ?5314)) (inverse (add (inverse ?5315) ?5314)) [5315, 5314] by Super 1754 with 550 at 1,2 Id : 18644, {_}: a === a [] by Demod 18643 with 1733 at 2 Id : 18643, {_}: inverse (inverse a) =>= a [] by Demod 18642 with 1761 at 2 Id : 18642, {_}: add (inverse (add b (inverse a))) (inverse (add (inverse b) (inverse a))) =>= a [] by Demod 18641 with 18480 at 1,2,2 Id : 18641, {_}: add (inverse (add b (inverse a))) (inverse (add (inverse a) (inverse b))) =>= a [] by Demod 1 with 18480 at 1,1,2 Id : 1, {_}: add (inverse (add (inverse a) b)) (inverse (add (inverse a) (inverse b))) =>= a [] by huntinton_3 % SZS output end CNFRefutation for BOO074-1.p 4666: solved BOO074-1.p in 8.672542 using nrkbo 4666: status Unsatisfiable for BOO074-1.p NO CLASH, using fixed ground order 4673: Facts: 4673: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 4673: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 4673: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply w w)) (apply (apply b w) (apply (apply b b) b)) [] by strong_fixed_point 4673: Goal: 4673: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 4673: Order: 4673: nrkbo 4673: Leaf order: 4673: w 4 0 0 4673: b 6 0 0 4673: apply 19 2 3 0,2 4673: fixed_pt 3 0 3 2,2 4673: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 4674: Facts: 4674: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 4674: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 4674: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply w w)) (apply (apply b w) (apply (apply b b) b)) [] by strong_fixed_point 4674: Goal: 4674: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 4674: Order: 4674: kbo 4674: Leaf order: 4674: w 4 0 0 4674: b 6 0 0 4674: apply 19 2 3 0,2 4674: fixed_pt 3 0 3 2,2 4674: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 4675: Facts: 4675: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 4675: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 4675: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply w w)) (apply (apply b w) (apply (apply b b) b)) [] by strong_fixed_point 4675: Goal: 4675: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 4675: Order: 4675: lpo 4675: Leaf order: 4675: w 4 0 0 4675: b 6 0 0 4675: apply 19 2 3 0,2 4675: fixed_pt 3 0 3 2,2 4675: strong_fixed_point 3 0 2 1,2 % SZS status Timeout for COL003-12.p NO CLASH, using fixed ground order 4697: Facts: 4697: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 4697: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 4697: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply b (apply w w)) (apply b w))) b)) b [] by strong_fixed_point 4697: Goal: 4697: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 4697: Order: 4697: nrkbo 4697: Leaf order: 4697: w 4 0 0 4697: b 7 0 0 4697: apply 20 2 3 0,2 4697: fixed_pt 3 0 3 2,2 4697: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 4698: Facts: 4698: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 4698: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 4698: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply b (apply w w)) (apply b w))) b)) b [] by strong_fixed_point 4698: Goal: 4698: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 4698: Order: 4698: kbo 4698: Leaf order: 4698: w 4 0 0 4698: b 7 0 0 4698: apply 20 2 3 0,2 4698: fixed_pt 3 0 3 2,2 4698: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 4699: Facts: 4699: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 4699: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 4699: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply b (apply w w)) (apply b w))) b)) b [] by strong_fixed_point 4699: Goal: 4699: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 4699: Order: 4699: lpo 4699: Leaf order: 4699: w 4 0 0 4699: b 7 0 0 4699: apply 20 2 3 0,2 4699: fixed_pt 3 0 3 2,2 4699: strong_fixed_point 3 0 2 1,2 % SZS status Timeout for COL003-17.p NO CLASH, using fixed ground order 4971: Facts: 4971: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 4971: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 4971: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply w w)) (apply b w))) (apply (apply b b) b) [] by strong_fixed_point 4971: Goal: 4971: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 4971: Order: 4971: nrkbo 4971: Leaf order: 4971: w 4 0 0 4971: b 7 0 0 4971: apply 20 2 3 0,2 4971: fixed_pt 3 0 3 2,2 4971: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 4972: Facts: 4972: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 4972: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 4972: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply w w)) (apply b w))) (apply (apply b b) b) [] by strong_fixed_point 4972: Goal: 4972: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 4972: Order: 4972: kbo 4972: Leaf order: 4972: w 4 0 0 4972: b 7 0 0 4972: apply 20 2 3 0,2 4972: fixed_pt 3 0 3 2,2 4972: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 4973: Facts: 4973: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 4973: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 4973: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply w w)) (apply b w))) (apply (apply b b) b) [] by strong_fixed_point 4973: Goal: 4973: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 4973: Order: 4973: lpo 4973: Leaf order: 4973: w 4 0 0 4973: b 7 0 0 4973: apply 20 2 3 0,2 4973: fixed_pt 3 0 3 2,2 4973: strong_fixed_point 3 0 2 1,2 % SZS status Timeout for COL003-18.p NO CLASH, using fixed ground order 7458: Facts: 7458: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 7458: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 7458: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply w w)) (apply (apply b (apply b w)) b))) b [] by strong_fixed_point 7458: Goal: 7458: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 7458: Order: 7458: nrkbo 7458: Leaf order: 7458: w 4 0 0 7458: b 7 0 0 7458: apply 20 2 3 0,2 7458: fixed_pt 3 0 3 2,2 7458: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 7459: Facts: 7459: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 7459: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 7459: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply w w)) (apply (apply b (apply b w)) b))) b [] by strong_fixed_point 7459: Goal: 7459: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 7459: Order: 7459: kbo 7459: Leaf order: 7459: w 4 0 0 7459: b 7 0 0 7459: apply 20 2 3 0,2 7459: fixed_pt 3 0 3 2,2 7459: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 7460: Facts: 7460: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 7460: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 7460: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply w w)) (apply (apply b (apply b w)) b))) b [] by strong_fixed_point 7460: Goal: 7460: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 7460: Order: 7460: lpo 7460: Leaf order: 7460: w 4 0 0 7460: b 7 0 0 7460: apply 20 2 3 0,2 7460: fixed_pt 3 0 3 2,2 7460: strong_fixed_point 3 0 2 1,2 % SZS status Timeout for COL003-19.p CLASH, statistics insufficient 9903: Facts: 9903: Id : 2, {_}: apply (apply o ?3) ?4 =?= apply ?4 (apply ?3 ?4) [4, 3] by o_definition ?3 ?4 9903: Id : 3, {_}: apply (apply (apply q1 ?6) ?7) ?8 =>= apply ?6 (apply ?8 ?7) [8, 7, 6] by q1_definition ?6 ?7 ?8 9903: Goal: 9903: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_fixed_point ?1 9903: Order: 9903: nrkbo 9903: Leaf order: 9903: q1 1 0 0 9903: o 1 0 0 9903: apply 10 2 1 0,3 9903: combinator 1 0 1 1,3 CLASH, statistics insufficient 9904: Facts: 9904: Id : 2, {_}: apply (apply o ?3) ?4 =?= apply ?4 (apply ?3 ?4) [4, 3] by o_definition ?3 ?4 9904: Id : 3, {_}: apply (apply (apply q1 ?6) ?7) ?8 =>= apply ?6 (apply ?8 ?7) [8, 7, 6] by q1_definition ?6 ?7 ?8 9904: Goal: 9904: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_fixed_point ?1 9904: Order: 9904: kbo 9904: Leaf order: 9904: q1 1 0 0 9904: o 1 0 0 9904: apply 10 2 1 0,3 9904: combinator 1 0 1 1,3 CLASH, statistics insufficient 9905: Facts: 9905: Id : 2, {_}: apply (apply o ?3) ?4 =?= apply ?4 (apply ?3 ?4) [4, 3] by o_definition ?3 ?4 9905: Id : 3, {_}: apply (apply (apply q1 ?6) ?7) ?8 =?= apply ?6 (apply ?8 ?7) [8, 7, 6] by q1_definition ?6 ?7 ?8 9905: Goal: 9905: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_fixed_point ?1 9905: Order: 9905: lpo 9905: Leaf order: 9905: q1 1 0 0 9905: o 1 0 0 9905: apply 10 2 1 0,3 9905: combinator 1 0 1 1,3 % SZS status Timeout for COL011-1.p CLASH, statistics insufficient 9926: Facts: 9926: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 9926: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 9926: Id : 4, {_}: apply (apply t ?9) ?10 =>= apply ?10 ?9 [10, 9] by t_definition ?9 ?10 9926: Goal: 9926: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 9926: Order: 9926: nrkbo 9926: Leaf order: 9926: t 1 0 0 9926: m 1 0 0 9926: b 1 0 0 9926: apply 13 2 3 0,2 9926: f 3 1 3 0,2,2 CLASH, statistics insufficient 9927: Facts: 9927: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 9927: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 9927: Id : 4, {_}: apply (apply t ?9) ?10 =>= apply ?10 ?9 [10, 9] by t_definition ?9 ?10 9927: Goal: 9927: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 9927: Order: 9927: kbo 9927: Leaf order: 9927: t 1 0 0 9927: m 1 0 0 9927: b 1 0 0 9927: apply 13 2 3 0,2 9927: f 3 1 3 0,2,2 CLASH, statistics insufficient 9928: Facts: 9928: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 9928: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 9928: Id : 4, {_}: apply (apply t ?9) ?10 =?= apply ?10 ?9 [10, 9] by t_definition ?9 ?10 9928: Goal: 9928: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 9928: Order: 9928: lpo 9928: Leaf order: 9928: t 1 0 0 9928: m 1 0 0 9928: b 1 0 0 9928: apply 13 2 3 0,2 9928: f 3 1 3 0,2,2 Goal subsumed Statistics : Max weight : 62 Found proof, 1.513358s % SZS status Unsatisfiable for COL034-1.p % SZS output start CNFRefutation for COL034-1.p Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 Id : 4, {_}: apply (apply t ?9) ?10 =>= apply ?10 ?9 [10, 9] by t_definition ?9 ?10 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 Id : 11, {_}: apply m (apply (apply b ?29) ?30) =<= apply ?29 (apply ?30 (apply (apply b ?29) ?30)) [30, 29] by Super 2 with 3 at 2 Id : 2545, {_}: apply (f (apply (apply b m) (apply (apply b (apply t m)) b))) (apply m (apply (apply b (f (apply (apply b m) (apply (apply b (apply t m)) b)))) m)) === apply (f (apply (apply b m) (apply (apply b (apply t m)) b))) (apply m (apply (apply b (f (apply (apply b m) (apply (apply b (apply t m)) b)))) m)) [] by Super 2544 with 11 at 2 Id : 2544, {_}: apply ?1974 (apply (apply ?1976 (f (apply (apply b ?1974) (apply (apply b (apply t ?1975)) ?1976)))) ?1975) =<= apply (f (apply (apply b ?1974) (apply (apply b (apply t ?1975)) ?1976))) (apply ?1974 (apply (apply ?1976 (f (apply (apply b ?1974) (apply (apply b (apply t ?1975)) ?1976)))) ?1975)) [1975, 1976, 1974] by Demod 2294 with 4 at 2,2 Id : 2294, {_}: apply ?1974 (apply (apply t ?1975) (apply ?1976 (f (apply (apply b ?1974) (apply (apply b (apply t ?1975)) ?1976))))) =<= apply (f (apply (apply b ?1974) (apply (apply b (apply t ?1975)) ?1976))) (apply ?1974 (apply (apply ?1976 (f (apply (apply b ?1974) (apply (apply b (apply t ?1975)) ?1976)))) ?1975)) [1976, 1975, 1974] by Super 53 with 4 at 2,2,3 Id : 53, {_}: apply ?78 (apply ?79 (apply ?80 (f (apply (apply b ?78) (apply (apply b ?79) ?80))))) =<= apply (f (apply (apply b ?78) (apply (apply b ?79) ?80))) (apply ?78 (apply ?79 (apply ?80 (f (apply (apply b ?78) (apply (apply b ?79) ?80)))))) [80, 79, 78] by Demod 39 with 2 at 2,2 Id : 39, {_}: apply ?78 (apply (apply (apply b ?79) ?80) (f (apply (apply b ?78) (apply (apply b ?79) ?80)))) =<= apply (f (apply (apply b ?78) (apply (apply b ?79) ?80))) (apply ?78 (apply ?79 (apply ?80 (f (apply (apply b ?78) (apply (apply b ?79) ?80)))))) [80, 79, 78] by Super 8 with 2 at 2,2,3 Id : 8, {_}: apply ?20 (apply ?21 (f (apply (apply b ?20) ?21))) =<= apply (f (apply (apply b ?20) ?21)) (apply ?20 (apply ?21 (f (apply (apply b ?20) ?21)))) [21, 20] by Demod 7 with 2 at 2 Id : 7, {_}: apply (apply (apply b ?20) ?21) (f (apply (apply b ?20) ?21)) =<= apply (f (apply (apply b ?20) ?21)) (apply ?20 (apply ?21 (f (apply (apply b ?20) ?21)))) [21, 20] by Super 1 with 2 at 2,3 Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 % SZS output end CNFRefutation for COL034-1.p 9926: solved COL034-1.p in 0.528032 using nrkbo 9926: status Unsatisfiable for COL034-1.p CLASH, statistics insufficient 9933: Facts: 9933: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 9933: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 9933: Id : 4, {_}: apply (apply (apply c ?11) ?12) ?13 =>= apply (apply ?11 ?13) ?12 [13, 12, 11] by c_definition ?11 ?12 ?13 9933: Goal: 9933: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 9933: Order: 9933: nrkbo 9933: Leaf order: 9933: c 1 0 0 9933: b 1 0 0 9933: s 1 0 0 9933: apply 19 2 3 0,2 9933: f 3 1 3 0,2,2 CLASH, statistics insufficient 9934: Facts: 9934: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 9934: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 9934: Id : 4, {_}: apply (apply (apply c ?11) ?12) ?13 =>= apply (apply ?11 ?13) ?12 [13, 12, 11] by c_definition ?11 ?12 ?13 9934: Goal: 9934: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 9934: Order: 9934: kbo 9934: Leaf order: 9934: c 1 0 0 9934: b 1 0 0 9934: s 1 0 0 9934: apply 19 2 3 0,2 9934: f 3 1 3 0,2,2 CLASH, statistics insufficient 9935: Facts: 9935: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 9935: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 9935: Id : 4, {_}: apply (apply (apply c ?11) ?12) ?13 =?= apply (apply ?11 ?13) ?12 [13, 12, 11] by c_definition ?11 ?12 ?13 9935: Goal: 9935: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 9935: Order: 9935: lpo 9935: Leaf order: 9935: c 1 0 0 9935: b 1 0 0 9935: s 1 0 0 9935: apply 19 2 3 0,2 9935: f 3 1 3 0,2,2 % SZS status Timeout for COL037-1.p CLASH, statistics insufficient 9973: Facts: 9973: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 9973: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 9973: Id : 4, {_}: apply (apply (apply c ?9) ?10) ?11 =>= apply (apply ?9 ?11) ?10 [11, 10, 9] by c_definition ?9 ?10 ?11 9973: Goal: 9973: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 9973: Order: 9973: nrkbo 9973: Leaf order: 9973: c 1 0 0 9973: m 1 0 0 9973: b 1 0 0 9973: apply 15 2 3 0,2 9973: f 3 1 3 0,2,2 CLASH, statistics insufficient 9974: Facts: 9974: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 9974: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 9974: Id : 4, {_}: apply (apply (apply c ?9) ?10) ?11 =>= apply (apply ?9 ?11) ?10 [11, 10, 9] by c_definition ?9 ?10 ?11 9974: Goal: 9974: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 9974: Order: 9974: kbo 9974: Leaf order: 9974: c 1 0 0 9974: m 1 0 0 9974: b 1 0 0 9974: apply 15 2 3 0,2 9974: f 3 1 3 0,2,2 CLASH, statistics insufficient 9975: Facts: 9975: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 9975: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 9975: Id : 4, {_}: apply (apply (apply c ?9) ?10) ?11 =?= apply (apply ?9 ?11) ?10 [11, 10, 9] by c_definition ?9 ?10 ?11 9975: Goal: 9975: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 9975: Order: 9975: lpo 9975: Leaf order: 9975: c 1 0 0 9975: m 1 0 0 9975: b 1 0 0 9975: apply 15 2 3 0,2 9975: f 3 1 3 0,2,2 Goal subsumed Statistics : Max weight : 54 Found proof, 2.234152s % SZS status Unsatisfiable for COL041-1.p % SZS output start CNFRefutation for COL041-1.p Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 Id : 4, {_}: apply (apply (apply c ?9) ?10) ?11 =>= apply (apply ?9 ?11) ?10 [11, 10, 9] by c_definition ?9 ?10 ?11 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 Id : 11, {_}: apply m (apply (apply b ?30) ?31) =<= apply ?30 (apply ?31 (apply (apply b ?30) ?31)) [31, 30] by Super 2 with 3 at 2 Id : 4380, {_}: apply (f (apply (apply b m) (apply (apply c b) m))) (apply m (apply (apply b (f (apply (apply b m) (apply (apply c b) m)))) m)) === apply (f (apply (apply b m) (apply (apply c b) m))) (apply m (apply (apply b (f (apply (apply b m) (apply (apply c b) m)))) m)) [] by Super 53 with 11 at 2 Id : 53, {_}: apply ?91 (apply (apply ?92 (f (apply (apply b ?91) (apply (apply c ?92) ?93)))) ?93) =<= apply (f (apply (apply b ?91) (apply (apply c ?92) ?93))) (apply ?91 (apply (apply ?92 (f (apply (apply b ?91) (apply (apply c ?92) ?93)))) ?93)) [93, 92, 91] by Demod 39 with 4 at 2,2 Id : 39, {_}: apply ?91 (apply (apply (apply c ?92) ?93) (f (apply (apply b ?91) (apply (apply c ?92) ?93)))) =<= apply (f (apply (apply b ?91) (apply (apply c ?92) ?93))) (apply ?91 (apply (apply ?92 (f (apply (apply b ?91) (apply (apply c ?92) ?93)))) ?93)) [93, 92, 91] by Super 8 with 4 at 2,2,3 Id : 8, {_}: apply ?21 (apply ?22 (f (apply (apply b ?21) ?22))) =<= apply (f (apply (apply b ?21) ?22)) (apply ?21 (apply ?22 (f (apply (apply b ?21) ?22)))) [22, 21] by Demod 7 with 2 at 2 Id : 7, {_}: apply (apply (apply b ?21) ?22) (f (apply (apply b ?21) ?22)) =<= apply (f (apply (apply b ?21) ?22)) (apply ?21 (apply ?22 (f (apply (apply b ?21) ?22)))) [22, 21] by Super 1 with 2 at 2,3 Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 % SZS output end CNFRefutation for COL041-1.p 9973: solved COL041-1.p in 1.13607 using nrkbo 9973: status Unsatisfiable for COL041-1.p CLASH, statistics insufficient 9980: Facts: 9980: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 9980: Id : 3, {_}: apply (apply (apply n ?7) ?8) ?9 =?= apply (apply (apply ?7 ?9) ?8) ?9 [9, 8, 7] by n_definition ?7 ?8 ?9 9980: Goal: 9980: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 9980: Order: 9980: nrkbo 9980: Leaf order: 9980: n 1 0 0 9980: b 1 0 0 9980: apply 14 2 3 0,2 9980: f 3 1 3 0,2,2 CLASH, statistics insufficient 9981: Facts: 9981: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 9981: Id : 3, {_}: apply (apply (apply n ?7) ?8) ?9 =?= apply (apply (apply ?7 ?9) ?8) ?9 [9, 8, 7] by n_definition ?7 ?8 ?9 9981: Goal: 9981: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 9981: Order: 9981: kbo 9981: Leaf order: 9981: n 1 0 0 9981: b 1 0 0 9981: apply 14 2 3 0,2 9981: f 3 1 3 0,2,2 CLASH, statistics insufficient 9982: Facts: 9982: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 9982: Id : 3, {_}: apply (apply (apply n ?7) ?8) ?9 =?= apply (apply (apply ?7 ?9) ?8) ?9 [9, 8, 7] by n_definition ?7 ?8 ?9 9982: Goal: 9982: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 9982: Order: 9982: lpo 9982: Leaf order: 9982: n 1 0 0 9982: b 1 0 0 9982: apply 14 2 3 0,2 9982: f 3 1 3 0,2,2 Goal subsumed Statistics : Max weight : 88 Found proof, 76.191737s % SZS status Unsatisfiable for COL044-1.p % SZS output start CNFRefutation for COL044-1.p Id : 4, {_}: apply (apply (apply b ?11) ?12) ?13 =>= apply ?11 (apply ?12 ?13) [13, 12, 11] by b_definition ?11 ?12 ?13 Id : 3, {_}: apply (apply (apply n ?7) ?8) ?9 =?= apply (apply (apply ?7 ?9) ?8) ?9 [9, 8, 7] by n_definition ?7 ?8 ?9 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 Id : 8, {_}: apply (apply (apply n b) ?22) ?23 =?= apply ?23 (apply ?22 ?23) [23, 22] by Super 2 with 3 at 2 Id : 5, {_}: apply ?15 (apply ?16 ?17) =?= apply ?15 (apply ?16 ?17) [17, 16, 15] by Super 4 with 2 at 2 Id : 83, {_}: apply (apply (apply (apply n b) ?260) (apply b ?261)) ?262 =?= apply ?261 (apply (apply ?260 (apply b ?261)) ?262) [262, 261, 260] by Super 2 with 8 at 1,2 Id : 24939, {_}: apply (apply (apply n b) (apply (apply (apply n (apply n b)) (apply b (apply n b))) (apply n (apply n b)))) (f (apply (apply (apply (apply n b) (apply n (apply n b))) (apply b (apply n b))) (apply n (apply n b)))) =?= apply (apply (apply n b) (apply (apply (apply n (apply n b)) (apply b (apply n b))) (apply n (apply n b)))) (f (apply (apply (apply (apply n b) (apply n (apply n b))) (apply b (apply n b))) (apply n (apply n b)))) [] by Super 24245 with 83 at 1,2 Id : 24245, {_}: apply (apply (apply (apply ?35313 ?35314) ?35315) ?35314) (f (apply (apply (apply ?35313 ?35314) ?35315) ?35314)) =?= apply (apply (apply n b) (apply (apply (apply n ?35313) ?35315) ?35314)) (f (apply (apply (apply ?35313 ?35314) ?35315) ?35314)) [35315, 35314, 35313] by Super 153 with 3 at 2,1,3 Id : 153, {_}: apply (apply ?460 ?461) (f (apply ?460 ?461)) =<= apply (apply (apply n b) (apply ?460 ?461)) (f (apply ?460 ?461)) [461, 460] by Super 115 with 5 at 1,3 Id : 115, {_}: apply ?375 (f ?375) =<= apply (apply (apply n b) ?375) (f ?375) [375] by Super 1 with 8 at 3 Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 % SZS output end CNFRefutation for COL044-1.p 9981: solved COL044-1.p in 12.724795 using kbo 9981: status Unsatisfiable for COL044-1.p CLASH, statistics insufficient 9998: Facts: 9998: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 9998: Id : 3, {_}: apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 [8, 7] by w_definition ?7 ?8 9998: Id : 4, {_}: apply m ?10 =?= apply ?10 ?10 [10] by m_definition ?10 9998: Goal: 9998: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 9998: Order: 9998: nrkbo 9998: Leaf order: 9998: m 1 0 0 9998: w 1 0 0 9998: b 1 0 0 9998: apply 14 2 3 0,2 9998: f 3 1 3 0,2,2 CLASH, statistics insufficient 9999: Facts: 9999: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 9999: Id : 3, {_}: apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 [8, 7] by w_definition ?7 ?8 9999: Id : 4, {_}: apply m ?10 =?= apply ?10 ?10 [10] by m_definition ?10 9999: Goal: 9999: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 9999: Order: 9999: kbo 9999: Leaf order: 9999: m 1 0 0 9999: w 1 0 0 9999: b 1 0 0 9999: apply 14 2 3 0,2 9999: f 3 1 3 0,2,2 CLASH, statistics insufficient 10000: Facts: 10000: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 10000: Id : 3, {_}: apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 [8, 7] by w_definition ?7 ?8 10000: Id : 4, {_}: apply m ?10 =?= apply ?10 ?10 [10] by m_definition ?10 10000: Goal: 10000: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 10000: Order: 10000: lpo 10000: Leaf order: 10000: m 1 0 0 10000: w 1 0 0 10000: b 1 0 0 10000: apply 14 2 3 0,2 10000: f 3 1 3 0,2,2 Goal subsumed Statistics : Max weight : 54 Found proof, 12.856628s % SZS status Unsatisfiable for COL049-1.p % SZS output start CNFRefutation for COL049-1.p Id : 3, {_}: apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 [8, 7] by w_definition ?7 ?8 Id : 4, {_}: apply m ?10 =?= apply ?10 ?10 [10] by m_definition ?10 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 Id : 226, {_}: apply (apply w (apply b ?378)) ?379 =?= apply ?378 (apply ?379 ?379) [379, 378] by Super 2 with 3 at 2 Id : 231, {_}: apply (apply w (apply b ?393)) ?394 =>= apply ?393 (apply m ?394) [394, 393] by Super 226 with 4 at 2,3 Id : 289, {_}: apply m (apply w (apply b ?503)) =<= apply ?503 (apply m (apply w (apply b ?503))) [503] by Super 4 with 231 at 3 Id : 15983, {_}: apply (f (apply (apply b m) (apply (apply b w) b))) (apply m (apply w (apply b (f (apply (apply b m) (apply (apply b w) b)))))) === apply (f (apply (apply b m) (apply (apply b w) b))) (apply m (apply w (apply b (f (apply (apply b m) (apply (apply b w) b)))))) [] by Super 72 with 289 at 2 Id : 72, {_}: apply ?123 (apply ?124 (apply ?125 (f (apply (apply b ?123) (apply (apply b ?124) ?125))))) =<= apply (f (apply (apply b ?123) (apply (apply b ?124) ?125))) (apply ?123 (apply ?124 (apply ?125 (f (apply (apply b ?123) (apply (apply b ?124) ?125)))))) [125, 124, 123] by Demod 59 with 2 at 2,2 Id : 59, {_}: apply ?123 (apply (apply (apply b ?124) ?125) (f (apply (apply b ?123) (apply (apply b ?124) ?125)))) =<= apply (f (apply (apply b ?123) (apply (apply b ?124) ?125))) (apply ?123 (apply ?124 (apply ?125 (f (apply (apply b ?123) (apply (apply b ?124) ?125)))))) [125, 124, 123] by Super 8 with 2 at 2,2,3 Id : 8, {_}: apply ?20 (apply ?21 (f (apply (apply b ?20) ?21))) =<= apply (f (apply (apply b ?20) ?21)) (apply ?20 (apply ?21 (f (apply (apply b ?20) ?21)))) [21, 20] by Demod 7 with 2 at 2 Id : 7, {_}: apply (apply (apply b ?20) ?21) (f (apply (apply b ?20) ?21)) =<= apply (f (apply (apply b ?20) ?21)) (apply ?20 (apply ?21 (f (apply (apply b ?20) ?21)))) [21, 20] by Super 1 with 2 at 2,3 Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 % SZS output end CNFRefutation for COL049-1.p 9998: solved COL049-1.p in 6.372397 using nrkbo 9998: status Unsatisfiable for COL049-1.p CLASH, statistics insufficient 10010: Facts: 10010: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 10010: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 10010: Id : 4, {_}: apply (apply (apply c ?11) ?12) ?13 =>= apply (apply ?11 ?13) ?12 [13, 12, 11] by c_definition ?11 ?12 ?13 10010: Id : 5, {_}: apply i ?15 =>= ?15 [15] by i_definition ?15 10010: Goal: 10010: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 10010: Order: 10010: nrkbo 10010: Leaf order: 10010: i 1 0 0 10010: c 1 0 0 10010: b 1 0 0 10010: s 1 0 0 10010: apply 20 2 3 0,2 10010: f 3 1 3 0,2,2 CLASH, statistics insufficient 10011: Facts: 10011: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 10011: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 10011: Id : 4, {_}: apply (apply (apply c ?11) ?12) ?13 =>= apply (apply ?11 ?13) ?12 [13, 12, 11] by c_definition ?11 ?12 ?13 10011: Id : 5, {_}: apply i ?15 =>= ?15 [15] by i_definition ?15 10011: Goal: 10011: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 10011: Order: 10011: kbo 10011: Leaf order: 10011: i 1 0 0 10011: c 1 0 0 10011: b 1 0 0 10011: s 1 0 0 10011: apply 20 2 3 0,2 10011: f 3 1 3 0,2,2 CLASH, statistics insufficient 10012: Facts: 10012: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 10012: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 10012: Id : 4, {_}: apply (apply (apply c ?11) ?12) ?13 =?= apply (apply ?11 ?13) ?12 [13, 12, 11] by c_definition ?11 ?12 ?13 10012: Id : 5, {_}: apply i ?15 =>= ?15 [15] by i_definition ?15 10012: Goal: 10012: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 10012: Order: 10012: lpo 10012: Leaf order: 10012: i 1 0 0 10012: c 1 0 0 10012: b 1 0 0 10012: s 1 0 0 10012: apply 20 2 3 0,2 10012: f 3 1 3 0,2,2 Goal subsumed Statistics : Max weight : 84 Found proof, 12.629405s % SZS status Unsatisfiable for COL057-1.p % SZS output start CNFRefutation for COL057-1.p Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 Id : 5, {_}: apply i ?15 =>= ?15 [15] by i_definition ?15 Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 Id : 37, {_}: apply (apply (apply s i) ?141) ?142 =?= apply ?142 (apply ?141 ?142) [142, 141] by Super 2 with 5 at 1,3 Id : 16, {_}: apply (apply (apply s (apply b ?64)) ?65) ?66 =?= apply ?64 (apply ?66 (apply ?65 ?66)) [66, 65, 64] by Super 2 with 3 at 3 Id : 9068, {_}: apply (apply (apply (apply s (apply b (apply s i))) i) (apply (apply s (apply b (apply s i))) i)) (f (apply (apply (apply s (apply b (apply s i))) i) (apply i (apply (apply s (apply b (apply s i))) i)))) === apply (apply (apply (apply s (apply b (apply s i))) i) (apply (apply s (apply b (apply s i))) i)) (f (apply (apply (apply s (apply b (apply s i))) i) (apply i (apply (apply s (apply b (apply s i))) i)))) [] by Super 9059 with 5 at 2,1,2 Id : 9059, {_}: apply (apply ?16932 (apply ?16933 ?16932)) (f (apply ?16932 (apply ?16933 ?16932))) =?= apply (apply (apply (apply s (apply b (apply s i))) ?16933) ?16932) (f (apply ?16932 (apply ?16933 ?16932))) [16933, 16932] by Super 9058 with 16 at 1,3 Id : 9058, {_}: apply ?16930 (f ?16930) =<= apply (apply (apply s i) ?16930) (f ?16930) [16930] by Super 1 with 37 at 3 Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 % SZS output end CNFRefutation for COL057-1.p 10010: solved COL057-1.p in 2.124132 using nrkbo 10010: status Unsatisfiable for COL057-1.p NO CLASH, using fixed ground order 10025: Facts: 10025: Id : 2, {_}: multiply ?2 (inverse (multiply (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5) (inverse (multiply ?3 ?5)))) =>= ?4 [5, 4, 3, 2] by group_axiom ?2 ?3 ?4 ?5 10025: Goal: 10025: Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity 10025: Order: 10025: nrkbo 10025: Leaf order: 10025: inverse 5 1 0 10025: multiply 10 2 4 0,2 10025: c 2 0 2 2,2,2 10025: b 2 0 2 1,2,2 10025: a 2 0 2 1,2 NO CLASH, using fixed ground order 10026: Facts: 10026: Id : 2, {_}: multiply ?2 (inverse (multiply (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5) (inverse (multiply ?3 ?5)))) =>= ?4 [5, 4, 3, 2] by group_axiom ?2 ?3 ?4 ?5 10026: Goal: 10026: Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity 10026: Order: 10026: kbo 10026: Leaf order: 10026: inverse 5 1 0 10026: multiply 10 2 4 0,2 10026: c 2 0 2 2,2,2 10026: b 2 0 2 1,2,2 10026: a 2 0 2 1,2 NO CLASH, using fixed ground order 10027: Facts: 10027: Id : 2, {_}: multiply ?2 (inverse (multiply (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5) (inverse (multiply ?3 ?5)))) =>= ?4 [5, 4, 3, 2] by group_axiom ?2 ?3 ?4 ?5 10027: Goal: 10027: Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity 10027: Order: 10027: lpo 10027: Leaf order: 10027: inverse 5 1 0 10027: multiply 10 2 4 0,2 10027: c 2 0 2 2,2,2 10027: b 2 0 2 1,2,2 10027: a 2 0 2 1,2 Statistics : Max weight : 62 Found proof, 20.319552s % SZS status Unsatisfiable for GRP014-1.p % SZS output start CNFRefutation for GRP014-1.p Id : 2, {_}: multiply ?2 (inverse (multiply (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5) (inverse (multiply ?3 ?5)))) =>= ?4 [5, 4, 3, 2] by group_axiom ?2 ?3 ?4 ?5 Id : 3, {_}: multiply ?7 (inverse (multiply (multiply (inverse (multiply (inverse ?8) (multiply (inverse ?7) ?9))) ?10) (inverse (multiply ?8 ?10)))) =>= ?9 [10, 9, 8, 7] by group_axiom ?7 ?8 ?9 ?10 Id : 6, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (inverse (multiply (inverse ?29) (multiply (inverse (inverse (multiply (inverse ?28) (multiply (inverse ?26) ?30)))) ?27))) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 30, 29, 28, 27, 26] by Super 3 with 2 at 1,1,2,2 Id : 5, {_}: multiply ?19 (inverse (multiply (multiply (inverse (multiply (inverse ?20) ?21)) ?22) (inverse (multiply ?20 ?22)))) =?= inverse (multiply (multiply (inverse (multiply (inverse ?23) (multiply (inverse (inverse ?19)) ?21))) ?24) (inverse (multiply ?23 ?24))) [24, 23, 22, 21, 20, 19] by Super 3 with 2 at 2,1,1,1,1,2,2 Id : 28, {_}: multiply (inverse ?215) (multiply ?215 (inverse (multiply (multiply (inverse (multiply (inverse ?216) ?217)) ?218) (inverse (multiply ?216 ?218))))) =>= ?217 [218, 217, 216, 215] by Super 2 with 5 at 2,2 Id : 29, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?220) (multiply (inverse (inverse ?221)) (multiply (inverse ?221) ?222)))) ?223) (inverse (multiply ?220 ?223))) =>= ?222 [223, 222, 221, 220] by Super 2 with 5 at 2 Id : 287, {_}: multiply (inverse ?2293) (multiply ?2293 ?2294) =?= multiply (inverse (inverse ?2295)) (multiply (inverse ?2295) ?2294) [2295, 2294, 2293] by Super 28 with 29 at 2,2,2 Id : 136, {_}: multiply (inverse ?1148) (multiply ?1148 ?1149) =?= multiply (inverse (inverse ?1150)) (multiply (inverse ?1150) ?1149) [1150, 1149, 1148] by Super 28 with 29 at 2,2,2 Id : 301, {_}: multiply (inverse ?2384) (multiply ?2384 ?2385) =?= multiply (inverse ?2386) (multiply ?2386 ?2385) [2386, 2385, 2384] by Super 287 with 136 at 3 Id : 356, {_}: multiply (inverse ?2583) (multiply ?2583 (inverse (multiply (multiply (inverse (multiply (inverse ?2584) (multiply ?2584 ?2585))) ?2586) (inverse (multiply ?2587 ?2586))))) =>= multiply ?2587 ?2585 [2587, 2586, 2585, 2584, 2583] by Super 28 with 301 at 1,1,1,1,2,2,2 Id : 679, {_}: multiply ?5168 (inverse (multiply (multiply (inverse (multiply (inverse ?5169) (multiply ?5169 ?5170))) ?5171) (inverse (multiply (inverse ?5168) ?5171)))) =>= ?5170 [5171, 5170, 5169, 5168] by Super 2 with 301 at 1,1,1,1,2,2 Id : 2910, {_}: multiply ?23936 (inverse (multiply (multiply (inverse (multiply (inverse ?23937) (multiply ?23937 ?23938))) (multiply ?23936 ?23939)) (inverse (multiply (inverse ?23940) (multiply ?23940 ?23939))))) =>= ?23938 [23940, 23939, 23938, 23937, 23936] by Super 679 with 301 at 1,2,1,2,2 Id : 2996, {_}: multiply (multiply (inverse ?24702) (multiply ?24702 ?24703)) (inverse (multiply ?24704 (inverse (multiply (inverse ?24705) (multiply ?24705 (inverse (multiply (multiply (inverse (multiply (inverse ?24706) ?24704)) ?24707) (inverse (multiply ?24706 ?24707))))))))) =>= ?24703 [24707, 24706, 24705, 24704, 24703, 24702] by Super 2910 with 28 at 1,1,2,2 Id : 3034, {_}: multiply (multiply (inverse ?24702) (multiply ?24702 ?24703)) (inverse (multiply ?24704 (inverse ?24704))) =>= ?24703 [24704, 24703, 24702] by Demod 2996 with 28 at 1,2,1,2,2 Id : 3426, {_}: multiply (inverse (multiply (inverse ?29536) (multiply ?29536 ?29537))) ?29537 =?= multiply (inverse (multiply (inverse ?29538) (multiply ?29538 ?29539))) ?29539 [29539, 29538, 29537, 29536] by Super 356 with 3034 at 2,2 Id : 3726, {_}: multiply (inverse (inverse (multiply (inverse ?31745) (multiply ?31745 (inverse (multiply (multiply (inverse (multiply (inverse ?31746) ?31747)) ?31748) (inverse (multiply ?31746 ?31748)))))))) (multiply (inverse (multiply (inverse ?31749) (multiply ?31749 ?31750))) ?31750) =>= ?31747 [31750, 31749, 31748, 31747, 31746, 31745] by Super 28 with 3426 at 2,2 Id : 3919, {_}: multiply (inverse (inverse ?31747)) (multiply (inverse (multiply (inverse ?31749) (multiply ?31749 ?31750))) ?31750) =>= ?31747 [31750, 31749, 31747] by Demod 3726 with 28 at 1,1,1,2 Id : 91, {_}: multiply (inverse ?821) (multiply ?821 (inverse (multiply (multiply (inverse (multiply (inverse ?822) ?823)) ?824) (inverse (multiply ?822 ?824))))) =>= ?823 [824, 823, 822, 821] by Super 2 with 5 at 2,2 Id : 107, {_}: multiply (inverse ?949) (multiply ?949 (multiply ?950 (inverse (multiply (multiply (inverse (multiply (inverse ?951) ?952)) ?953) (inverse (multiply ?951 ?953)))))) =>= multiply (inverse (inverse ?950)) ?952 [953, 952, 951, 950, 949] by Super 91 with 5 at 2,2,2 Id : 3966, {_}: multiply (inverse (inverse (inverse ?33635))) ?33635 =?= multiply (inverse (inverse (inverse (multiply (inverse ?33636) (multiply ?33636 (inverse (multiply (multiply (inverse (multiply (inverse ?33637) ?33638)) ?33639) (inverse (multiply ?33637 ?33639))))))))) ?33638 [33639, 33638, 33637, 33636, 33635] by Super 107 with 3919 at 2,2 Id : 4117, {_}: multiply (inverse (inverse (inverse ?33635))) ?33635 =?= multiply (inverse (inverse (inverse ?33638))) ?33638 [33638, 33635] by Demod 3966 with 28 at 1,1,1,1,3 Id : 4346, {_}: multiply (inverse (inverse ?35898)) (multiply (inverse (multiply (inverse (inverse (inverse (inverse ?35899)))) (multiply (inverse (inverse (inverse ?35900))) ?35900))) ?35899) =>= ?35898 [35900, 35899, 35898] by Super 3919 with 4117 at 2,1,1,2,2 Id : 3965, {_}: multiply (inverse ?33628) (multiply ?33628 (multiply ?33629 (inverse (multiply (multiply (inverse ?33630) ?33631) (inverse (multiply (inverse ?33630) ?33631)))))) =?= multiply (inverse (inverse ?33629)) (multiply (inverse (multiply (inverse ?33632) (multiply ?33632 ?33633))) ?33633) [33633, 33632, 33631, 33630, 33629, 33628] by Super 107 with 3919 at 1,1,1,1,2,2,2,2 Id : 6632, {_}: multiply (inverse ?52916) (multiply ?52916 (multiply ?52917 (inverse (multiply (multiply (inverse ?52918) ?52919) (inverse (multiply (inverse ?52918) ?52919)))))) =>= ?52917 [52919, 52918, 52917, 52916] by Demod 3965 with 3919 at 3 Id : 6641, {_}: multiply (inverse ?52992) (multiply ?52992 (multiply ?52993 (inverse (multiply (multiply (inverse ?52994) (inverse (multiply (multiply (inverse (multiply (inverse ?52995) (multiply (inverse (inverse ?52994)) ?52996))) ?52997) (inverse (multiply ?52995 ?52997))))) (inverse ?52996))))) =>= ?52993 [52997, 52996, 52995, 52994, 52993, 52992] by Super 6632 with 2 at 1,2,1,2,2,2,2 Id : 6773, {_}: multiply (inverse ?52992) (multiply ?52992 (multiply ?52993 (inverse (multiply ?52996 (inverse ?52996))))) =>= ?52993 [52996, 52993, 52992] by Demod 6641 with 2 at 1,1,2,2,2,2 Id : 6832, {_}: multiply (inverse (inverse ?53817)) (multiply (inverse ?53818) (multiply ?53818 (inverse (multiply ?53819 (inverse ?53819))))) =>= ?53817 [53819, 53818, 53817] by Super 4346 with 6773 at 1,1,2,2 Id : 4, {_}: multiply ?12 (inverse (multiply (multiply (inverse (multiply (inverse ?13) (multiply (inverse ?12) ?14))) (inverse (multiply (multiply (inverse (multiply (inverse ?15) (multiply (inverse ?13) ?16))) ?17) (inverse (multiply ?15 ?17))))) (inverse ?16))) =>= ?14 [17, 16, 15, 14, 13, 12] by Super 3 with 2 at 1,2,1,2,2 Id : 9, {_}: multiply ?44 (inverse (multiply (multiply (inverse (multiply (inverse ?45) ?46)) ?47) (inverse (multiply ?45 ?47)))) =?= inverse (multiply (multiply (inverse (multiply (inverse ?48) (multiply (inverse (inverse ?44)) ?46))) (inverse (multiply (multiply (inverse (multiply (inverse ?49) (multiply (inverse ?48) ?50))) ?51) (inverse (multiply ?49 ?51))))) (inverse ?50)) [51, 50, 49, 48, 47, 46, 45, 44] by Super 2 with 4 at 2,1,1,1,1,2,2 Id : 7754, {_}: multiply ?63171 (inverse (multiply (multiply (inverse (multiply (inverse ?63172) (multiply (inverse ?63171) (inverse (multiply ?63173 (inverse ?63173)))))) ?63174) (inverse (multiply ?63172 ?63174)))) =?= inverse (multiply (multiply (inverse ?63175) (inverse (multiply (multiply (inverse (multiply (inverse ?63176) (multiply (inverse (inverse ?63175)) ?63177))) ?63178) (inverse (multiply ?63176 ?63178))))) (inverse ?63177)) [63178, 63177, 63176, 63175, 63174, 63173, 63172, 63171] by Super 9 with 6832 at 1,1,1,1,3 Id : 7872, {_}: inverse (multiply ?63173 (inverse ?63173)) =?= inverse (multiply (multiply (inverse ?63175) (inverse (multiply (multiply (inverse (multiply (inverse ?63176) (multiply (inverse (inverse ?63175)) ?63177))) ?63178) (inverse (multiply ?63176 ?63178))))) (inverse ?63177)) [63178, 63177, 63176, 63175, 63173] by Demod 7754 with 2 at 2 Id : 7873, {_}: inverse (multiply ?63173 (inverse ?63173)) =?= inverse (multiply ?63177 (inverse ?63177)) [63177, 63173] by Demod 7872 with 2 at 1,1,3 Id : 8249, {_}: multiply (inverse (inverse (multiply ?66459 (inverse ?66459)))) (multiply (inverse ?66460) (multiply ?66460 (inverse (multiply ?66461 (inverse ?66461))))) =?= multiply ?66462 (inverse ?66462) [66462, 66461, 66460, 66459] by Super 6832 with 7873 at 1,1,2 Id : 8282, {_}: multiply ?66459 (inverse ?66459) =?= multiply ?66462 (inverse ?66462) [66462, 66459] by Demod 8249 with 6832 at 2 Id : 8520, {_}: multiply (multiply (inverse ?67970) (multiply ?67971 (inverse ?67971))) (inverse (multiply ?67972 (inverse ?67972))) =>= inverse ?67970 [67972, 67971, 67970] by Super 3034 with 8282 at 2,1,2 Id : 380, {_}: multiply ?2743 (inverse (multiply (multiply (inverse ?2744) (multiply ?2744 ?2745)) (inverse (multiply ?2746 (multiply (multiply (inverse ?2746) (multiply (inverse ?2743) ?2747)) ?2745))))) =>= ?2747 [2747, 2746, 2745, 2744, 2743] by Super 2 with 301 at 1,1,2,2 Id : 8912, {_}: multiply ?70596 (inverse (multiply (multiply (inverse ?70597) (multiply ?70597 (inverse (multiply ?70598 (inverse ?70598))))) (inverse (multiply ?70599 (inverse ?70599))))) =>= inverse (inverse ?70596) [70599, 70598, 70597, 70596] by Super 380 with 8520 at 2,1,2,1,2,2 Id : 9021, {_}: multiply ?70596 (inverse (inverse (multiply ?70598 (inverse ?70598)))) =>= inverse (inverse ?70596) [70598, 70596] by Demod 8912 with 3034 at 1,2,2 Id : 9165, {_}: multiply (inverse (inverse ?72171)) (multiply (inverse (multiply (inverse ?72172) (inverse (inverse ?72172)))) (inverse (inverse (multiply ?72173 (inverse ?72173))))) =>= ?72171 [72173, 72172, 72171] by Super 3919 with 9021 at 2,1,1,2,2 Id : 10068, {_}: multiply (inverse (inverse ?76580)) (inverse (inverse (inverse (multiply (inverse ?76581) (inverse (inverse ?76581)))))) =>= ?76580 [76581, 76580] by Demod 9165 with 9021 at 2,2 Id : 9180, {_}: multiply ?72234 (inverse ?72234) =?= inverse (inverse (inverse (multiply ?72235 (inverse ?72235)))) [72235, 72234] by Super 8282 with 9021 at 3 Id : 10100, {_}: multiply (inverse (inverse ?76745)) (multiply ?76746 (inverse ?76746)) =>= ?76745 [76746, 76745] by Super 10068 with 9180 at 2,2 Id : 10663, {_}: multiply ?82289 (inverse (multiply ?82290 (inverse ?82290))) =>= inverse (inverse ?82289) [82290, 82289] by Super 8520 with 10100 at 1,2 Id : 10913, {_}: multiply (inverse (inverse ?83563)) (inverse (inverse (inverse (multiply (inverse ?83564) (multiply ?83564 (inverse (multiply ?83565 (inverse ?83565)))))))) =>= ?83563 [83565, 83564, 83563] by Super 3919 with 10663 at 2,2 Id : 10892, {_}: inverse (inverse (multiply (inverse ?24702) (multiply ?24702 ?24703))) =>= ?24703 [24703, 24702] by Demod 3034 with 10663 at 2 Id : 11238, {_}: multiply (inverse (inverse ?83563)) (inverse (inverse (multiply ?83565 (inverse ?83565)))) =>= ?83563 [83565, 83563] by Demod 10913 with 10892 at 1,2,2 Id : 11239, {_}: inverse (inverse (inverse (inverse ?83563))) =>= ?83563 [83563] by Demod 11238 with 9021 at 2 Id : 138, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1160) (multiply (inverse (inverse ?1161)) (multiply (inverse ?1161) ?1162)))) ?1163) (inverse (multiply ?1160 ?1163))) =>= ?1162 [1163, 1162, 1161, 1160] by Super 2 with 5 at 2 Id : 145, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1213) (multiply (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?1214) (multiply (inverse (inverse ?1215)) (multiply (inverse ?1215) ?1216)))) ?1217) (inverse (multiply ?1214 ?1217))))) (multiply ?1216 ?1218)))) ?1219) (inverse (multiply ?1213 ?1219))) =>= ?1218 [1219, 1218, 1217, 1216, 1215, 1214, 1213] by Super 138 with 29 at 1,2,2,1,1,1,1,2 Id : 168, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1213) (multiply (inverse ?1216) (multiply ?1216 ?1218)))) ?1219) (inverse (multiply ?1213 ?1219))) =>= ?1218 [1219, 1218, 1216, 1213] by Demod 145 with 29 at 1,1,2,1,1,1,1,2 Id : 777, {_}: multiply (inverse ?5891) (multiply ?5891 (multiply ?5892 (inverse (multiply (multiply (inverse (multiply (inverse ?5893) ?5894)) ?5895) (inverse (multiply ?5893 ?5895)))))) =>= multiply (inverse (inverse ?5892)) ?5894 [5895, 5894, 5893, 5892, 5891] by Super 91 with 5 at 2,2,2 Id : 813, {_}: multiply (inverse ?6211) (multiply ?6211 (multiply ?6212 ?6213)) =?= multiply (inverse (inverse ?6212)) (multiply (inverse ?6214) (multiply ?6214 ?6213)) [6214, 6213, 6212, 6211] by Super 777 with 168 at 2,2,2,2 Id : 1401, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?11491) (multiply ?11491 (multiply ?11492 ?11493)))) ?11494) (inverse (multiply (inverse ?11492) ?11494))) =>= ?11493 [11494, 11493, 11492, 11491] by Super 168 with 813 at 1,1,1,1,2 Id : 1427, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?11709) (multiply ?11709 (multiply (inverse ?11710) (multiply ?11710 ?11711))))) ?11712) (inverse (multiply (inverse (inverse ?11713)) ?11712))) =>= multiply ?11713 ?11711 [11713, 11712, 11711, 11710, 11709] by Super 1401 with 301 at 2,2,1,1,1,1,2 Id : 10889, {_}: multiply (inverse ?52992) (multiply ?52992 (inverse (inverse ?52993))) =>= ?52993 [52993, 52992] by Demod 6773 with 10663 at 2,2,2 Id : 11440, {_}: multiply (inverse ?85947) (multiply ?85947 ?85948) =>= inverse (inverse ?85948) [85948, 85947] by Super 10889 with 11239 at 2,2,2 Id : 12070, {_}: inverse (multiply (multiply (inverse (inverse (inverse (multiply (inverse ?11710) (multiply ?11710 ?11711))))) ?11712) (inverse (multiply (inverse (inverse ?11713)) ?11712))) =>= multiply ?11713 ?11711 [11713, 11712, 11711, 11710] by Demod 1427 with 11440 at 1,1,1,1,2 Id : 12071, {_}: inverse (multiply (multiply (inverse (inverse (inverse (inverse (inverse ?11711))))) ?11712) (inverse (multiply (inverse (inverse ?11713)) ?11712))) =>= multiply ?11713 ?11711 [11713, 11712, 11711] by Demod 12070 with 11440 at 1,1,1,1,1,1,2 Id : 12086, {_}: inverse (multiply (multiply (inverse ?11711) ?11712) (inverse (multiply (inverse (inverse ?11713)) ?11712))) =>= multiply ?11713 ?11711 [11713, 11712, 11711] by Demod 12071 with 11239 at 1,1,1,2 Id : 11284, {_}: multiply ?84907 (inverse (multiply (inverse (inverse (inverse ?84908))) ?84908)) =>= inverse (inverse ?84907) [84908, 84907] by Super 10663 with 11239 at 2,1,2,2 Id : 12456, {_}: inverse (inverse (inverse (multiply (inverse ?89511) ?89512))) =>= multiply (inverse ?89512) ?89511 [89512, 89511] by Super 12086 with 11284 at 1,2 Id : 12807, {_}: inverse (multiply (inverse ?89891) ?89892) =>= multiply (inverse ?89892) ?89891 [89892, 89891] by Super 11239 with 12456 at 1,2 Id : 13084, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (multiply (inverse (multiply (inverse (inverse (multiply (inverse ?28) (multiply (inverse ?26) ?30)))) ?27)) ?29) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 29, 30, 28, 27, 26] by Demod 6 with 12807 at 1,1,1,2,1,2,1,2,2 Id : 13085, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (multiply (multiply (inverse ?27) (inverse (multiply (inverse ?28) (multiply (inverse ?26) ?30)))) ?29) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 29, 30, 28, 27, 26] by Demod 13084 with 12807 at 1,1,1,1,2,1,2,1,2,2 Id : 13086, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (multiply (multiply (inverse ?27) (multiply (inverse (multiply (inverse ?26) ?30)) ?28)) ?29) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 29, 30, 28, 27, 26] by Demod 13085 with 12807 at 2,1,1,1,1,2,1,2,1,2,2 Id : 13087, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (multiply (multiply (inverse ?27) (multiply (multiply (inverse ?30) ?26) ?28)) ?29) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 29, 30, 28, 27, 26] by Demod 13086 with 12807 at 1,2,1,1,1,1,2,1,2,1,2,2 Id : 12072, {_}: multiply ?2743 (inverse (multiply (inverse (inverse ?2745)) (inverse (multiply ?2746 (multiply (multiply (inverse ?2746) (multiply (inverse ?2743) ?2747)) ?2745))))) =>= ?2747 [2747, 2746, 2745, 2743] by Demod 380 with 11440 at 1,1,2,2 Id : 13068, {_}: multiply ?2743 (multiply (inverse (inverse (multiply ?2746 (multiply (multiply (inverse ?2746) (multiply (inverse ?2743) ?2747)) ?2745)))) (inverse ?2745)) =>= ?2747 [2745, 2747, 2746, 2743] by Demod 12072 with 12807 at 2,2 Id : 358, {_}: multiply (inverse ?2595) (multiply ?2595 (inverse (multiply (multiply (inverse ?2596) (multiply ?2596 ?2597)) (inverse (multiply ?2598 (multiply (multiply (inverse ?2598) ?2599) ?2597)))))) =>= ?2599 [2599, 2598, 2597, 2596, 2595] by Super 28 with 301 at 1,1,2,2,2 Id : 12055, {_}: inverse (inverse (inverse (multiply (multiply (inverse ?2596) (multiply ?2596 ?2597)) (inverse (multiply ?2598 (multiply (multiply (inverse ?2598) ?2599) ?2597)))))) =>= ?2599 [2599, 2598, 2597, 2596] by Demod 358 with 11440 at 2 Id : 12056, {_}: inverse (inverse (inverse (multiply (inverse (inverse ?2597)) (inverse (multiply ?2598 (multiply (multiply (inverse ?2598) ?2599) ?2597)))))) =>= ?2599 [2599, 2598, 2597] by Demod 12055 with 11440 at 1,1,1,1,2 Id : 12778, {_}: multiply (inverse (inverse (multiply ?2598 (multiply (multiply (inverse ?2598) ?2599) ?2597)))) (inverse ?2597) =>= ?2599 [2597, 2599, 2598] by Demod 12056 with 12456 at 2 Id : 13130, {_}: multiply ?2743 (multiply (inverse ?2743) ?2747) =>= ?2747 [2747, 2743] by Demod 13068 with 12778 at 2,2 Id : 12068, {_}: inverse (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?2584) (multiply ?2584 ?2585))) ?2586) (inverse (multiply ?2587 ?2586))))) =>= multiply ?2587 ?2585 [2587, 2586, 2585, 2584] by Demod 356 with 11440 at 2 Id : 12069, {_}: inverse (inverse (inverse (multiply (multiply (inverse (inverse (inverse ?2585))) ?2586) (inverse (multiply ?2587 ?2586))))) =>= multiply ?2587 ?2585 [2587, 2586, 2585] by Demod 12068 with 11440 at 1,1,1,1,1,1,2 Id : 12343, {_}: inverse (inverse (inverse (inverse (inverse (multiply (inverse (inverse (inverse ?88665))) ?88666))))) =>= multiply (inverse (inverse (inverse ?88666))) ?88665 [88666, 88665] by Super 12069 with 11284 at 1,1,1,2 Id : 12705, {_}: inverse (multiply (inverse (inverse (inverse ?88665))) ?88666) =>= multiply (inverse (inverse (inverse ?88666))) ?88665 [88666, 88665] by Demod 12343 with 11239 at 2 Id : 13398, {_}: multiply (inverse ?88666) (inverse (inverse ?88665)) =?= multiply (inverse (inverse (inverse ?88666))) ?88665 [88665, 88666] by Demod 12705 with 12807 at 2 Id : 13591, {_}: multiply (inverse ?93455) (inverse (inverse (multiply (inverse (inverse (inverse (inverse ?93455)))) ?93456))) =>= ?93456 [93456, 93455] by Super 13130 with 13398 at 2 Id : 13688, {_}: multiply (inverse ?93455) (inverse (multiply (inverse ?93456) (inverse (inverse (inverse ?93455))))) =>= ?93456 [93456, 93455] by Demod 13591 with 12807 at 1,2,2 Id : 13689, {_}: multiply (inverse ?93455) (multiply (inverse (inverse (inverse (inverse ?93455)))) ?93456) =>= ?93456 [93456, 93455] by Demod 13688 with 12807 at 2,2 Id : 13690, {_}: multiply (inverse ?93455) (multiply ?93455 ?93456) =>= ?93456 [93456, 93455] by Demod 13689 with 11239 at 1,2,2 Id : 13691, {_}: inverse (inverse ?93456) =>= ?93456 [93456] by Demod 13690 with 11440 at 2 Id : 14259, {_}: inverse (multiply ?94937 ?94938) =<= multiply (inverse ?94938) (inverse ?94937) [94938, 94937] by Super 12807 with 13691 at 1,1,2 Id : 14272, {_}: inverse (multiply ?94994 (inverse ?94995)) =>= multiply ?94995 (inverse ?94994) [94995, 94994] by Super 14259 with 13691 at 1,3 Id : 15113, {_}: multiply ?26 (multiply (multiply ?28 (inverse (multiply (multiply (multiply (multiply (inverse ?27) (multiply (multiply (inverse ?30) ?26) ?28)) ?29) ?31) (inverse (multiply ?29 ?31))))) (inverse ?27)) =>= ?30 [31, 29, 30, 27, 28, 26] by Demod 13087 with 14272 at 2,2 Id : 15114, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (multiply (multiply (inverse ?27) (multiply (multiply (inverse ?30) ?26) ?28)) ?29) ?31)))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 15113 with 14272 at 2,1,2,2 Id : 14099, {_}: inverse (multiply ?94283 ?94284) =<= multiply (inverse ?94284) (inverse ?94283) [94284, 94283] by Super 12807 with 13691 at 1,1,2 Id : 15376, {_}: multiply ?101449 (inverse (multiply ?101450 ?101449)) =>= inverse ?101450 [101450, 101449] by Super 13130 with 14099 at 2,2 Id : 14196, {_}: multiply ?94524 (inverse (multiply ?94525 ?94524)) =>= inverse ?94525 [94525, 94524] by Super 13130 with 14099 at 2,2 Id : 15386, {_}: multiply (inverse (multiply ?101486 ?101487)) (inverse (inverse ?101486)) =>= inverse ?101487 [101487, 101486] by Super 15376 with 14196 at 1,2,2 Id : 15574, {_}: inverse (multiply (inverse ?101486) (multiply ?101486 ?101487)) =>= inverse ?101487 [101487, 101486] by Demod 15386 with 14099 at 2 Id : 16040, {_}: multiply (inverse (multiply ?103094 ?103095)) ?103094 =>= inverse ?103095 [103095, 103094] by Demod 15574 with 12807 at 2 Id : 12061, {_}: inverse (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?216) ?217)) ?218) (inverse (multiply ?216 ?218))))) =>= ?217 [218, 217, 216] by Demod 28 with 11440 at 2 Id : 13066, {_}: inverse (inverse (inverse (multiply (multiply (multiply (inverse ?217) ?216) ?218) (inverse (multiply ?216 ?218))))) =>= ?217 [218, 216, 217] by Demod 12061 with 12807 at 1,1,1,1,1,2 Id : 14035, {_}: inverse (multiply (multiply (multiply (inverse ?217) ?216) ?218) (inverse (multiply ?216 ?218))) =>= ?217 [218, 216, 217] by Demod 13066 with 13691 at 2 Id : 15129, {_}: multiply (multiply ?216 ?218) (inverse (multiply (multiply (inverse ?217) ?216) ?218)) =>= ?217 [217, 218, 216] by Demod 14035 with 14272 at 2 Id : 16059, {_}: multiply (inverse ?103200) (multiply ?103201 ?103202) =<= inverse (inverse (multiply (multiply (inverse ?103200) ?103201) ?103202)) [103202, 103201, 103200] by Super 16040 with 15129 at 1,1,2 Id : 16156, {_}: multiply (inverse ?103200) (multiply ?103201 ?103202) =<= multiply (multiply (inverse ?103200) ?103201) ?103202 [103202, 103201, 103200] by Demod 16059 with 13691 at 3 Id : 17066, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (multiply (inverse ?27) (multiply (multiply (multiply (inverse ?30) ?26) ?28) ?29)) ?31)))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 15114 with 16156 at 1,1,2,2,1,2,2 Id : 17067, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (inverse ?27) (multiply (multiply (multiply (multiply (inverse ?30) ?26) ?28) ?29) ?31))))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 17066 with 16156 at 1,2,2,1,2,2 Id : 17068, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (inverse ?27) (multiply (multiply (multiply (inverse ?30) (multiply ?26 ?28)) ?29) ?31))))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 17067 with 16156 at 1,1,2,1,2,2,1,2,2 Id : 17069, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (inverse ?27) (multiply (multiply (inverse ?30) (multiply (multiply ?26 ?28) ?29)) ?31))))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 17068 with 16156 at 1,2,1,2,2,1,2,2 Id : 17070, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (inverse ?27) (multiply (inverse ?30) (multiply (multiply (multiply ?26 ?28) ?29) ?31)))))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 17069 with 16156 at 2,1,2,2,1,2,2 Id : 17075, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (multiply (inverse (multiply (inverse ?30) (multiply (multiply (multiply ?26 ?28) ?29) ?31))) ?27))) (inverse ?27)) =>= ?30 [27, 30, 31, 29, 28, 26] by Demod 17070 with 12807 at 2,2,1,2,2 Id : 17076, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (multiply (multiply (inverse (multiply (multiply (multiply ?26 ?28) ?29) ?31)) ?30) ?27))) (inverse ?27)) =>= ?30 [27, 30, 31, 29, 28, 26] by Demod 17075 with 12807 at 1,2,2,1,2,2 Id : 17077, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (multiply (inverse (multiply (multiply (multiply ?26 ?28) ?29) ?31)) (multiply ?30 ?27)))) (inverse ?27)) =>= ?30 [27, 30, 31, 29, 28, 26] by Demod 17076 with 16156 at 2,2,1,2,2 Id : 14023, {_}: multiply (inverse ?33635) ?33635 =?= multiply (inverse (inverse (inverse ?33638))) ?33638 [33638, 33635] by Demod 4117 with 13691 at 1,2 Id : 14024, {_}: multiply (inverse ?33635) ?33635 =?= multiply (inverse ?33638) ?33638 [33638, 33635] by Demod 14023 with 13691 at 1,3 Id : 14053, {_}: multiply (inverse ?93965) ?93965 =?= multiply ?93966 (inverse ?93966) [93966, 93965] by Super 14024 with 13691 at 1,3 Id : 19206, {_}: multiply ?108859 (multiply (multiply ?108860 (multiply (multiply ?108861 ?108862) (multiply ?108863 (inverse ?108863)))) (inverse ?108862)) =>= multiply (multiply ?108859 ?108860) ?108861 [108863, 108862, 108861, 108860, 108859] by Super 17077 with 14053 at 2,2,1,2,2 Id : 14021, {_}: multiply ?70596 (multiply ?70598 (inverse ?70598)) =>= inverse (inverse ?70596) [70598, 70596] by Demod 9021 with 13691 at 2,2 Id : 14022, {_}: multiply ?70596 (multiply ?70598 (inverse ?70598)) =>= ?70596 [70598, 70596] by Demod 14021 with 13691 at 3 Id : 19669, {_}: multiply ?108859 (multiply (multiply ?108860 (multiply ?108861 ?108862)) (inverse ?108862)) =>= multiply (multiply ?108859 ?108860) ?108861 [108862, 108861, 108860, 108859] by Demod 19206 with 14022 at 2,1,2,2 Id : 14028, {_}: inverse (multiply (multiply (inverse (inverse (inverse ?2585))) ?2586) (inverse (multiply ?2587 ?2586))) =>= multiply ?2587 ?2585 [2587, 2586, 2585] by Demod 12069 with 13691 at 2 Id : 14029, {_}: inverse (multiply (multiply (inverse ?2585) ?2586) (inverse (multiply ?2587 ?2586))) =>= multiply ?2587 ?2585 [2587, 2586, 2585] by Demod 14028 with 13691 at 1,1,1,2 Id : 15108, {_}: multiply (multiply ?2587 ?2586) (inverse (multiply (inverse ?2585) ?2586)) =>= multiply ?2587 ?2585 [2585, 2586, 2587] by Demod 14029 with 14272 at 2 Id : 15134, {_}: multiply (multiply ?2587 ?2586) (multiply (inverse ?2586) ?2585) =>= multiply ?2587 ?2585 [2585, 2586, 2587] by Demod 15108 with 12807 at 2,2 Id : 15575, {_}: multiply (inverse (multiply ?101486 ?101487)) ?101486 =>= inverse ?101487 [101487, 101486] by Demod 15574 with 12807 at 2 Id : 16032, {_}: multiply (multiply ?103052 (multiply ?103053 ?103054)) (inverse ?103054) =>= multiply ?103052 ?103053 [103054, 103053, 103052] by Super 15134 with 15575 at 2,2 Id : 32860, {_}: multiply ?108859 (multiply ?108860 ?108861) =?= multiply (multiply ?108859 ?108860) ?108861 [108861, 108860, 108859] by Demod 19669 with 16032 at 2,2 Id : 33337, {_}: multiply a (multiply b c) === multiply a (multiply b c) [] by Demod 1 with 32860 at 3 Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity % SZS output end CNFRefutation for GRP014-1.p 10025: solved GRP014-1.p in 10.216638 using nrkbo 10025: status Unsatisfiable for GRP014-1.p CLASH, statistics insufficient 10036: Facts: 10036: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10036: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10036: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10036: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10036: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10036: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10036: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10036: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10036: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10036: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10036: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10036: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10036: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10036: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10036: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10036: Id : 17, {_}: positive_part ?50 =<= least_upper_bound ?50 identity [50] by lat4_1 ?50 10036: Id : 18, {_}: negative_part ?52 =<= greatest_lower_bound ?52 identity [52] by lat4_2 ?52 10036: Id : 19, {_}: least_upper_bound ?54 (greatest_lower_bound ?55 ?56) =<= greatest_lower_bound (least_upper_bound ?54 ?55) (least_upper_bound ?54 ?56) [56, 55, 54] by lat4_3 ?54 ?55 ?56 10036: Id : 20, {_}: greatest_lower_bound ?58 (least_upper_bound ?59 ?60) =<= least_upper_bound (greatest_lower_bound ?58 ?59) (greatest_lower_bound ?58 ?60) [60, 59, 58] by lat4_4 ?58 ?59 ?60 10036: Goal: 10036: Id : 1, {_}: a =<= multiply (positive_part a) (negative_part a) [] by prove_lat4 10036: Order: 10036: nrkbo 10036: Leaf order: 10036: least_upper_bound 19 2 0 10036: greatest_lower_bound 19 2 0 10036: inverse 1 1 0 10036: identity 4 0 0 10036: multiply 19 2 1 0,3 10036: negative_part 2 1 1 0,2,3 10036: positive_part 2 1 1 0,1,3 10036: a 3 0 3 2 CLASH, statistics insufficient 10037: Facts: 10037: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10037: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10037: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10037: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10037: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10037: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10037: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10037: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10037: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10037: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10037: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10037: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10037: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10037: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10037: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10037: Id : 17, {_}: positive_part ?50 =<= least_upper_bound ?50 identity [50] by lat4_1 ?50 10037: Id : 18, {_}: negative_part ?52 =<= greatest_lower_bound ?52 identity [52] by lat4_2 ?52 10037: Id : 19, {_}: least_upper_bound ?54 (greatest_lower_bound ?55 ?56) =<= greatest_lower_bound (least_upper_bound ?54 ?55) (least_upper_bound ?54 ?56) [56, 55, 54] by lat4_3 ?54 ?55 ?56 10037: Id : 20, {_}: greatest_lower_bound ?58 (least_upper_bound ?59 ?60) =<= least_upper_bound (greatest_lower_bound ?58 ?59) (greatest_lower_bound ?58 ?60) [60, 59, 58] by lat4_4 ?58 ?59 ?60 10037: Goal: 10037: Id : 1, {_}: a =<= multiply (positive_part a) (negative_part a) [] by prove_lat4 10037: Order: 10037: kbo 10037: Leaf order: 10037: least_upper_bound 19 2 0 10037: greatest_lower_bound 19 2 0 10037: inverse 1 1 0 10037: identity 4 0 0 10037: multiply 19 2 1 0,3 10037: negative_part 2 1 1 0,2,3 10037: positive_part 2 1 1 0,1,3 10037: a 3 0 3 2 CLASH, statistics insufficient 10038: Facts: 10038: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10038: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10038: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10038: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10038: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10038: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10038: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10038: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10038: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10038: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10038: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10038: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10038: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =>= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10038: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10038: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =>= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10038: Id : 17, {_}: positive_part ?50 =>= least_upper_bound ?50 identity [50] by lat4_1 ?50 10038: Id : 18, {_}: negative_part ?52 =>= greatest_lower_bound ?52 identity [52] by lat4_2 ?52 10038: Id : 19, {_}: least_upper_bound ?54 (greatest_lower_bound ?55 ?56) =<= greatest_lower_bound (least_upper_bound ?54 ?55) (least_upper_bound ?54 ?56) [56, 55, 54] by lat4_3 ?54 ?55 ?56 10038: Id : 20, {_}: greatest_lower_bound ?58 (least_upper_bound ?59 ?60) =>= least_upper_bound (greatest_lower_bound ?58 ?59) (greatest_lower_bound ?58 ?60) [60, 59, 58] by lat4_4 ?58 ?59 ?60 10038: Goal: 10038: Id : 1, {_}: a =<= multiply (positive_part a) (negative_part a) [] by prove_lat4 10038: Order: 10038: lpo 10038: Leaf order: 10038: least_upper_bound 19 2 0 10038: greatest_lower_bound 19 2 0 10038: inverse 1 1 0 10038: identity 4 0 0 10038: multiply 19 2 1 0,3 10038: negative_part 2 1 1 0,2,3 10038: positive_part 2 1 1 0,1,3 10038: a 3 0 3 2 Statistics : Max weight : 19 Found proof, 19.804581s % SZS status Unsatisfiable for GRP167-1.p % SZS output start CNFRefutation for GRP167-1.p Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 Id : 134, {_}: multiply ?322 (least_upper_bound ?323 ?324) =<= least_upper_bound (multiply ?322 ?323) (multiply ?322 ?324) [324, 323, 322] by monotony_lub1 ?322 ?323 ?324 Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 Id : 20, {_}: greatest_lower_bound ?58 (least_upper_bound ?59 ?60) =<= least_upper_bound (greatest_lower_bound ?58 ?59) (greatest_lower_bound ?58 ?60) [60, 59, 58] by lat4_4 ?58 ?59 ?60 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 Id : 17, {_}: positive_part ?50 =<= least_upper_bound ?50 identity [50] by lat4_1 ?50 Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 Id : 18, {_}: negative_part ?52 =<= greatest_lower_bound ?52 identity [52] by lat4_2 ?52 Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 Id : 237, {_}: multiply (greatest_lower_bound ?514 ?515) ?516 =<= greatest_lower_bound (multiply ?514 ?516) (multiply ?515 ?516) [516, 515, 514] by monotony_glb2 ?514 ?515 ?516 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 Id : 25, {_}: multiply (multiply ?69 ?70) ?71 =>= multiply ?69 (multiply ?70 ?71) [71, 70, 69] by associativity ?69 ?70 ?71 Id : 27, {_}: multiply identity ?76 =<= multiply (inverse ?77) (multiply ?77 ?76) [77, 76] by Super 25 with 3 at 1,2 Id : 31, {_}: ?76 =<= multiply (inverse ?77) (multiply ?77 ?76) [77, 76] by Demod 27 with 2 at 2 Id : 242, {_}: multiply (greatest_lower_bound (inverse ?532) ?533) ?532 =>= greatest_lower_bound identity (multiply ?533 ?532) [533, 532] by Super 237 with 3 at 1,3 Id : 278, {_}: greatest_lower_bound identity ?584 =>= negative_part ?584 [584] by Super 5 with 18 at 3 Id : 15662, {_}: multiply (greatest_lower_bound (inverse ?19569) ?19570) ?19569 =>= negative_part (multiply ?19570 ?19569) [19570, 19569] by Demod 242 with 278 at 3 Id : 15688, {_}: multiply (negative_part (inverse ?19646)) ?19646 =>= negative_part (multiply identity ?19646) [19646] by Super 15662 with 18 at 1,2 Id : 15740, {_}: multiply (negative_part (inverse ?19646)) ?19646 =>= negative_part ?19646 [19646] by Demod 15688 with 2 at 1,3 Id : 15765, {_}: ?19710 =<= multiply (inverse (negative_part (inverse ?19710))) (negative_part ?19710) [19710] by Super 31 with 15740 at 2,3 Id : 778, {_}: ?1461 =<= multiply (inverse ?1462) (multiply ?1462 ?1461) [1462, 1461] by Demod 27 with 2 at 2 Id : 782, {_}: ?1472 =<= multiply (inverse (inverse ?1472)) identity [1472] by Super 778 with 3 at 2,3 Id : 1371, {_}: multiply (inverse (inverse ?2316)) (least_upper_bound ?2317 identity) =?= least_upper_bound (multiply (inverse (inverse ?2316)) ?2317) ?2316 [2317, 2316] by Super 13 with 782 at 2,3 Id : 1392, {_}: multiply (inverse (inverse ?2316)) (positive_part ?2317) =<= least_upper_bound (multiply (inverse (inverse ?2316)) ?2317) ?2316 [2317, 2316] by Demod 1371 with 17 at 2,2 Id : 1393, {_}: multiply (inverse (inverse ?2316)) (positive_part ?2317) =<= least_upper_bound ?2316 (multiply (inverse (inverse ?2316)) ?2317) [2317, 2316] by Demod 1392 with 6 at 3 Id : 786, {_}: multiply ?1484 ?1485 =<= multiply (inverse (inverse ?1484)) ?1485 [1485, 1484] by Super 778 with 31 at 2,3 Id : 2137, {_}: ?1472 =<= multiply ?1472 identity [1472] by Demod 782 with 786 at 3 Id : 2138, {_}: inverse (inverse ?3405) =<= multiply ?3405 identity [3405] by Super 2137 with 786 at 3 Id : 2189, {_}: inverse (inverse ?3405) =>= ?3405 [3405] by Demod 2138 with 2137 at 3 Id : 49575, {_}: multiply ?2316 (positive_part ?2317) =<= least_upper_bound ?2316 (multiply (inverse (inverse ?2316)) ?2317) [2317, 2316] by Demod 1393 with 2189 at 1,2 Id : 49621, {_}: multiply ?54979 (positive_part ?54980) =<= least_upper_bound ?54979 (multiply ?54979 ?54980) [54980, 54979] by Demod 49575 with 2189 at 1,2,3 Id : 15768, {_}: multiply (negative_part (inverse ?19715)) ?19715 =>= negative_part ?19715 [19715] by Demod 15688 with 2 at 1,3 Id : 15773, {_}: multiply (negative_part ?19724) (inverse ?19724) =>= negative_part (inverse ?19724) [19724] by Super 15768 with 2189 at 1,1,2 Id : 49652, {_}: multiply (negative_part ?55064) (positive_part (inverse ?55064)) =>= least_upper_bound (negative_part ?55064) (negative_part (inverse ?55064)) [55064] by Super 49621 with 15773 at 2,3 Id : 865, {_}: greatest_lower_bound identity (least_upper_bound ?1569 ?1570) =<= least_upper_bound (greatest_lower_bound identity ?1569) (negative_part ?1570) [1570, 1569] by Super 20 with 278 at 2,3 Id : 880, {_}: negative_part (least_upper_bound ?1569 ?1570) =<= least_upper_bound (greatest_lower_bound identity ?1569) (negative_part ?1570) [1570, 1569] by Demod 865 with 278 at 2 Id : 881, {_}: negative_part (least_upper_bound ?1569 ?1570) =<= least_upper_bound (negative_part ?1569) (negative_part ?1570) [1570, 1569] by Demod 880 with 278 at 1,3 Id : 49776, {_}: multiply (negative_part ?55064) (positive_part (inverse ?55064)) =>= negative_part (least_upper_bound ?55064 (inverse ?55064)) [55064] by Demod 49652 with 881 at 3 Id : 15757, {_}: multiply (greatest_lower_bound (negative_part (inverse ?19686)) ?19687) ?19686 =>= greatest_lower_bound (negative_part ?19686) (multiply ?19687 ?19686) [19687, 19686] by Super 16 with 15740 at 1,3 Id : 859, {_}: greatest_lower_bound identity (greatest_lower_bound ?1558 ?1559) =>= greatest_lower_bound (negative_part ?1558) ?1559 [1559, 1558] by Super 7 with 278 at 1,3 Id : 890, {_}: negative_part (greatest_lower_bound ?1558 ?1559) =>= greatest_lower_bound (negative_part ?1558) ?1559 [1559, 1558] by Demod 859 with 278 at 2 Id : 281, {_}: greatest_lower_bound ?591 (greatest_lower_bound ?592 identity) =>= negative_part (greatest_lower_bound ?591 ?592) [592, 591] by Super 7 with 18 at 3 Id : 289, {_}: greatest_lower_bound ?591 (negative_part ?592) =<= negative_part (greatest_lower_bound ?591 ?592) [592, 591] by Demod 281 with 18 at 2,2 Id : 1628, {_}: greatest_lower_bound ?1558 (negative_part ?1559) =<= greatest_lower_bound (negative_part ?1558) ?1559 [1559, 1558] by Demod 890 with 289 at 2 Id : 15802, {_}: multiply (greatest_lower_bound (inverse ?19686) (negative_part ?19687)) ?19686 =>= greatest_lower_bound (negative_part ?19686) (multiply ?19687 ?19686) [19687, 19686] by Demod 15757 with 1628 at 1,2 Id : 15803, {_}: multiply (greatest_lower_bound (inverse ?19686) (negative_part ?19687)) ?19686 =>= greatest_lower_bound ?19686 (negative_part (multiply ?19687 ?19686)) [19687, 19686] by Demod 15802 with 1628 at 3 Id : 15650, {_}: multiply (greatest_lower_bound (inverse ?532) ?533) ?532 =>= negative_part (multiply ?533 ?532) [533, 532] by Demod 242 with 278 at 3 Id : 15804, {_}: negative_part (multiply (negative_part ?19687) ?19686) =<= greatest_lower_bound ?19686 (negative_part (multiply ?19687 ?19686)) [19686, 19687] by Demod 15803 with 15650 at 2 Id : 49651, {_}: multiply (negative_part (inverse ?55062)) (positive_part ?55062) =>= least_upper_bound (negative_part (inverse ?55062)) (negative_part ?55062) [55062] by Super 49621 with 15740 at 2,3 Id : 49774, {_}: multiply (negative_part (inverse ?55062)) (positive_part ?55062) =>= least_upper_bound (negative_part ?55062) (negative_part (inverse ?55062)) [55062] by Demod 49651 with 6 at 3 Id : 49775, {_}: multiply (negative_part (inverse ?55062)) (positive_part ?55062) =>= negative_part (least_upper_bound ?55062 (inverse ?55062)) [55062] by Demod 49774 with 881 at 3 Id : 49840, {_}: negative_part (multiply (negative_part (negative_part (inverse ?55170))) (positive_part ?55170)) =<= greatest_lower_bound (positive_part ?55170) (negative_part (negative_part (least_upper_bound ?55170 (inverse ?55170)))) [55170] by Super 15804 with 49775 at 1,2,3 Id : 268, {_}: greatest_lower_bound ?569 (positive_part ?569) =>= ?569 [569] by Super 12 with 17 at 2,2 Id : 139, {_}: multiply (inverse ?340) (least_upper_bound ?340 ?341) =>= least_upper_bound identity (multiply (inverse ?340) ?341) [341, 340] by Super 134 with 3 at 1,3 Id : 264, {_}: least_upper_bound identity ?559 =>= positive_part ?559 [559] by Super 6 with 17 at 3 Id : 4901, {_}: multiply (inverse ?7380) (least_upper_bound ?7380 ?7381) =>= positive_part (multiply (inverse ?7380) ?7381) [7381, 7380] by Demod 139 with 264 at 3 Id : 4921, {_}: multiply (inverse ?7441) (positive_part ?7441) =?= positive_part (multiply (inverse ?7441) identity) [7441] by Super 4901 with 17 at 2,2 Id : 4985, {_}: multiply (inverse ?7525) (positive_part ?7525) =>= positive_part (inverse ?7525) [7525] by Demod 4921 with 2137 at 1,3 Id : 267, {_}: least_upper_bound ?566 (least_upper_bound ?567 identity) =>= positive_part (least_upper_bound ?566 ?567) [567, 566] by Super 8 with 17 at 3 Id : 1187, {_}: least_upper_bound ?2080 (positive_part ?2081) =<= positive_part (least_upper_bound ?2080 ?2081) [2081, 2080] by Demod 267 with 17 at 2,2 Id : 1199, {_}: least_upper_bound ?2117 (positive_part identity) =>= positive_part (positive_part ?2117) [2117] by Super 1187 with 17 at 1,3 Id : 263, {_}: positive_part identity =>= identity [] by Super 9 with 17 at 2 Id : 1218, {_}: least_upper_bound ?2117 identity =<= positive_part (positive_part ?2117) [2117] by Demod 1199 with 263 at 2,2 Id : 1219, {_}: positive_part ?2117 =<= positive_part (positive_part ?2117) [2117] by Demod 1218 with 17 at 2 Id : 4997, {_}: multiply (inverse (positive_part ?7553)) (positive_part ?7553) =>= positive_part (inverse (positive_part ?7553)) [7553] by Super 4985 with 1219 at 2,2 Id : 5031, {_}: identity =<= positive_part (inverse (positive_part ?7553)) [7553] by Demod 4997 with 3 at 2 Id : 5129, {_}: greatest_lower_bound (inverse (positive_part ?7677)) identity =>= inverse (positive_part ?7677) [7677] by Super 268 with 5031 at 2,2 Id : 5176, {_}: greatest_lower_bound identity (inverse (positive_part ?7677)) =>= inverse (positive_part ?7677) [7677] by Demod 5129 with 5 at 2 Id : 5177, {_}: negative_part (inverse (positive_part ?7677)) =>= inverse (positive_part ?7677) [7677] by Demod 5176 with 278 at 2 Id : 5325, {_}: greatest_lower_bound (inverse (positive_part ?7851)) (negative_part ?7852) =>= greatest_lower_bound (inverse (positive_part ?7851)) ?7852 [7852, 7851] by Super 1628 with 5177 at 1,3 Id : 15685, {_}: multiply (greatest_lower_bound (inverse (positive_part ?19637)) ?19638) (positive_part ?19637) =>= negative_part (multiply (negative_part ?19638) (positive_part ?19637)) [19638, 19637] by Super 15662 with 5325 at 1,2 Id : 15737, {_}: negative_part (multiply ?19638 (positive_part ?19637)) =<= negative_part (multiply (negative_part ?19638) (positive_part ?19637)) [19637, 19638] by Demod 15685 with 15650 at 2 Id : 49928, {_}: negative_part (multiply (negative_part (inverse ?55170)) (positive_part ?55170)) =<= greatest_lower_bound (positive_part ?55170) (negative_part (negative_part (least_upper_bound ?55170 (inverse ?55170)))) [55170] by Demod 49840 with 15737 at 2 Id : 1648, {_}: greatest_lower_bound ?2900 (negative_part ?2901) =<= greatest_lower_bound (negative_part ?2900) ?2901 [2901, 2900] by Demod 890 with 289 at 2 Id : 863, {_}: negative_part (least_upper_bound identity ?1566) =>= identity [1566] by Super 12 with 278 at 2 Id : 886, {_}: negative_part (positive_part ?1566) =>= identity [1566] by Demod 863 with 264 at 1,2 Id : 1653, {_}: greatest_lower_bound (positive_part ?2914) (negative_part ?2915) =>= greatest_lower_bound identity ?2915 [2915, 2914] by Super 1648 with 886 at 1,3 Id : 1710, {_}: greatest_lower_bound (positive_part ?2914) (negative_part ?2915) =>= negative_part ?2915 [2915, 2914] by Demod 1653 with 278 at 3 Id : 49929, {_}: negative_part (multiply (negative_part (inverse ?55170)) (positive_part ?55170)) =>= negative_part (negative_part (least_upper_bound ?55170 (inverse ?55170))) [55170] by Demod 49928 with 1710 at 3 Id : 49930, {_}: negative_part (multiply (inverse ?55170) (positive_part ?55170)) =<= negative_part (negative_part (least_upper_bound ?55170 (inverse ?55170))) [55170] by Demod 49929 with 15737 at 2 Id : 1014, {_}: greatest_lower_bound ?1717 (positive_part ?1717) =>= ?1717 [1717] by Super 12 with 17 at 2,2 Id : 858, {_}: least_upper_bound identity (negative_part ?1556) =>= identity [1556] by Super 11 with 278 at 2,2 Id : 891, {_}: positive_part (negative_part ?1556) =>= identity [1556] by Demod 858 with 264 at 2 Id : 1019, {_}: greatest_lower_bound (negative_part ?1726) identity =>= negative_part ?1726 [1726] by Super 1014 with 891 at 2,2 Id : 1039, {_}: greatest_lower_bound identity (negative_part ?1726) =>= negative_part ?1726 [1726] by Demod 1019 with 5 at 2 Id : 1040, {_}: negative_part (negative_part ?1726) =>= negative_part ?1726 [1726] by Demod 1039 with 278 at 2 Id : 49931, {_}: negative_part (multiply (inverse ?55170) (positive_part ?55170)) =>= negative_part (least_upper_bound ?55170 (inverse ?55170)) [55170] by Demod 49930 with 1040 at 3 Id : 4960, {_}: multiply (inverse ?7441) (positive_part ?7441) =>= positive_part (inverse ?7441) [7441] by Demod 4921 with 2137 at 1,3 Id : 49932, {_}: negative_part (positive_part (inverse ?55170)) =<= negative_part (least_upper_bound ?55170 (inverse ?55170)) [55170] by Demod 49931 with 4960 at 1,2 Id : 49933, {_}: identity =<= negative_part (least_upper_bound ?55170 (inverse ?55170)) [55170] by Demod 49932 with 886 at 2 Id : 53516, {_}: multiply (negative_part ?55064) (positive_part (inverse ?55064)) =>= identity [55064] by Demod 49776 with 49933 at 3 Id : 53529, {_}: positive_part (inverse ?58317) =<= multiply (inverse (negative_part ?58317)) identity [58317] by Super 31 with 53516 at 2,3 Id : 53947, {_}: positive_part (inverse ?58761) =>= inverse (negative_part ?58761) [58761] by Demod 53529 with 2137 at 3 Id : 53952, {_}: positive_part ?58770 =<= inverse (negative_part (inverse ?58770)) [58770] by Super 53947 with 2189 at 1,2 Id : 54151, {_}: ?19710 =<= multiply (positive_part ?19710) (negative_part ?19710) [19710] by Demod 15765 with 53952 at 1,3 Id : 54473, {_}: a =?= a [] by Demod 1 with 54151 at 3 Id : 1, {_}: a =<= multiply (positive_part a) (negative_part a) [] by prove_lat4 % SZS output end CNFRefutation for GRP167-1.p 10037: solved GRP167-1.p in 9.872616 using kbo 10037: status Unsatisfiable for GRP167-1.p CLASH, statistics insufficient 10051: Facts: 10051: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10051: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10051: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10051: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10051: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10051: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10051: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10051: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10051: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10051: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10051: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10051: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10051: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10051: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10051: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10051: Id : 17, {_}: inverse identity =>= identity [] by lat4_1 10051: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by lat4_2 ?51 10051: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by lat4_3 ?53 ?54 10051: Id : 20, {_}: positive_part ?56 =<= least_upper_bound ?56 identity [56] by lat4_4 ?56 10051: Id : 21, {_}: negative_part ?58 =<= greatest_lower_bound ?58 identity [58] by lat4_5 ?58 10051: Id : 22, {_}: least_upper_bound ?60 (greatest_lower_bound ?61 ?62) =<= greatest_lower_bound (least_upper_bound ?60 ?61) (least_upper_bound ?60 ?62) [62, 61, 60] by lat4_6 ?60 ?61 ?62 10051: Id : 23, {_}: greatest_lower_bound ?64 (least_upper_bound ?65 ?66) =<= least_upper_bound (greatest_lower_bound ?64 ?65) (greatest_lower_bound ?64 ?66) [66, 65, 64] by lat4_7 ?64 ?65 ?66 10051: Goal: 10051: Id : 1, {_}: a =<= multiply (positive_part a) (negative_part a) [] by prove_lat4 10051: Order: 10051: nrkbo 10051: Leaf order: 10051: least_upper_bound 19 2 0 10051: greatest_lower_bound 19 2 0 10051: inverse 7 1 0 10051: identity 6 0 0 10051: multiply 21 2 1 0,3 10051: negative_part 2 1 1 0,2,3 10051: positive_part 2 1 1 0,1,3 10051: a 3 0 3 2 CLASH, statistics insufficient 10052: Facts: 10052: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10052: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10052: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10052: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10052: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10052: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10052: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10052: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10052: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10052: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10052: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10052: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10052: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10052: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10052: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10052: Id : 17, {_}: inverse identity =>= identity [] by lat4_1 10052: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by lat4_2 ?51 10052: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by lat4_3 ?53 ?54 10052: Id : 20, {_}: positive_part ?56 =<= least_upper_bound ?56 identity [56] by lat4_4 ?56 10052: Id : 21, {_}: negative_part ?58 =<= greatest_lower_bound ?58 identity [58] by lat4_5 ?58 10052: Id : 22, {_}: least_upper_bound ?60 (greatest_lower_bound ?61 ?62) =<= greatest_lower_bound (least_upper_bound ?60 ?61) (least_upper_bound ?60 ?62) [62, 61, 60] by lat4_6 ?60 ?61 ?62 10052: Id : 23, {_}: greatest_lower_bound ?64 (least_upper_bound ?65 ?66) =<= least_upper_bound (greatest_lower_bound ?64 ?65) (greatest_lower_bound ?64 ?66) [66, 65, 64] by lat4_7 ?64 ?65 ?66 10052: Goal: 10052: Id : 1, {_}: a =<= multiply (positive_part a) (negative_part a) [] by prove_lat4 10052: Order: 10052: kbo 10052: Leaf order: 10052: least_upper_bound 19 2 0 10052: greatest_lower_bound 19 2 0 10052: inverse 7 1 0 10052: identity 6 0 0 10052: multiply 21 2 1 0,3 10052: negative_part 2 1 1 0,2,3 10052: positive_part 2 1 1 0,1,3 10052: a 3 0 3 2 CLASH, statistics insufficient 10053: Facts: 10053: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10053: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10053: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10053: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10053: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10053: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10053: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10053: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10053: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10053: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10053: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10053: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10053: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =>= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10053: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10053: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =>= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10053: Id : 17, {_}: inverse identity =>= identity [] by lat4_1 10053: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by lat4_2 ?51 10053: Id : 19, {_}: inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53) [54, 53] by lat4_3 ?53 ?54 10053: Id : 20, {_}: positive_part ?56 =>= least_upper_bound ?56 identity [56] by lat4_4 ?56 10053: Id : 21, {_}: negative_part ?58 =>= greatest_lower_bound ?58 identity [58] by lat4_5 ?58 10053: Id : 22, {_}: least_upper_bound ?60 (greatest_lower_bound ?61 ?62) =<= greatest_lower_bound (least_upper_bound ?60 ?61) (least_upper_bound ?60 ?62) [62, 61, 60] by lat4_6 ?60 ?61 ?62 10053: Id : 23, {_}: greatest_lower_bound ?64 (least_upper_bound ?65 ?66) =>= least_upper_bound (greatest_lower_bound ?64 ?65) (greatest_lower_bound ?64 ?66) [66, 65, 64] by lat4_7 ?64 ?65 ?66 10053: Goal: 10053: Id : 1, {_}: a =<= multiply (positive_part a) (negative_part a) [] by prove_lat4 10053: Order: 10053: lpo 10053: Leaf order: 10053: least_upper_bound 19 2 0 10053: greatest_lower_bound 19 2 0 10053: inverse 7 1 0 10053: identity 6 0 0 10053: multiply 21 2 1 0,3 10053: negative_part 2 1 1 0,2,3 10053: positive_part 2 1 1 0,1,3 10053: a 3 0 3 2 Statistics : Max weight : 15 Found proof, 6.844655s % SZS status Unsatisfiable for GRP167-2.p % SZS output start CNFRefutation for GRP167-2.p Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by lat4_3 ?53 ?54 Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 Id : 22, {_}: least_upper_bound ?60 (greatest_lower_bound ?61 ?62) =<= greatest_lower_bound (least_upper_bound ?60 ?61) (least_upper_bound ?60 ?62) [62, 61, 60] by lat4_6 ?60 ?61 ?62 Id : 210, {_}: multiply (least_upper_bound ?453 ?454) ?455 =<= least_upper_bound (multiply ?453 ?455) (multiply ?454 ?455) [455, 454, 453] by monotony_lub2 ?453 ?454 ?455 Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 Id : 21, {_}: negative_part ?58 =<= greatest_lower_bound ?58 identity [58] by lat4_5 ?58 Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 Id : 20, {_}: positive_part ?56 =<= least_upper_bound ?56 identity [56] by lat4_4 ?56 Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 Id : 286, {_}: inverse (multiply ?614 ?615) =<= multiply (inverse ?615) (inverse ?614) [615, 614] by lat4_3 ?614 ?615 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 Id : 28, {_}: multiply (multiply ?75 ?76) ?77 =>= multiply ?75 (multiply ?76 ?77) [77, 76, 75] by associativity ?75 ?76 ?77 Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by lat4_2 ?51 Id : 30, {_}: multiply identity ?82 =<= multiply (inverse ?83) (multiply ?83 ?82) [83, 82] by Super 28 with 3 at 1,2 Id : 34, {_}: ?82 =<= multiply (inverse ?83) (multiply ?83 ?82) [83, 82] by Demod 30 with 2 at 2 Id : 288, {_}: inverse (multiply (inverse ?619) ?620) =>= multiply (inverse ?620) ?619 [620, 619] by Super 286 with 18 at 2,3 Id : 997, {_}: ?1719 =<= multiply (inverse ?1720) (multiply ?1720 ?1719) [1720, 1719] by Demod 30 with 2 at 2 Id : 1001, {_}: ?1730 =<= multiply (inverse (inverse ?1730)) identity [1730] by Super 997 with 3 at 2,3 Id : 1026, {_}: ?1730 =<= multiply ?1730 identity [1730] by Demod 1001 with 18 at 1,3 Id : 1045, {_}: multiply ?1785 (least_upper_bound ?1786 identity) =?= least_upper_bound (multiply ?1785 ?1786) ?1785 [1786, 1785] by Super 13 with 1026 at 2,3 Id : 1078, {_}: multiply ?1785 (positive_part ?1786) =<= least_upper_bound (multiply ?1785 ?1786) ?1785 [1786, 1785] by Demod 1045 with 20 at 2,2 Id : 5086, {_}: multiply ?7297 (positive_part ?7298) =<= least_upper_bound ?7297 (multiply ?7297 ?7298) [7298, 7297] by Demod 1078 with 6 at 3 Id : 5090, {_}: multiply (inverse ?7308) (positive_part ?7308) =>= least_upper_bound (inverse ?7308) identity [7308] by Super 5086 with 3 at 2,3 Id : 5133, {_}: multiply (inverse ?7308) (positive_part ?7308) =>= least_upper_bound identity (inverse ?7308) [7308] by Demod 5090 with 6 at 3 Id : 298, {_}: least_upper_bound identity ?640 =>= positive_part ?640 [640] by Super 6 with 20 at 3 Id : 5134, {_}: multiply (inverse ?7308) (positive_part ?7308) =>= positive_part (inverse ?7308) [7308] by Demod 5133 with 298 at 3 Id : 5356, {_}: inverse (positive_part (inverse ?7872)) =<= multiply (inverse (positive_part ?7872)) ?7872 [7872] by Super 288 with 5134 at 1,2 Id : 1051, {_}: multiply ?1799 (greatest_lower_bound ?1800 identity) =?= greatest_lower_bound (multiply ?1799 ?1800) ?1799 [1800, 1799] by Super 14 with 1026 at 2,3 Id : 1072, {_}: multiply ?1799 (negative_part ?1800) =<= greatest_lower_bound (multiply ?1799 ?1800) ?1799 [1800, 1799] by Demod 1051 with 21 at 2,2 Id : 4381, {_}: multiply ?6565 (negative_part ?6566) =<= greatest_lower_bound ?6565 (multiply ?6565 ?6566) [6566, 6565] by Demod 1072 with 5 at 3 Id : 270, {_}: multiply ?567 (inverse ?567) =>= identity [567] by Super 3 with 18 at 1,2 Id : 4388, {_}: multiply ?6585 (negative_part (inverse ?6585)) =>= greatest_lower_bound ?6585 identity [6585] by Super 4381 with 270 at 2,3 Id : 4428, {_}: multiply ?6585 (negative_part (inverse ?6585)) =>= negative_part ?6585 [6585] by Demod 4388 with 21 at 3 Id : 1073, {_}: multiply ?1799 (negative_part ?1800) =<= greatest_lower_bound ?1799 (multiply ?1799 ?1800) [1800, 1799] by Demod 1072 with 5 at 3 Id : 215, {_}: multiply (least_upper_bound (inverse ?471) ?472) ?471 =>= least_upper_bound identity (multiply ?472 ?471) [472, 471] by Super 210 with 3 at 1,3 Id : 11818, {_}: multiply (least_upper_bound (inverse ?15728) ?15729) ?15728 =>= positive_part (multiply ?15729 ?15728) [15729, 15728] by Demod 215 with 298 at 3 Id : 11845, {_}: multiply (positive_part (inverse ?15810)) ?15810 =>= positive_part (multiply identity ?15810) [15810] by Super 11818 with 20 at 1,2 Id : 12179, {_}: multiply (positive_part (inverse ?16312)) ?16312 =>= positive_part ?16312 [16312] by Demod 11845 with 2 at 1,3 Id : 12183, {_}: multiply (positive_part ?16319) (inverse ?16319) =>= positive_part (inverse ?16319) [16319] by Super 12179 with 18 at 1,1,2 Id : 12264, {_}: multiply (positive_part ?16391) (negative_part (inverse ?16391)) =>= greatest_lower_bound (positive_part ?16391) (positive_part (inverse ?16391)) [16391] by Super 1073 with 12183 at 2,3 Id : 849, {_}: least_upper_bound identity (greatest_lower_bound ?1555 ?1556) =<= greatest_lower_bound (least_upper_bound identity ?1555) (positive_part ?1556) [1556, 1555] by Super 22 with 298 at 2,3 Id : 877, {_}: positive_part (greatest_lower_bound ?1555 ?1556) =<= greatest_lower_bound (least_upper_bound identity ?1555) (positive_part ?1556) [1556, 1555] by Demod 849 with 298 at 2 Id : 878, {_}: positive_part (greatest_lower_bound ?1555 ?1556) =<= greatest_lower_bound (positive_part ?1555) (positive_part ?1556) [1556, 1555] by Demod 877 with 298 at 1,3 Id : 12306, {_}: multiply (positive_part ?16391) (negative_part (inverse ?16391)) =>= positive_part (greatest_lower_bound ?16391 (inverse ?16391)) [16391] by Demod 12264 with 878 at 3 Id : 853, {_}: least_upper_bound identity (least_upper_bound ?1564 ?1565) =>= least_upper_bound (positive_part ?1564) ?1565 [1565, 1564] by Super 8 with 298 at 1,3 Id : 874, {_}: positive_part (least_upper_bound ?1564 ?1565) =>= least_upper_bound (positive_part ?1564) ?1565 [1565, 1564] by Demod 853 with 298 at 2 Id : 297, {_}: least_upper_bound ?637 (least_upper_bound ?638 identity) =>= positive_part (least_upper_bound ?637 ?638) [638, 637] by Super 8 with 20 at 3 Id : 307, {_}: least_upper_bound ?637 (positive_part ?638) =<= positive_part (least_upper_bound ?637 ?638) [638, 637] by Demod 297 with 20 at 2,2 Id : 1518, {_}: least_upper_bound ?1564 (positive_part ?1565) =<= least_upper_bound (positive_part ?1564) ?1565 [1565, 1564] by Demod 874 with 307 at 2 Id : 309, {_}: least_upper_bound ?657 (negative_part ?657) =>= ?657 [657] by Super 11 with 21 at 2,2 Id : 4385, {_}: multiply (inverse ?6576) (negative_part ?6576) =>= greatest_lower_bound (inverse ?6576) identity [6576] by Super 4381 with 3 at 2,3 Id : 4422, {_}: multiply (inverse ?6576) (negative_part ?6576) =>= greatest_lower_bound identity (inverse ?6576) [6576] by Demod 4385 with 5 at 3 Id : 312, {_}: greatest_lower_bound identity ?665 =>= negative_part ?665 [665] by Super 5 with 21 at 3 Id : 4454, {_}: multiply (inverse ?6658) (negative_part ?6658) =>= negative_part (inverse ?6658) [6658] by Demod 4422 with 312 at 3 Id : 1166, {_}: greatest_lower_bound ?1914 (positive_part ?1914) =>= ?1914 [1914] by Super 12 with 20 at 2,2 Id : 898, {_}: least_upper_bound identity (negative_part ?1605) =>= identity [1605] by Super 11 with 312 at 2,2 Id : 922, {_}: positive_part (negative_part ?1605) =>= identity [1605] by Demod 898 with 298 at 2 Id : 1171, {_}: greatest_lower_bound (negative_part ?1923) identity =>= negative_part ?1923 [1923] by Super 1166 with 922 at 2,2 Id : 1191, {_}: greatest_lower_bound identity (negative_part ?1923) =>= negative_part ?1923 [1923] by Demod 1171 with 5 at 2 Id : 1192, {_}: negative_part (negative_part ?1923) =>= negative_part ?1923 [1923] by Demod 1191 with 312 at 2 Id : 4460, {_}: multiply (inverse (negative_part ?6669)) (negative_part ?6669) =>= negative_part (inverse (negative_part ?6669)) [6669] by Super 4454 with 1192 at 2,2 Id : 4502, {_}: identity =<= negative_part (inverse (negative_part ?6669)) [6669] by Demod 4460 with 3 at 2 Id : 4607, {_}: least_upper_bound (inverse (negative_part ?6821)) identity =>= inverse (negative_part ?6821) [6821] by Super 309 with 4502 at 2,2 Id : 4660, {_}: least_upper_bound identity (inverse (negative_part ?6821)) =>= inverse (negative_part ?6821) [6821] by Demod 4607 with 6 at 2 Id : 4661, {_}: positive_part (inverse (negative_part ?6821)) =>= inverse (negative_part ?6821) [6821] by Demod 4660 with 298 at 2 Id : 4799, {_}: least_upper_bound (inverse (negative_part ?6984)) (positive_part ?6985) =>= least_upper_bound (inverse (negative_part ?6984)) ?6985 [6985, 6984] by Super 1518 with 4661 at 1,3 Id : 11842, {_}: multiply (least_upper_bound (inverse (negative_part ?15801)) ?15802) (negative_part ?15801) =>= positive_part (multiply (positive_part ?15802) (negative_part ?15801)) [15802, 15801] by Super 11818 with 4799 at 1,2 Id : 11803, {_}: multiply (least_upper_bound (inverse ?471) ?472) ?471 =>= positive_part (multiply ?472 ?471) [472, 471] by Demod 215 with 298 at 3 Id : 11889, {_}: positive_part (multiply ?15802 (negative_part ?15801)) =<= positive_part (multiply (positive_part ?15802) (negative_part ?15801)) [15801, 15802] by Demod 11842 with 11803 at 2 Id : 11892, {_}: multiply (positive_part (inverse ?15810)) ?15810 =>= positive_part ?15810 [15810] by Demod 11845 with 2 at 1,3 Id : 12165, {_}: multiply (positive_part (inverse ?16276)) (negative_part ?16276) =>= greatest_lower_bound (positive_part (inverse ?16276)) (positive_part ?16276) [16276] by Super 1073 with 11892 at 2,3 Id : 12217, {_}: multiply (positive_part (inverse ?16276)) (negative_part ?16276) =>= greatest_lower_bound (positive_part ?16276) (positive_part (inverse ?16276)) [16276] by Demod 12165 with 5 at 3 Id : 12218, {_}: multiply (positive_part (inverse ?16276)) (negative_part ?16276) =>= positive_part (greatest_lower_bound ?16276 (inverse ?16276)) [16276] by Demod 12217 with 878 at 3 Id : 12981, {_}: positive_part (multiply (inverse ?17147) (negative_part ?17147)) =<= positive_part (positive_part (greatest_lower_bound ?17147 (inverse ?17147))) [17147] by Super 11889 with 12218 at 1,3 Id : 4423, {_}: multiply (inverse ?6576) (negative_part ?6576) =>= negative_part (inverse ?6576) [6576] by Demod 4422 with 312 at 3 Id : 13027, {_}: positive_part (negative_part (inverse ?17147)) =<= positive_part (positive_part (greatest_lower_bound ?17147 (inverse ?17147))) [17147] by Demod 12981 with 4423 at 1,2 Id : 1230, {_}: least_upper_bound ?1974 (positive_part ?1975) =<= positive_part (least_upper_bound ?1974 ?1975) [1975, 1974] by Demod 297 with 20 at 2,2 Id : 1242, {_}: least_upper_bound ?2011 (positive_part identity) =>= positive_part (positive_part ?2011) [2011] by Super 1230 with 20 at 1,3 Id : 300, {_}: positive_part identity =>= identity [] by Super 9 with 20 at 2 Id : 1261, {_}: least_upper_bound ?2011 identity =<= positive_part (positive_part ?2011) [2011] by Demod 1242 with 300 at 2,2 Id : 1262, {_}: positive_part ?2011 =<= positive_part (positive_part ?2011) [2011] by Demod 1261 with 20 at 2 Id : 13028, {_}: positive_part (negative_part (inverse ?17147)) =<= positive_part (greatest_lower_bound ?17147 (inverse ?17147)) [17147] by Demod 13027 with 1262 at 3 Id : 13029, {_}: identity =<= positive_part (greatest_lower_bound ?17147 (inverse ?17147)) [17147] by Demod 13028 with 922 at 2 Id : 14199, {_}: multiply (positive_part ?16391) (negative_part (inverse ?16391)) =>= identity [16391] by Demod 12306 with 13029 at 3 Id : 14209, {_}: negative_part (inverse ?18032) =<= multiply (inverse (positive_part ?18032)) identity [18032] by Super 34 with 14199 at 2,3 Id : 14275, {_}: negative_part (inverse ?18032) =>= inverse (positive_part ?18032) [18032] by Demod 14209 with 1026 at 3 Id : 14351, {_}: multiply ?6585 (inverse (positive_part ?6585)) =>= negative_part ?6585 [6585] by Demod 4428 with 14275 at 2,2 Id : 290, {_}: inverse (multiply ?624 (inverse ?625)) =>= multiply ?625 (inverse ?624) [625, 624] by Super 286 with 18 at 1,3 Id : 12177, {_}: inverse (positive_part (inverse ?16308)) =<= multiply ?16308 (inverse (positive_part (inverse (inverse ?16308)))) [16308] by Super 290 with 11892 at 1,2 Id : 12203, {_}: inverse (positive_part (inverse ?16308)) =<= multiply ?16308 (inverse (positive_part ?16308)) [16308] by Demod 12177 with 18 at 1,1,2,3 Id : 14356, {_}: inverse (positive_part (inverse ?6585)) =>= negative_part ?6585 [6585] by Demod 14351 with 12203 at 2 Id : 14357, {_}: negative_part ?7872 =<= multiply (inverse (positive_part ?7872)) ?7872 [7872] by Demod 5356 with 14356 at 2 Id : 13168, {_}: multiply (inverse (greatest_lower_bound ?17321 (inverse ?17321))) identity =>= positive_part (inverse (greatest_lower_bound ?17321 (inverse ?17321))) [17321] by Super 5134 with 13029 at 2,2 Id : 15132, {_}: inverse (greatest_lower_bound ?18904 (inverse ?18904)) =<= positive_part (inverse (greatest_lower_bound ?18904 (inverse ?18904))) [18904] by Demod 13168 with 1026 at 2 Id : 15140, {_}: inverse (greatest_lower_bound (positive_part (inverse ?18921)) (inverse (positive_part (inverse ?18921)))) =>= positive_part (inverse (greatest_lower_bound (positive_part (inverse ?18921)) (negative_part ?18921))) [18921] by Super 15132 with 14356 at 2,1,1,3 Id : 899, {_}: greatest_lower_bound identity (greatest_lower_bound ?1607 ?1608) =>= greatest_lower_bound (negative_part ?1607) ?1608 [1608, 1607] by Super 7 with 312 at 1,3 Id : 921, {_}: negative_part (greatest_lower_bound ?1607 ?1608) =>= greatest_lower_bound (negative_part ?1607) ?1608 [1608, 1607] by Demod 899 with 312 at 2 Id : 311, {_}: greatest_lower_bound ?662 (greatest_lower_bound ?663 identity) =>= negative_part (greatest_lower_bound ?662 ?663) [663, 662] by Super 7 with 21 at 3 Id : 321, {_}: greatest_lower_bound ?662 (negative_part ?663) =<= negative_part (greatest_lower_bound ?662 ?663) [663, 662] by Demod 311 with 21 at 2,2 Id : 1610, {_}: greatest_lower_bound ?2637 (negative_part ?2638) =<= greatest_lower_bound (negative_part ?2637) ?2638 [2638, 2637] by Demod 921 with 321 at 2 Id : 903, {_}: negative_part (least_upper_bound identity ?1615) =>= identity [1615] by Super 12 with 312 at 2 Id : 917, {_}: negative_part (positive_part ?1615) =>= identity [1615] by Demod 903 with 298 at 1,2 Id : 1615, {_}: greatest_lower_bound (positive_part ?2651) (negative_part ?2652) =>= greatest_lower_bound identity ?2652 [2652, 2651] by Super 1610 with 917 at 1,3 Id : 1662, {_}: greatest_lower_bound (positive_part ?2651) (negative_part ?2652) =>= negative_part ?2652 [2652, 2651] by Demod 1615 with 312 at 3 Id : 4459, {_}: multiply (inverse (positive_part ?6667)) identity =>= negative_part (inverse (positive_part ?6667)) [6667] by Super 4454 with 917 at 2,2 Id : 4501, {_}: inverse (positive_part ?6667) =<= negative_part (inverse (positive_part ?6667)) [6667] by Demod 4459 with 1026 at 2 Id : 4523, {_}: greatest_lower_bound (positive_part ?6721) (inverse (positive_part ?6722)) =>= negative_part (inverse (positive_part ?6722)) [6722, 6721] by Super 1662 with 4501 at 2,2 Id : 4568, {_}: greatest_lower_bound (positive_part ?6721) (inverse (positive_part ?6722)) =>= inverse (positive_part ?6722) [6722, 6721] by Demod 4523 with 4501 at 3 Id : 15267, {_}: inverse (inverse (positive_part (inverse ?18921))) =<= positive_part (inverse (greatest_lower_bound (positive_part (inverse ?18921)) (negative_part ?18921))) [18921] by Demod 15140 with 4568 at 1,2 Id : 4810, {_}: positive_part (inverse (negative_part ?7011)) =>= inverse (negative_part ?7011) [7011] by Demod 4660 with 298 at 2 Id : 4822, {_}: positive_part (inverse (greatest_lower_bound ?7038 (negative_part ?7039))) =>= inverse (negative_part (greatest_lower_bound ?7038 ?7039)) [7039, 7038] by Super 4810 with 321 at 1,1,2 Id : 4871, {_}: positive_part (inverse (greatest_lower_bound ?7038 (negative_part ?7039))) =>= inverse (greatest_lower_bound ?7038 (negative_part ?7039)) [7039, 7038] by Demod 4822 with 321 at 1,3 Id : 15268, {_}: inverse (inverse (positive_part (inverse ?18921))) =<= inverse (greatest_lower_bound (positive_part (inverse ?18921)) (negative_part ?18921)) [18921] by Demod 15267 with 4871 at 3 Id : 15269, {_}: positive_part (inverse ?18921) =<= inverse (greatest_lower_bound (positive_part (inverse ?18921)) (negative_part ?18921)) [18921] by Demod 15268 with 18 at 2 Id : 15270, {_}: positive_part (inverse ?18921) =<= inverse (greatest_lower_bound (negative_part ?18921) (positive_part (inverse ?18921))) [18921] by Demod 15269 with 5 at 1,3 Id : 1594, {_}: greatest_lower_bound ?1607 (negative_part ?1608) =<= greatest_lower_bound (negative_part ?1607) ?1608 [1608, 1607] by Demod 921 with 321 at 2 Id : 15271, {_}: positive_part (inverse ?18921) =<= inverse (greatest_lower_bound ?18921 (negative_part (positive_part (inverse ?18921)))) [18921] by Demod 15270 with 1594 at 1,3 Id : 15272, {_}: positive_part (inverse ?18921) =<= inverse (greatest_lower_bound ?18921 identity) [18921] by Demod 15271 with 917 at 2,1,3 Id : 15273, {_}: positive_part (inverse ?18921) =>= inverse (negative_part ?18921) [18921] by Demod 15272 with 21 at 1,3 Id : 15393, {_}: negative_part (inverse ?19045) =<= multiply (inverse (inverse (negative_part ?19045))) (inverse ?19045) [19045] by Super 14357 with 15273 at 1,1,3 Id : 15435, {_}: inverse (positive_part ?19045) =<= multiply (inverse (inverse (negative_part ?19045))) (inverse ?19045) [19045] by Demod 15393 with 14275 at 2 Id : 15436, {_}: inverse (positive_part ?19045) =<= inverse (multiply ?19045 (inverse (negative_part ?19045))) [19045] by Demod 15435 with 19 at 3 Id : 15437, {_}: inverse (positive_part ?19045) =<= multiply (negative_part ?19045) (inverse ?19045) [19045] by Demod 15436 with 290 at 3 Id : 15800, {_}: inverse ?19405 =<= multiply (inverse (negative_part ?19405)) (inverse (positive_part ?19405)) [19405] by Super 34 with 15437 at 2,3 Id : 15843, {_}: inverse ?19405 =<= inverse (multiply (positive_part ?19405) (negative_part ?19405)) [19405] by Demod 15800 with 19 at 3 Id : 20580, {_}: inverse (inverse ?23723) =<= multiply (positive_part ?23723) (negative_part ?23723) [23723] by Super 18 with 15843 at 1,2 Id : 20668, {_}: ?23723 =<= multiply (positive_part ?23723) (negative_part ?23723) [23723] by Demod 20580 with 18 at 2 Id : 20964, {_}: a =?= a [] by Demod 1 with 20668 at 3 Id : 1, {_}: a =<= multiply (positive_part a) (negative_part a) [] by prove_lat4 % SZS output end CNFRefutation for GRP167-2.p 10052: solved GRP167-2.p in 3.352209 using kbo 10052: status Unsatisfiable for GRP167-2.p NO CLASH, using fixed ground order 10058: Facts: 10058: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10058: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10058: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10058: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10058: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10058: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10058: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10058: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10058: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10058: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10058: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10058: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10058: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10058: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10058: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10058: Id : 17, {_}: least_upper_bound identity a =>= a [] by p09a_1 10058: Id : 18, {_}: least_upper_bound identity b =>= b [] by p09a_2 10058: Id : 19, {_}: least_upper_bound identity c =>= c [] by p09a_3 10058: Id : 20, {_}: greatest_lower_bound a b =>= identity [] by p09a_4 10058: Goal: 10058: Id : 1, {_}: greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c [] by prove_p09a 10058: Order: 10058: nrkbo 10058: Leaf order: 10058: least_upper_bound 16 2 0 10058: inverse 1 1 0 10058: identity 6 0 0 10058: greatest_lower_bound 16 2 2 0,2 10058: multiply 19 2 1 0,2,2 10058: c 4 0 2 2,2,2 10058: b 4 0 1 1,2,2 10058: a 5 0 2 1,2 NO CLASH, using fixed ground order 10059: Facts: 10059: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10059: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10059: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10059: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10059: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10059: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10059: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 NO CLASH, using fixed ground order 10060: Facts: 10060: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10060: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10060: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10060: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10060: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10060: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10059: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10059: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10059: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10059: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10059: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10059: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10059: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10059: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10059: Id : 17, {_}: least_upper_bound identity a =>= a [] by p09a_1 10059: Id : 18, {_}: least_upper_bound identity b =>= b [] by p09a_2 10059: Id : 19, {_}: least_upper_bound identity c =>= c [] by p09a_3 10059: Id : 20, {_}: greatest_lower_bound a b =>= identity [] by p09a_4 10059: Goal: 10059: Id : 1, {_}: greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c [] by prove_p09a 10059: Order: 10059: kbo 10059: Leaf order: 10059: least_upper_bound 16 2 0 10059: inverse 1 1 0 10059: identity 6 0 0 10059: greatest_lower_bound 16 2 2 0,2 10059: multiply 19 2 1 0,2,2 10059: c 4 0 2 2,2,2 10059: b 4 0 1 1,2,2 10059: a 5 0 2 1,2 10060: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10060: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10060: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10060: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10060: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10060: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10060: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =>= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10060: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10060: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =>= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10060: Id : 17, {_}: least_upper_bound identity a =>= a [] by p09a_1 10060: Id : 18, {_}: least_upper_bound identity b =>= b [] by p09a_2 10060: Id : 19, {_}: least_upper_bound identity c =>= c [] by p09a_3 10060: Id : 20, {_}: greatest_lower_bound a b =>= identity [] by p09a_4 10060: Goal: 10060: Id : 1, {_}: greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c [] by prove_p09a 10060: Order: 10060: lpo 10060: Leaf order: 10060: least_upper_bound 16 2 0 10060: inverse 1 1 0 10060: identity 6 0 0 10060: greatest_lower_bound 16 2 2 0,2 10060: multiply 19 2 1 0,2,2 10060: c 4 0 2 2,2,2 10060: b 4 0 1 1,2,2 10060: a 5 0 2 1,2 % SZS status Timeout for GRP178-1.p NO CLASH, using fixed ground order 10102: Facts: 10102: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10102: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10102: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10102: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10102: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10102: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10102: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10102: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10102: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10102: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10102: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10102: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10102: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10102: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10102: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10102: Id : 17, {_}: greatest_lower_bound identity a =>= identity [] by p09b_1 10102: Id : 18, {_}: greatest_lower_bound identity b =>= identity [] by p09b_2 10102: Id : 19, {_}: greatest_lower_bound identity c =>= identity [] by p09b_3 10102: Id : 20, {_}: greatest_lower_bound a b =>= identity [] by p09b_4 10102: Goal: 10102: Id : 1, {_}: greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c [] by prove_p09b 10102: Order: 10102: nrkbo 10102: Leaf order: 10102: least_upper_bound 13 2 0 10102: inverse 1 1 0 10102: identity 9 0 0 10102: greatest_lower_bound 19 2 2 0,2 10102: multiply 19 2 1 0,2,2 10102: c 3 0 2 2,2,2 10102: b 3 0 1 1,2,2 10102: a 4 0 2 1,2 NO CLASH, using fixed ground order 10103: Facts: 10103: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10103: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10103: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10103: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10103: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10103: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10103: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10103: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10103: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10103: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10103: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10103: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10103: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10103: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10103: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10103: Id : 17, {_}: greatest_lower_bound identity a =>= identity [] by p09b_1 10103: Id : 18, {_}: greatest_lower_bound identity b =>= identity [] by p09b_2 10103: Id : 19, {_}: greatest_lower_bound identity c =>= identity [] by p09b_3 10103: Id : 20, {_}: greatest_lower_bound a b =>= identity [] by p09b_4 10103: Goal: 10103: Id : 1, {_}: greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c [] by prove_p09b 10103: Order: 10103: kbo 10103: Leaf order: 10103: least_upper_bound 13 2 0 10103: inverse 1 1 0 10103: identity 9 0 0 10103: greatest_lower_bound 19 2 2 0,2 10103: multiply 19 2 1 0,2,2 10103: c 3 0 2 2,2,2 10103: b 3 0 1 1,2,2 10103: a 4 0 2 1,2 NO CLASH, using fixed ground order 10104: Facts: 10104: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10104: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10104: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10104: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10104: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10104: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10104: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10104: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10104: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10104: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10104: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10104: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10104: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =>= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10104: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10104: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =>= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10104: Id : 17, {_}: greatest_lower_bound identity a =>= identity [] by p09b_1 10104: Id : 18, {_}: greatest_lower_bound identity b =>= identity [] by p09b_2 10104: Id : 19, {_}: greatest_lower_bound identity c =>= identity [] by p09b_3 10104: Id : 20, {_}: greatest_lower_bound a b =>= identity [] by p09b_4 10104: Goal: 10104: Id : 1, {_}: greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c [] by prove_p09b 10104: Order: 10104: lpo 10104: Leaf order: 10104: least_upper_bound 13 2 0 10104: inverse 1 1 0 10104: identity 9 0 0 10104: greatest_lower_bound 19 2 2 0,2 10104: multiply 19 2 1 0,2,2 10104: c 3 0 2 2,2,2 10104: b 3 0 1 1,2,2 10104: a 4 0 2 1,2 % SZS status Timeout for GRP178-2.p CLASH, statistics insufficient 10125: Facts: 10125: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10125: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10125: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10125: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10125: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10125: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10125: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10125: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10125: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10125: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10125: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10125: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10125: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10125: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10125: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10125: Id : 17, {_}: greatest_lower_bound a c =>= greatest_lower_bound b c [] by p12x_1 10125: Id : 18, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_2 10125: Id : 19, {_}: inverse (greatest_lower_bound ?52 ?53) =<= least_upper_bound (inverse ?52) (inverse ?53) [53, 52] by p12x_3 ?52 ?53 10125: Id : 20, {_}: inverse (least_upper_bound ?55 ?56) =<= greatest_lower_bound (inverse ?55) (inverse ?56) [56, 55] by p12x_4 ?55 ?56 10125: Goal: 10125: Id : 1, {_}: a =>= b [] by prove_p12x 10125: Order: 10125: nrkbo 10125: Leaf order: 10125: c 4 0 0 10125: least_upper_bound 17 2 0 10125: greatest_lower_bound 17 2 0 10125: inverse 7 1 0 10125: multiply 18 2 0 10125: identity 2 0 0 10125: b 3 0 1 3 10125: a 3 0 1 2 CLASH, statistics insufficient 10126: Facts: 10126: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10126: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10126: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10126: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10126: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10126: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10126: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10126: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10126: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10126: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10126: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10126: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10126: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10126: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10126: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10126: Id : 17, {_}: greatest_lower_bound a c =>= greatest_lower_bound b c [] by p12x_1 10126: Id : 18, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_2 10126: Id : 19, {_}: inverse (greatest_lower_bound ?52 ?53) =<= least_upper_bound (inverse ?52) (inverse ?53) [53, 52] by p12x_3 ?52 ?53 10126: Id : 20, {_}: inverse (least_upper_bound ?55 ?56) =<= greatest_lower_bound (inverse ?55) (inverse ?56) [56, 55] by p12x_4 ?55 ?56 10126: Goal: 10126: Id : 1, {_}: a =>= b [] by prove_p12x 10126: Order: 10126: kbo 10126: Leaf order: 10126: c 4 0 0 10126: least_upper_bound 17 2 0 10126: greatest_lower_bound 17 2 0 10126: inverse 7 1 0 10126: multiply 18 2 0 10126: identity 2 0 0 10126: b 3 0 1 3 10126: a 3 0 1 2 CLASH, statistics insufficient 10127: Facts: 10127: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10127: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10127: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10127: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10127: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10127: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10127: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10127: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10127: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10127: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10127: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10127: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10127: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =>= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10127: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10127: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =>= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10127: Id : 17, {_}: greatest_lower_bound a c =>= greatest_lower_bound b c [] by p12x_1 10127: Id : 18, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_2 10127: Id : 19, {_}: inverse (greatest_lower_bound ?52 ?53) =>= least_upper_bound (inverse ?52) (inverse ?53) [53, 52] by p12x_3 ?52 ?53 10127: Id : 20, {_}: inverse (least_upper_bound ?55 ?56) =>= greatest_lower_bound (inverse ?55) (inverse ?56) [56, 55] by p12x_4 ?55 ?56 10127: Goal: 10127: Id : 1, {_}: a =>= b [] by prove_p12x 10127: Order: 10127: lpo 10127: Leaf order: 10127: c 4 0 0 10127: least_upper_bound 17 2 0 10127: greatest_lower_bound 17 2 0 10127: inverse 7 1 0 10127: multiply 18 2 0 10127: identity 2 0 0 10127: b 3 0 1 3 10127: a 3 0 1 2 % SZS status Timeout for GRP181-3.p NO CLASH, using fixed ground order 10150: Facts: 10150: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10150: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10150: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10150: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10150: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10150: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10150: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10150: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10150: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10150: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10150: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10150: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10150: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10150: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10150: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10150: Id : 17, {_}: inverse identity =>= identity [] by p21_1 10150: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p21_2 ?51 10150: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p21_3 ?53 ?54 10150: Goal: 10150: Id : 1, {_}: multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by prove_p21 10150: Order: 10150: nrkbo 10150: Leaf order: 10150: multiply 22 2 2 0,2 10150: inverse 9 1 2 0,2,2 10150: greatest_lower_bound 15 2 2 0,1,2,2 10150: least_upper_bound 15 2 2 0,1,2 10150: identity 8 0 4 2,1,2 10150: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 10151: Facts: 10151: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10151: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10151: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10151: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10151: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10151: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10151: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10151: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10151: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10151: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10151: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10151: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10151: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10151: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10151: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10151: Id : 17, {_}: inverse identity =>= identity [] by p21_1 10151: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p21_2 ?51 10151: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p21_3 ?53 ?54 10151: Goal: 10151: Id : 1, {_}: multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =<= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by prove_p21 10151: Order: 10151: kbo 10151: Leaf order: 10151: multiply 22 2 2 0,2 10151: inverse 9 1 2 0,2,2 10151: greatest_lower_bound 15 2 2 0,1,2,2 10151: least_upper_bound 15 2 2 0,1,2 10151: identity 8 0 4 2,1,2 10151: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 10152: Facts: 10152: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10152: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10152: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10152: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10152: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10152: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10152: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10152: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10152: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10152: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10152: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10152: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10152: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10152: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10152: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10152: Id : 17, {_}: inverse identity =>= identity [] by p21_1 10152: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p21_2 ?51 10152: Id : 19, {_}: inverse (multiply ?53 ?54) =>= multiply (inverse ?54) (inverse ?53) [54, 53] by p21_3 ?53 ?54 10152: Goal: 10152: Id : 1, {_}: multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by prove_p21 10152: Order: 10152: lpo 10152: Leaf order: 10152: multiply 22 2 2 0,2 10152: inverse 9 1 2 0,2,2 10152: greatest_lower_bound 15 2 2 0,1,2,2 10152: least_upper_bound 15 2 2 0,1,2 10152: identity 8 0 4 2,1,2 10152: a 4 0 4 1,1,2 % SZS status Timeout for GRP184-2.p NO CLASH, using fixed ground order 10174: Facts: 10174: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10174: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10174: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10174: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10174: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10174: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10174: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10174: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10174: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10174: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10174: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10174: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10174: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10174: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10174: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10174: Goal: 10174: Id : 1, {_}: least_upper_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by prove_p22a 10174: Order: 10174: nrkbo 10174: Leaf order: 10174: greatest_lower_bound 13 2 0 10174: inverse 1 1 0 10174: least_upper_bound 19 2 6 0,2 10174: identity 7 0 5 2,1,2 10174: multiply 21 2 3 0,1,1,2 10174: b 3 0 3 2,1,1,2 10174: a 3 0 3 1,1,1,2 NO CLASH, using fixed ground order 10175: Facts: 10175: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10175: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10175: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10175: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10175: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10175: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10175: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10175: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10175: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10175: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10175: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10175: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10175: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10175: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10175: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10175: Goal: 10175: Id : 1, {_}: least_upper_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by prove_p22a 10175: Order: 10175: kbo 10175: Leaf order: 10175: greatest_lower_bound 13 2 0 10175: inverse 1 1 0 10175: least_upper_bound 19 2 6 0,2 10175: identity 7 0 5 2,1,2 10175: multiply 21 2 3 0,1,1,2 10175: b 3 0 3 2,1,1,2 10175: a 3 0 3 1,1,1,2 NO CLASH, using fixed ground order 10176: Facts: 10176: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10176: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10176: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10176: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10176: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10176: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10176: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10176: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10176: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10176: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10176: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10176: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10176: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =>= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10176: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10176: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =>= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10176: Goal: 10176: Id : 1, {_}: least_upper_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by prove_p22a 10176: Order: 10176: lpo 10176: Leaf order: 10176: greatest_lower_bound 13 2 0 10176: inverse 1 1 0 10176: least_upper_bound 19 2 6 0,2 10176: identity 7 0 5 2,1,2 10176: multiply 21 2 3 0,1,1,2 10176: b 3 0 3 2,1,1,2 10176: a 3 0 3 1,1,1,2 Statistics : Max weight : 21 Found proof, 4.014671s % SZS status Unsatisfiable for GRP185-1.p % SZS output start CNFRefutation for GRP185-1.p Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 Id : 21, {_}: multiply (multiply ?57 ?58) ?59 =>= multiply ?57 (multiply ?58 ?59) [59, 58, 57] by associativity ?57 ?58 ?59 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 Id : 67, {_}: least_upper_bound ?151 (least_upper_bound ?152 ?153) =<= least_upper_bound (least_upper_bound ?151 ?152) ?153 [153, 152, 151] by associativity_of_lub ?151 ?152 ?153 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 Id : 68, {_}: least_upper_bound ?155 (least_upper_bound ?156 ?157) =<= least_upper_bound (least_upper_bound ?156 ?155) ?157 [157, 156, 155] by Super 67 with 6 at 1,3 Id : 74, {_}: least_upper_bound ?155 (least_upper_bound ?156 ?157) =?= least_upper_bound ?156 (least_upper_bound ?155 ?157) [157, 156, 155] by Demod 68 with 8 at 3 Id : 23, {_}: multiply identity ?64 =<= multiply (inverse ?65) (multiply ?65 ?64) [65, 64] by Super 21 with 3 at 1,2 Id : 562, {_}: ?594 =<= multiply (inverse ?595) (multiply ?595 ?594) [595, 594] by Demod 23 with 2 at 2 Id : 564, {_}: ?599 =<= multiply (inverse (inverse ?599)) identity [599] by Super 562 with 3 at 2,3 Id : 27, {_}: ?64 =<= multiply (inverse ?65) (multiply ?65 ?64) [65, 64] by Demod 23 with 2 at 2 Id : 570, {_}: multiply ?621 ?622 =<= multiply (inverse (inverse ?621)) ?622 [622, 621] by Super 562 with 27 at 2,3 Id : 855, {_}: ?599 =<= multiply ?599 identity [599] by Demod 564 with 570 at 3 Id : 65, {_}: least_upper_bound ?143 (least_upper_bound ?144 ?145) =?= least_upper_bound ?144 (least_upper_bound ?145 ?143) [145, 144, 143] by Super 6 with 8 at 3 Id : 85, {_}: least_upper_bound ?180 (least_upper_bound ?180 ?181) =>= least_upper_bound ?180 ?181 [181, 180] by Super 8 with 9 at 1,3 Id : 5149, {_}: least_upper_bound identity (least_upper_bound b (least_upper_bound a (multiply a b))) === least_upper_bound identity (least_upper_bound b (least_upper_bound a (multiply a b))) [] by Demod 5148 with 74 at 2,2 Id : 5148, {_}: least_upper_bound identity (least_upper_bound a (least_upper_bound b (multiply a b))) =>= least_upper_bound identity (least_upper_bound b (least_upper_bound a (multiply a b))) [] by Demod 5147 with 9 at 2,2,2,2 Id : 5147, {_}: least_upper_bound identity (least_upper_bound a (least_upper_bound b (least_upper_bound (multiply a b) (multiply a b)))) =>= least_upper_bound identity (least_upper_bound b (least_upper_bound a (multiply a b))) [] by Demod 5146 with 2 at 1,2,2,2 Id : 5146, {_}: least_upper_bound identity (least_upper_bound a (least_upper_bound (multiply identity b) (least_upper_bound (multiply a b) (multiply a b)))) =>= least_upper_bound identity (least_upper_bound b (least_upper_bound a (multiply a b))) [] by Demod 5145 with 85 at 2 Id : 5145, {_}: least_upper_bound identity (least_upper_bound identity (least_upper_bound a (least_upper_bound (multiply identity b) (least_upper_bound (multiply a b) (multiply a b))))) =>= least_upper_bound identity (least_upper_bound b (least_upper_bound a (multiply a b))) [] by Demod 5144 with 74 at 3 Id : 5144, {_}: least_upper_bound identity (least_upper_bound identity (least_upper_bound a (least_upper_bound (multiply identity b) (least_upper_bound (multiply a b) (multiply a b))))) =>= least_upper_bound b (least_upper_bound identity (least_upper_bound a (multiply a b))) [] by Demod 5143 with 65 at 2,2,2,2 Id : 5143, {_}: least_upper_bound identity (least_upper_bound identity (least_upper_bound a (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (multiply a b))))) =>= least_upper_bound b (least_upper_bound identity (least_upper_bound a (multiply a b))) [] by Demod 5142 with 855 at 1,2,2,2 Id : 5142, {_}: least_upper_bound identity (least_upper_bound identity (least_upper_bound (multiply a identity) (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (multiply a b))))) =>= least_upper_bound b (least_upper_bound identity (least_upper_bound a (multiply a b))) [] by Demod 5141 with 2 at 1,2,2 Id : 5141, {_}: least_upper_bound identity (least_upper_bound (multiply identity identity) (least_upper_bound (multiply a identity) (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (multiply a b))))) =>= least_upper_bound b (least_upper_bound identity (least_upper_bound a (multiply a b))) [] by Demod 5140 with 855 at 1,2,2,3 Id : 5140, {_}: least_upper_bound identity (least_upper_bound (multiply identity identity) (least_upper_bound (multiply a identity) (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (multiply a b))))) =>= least_upper_bound b (least_upper_bound identity (least_upper_bound (multiply a identity) (multiply a b))) [] by Demod 5139 with 2 at 1,2,3 Id : 5139, {_}: least_upper_bound identity (least_upper_bound (multiply identity identity) (least_upper_bound (multiply a identity) (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (multiply a b))))) =>= least_upper_bound b (least_upper_bound (multiply identity identity) (least_upper_bound (multiply a identity) (multiply a b))) [] by Demod 5138 with 8 at 2,2 Id : 5138, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (multiply a b)))) =>= least_upper_bound b (least_upper_bound (multiply identity identity) (least_upper_bound (multiply a identity) (multiply a b))) [] by Demod 5137 with 8 at 2,3 Id : 5137, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (multiply a b)))) =>= least_upper_bound b (least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (multiply a b)) [] by Demod 5136 with 2 at 1,3 Id : 5136, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (multiply a b)))) =>= least_upper_bound (multiply identity b) (least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (multiply a b)) [] by Demod 5135 with 74 at 2,2 Id : 5135, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (least_upper_bound (multiply identity b) (multiply a b)))) =>= least_upper_bound (multiply identity b) (least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (multiply a b)) [] by Demod 5134 with 74 at 3 Id : 5134, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (least_upper_bound (multiply identity b) (multiply a b)))) =>= least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (least_upper_bound (multiply identity b) (multiply a b)) [] by Demod 5133 with 15 at 2,2,2,2 Id : 5133, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (multiply (least_upper_bound identity a) b))) =>= least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (least_upper_bound (multiply identity b) (multiply a b)) [] by Demod 5132 with 15 at 1,2,2,2 Id : 5132, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply (least_upper_bound identity a) identity) (multiply (least_upper_bound identity a) b))) =>= least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (least_upper_bound (multiply identity b) (multiply a b)) [] by Demod 5131 with 15 at 2,3 Id : 5131, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply (least_upper_bound identity a) identity) (multiply (least_upper_bound identity a) b))) =>= least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (multiply (least_upper_bound identity a) b) [] by Demod 5130 with 15 at 1,3 Id : 5130, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply (least_upper_bound identity a) identity) (multiply (least_upper_bound identity a) b))) =>= least_upper_bound (multiply (least_upper_bound identity a) identity) (multiply (least_upper_bound identity a) b) [] by Demod 237 with 74 at 2 Id : 237, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (multiply (least_upper_bound identity a) identity) (multiply (least_upper_bound identity a) b))) =>= least_upper_bound (multiply (least_upper_bound identity a) identity) (multiply (least_upper_bound identity a) b) [] by Demod 236 with 6 at 1,2,2,2,2 Id : 236, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (multiply (least_upper_bound identity a) identity) (multiply (least_upper_bound a identity) b))) =>= least_upper_bound (multiply (least_upper_bound identity a) identity) (multiply (least_upper_bound identity a) b) [] by Demod 235 with 6 at 1,1,2,2,2 Id : 235, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (multiply (least_upper_bound a identity) identity) (multiply (least_upper_bound a identity) b))) =>= least_upper_bound (multiply (least_upper_bound identity a) identity) (multiply (least_upper_bound identity a) b) [] by Demod 234 with 6 at 1,2,3 Id : 234, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (multiply (least_upper_bound a identity) identity) (multiply (least_upper_bound a identity) b))) =>= least_upper_bound (multiply (least_upper_bound identity a) identity) (multiply (least_upper_bound a identity) b) [] by Demod 233 with 6 at 1,1,3 Id : 233, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (multiply (least_upper_bound a identity) identity) (multiply (least_upper_bound a identity) b))) =>= least_upper_bound (multiply (least_upper_bound a identity) identity) (multiply (least_upper_bound a identity) b) [] by Demod 232 with 6 at 2,2,2 Id : 232, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity))) =>= least_upper_bound (multiply (least_upper_bound a identity) identity) (multiply (least_upper_bound a identity) b) [] by Demod 231 with 6 at 3 Id : 231, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity))) =>= least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity) [] by Demod 230 with 13 at 2,2,2 Id : 230, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (multiply (least_upper_bound a identity) (least_upper_bound b identity))) =>= least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity) [] by Demod 229 with 13 at 3 Id : 229, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (multiply (least_upper_bound a identity) (least_upper_bound b identity))) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 1 with 8 at 2 Id : 1, {_}: least_upper_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by prove_p22a % SZS output end CNFRefutation for GRP185-1.p 10176: solved GRP185-1.p in 1.916119 using lpo 10176: status Unsatisfiable for GRP185-1.p NO CLASH, using fixed ground order 10187: Facts: 10187: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10187: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10187: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10187: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10187: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10187: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10187: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10187: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10187: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10187: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10187: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10187: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10187: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10187: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10187: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10187: Id : 17, {_}: inverse identity =>= identity [] by p22a_1 10187: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22a_2 ?51 10187: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p22a_3 ?53 ?54 10187: Goal: 10187: Id : 1, {_}: least_upper_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by prove_p22a 10187: Order: 10187: nrkbo 10187: Leaf order: 10187: greatest_lower_bound 13 2 0 10187: inverse 7 1 0 10187: least_upper_bound 19 2 6 0,2 10187: identity 9 0 5 2,1,2 10187: multiply 23 2 3 0,1,1,2 10187: b 3 0 3 2,1,1,2 10187: a 3 0 3 1,1,1,2 NO CLASH, using fixed ground order 10188: Facts: 10188: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10188: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10188: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10188: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10188: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10188: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10188: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10188: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10188: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10188: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10188: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10188: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10188: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10188: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10188: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10188: Id : 17, {_}: inverse identity =>= identity [] by p22a_1 10188: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22a_2 ?51 10188: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p22a_3 ?53 ?54 10188: Goal: 10188: Id : 1, {_}: least_upper_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by prove_p22a 10188: Order: 10188: kbo 10188: Leaf order: 10188: greatest_lower_bound 13 2 0 10188: inverse 7 1 0 10188: least_upper_bound 19 2 6 0,2 10188: identity 9 0 5 2,1,2 10188: multiply 23 2 3 0,1,1,2 10188: b 3 0 3 2,1,1,2 10188: a 3 0 3 1,1,1,2 NO CLASH, using fixed ground order 10189: Facts: 10189: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10189: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 10189: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 10189: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 10189: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 10189: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 10189: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 10189: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 10189: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 10189: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 10189: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 10189: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 10189: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =>= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 10189: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 10189: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =>= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 10189: Id : 17, {_}: inverse identity =>= identity [] by p22a_1 10189: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22a_2 ?51 10189: Id : 19, {_}: inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53) [54, 53] by p22a_3 ?53 ?54 10189: Goal: 10189: Id : 1, {_}: least_upper_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by prove_p22a 10189: Order: 10189: lpo 10189: Leaf order: 10189: greatest_lower_bound 13 2 0 10189: inverse 7 1 0 10189: least_upper_bound 19 2 6 0,2 10189: identity 9 0 5 2,1,2 10189: multiply 23 2 3 0,1,1,2 10189: b 3 0 3 2,1,1,2 10189: a 3 0 3 1,1,1,2 Statistics : Max weight : 21 Found proof, 5.587205s % SZS status Unsatisfiable for GRP185-2.p % SZS output start CNFRefutation for GRP185-2.p Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22a_2 ?51 Id : 17, {_}: inverse identity =>= identity [] by p22a_1 Id : 506, {_}: inverse (multiply ?520 ?521) =?= multiply (inverse ?521) (inverse ?520) [521, 520] by p22a_3 ?520 ?521 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 Id : 782, {_}: least_upper_bound ?667 (least_upper_bound ?667 ?668) =>= least_upper_bound ?667 ?668 [668, 667] by Super 8 with 9 at 1,3 Id : 1203, {_}: least_upper_bound ?943 (least_upper_bound ?944 ?943) =>= least_upper_bound ?943 ?944 [944, 943] by Super 782 with 6 at 2,2 Id : 1211, {_}: least_upper_bound ?966 (least_upper_bound ?967 (least_upper_bound ?968 ?966)) =>= least_upper_bound ?966 (least_upper_bound ?967 ?968) [968, 967, 966] by Super 1203 with 8 at 2,2 Id : 507, {_}: inverse (multiply identity ?523) =<= multiply (inverse ?523) identity [523] by Super 506 with 17 at 2,3 Id : 571, {_}: inverse ?569 =<= multiply (inverse ?569) identity [569] by Demod 507 with 2 at 1,2 Id : 573, {_}: inverse (inverse ?572) =<= multiply ?572 identity [572] by Super 571 with 18 at 1,3 Id : 581, {_}: ?572 =<= multiply ?572 identity [572] by Demod 573 with 18 at 2 Id : 88, {_}: least_upper_bound ?186 (least_upper_bound ?186 ?187) =>= least_upper_bound ?186 ?187 [187, 186] by Super 8 with 9 at 1,3 Id : 3310, {_}: least_upper_bound identity (least_upper_bound a (least_upper_bound b (multiply a b))) === least_upper_bound identity (least_upper_bound a (least_upper_bound b (multiply a b))) [] by Demod 3309 with 88 at 2 Id : 3309, {_}: least_upper_bound identity (least_upper_bound identity (least_upper_bound a (least_upper_bound b (multiply a b)))) =>= least_upper_bound identity (least_upper_bound a (least_upper_bound b (multiply a b))) [] by Demod 3308 with 2 at 1,2,2,2,2 Id : 3308, {_}: least_upper_bound identity (least_upper_bound identity (least_upper_bound a (least_upper_bound (multiply identity b) (multiply a b)))) =>= least_upper_bound identity (least_upper_bound a (least_upper_bound b (multiply a b))) [] by Demod 3307 with 581 at 1,2,2,2 Id : 3307, {_}: least_upper_bound identity (least_upper_bound identity (least_upper_bound (multiply a identity) (least_upper_bound (multiply identity b) (multiply a b)))) =>= least_upper_bound identity (least_upper_bound a (least_upper_bound b (multiply a b))) [] by Demod 3306 with 2 at 1,2,2 Id : 3306, {_}: least_upper_bound identity (least_upper_bound (multiply identity identity) (least_upper_bound (multiply a identity) (least_upper_bound (multiply identity b) (multiply a b)))) =>= least_upper_bound identity (least_upper_bound a (least_upper_bound b (multiply a b))) [] by Demod 3305 with 8 at 2,2 Id : 3305, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (least_upper_bound (multiply identity b) (multiply a b))) =>= least_upper_bound identity (least_upper_bound a (least_upper_bound b (multiply a b))) [] by Demod 3304 with 8 at 2,2 Id : 3304, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (multiply identity b)) (multiply a b)) =>= least_upper_bound identity (least_upper_bound a (least_upper_bound b (multiply a b))) [] by Demod 3303 with 6 at 2,2 Id : 3303, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (multiply identity b))) =>= least_upper_bound identity (least_upper_bound a (least_upper_bound b (multiply a b))) [] by Demod 3302 with 2 at 1,2,2,3 Id : 3302, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (multiply identity b))) =>= least_upper_bound identity (least_upper_bound a (least_upper_bound (multiply identity b) (multiply a b))) [] by Demod 3301 with 581 at 1,2,3 Id : 3301, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (multiply identity b))) =>= least_upper_bound identity (least_upper_bound (multiply a identity) (least_upper_bound (multiply identity b) (multiply a b))) [] by Demod 3300 with 2 at 1,3 Id : 3300, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (multiply identity b))) =>= least_upper_bound (multiply identity identity) (least_upper_bound (multiply a identity) (least_upper_bound (multiply identity b) (multiply a b))) [] by Demod 3299 with 1211 at 2,2 Id : 3299, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (least_upper_bound (multiply identity b) (multiply a b)))) =>= least_upper_bound (multiply identity identity) (least_upper_bound (multiply a identity) (least_upper_bound (multiply identity b) (multiply a b))) [] by Demod 3298 with 8 at 3 Id : 3298, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (least_upper_bound (multiply identity b) (multiply a b)))) =>= least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (least_upper_bound (multiply identity b) (multiply a b)) [] by Demod 3297 with 15 at 2,2,2,2 Id : 3297, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (multiply (least_upper_bound identity a) b))) =>= least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (least_upper_bound (multiply identity b) (multiply a b)) [] by Demod 3296 with 15 at 1,2,2,2 Id : 3296, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply (least_upper_bound identity a) identity) (multiply (least_upper_bound identity a) b))) =>= least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (least_upper_bound (multiply identity b) (multiply a b)) [] by Demod 3295 with 15 at 2,3 Id : 3295, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply (least_upper_bound identity a) identity) (multiply (least_upper_bound identity a) b))) =>= least_upper_bound (least_upper_bound (multiply identity identity) (multiply a identity)) (multiply (least_upper_bound identity a) b) [] by Demod 3294 with 15 at 1,3 Id : 3294, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply (least_upper_bound identity a) identity) (multiply (least_upper_bound identity a) b))) =>= least_upper_bound (multiply (least_upper_bound identity a) identity) (multiply (least_upper_bound identity a) b) [] by Demod 3293 with 13 at 2,2,2 Id : 3293, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (multiply (least_upper_bound identity a) (least_upper_bound identity b))) =>= least_upper_bound (multiply (least_upper_bound identity a) identity) (multiply (least_upper_bound identity a) b) [] by Demod 3292 with 13 at 3 Id : 3292, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (multiply (least_upper_bound identity a) (least_upper_bound identity b))) =>= multiply (least_upper_bound identity a) (least_upper_bound identity b) [] by Demod 67 with 8 at 2 Id : 67, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (multiply (least_upper_bound identity a) (least_upper_bound identity b)) =>= multiply (least_upper_bound identity a) (least_upper_bound identity b) [] by Demod 66 with 6 at 2,3 Id : 66, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (multiply (least_upper_bound identity a) (least_upper_bound identity b)) =<= multiply (least_upper_bound identity a) (least_upper_bound b identity) [] by Demod 65 with 6 at 1,3 Id : 65, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (multiply (least_upper_bound identity a) (least_upper_bound identity b)) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 64 with 6 at 2,2,2 Id : 64, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (multiply (least_upper_bound identity a) (least_upper_bound b identity)) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 63 with 6 at 1,2,2 Id : 63, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 1 with 6 at 1,2 Id : 1, {_}: least_upper_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by prove_p22a % SZS output end CNFRefutation for GRP185-2.p 10189: solved GRP185-2.p in 0.988061 using lpo 10189: status Unsatisfiable for GRP185-2.p CLASH, statistics insufficient 10194: Facts: 10194: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10194: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 10194: Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 10194: Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 10194: Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 10194: Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 10194: Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 10194: Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 10194: Id : 10, {_}: multiply (multiply ?22 (multiply ?23 ?24)) ?22 =?= multiply (multiply ?22 ?23) (multiply ?24 ?22) [24, 23, 22] by moufang1 ?22 ?23 ?24 10194: Goal: 10194: Id : 1, {_}: multiply (multiply (multiply a b) c) b =>= multiply a (multiply b (multiply c b)) [] by prove_moufang2 10194: Order: 10194: nrkbo 10194: Leaf order: 10194: left_inverse 1 1 0 10194: right_inverse 1 1 0 10194: right_division 2 2 0 10194: left_division 2 2 0 10194: identity 4 0 0 10194: c 2 0 2 2,1,2 10194: multiply 20 2 6 0,2 10194: b 4 0 4 2,1,1,2 10194: a 2 0 2 1,1,1,2 CLASH, statistics insufficient 10195: Facts: 10195: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10195: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 10195: Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 10195: Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 10195: Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 10195: Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 10195: Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 10195: Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 10195: Id : 10, {_}: multiply (multiply ?22 (multiply ?23 ?24)) ?22 =>= multiply (multiply ?22 ?23) (multiply ?24 ?22) [24, 23, 22] by moufang1 ?22 ?23 ?24 10195: Goal: 10195: Id : 1, {_}: multiply (multiply (multiply a b) c) b =>= multiply a (multiply b (multiply c b)) [] by prove_moufang2 10195: Order: 10195: kbo 10195: Leaf order: 10195: left_inverse 1 1 0 10195: right_inverse 1 1 0 10195: right_division 2 2 0 10195: left_division 2 2 0 10195: identity 4 0 0 10195: c 2 0 2 2,1,2 10195: multiply 20 2 6 0,2 10195: b 4 0 4 2,1,1,2 10195: a 2 0 2 1,1,1,2 CLASH, statistics insufficient 10196: Facts: 10196: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10196: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 10196: Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 10196: Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 10196: Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 10196: Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 10196: Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 10196: Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 10196: Id : 10, {_}: multiply (multiply ?22 (multiply ?23 ?24)) ?22 =>= multiply (multiply ?22 ?23) (multiply ?24 ?22) [24, 23, 22] by moufang1 ?22 ?23 ?24 10196: Goal: 10196: Id : 1, {_}: multiply (multiply (multiply a b) c) b =>= multiply a (multiply b (multiply c b)) [] by prove_moufang2 10196: Order: 10196: lpo 10196: Leaf order: 10196: left_inverse 1 1 0 10196: right_inverse 1 1 0 10196: right_division 2 2 0 10196: left_division 2 2 0 10196: identity 4 0 0 10196: c 2 0 2 2,1,2 10196: multiply 20 2 6 0,2 10196: b 4 0 4 2,1,1,2 10196: a 2 0 2 1,1,1,2 % SZS status Timeout for GRP200-1.p CLASH, statistics insufficient 10959: Facts: 10959: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10959: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 10959: Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 10959: Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 10959: Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 10959: Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 10959: Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 10959: Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 10959: Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?24) ?23 =?= multiply ?22 (multiply ?23 (multiply ?24 ?23)) [24, 23, 22] by moufang2 ?22 ?23 ?24 10959: Goal: 10959: Id : 1, {_}: multiply (multiply (multiply a b) a) c =>= multiply a (multiply b (multiply a c)) [] by prove_moufang3 10959: Order: 10959: nrkbo 10959: Leaf order: 10959: left_inverse 1 1 0 10959: right_inverse 1 1 0 10959: right_division 2 2 0 10959: left_division 2 2 0 10959: identity 4 0 0 10959: c 2 0 2 2,2 10959: multiply 20 2 6 0,2 10959: b 2 0 2 2,1,1,2 10959: a 4 0 4 1,1,1,2 CLASH, statistics insufficient 10960: Facts: 10960: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10960: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 10960: Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 10960: Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 10960: Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 10960: Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 10960: Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 10960: Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 10960: Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?24) ?23 =>= multiply ?22 (multiply ?23 (multiply ?24 ?23)) [24, 23, 22] by moufang2 ?22 ?23 ?24 10960: Goal: 10960: Id : 1, {_}: multiply (multiply (multiply a b) a) c =>= multiply a (multiply b (multiply a c)) [] by prove_moufang3 10960: Order: 10960: kbo 10960: Leaf order: 10960: left_inverse 1 1 0 10960: right_inverse 1 1 0 10960: right_division 2 2 0 10960: left_division 2 2 0 10960: identity 4 0 0 10960: c 2 0 2 2,2 10960: multiply 20 2 6 0,2 10960: b 2 0 2 2,1,1,2 10960: a 4 0 4 1,1,1,2 CLASH, statistics insufficient 10961: Facts: 10961: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10961: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 10961: Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 10961: Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 10961: Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 10961: Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 10961: Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 10961: Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 10961: Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?24) ?23 =>= multiply ?22 (multiply ?23 (multiply ?24 ?23)) [24, 23, 22] by moufang2 ?22 ?23 ?24 10961: Goal: 10961: Id : 1, {_}: multiply (multiply (multiply a b) a) c =>= multiply a (multiply b (multiply a c)) [] by prove_moufang3 10961: Order: 10961: lpo 10961: Leaf order: 10961: left_inverse 1 1 0 10961: right_inverse 1 1 0 10961: right_division 2 2 0 10961: left_division 2 2 0 10961: identity 4 0 0 10961: c 2 0 2 2,2 10961: multiply 20 2 6 0,2 10961: b 2 0 2 2,1,1,2 10961: a 4 0 4 1,1,1,2 Statistics : Max weight : 15 Found proof, 24.390962s % SZS status Unsatisfiable for GRP201-1.p % SZS output start CNFRefutation for GRP201-1.p Id : 22, {_}: left_division ?48 (multiply ?48 ?49) =>= ?49 [49, 48] by left_division_multiply ?48 ?49 Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?24) ?23 =>= multiply ?22 (multiply ?23 (multiply ?24 ?23)) [24, 23, 22] by moufang2 ?22 ?23 ?24 Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 54, {_}: multiply (multiply (multiply ?119 ?120) ?121) ?120 =>= multiply ?119 (multiply ?120 (multiply ?121 ?120)) [121, 120, 119] by moufang2 ?119 ?120 ?121 Id : 55, {_}: multiply (multiply ?123 ?124) ?123 =<= multiply identity (multiply ?123 (multiply ?124 ?123)) [124, 123] by Super 54 with 2 at 1,1,2 Id : 71, {_}: multiply (multiply ?123 ?124) ?123 =>= multiply ?123 (multiply ?124 ?123) [124, 123] by Demod 55 with 2 at 3 Id : 897, {_}: right_division (multiply ?1221 (multiply ?1222 (multiply ?1223 ?1222))) ?1222 =>= multiply (multiply ?1221 ?1222) ?1223 [1223, 1222, 1221] by Super 7 with 10 at 1,2 Id : 904, {_}: right_division (multiply ?1247 (multiply ?1248 identity)) ?1248 =>= multiply (multiply ?1247 ?1248) (left_inverse ?1248) [1248, 1247] by Super 897 with 9 at 2,2,1,2 Id : 944, {_}: right_division (multiply ?1247 ?1248) ?1248 =<= multiply (multiply ?1247 ?1248) (left_inverse ?1248) [1248, 1247] by Demod 904 with 3 at 2,1,2 Id : 945, {_}: ?1247 =<= multiply (multiply ?1247 ?1248) (left_inverse ?1248) [1248, 1247] by Demod 944 with 7 at 2 Id : 1320, {_}: left_division (multiply ?1774 ?1775) ?1774 =>= left_inverse ?1775 [1775, 1774] by Super 5 with 945 at 2,2 Id : 1325, {_}: left_division ?1787 ?1788 =<= left_inverse (left_division ?1788 ?1787) [1788, 1787] by Super 1320 with 4 at 1,2 Id : 1124, {_}: ?1512 =<= multiply (multiply ?1512 ?1513) (left_inverse ?1513) [1513, 1512] by Demod 944 with 7 at 2 Id : 1136, {_}: right_division ?1545 ?1546 =<= multiply ?1545 (left_inverse ?1546) [1546, 1545] by Super 1124 with 6 at 1,3 Id : 1239, {_}: right_division (multiply (left_inverse ?1664) ?1665) ?1664 =<= multiply (left_inverse ?1664) (multiply ?1665 (left_inverse ?1664)) [1665, 1664] by Super 71 with 1136 at 2 Id : 1291, {_}: right_division (multiply (left_inverse ?1664) ?1665) ?1664 =<= multiply (left_inverse ?1664) (right_division ?1665 ?1664) [1665, 1664] by Demod 1239 with 1136 at 2,3 Id : 621, {_}: right_division (multiply ?874 (multiply ?875 ?874)) ?874 =>= multiply ?874 ?875 [875, 874] by Super 7 with 71 at 1,2 Id : 2721, {_}: right_division (multiply (left_inverse ?3427) (multiply ?3427 (multiply ?3428 ?3427))) ?3427 =>= multiply (left_inverse ?3427) (multiply ?3427 ?3428) [3428, 3427] by Super 1291 with 621 at 2,3 Id : 53, {_}: right_division (multiply ?115 (multiply ?116 (multiply ?117 ?116))) ?116 =>= multiply (multiply ?115 ?116) ?117 [117, 116, 115] by Super 7 with 10 at 1,2 Id : 2757, {_}: multiply (multiply (left_inverse ?3427) ?3427) ?3428 =>= multiply (left_inverse ?3427) (multiply ?3427 ?3428) [3428, 3427] by Demod 2721 with 53 at 2 Id : 2758, {_}: multiply identity ?3428 =<= multiply (left_inverse ?3427) (multiply ?3427 ?3428) [3427, 3428] by Demod 2757 with 9 at 1,2 Id : 2759, {_}: ?3428 =<= multiply (left_inverse ?3427) (multiply ?3427 ?3428) [3427, 3428] by Demod 2758 with 2 at 2 Id : 3344, {_}: left_division (left_inverse ?4254) ?4255 =>= multiply ?4254 ?4255 [4255, 4254] by Super 5 with 2759 at 2,2 Id : 46, {_}: left_division (left_inverse ?101) identity =>= ?101 [101] by Super 5 with 9 at 2,2 Id : 40, {_}: left_division ?91 identity =>= right_inverse ?91 [91] by Super 5 with 8 at 2,2 Id : 425, {_}: right_inverse (left_inverse ?101) =>= ?101 [101] by Demod 46 with 40 at 2 Id : 626, {_}: multiply (multiply ?892 ?893) ?892 =>= multiply ?892 (multiply ?893 ?892) [893, 892] by Demod 55 with 2 at 3 Id : 633, {_}: multiply identity ?911 =<= multiply ?911 (multiply (right_inverse ?911) ?911) [911] by Super 626 with 8 at 1,2 Id : 654, {_}: ?911 =<= multiply ?911 (multiply (right_inverse ?911) ?911) [911] by Demod 633 with 2 at 2 Id : 727, {_}: left_division ?1053 ?1053 =<= multiply (right_inverse ?1053) ?1053 [1053] by Super 5 with 654 at 2,2 Id : 24, {_}: left_division ?53 ?53 =>= identity [53] by Super 22 with 3 at 2,2 Id : 754, {_}: identity =<= multiply (right_inverse ?1053) ?1053 [1053] by Demod 727 with 24 at 2 Id : 784, {_}: right_division identity ?1115 =>= right_inverse ?1115 [1115] by Super 7 with 754 at 1,2 Id : 45, {_}: right_division identity ?99 =>= left_inverse ?99 [99] by Super 7 with 9 at 1,2 Id : 808, {_}: left_inverse ?1115 =<= right_inverse ?1115 [1115] by Demod 784 with 45 at 2 Id : 829, {_}: left_inverse (left_inverse ?101) =>= ?101 [101] by Demod 425 with 808 at 2 Id : 3348, {_}: left_division ?4266 ?4267 =<= multiply (left_inverse ?4266) ?4267 [4267, 4266] by Super 3344 with 829 at 1,2 Id : 3417, {_}: multiply (multiply (left_division ?4342 ?4343) ?4344) ?4343 =<= multiply (left_inverse ?4342) (multiply ?4343 (multiply ?4344 ?4343)) [4344, 4343, 4342] by Super 10 with 3348 at 1,1,2 Id : 3495, {_}: multiply (multiply (left_division ?4342 ?4343) ?4344) ?4343 =>= left_division ?4342 (multiply ?4343 (multiply ?4344 ?4343)) [4344, 4343, 4342] by Demod 3417 with 3348 at 3 Id : 3351, {_}: left_division (left_division ?4274 ?4275) ?4276 =<= multiply (left_division ?4275 ?4274) ?4276 [4276, 4275, 4274] by Super 3344 with 1325 at 1,2 Id : 9541, {_}: multiply (left_division (left_division ?4343 ?4342) ?4344) ?4343 =>= left_division ?4342 (multiply ?4343 (multiply ?4344 ?4343)) [4344, 4342, 4343] by Demod 3495 with 3351 at 1,2 Id : 9542, {_}: left_division (left_division ?4344 (left_division ?4343 ?4342)) ?4343 =>= left_division ?4342 (multiply ?4343 (multiply ?4344 ?4343)) [4342, 4343, 4344] by Demod 9541 with 3351 at 2 Id : 9554, {_}: left_division ?10951 (left_division ?10952 (left_division ?10951 ?10953)) =<= left_inverse (left_division ?10953 (multiply ?10951 (multiply ?10952 ?10951))) [10953, 10952, 10951] by Super 1325 with 9542 at 1,3 Id : 27037, {_}: left_division ?28025 (left_division ?28026 (left_division ?28025 ?28027)) =<= left_division (multiply ?28025 (multiply ?28026 ?28025)) ?28027 [28027, 28026, 28025] by Demod 9554 with 1325 at 3 Id : 27055, {_}: left_division (left_inverse ?28099) (left_division ?28100 (left_division (left_inverse ?28099) ?28101)) =>= left_division (multiply (left_inverse ?28099) (right_division ?28100 ?28099)) ?28101 [28101, 28100, 28099] by Super 27037 with 1136 at 2,1,3 Id : 3143, {_}: left_division (left_inverse ?4011) ?4012 =>= multiply ?4011 ?4012 [4012, 4011] by Super 5 with 2759 at 2,2 Id : 27191, {_}: multiply ?28099 (left_division ?28100 (left_division (left_inverse ?28099) ?28101)) =>= left_division (multiply (left_inverse ?28099) (right_division ?28100 ?28099)) ?28101 [28101, 28100, 28099] by Demod 27055 with 3143 at 2 Id : 27192, {_}: multiply ?28099 (left_division ?28100 (left_division (left_inverse ?28099) ?28101)) =>= left_division (left_division ?28099 (right_division ?28100 ?28099)) ?28101 [28101, 28100, 28099] by Demod 27191 with 3348 at 1,3 Id : 1117, {_}: right_division ?1491 (left_inverse ?1492) =>= multiply ?1491 ?1492 [1492, 1491] by Super 7 with 945 at 1,2 Id : 1524, {_}: right_division ?2086 (left_division ?2087 ?2088) =<= multiply ?2086 (left_division ?2088 ?2087) [2088, 2087, 2086] by Super 1117 with 1325 at 2,2 Id : 27193, {_}: right_division ?28099 (left_division (left_division (left_inverse ?28099) ?28101) ?28100) =>= left_division (left_division ?28099 (right_division ?28100 ?28099)) ?28101 [28100, 28101, 28099] by Demod 27192 with 1524 at 2 Id : 3400, {_}: right_division (left_division ?1664 ?1665) ?1664 =<= multiply (left_inverse ?1664) (right_division ?1665 ?1664) [1665, 1664] by Demod 1291 with 3348 at 1,2 Id : 3401, {_}: right_division (left_division ?1664 ?1665) ?1664 =<= left_division ?1664 (right_division ?1665 ?1664) [1665, 1664] by Demod 3400 with 3348 at 3 Id : 27194, {_}: right_division ?28099 (left_division (left_division (left_inverse ?28099) ?28101) ?28100) =>= left_division (right_division (left_division ?28099 ?28100) ?28099) ?28101 [28100, 28101, 28099] by Demod 27193 with 3401 at 1,3 Id : 40132, {_}: right_division ?42719 (left_division (multiply ?42719 ?42720) ?42721) =<= left_division (right_division (left_division ?42719 ?42721) ?42719) ?42720 [42721, 42720, 42719] by Demod 27194 with 3143 at 1,2,2 Id : 1118, {_}: left_division (multiply ?1494 ?1495) ?1494 =>= left_inverse ?1495 [1495, 1494] by Super 5 with 945 at 2,2 Id : 3133, {_}: left_division ?3978 (left_inverse ?3979) =>= left_inverse (multiply ?3979 ?3978) [3979, 3978] by Super 1118 with 2759 at 1,2 Id : 40144, {_}: right_division ?42768 (left_division (multiply ?42768 ?42769) (left_inverse ?42770)) =<= left_division (right_division (left_inverse (multiply ?42770 ?42768)) ?42768) ?42769 [42770, 42769, 42768] by Super 40132 with 3133 at 1,1,3 Id : 40468, {_}: right_division ?42768 (left_inverse (multiply ?42770 (multiply ?42768 ?42769))) =<= left_division (right_division (left_inverse (multiply ?42770 ?42768)) ?42768) ?42769 [42769, 42770, 42768] by Demod 40144 with 3133 at 2,2 Id : 3414, {_}: right_division (left_inverse ?4334) ?4335 =<= left_division ?4334 (left_inverse ?4335) [4335, 4334] by Super 1136 with 3348 at 3 Id : 3502, {_}: right_division (left_inverse ?4334) ?4335 =>= left_inverse (multiply ?4335 ?4334) [4335, 4334] by Demod 3414 with 3133 at 3 Id : 40469, {_}: right_division ?42768 (left_inverse (multiply ?42770 (multiply ?42768 ?42769))) =<= left_division (left_inverse (multiply ?42768 (multiply ?42770 ?42768))) ?42769 [42769, 42770, 42768] by Demod 40468 with 3502 at 1,3 Id : 40470, {_}: multiply ?42768 (multiply ?42770 (multiply ?42768 ?42769)) =<= left_division (left_inverse (multiply ?42768 (multiply ?42770 ?42768))) ?42769 [42769, 42770, 42768] by Demod 40469 with 1117 at 2 Id : 40471, {_}: multiply ?42768 (multiply ?42770 (multiply ?42768 ?42769)) =<= multiply (multiply ?42768 (multiply ?42770 ?42768)) ?42769 [42769, 42770, 42768] by Demod 40470 with 3143 at 3 Id : 50862, {_}: multiply a (multiply b (multiply a c)) =?= multiply a (multiply b (multiply a c)) [] by Demod 50861 with 40471 at 2 Id : 50861, {_}: multiply (multiply a (multiply b a)) c =>= multiply a (multiply b (multiply a c)) [] by Demod 1 with 71 at 1,2 Id : 1, {_}: multiply (multiply (multiply a b) a) c =>= multiply a (multiply b (multiply a c)) [] by prove_moufang3 % SZS output end CNFRefutation for GRP201-1.p 10960: solved GRP201-1.p in 12.208762 using kbo 10960: status Unsatisfiable for GRP201-1.p CLASH, statistics insufficient 10977: Facts: 10977: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10977: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 10977: Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 10977: Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 10977: Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 10977: Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 10977: Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 10977: Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 10977: Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?22) ?24 =?= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by moufang3 ?22 ?23 ?24 10977: Goal: 10977: Id : 1, {_}: multiply (multiply a (multiply b c)) a =>= multiply (multiply a b) (multiply c a) [] by prove_moufang1 10977: Order: 10977: nrkbo 10977: Leaf order: 10977: left_inverse 1 1 0 10977: right_inverse 1 1 0 10977: right_division 2 2 0 10977: left_division 2 2 0 10977: identity 4 0 0 10977: multiply 20 2 6 0,2 10977: c 2 0 2 2,2,1,2 10977: b 2 0 2 1,2,1,2 10977: a 4 0 4 1,1,2 CLASH, statistics insufficient 10978: Facts: 10978: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10978: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 10978: Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 10978: Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 10978: Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 10978: Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 10978: Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 10978: Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 10978: Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?22) ?24 =>= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by moufang3 ?22 ?23 ?24 10978: Goal: 10978: Id : 1, {_}: multiply (multiply a (multiply b c)) a =>= multiply (multiply a b) (multiply c a) [] by prove_moufang1 10978: Order: 10978: kbo 10978: Leaf order: 10978: left_inverse 1 1 0 10978: right_inverse 1 1 0 10978: right_division 2 2 0 10978: left_division 2 2 0 10978: identity 4 0 0 10978: multiply 20 2 6 0,2 10978: c 2 0 2 2,2,1,2 10978: b 2 0 2 1,2,1,2 10978: a 4 0 4 1,1,2 CLASH, statistics insufficient 10979: Facts: 10979: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 10979: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 10979: Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 10979: Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 10979: Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 10979: Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 10979: Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 10979: Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 10979: Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?22) ?24 =>= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by moufang3 ?22 ?23 ?24 10979: Goal: 10979: Id : 1, {_}: multiply (multiply a (multiply b c)) a =>= multiply (multiply a b) (multiply c a) [] by prove_moufang1 10979: Order: 10979: lpo 10979: Leaf order: 10979: left_inverse 1 1 0 10979: right_inverse 1 1 0 10979: right_division 2 2 0 10979: left_division 2 2 0 10979: identity 4 0 0 10979: multiply 20 2 6 0,2 10979: c 2 0 2 2,2,1,2 10979: b 2 0 2 1,2,1,2 10979: a 4 0 4 1,1,2 Statistics : Max weight : 20 Found proof, 29.848585s % SZS status Unsatisfiable for GRP202-1.p % SZS output start CNFRefutation for GRP202-1.p Id : 56, {_}: multiply (multiply (multiply ?126 ?127) ?126) ?128 =>= multiply ?126 (multiply ?127 (multiply ?126 ?128)) [128, 127, 126] by moufang3 ?126 ?127 ?128 Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 Id : 22, {_}: left_division ?48 (multiply ?48 ?49) =>= ?49 [49, 48] by left_division_multiply ?48 ?49 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?22) ?24 =>= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by moufang3 ?22 ?23 ?24 Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 Id : 53, {_}: multiply ?115 (multiply ?116 (multiply ?115 identity)) =>= multiply (multiply ?115 ?116) ?115 [116, 115] by Super 3 with 10 at 2 Id : 70, {_}: multiply ?115 (multiply ?116 ?115) =<= multiply (multiply ?115 ?116) ?115 [116, 115] by Demod 53 with 3 at 2,2,2 Id : 894, {_}: right_division (multiply ?1099 (multiply ?1100 ?1099)) ?1099 =>= multiply ?1099 ?1100 [1100, 1099] by Super 7 with 70 at 1,2 Id : 900, {_}: right_division (multiply ?1115 ?1116) ?1115 =<= multiply ?1115 (right_division ?1116 ?1115) [1116, 1115] by Super 894 with 6 at 2,1,2 Id : 55, {_}: right_division (multiply ?122 (multiply ?123 (multiply ?122 ?124))) ?124 =>= multiply (multiply ?122 ?123) ?122 [124, 123, 122] by Super 7 with 10 at 1,2 Id : 2577, {_}: right_division (multiply ?3478 (multiply ?3479 (multiply ?3478 ?3480))) ?3480 =>= multiply ?3478 (multiply ?3479 ?3478) [3480, 3479, 3478] by Demod 55 with 70 at 3 Id : 647, {_}: multiply ?831 (multiply ?832 ?831) =<= multiply (multiply ?831 ?832) ?831 [832, 831] by Demod 53 with 3 at 2,2,2 Id : 654, {_}: multiply ?850 (multiply (right_inverse ?850) ?850) =>= multiply identity ?850 [850] by Super 647 with 8 at 1,3 Id : 677, {_}: multiply ?850 (multiply (right_inverse ?850) ?850) =>= ?850 [850] by Demod 654 with 2 at 3 Id : 765, {_}: left_division ?991 ?991 =<= multiply (right_inverse ?991) ?991 [991] by Super 5 with 677 at 2,2 Id : 24, {_}: left_division ?53 ?53 =>= identity [53] by Super 22 with 3 at 2,2 Id : 791, {_}: identity =<= multiply (right_inverse ?991) ?991 [991] by Demod 765 with 24 at 2 Id : 819, {_}: right_division identity ?1047 =>= right_inverse ?1047 [1047] by Super 7 with 791 at 1,2 Id : 45, {_}: right_division identity ?99 =>= left_inverse ?99 [99] by Super 7 with 9 at 1,2 Id : 846, {_}: left_inverse ?1047 =<= right_inverse ?1047 [1047] by Demod 819 with 45 at 2 Id : 861, {_}: multiply ?18 (left_inverse ?18) =>= identity [18] by Demod 8 with 846 at 2,2 Id : 2586, {_}: right_division (multiply ?3513 (multiply ?3514 identity)) (left_inverse ?3513) =>= multiply ?3513 (multiply ?3514 ?3513) [3514, 3513] by Super 2577 with 861 at 2,2,1,2 Id : 2645, {_}: right_division (multiply ?3513 ?3514) (left_inverse ?3513) =>= multiply ?3513 (multiply ?3514 ?3513) [3514, 3513] by Demod 2586 with 3 at 2,1,2 Id : 2833, {_}: right_division (multiply (left_inverse ?3781) (multiply ?3781 ?3782)) (left_inverse ?3781) =>= multiply (left_inverse ?3781) (multiply ?3781 (multiply ?3782 ?3781)) [3782, 3781] by Super 900 with 2645 at 2,3 Id : 52, {_}: multiply ?111 (multiply ?112 (multiply ?111 (left_division (multiply (multiply ?111 ?112) ?111) ?113))) =>= ?113 [113, 112, 111] by Super 4 with 10 at 2 Id : 969, {_}: multiply ?1216 (multiply ?1217 (multiply ?1216 (left_division (multiply ?1216 (multiply ?1217 ?1216)) ?1218))) =>= ?1218 [1218, 1217, 1216] by Demod 52 with 70 at 1,2,2,2,2 Id : 976, {_}: multiply ?1242 (multiply (left_inverse ?1242) (multiply ?1242 (left_division (multiply ?1242 identity) ?1243))) =>= ?1243 [1243, 1242] by Super 969 with 9 at 2,1,2,2,2,2 Id : 1036, {_}: multiply ?1242 (multiply (left_inverse ?1242) (multiply ?1242 (left_division ?1242 ?1243))) =>= ?1243 [1243, 1242] by Demod 976 with 3 at 1,2,2,2,2 Id : 1037, {_}: multiply ?1242 (multiply (left_inverse ?1242) ?1243) =>= ?1243 [1243, 1242] by Demod 1036 with 4 at 2,2,2 Id : 1172, {_}: left_division ?1548 ?1549 =<= multiply (left_inverse ?1548) ?1549 [1549, 1548] by Super 5 with 1037 at 2,2 Id : 2879, {_}: right_division (left_division ?3781 (multiply ?3781 ?3782)) (left_inverse ?3781) =<= multiply (left_inverse ?3781) (multiply ?3781 (multiply ?3782 ?3781)) [3782, 3781] by Demod 2833 with 1172 at 1,2 Id : 2880, {_}: right_division (left_division ?3781 (multiply ?3781 ?3782)) (left_inverse ?3781) =>= left_division ?3781 (multiply ?3781 (multiply ?3782 ?3781)) [3782, 3781] by Demod 2879 with 1172 at 3 Id : 2881, {_}: right_division ?3782 (left_inverse ?3781) =<= left_division ?3781 (multiply ?3781 (multiply ?3782 ?3781)) [3781, 3782] by Demod 2880 with 5 at 1,2 Id : 2882, {_}: right_division ?3782 (left_inverse ?3781) =>= multiply ?3782 ?3781 [3781, 3782] by Demod 2881 with 5 at 3 Id : 1389, {_}: right_division (left_division ?1827 ?1828) ?1828 =>= left_inverse ?1827 [1828, 1827] by Super 7 with 1172 at 1,2 Id : 28, {_}: left_division (right_division ?62 ?63) ?62 =>= ?63 [63, 62] by Super 5 with 6 at 2,2 Id : 1395, {_}: right_division ?1844 ?1845 =<= left_inverse (right_division ?1845 ?1844) [1845, 1844] by Super 1389 with 28 at 1,2 Id : 3679, {_}: multiply (multiply ?4879 ?4880) ?4881 =<= multiply ?4880 (multiply (left_division ?4880 ?4879) (multiply ?4880 ?4881)) [4881, 4880, 4879] by Super 56 with 4 at 1,1,2 Id : 3684, {_}: multiply (multiply ?4897 ?4898) (left_division ?4898 ?4899) =>= multiply ?4898 (multiply (left_division ?4898 ?4897) ?4899) [4899, 4898, 4897] by Super 3679 with 4 at 2,2,3 Id : 2950, {_}: right_division (left_inverse ?3910) ?3911 =>= left_inverse (multiply ?3911 ?3910) [3911, 3910] by Super 1395 with 2882 at 1,3 Id : 3037, {_}: left_inverse (multiply (left_inverse ?4021) ?4022) =>= multiply (left_inverse ?4022) ?4021 [4022, 4021] by Super 2882 with 2950 at 2 Id : 3056, {_}: left_inverse (left_division ?4021 ?4022) =<= multiply (left_inverse ?4022) ?4021 [4022, 4021] by Demod 3037 with 1172 at 1,2 Id : 3057, {_}: left_inverse (left_division ?4021 ?4022) =>= left_division ?4022 ?4021 [4022, 4021] by Demod 3056 with 1172 at 3 Id : 3222, {_}: right_division ?4224 (left_division ?4225 ?4226) =<= multiply ?4224 (left_division ?4226 ?4225) [4226, 4225, 4224] by Super 2882 with 3057 at 2,2 Id : 8079, {_}: right_division (multiply ?4897 ?4898) (left_division ?4899 ?4898) =<= multiply ?4898 (multiply (left_division ?4898 ?4897) ?4899) [4899, 4898, 4897] by Demod 3684 with 3222 at 2 Id : 3218, {_}: left_division (left_division ?4210 ?4211) ?4212 =<= multiply (left_division ?4211 ?4210) ?4212 [4212, 4211, 4210] by Super 1172 with 3057 at 1,3 Id : 8080, {_}: right_division (multiply ?4897 ?4898) (left_division ?4899 ?4898) =<= multiply ?4898 (left_division (left_division ?4897 ?4898) ?4899) [4899, 4898, 4897] by Demod 8079 with 3218 at 2,3 Id : 8081, {_}: right_division (multiply ?4897 ?4898) (left_division ?4899 ?4898) =>= right_division ?4898 (left_division ?4899 (left_division ?4897 ?4898)) [4899, 4898, 4897] by Demod 8080 with 3222 at 3 Id : 8094, {_}: right_division (left_division ?9766 ?9767) (multiply ?9768 ?9767) =<= left_inverse (right_division ?9767 (left_division ?9766 (left_division ?9768 ?9767))) [9768, 9767, 9766] by Super 1395 with 8081 at 1,3 Id : 8159, {_}: right_division (left_division ?9766 ?9767) (multiply ?9768 ?9767) =<= right_division (left_division ?9766 (left_division ?9768 ?9767)) ?9767 [9768, 9767, 9766] by Demod 8094 with 1395 at 3 Id : 23778, {_}: right_division (left_division ?25246 (left_inverse ?25247)) (multiply ?25248 (left_inverse ?25247)) =>= multiply (left_division ?25246 (left_division ?25248 (left_inverse ?25247))) ?25247 [25248, 25247, 25246] by Super 2882 with 8159 at 2 Id : 2960, {_}: right_division ?3937 (left_inverse ?3938) =>= multiply ?3937 ?3938 [3938, 3937] by Demod 2881 with 5 at 3 Id : 46, {_}: left_division (left_inverse ?101) identity =>= ?101 [101] by Super 5 with 9 at 2,2 Id : 40, {_}: left_division ?91 identity =>= right_inverse ?91 [91] by Super 5 with 8 at 2,2 Id : 426, {_}: right_inverse (left_inverse ?101) =>= ?101 [101] by Demod 46 with 40 at 2 Id : 864, {_}: left_inverse (left_inverse ?101) =>= ?101 [101] by Demod 426 with 846 at 2 Id : 2964, {_}: right_division ?3949 ?3950 =<= multiply ?3949 (left_inverse ?3950) [3950, 3949] by Super 2960 with 864 at 2,2 Id : 3107, {_}: left_division ?4125 (left_inverse ?4126) =>= right_division (left_inverse ?4125) ?4126 [4126, 4125] by Super 1172 with 2964 at 3 Id : 3145, {_}: left_division ?4125 (left_inverse ?4126) =>= left_inverse (multiply ?4126 ?4125) [4126, 4125] by Demod 3107 with 2950 at 3 Id : 23925, {_}: right_division (left_inverse (multiply ?25247 ?25246)) (multiply ?25248 (left_inverse ?25247)) =>= multiply (left_division ?25246 (left_division ?25248 (left_inverse ?25247))) ?25247 [25248, 25246, 25247] by Demod 23778 with 3145 at 1,2 Id : 23926, {_}: right_division (left_inverse (multiply ?25247 ?25246)) (right_division ?25248 ?25247) =<= multiply (left_division ?25246 (left_division ?25248 (left_inverse ?25247))) ?25247 [25248, 25246, 25247] by Demod 23925 with 2964 at 2,2 Id : 23927, {_}: right_division (left_inverse (multiply ?25247 ?25246)) (right_division ?25248 ?25247) =<= left_division (left_division (left_division ?25248 (left_inverse ?25247)) ?25246) ?25247 [25248, 25246, 25247] by Demod 23926 with 3218 at 3 Id : 23928, {_}: left_inverse (multiply (right_division ?25248 ?25247) (multiply ?25247 ?25246)) =<= left_division (left_division (left_division ?25248 (left_inverse ?25247)) ?25246) ?25247 [25246, 25247, 25248] by Demod 23927 with 2950 at 2 Id : 23929, {_}: left_inverse (multiply (right_division ?25248 ?25247) (multiply ?25247 ?25246)) =<= left_division (left_division (left_inverse (multiply ?25247 ?25248)) ?25246) ?25247 [25246, 25247, 25248] by Demod 23928 with 3145 at 1,1,3 Id : 1175, {_}: multiply ?1556 (multiply (left_inverse ?1556) ?1557) =>= ?1557 [1557, 1556] by Demod 1036 with 4 at 2,2,2 Id : 1185, {_}: multiply ?1584 ?1585 =<= left_division (left_inverse ?1584) ?1585 [1585, 1584] by Super 1175 with 4 at 2,2 Id : 1426, {_}: multiply (right_division ?1873 ?1874) ?1875 =>= left_division (right_division ?1874 ?1873) ?1875 [1875, 1874, 1873] by Super 1185 with 1395 at 1,3 Id : 23930, {_}: left_inverse (left_division (right_division ?25247 ?25248) (multiply ?25247 ?25246)) =<= left_division (left_division (left_inverse (multiply ?25247 ?25248)) ?25246) ?25247 [25246, 25248, 25247] by Demod 23929 with 1426 at 1,2 Id : 23931, {_}: left_inverse (left_division (right_division ?25247 ?25248) (multiply ?25247 ?25246)) =>= left_division (multiply (multiply ?25247 ?25248) ?25246) ?25247 [25246, 25248, 25247] by Demod 23930 with 1185 at 1,3 Id : 37380, {_}: left_division (multiply ?37773 ?37774) (right_division ?37773 ?37775) =<= left_division (multiply (multiply ?37773 ?37775) ?37774) ?37773 [37775, 37774, 37773] by Demod 23931 with 3057 at 2 Id : 37397, {_}: left_division (multiply ?37844 ?37845) (right_division ?37844 (left_inverse ?37846)) =>= left_division (multiply (right_division ?37844 ?37846) ?37845) ?37844 [37846, 37845, 37844] by Super 37380 with 2964 at 1,1,3 Id : 37604, {_}: left_division (multiply ?37844 ?37845) (multiply ?37844 ?37846) =<= left_division (multiply (right_division ?37844 ?37846) ?37845) ?37844 [37846, 37845, 37844] by Demod 37397 with 2882 at 2,2 Id : 37605, {_}: left_division (multiply ?37844 ?37845) (multiply ?37844 ?37846) =<= left_division (left_division (right_division ?37846 ?37844) ?37845) ?37844 [37846, 37845, 37844] by Demod 37604 with 1426 at 1,3 Id : 8101, {_}: right_division (multiply ?9794 ?9795) (left_division ?9796 ?9795) =>= right_division ?9795 (left_division ?9796 (left_division ?9794 ?9795)) [9796, 9795, 9794] by Demod 8080 with 3222 at 3 Id : 8114, {_}: right_division (multiply ?9845 (left_inverse ?9846)) (left_inverse (multiply ?9846 ?9847)) =>= right_division (left_inverse ?9846) (left_division ?9847 (left_division ?9845 (left_inverse ?9846))) [9847, 9846, 9845] by Super 8101 with 3145 at 2,2 Id : 8186, {_}: multiply (multiply ?9845 (left_inverse ?9846)) (multiply ?9846 ?9847) =<= right_division (left_inverse ?9846) (left_division ?9847 (left_division ?9845 (left_inverse ?9846))) [9847, 9846, 9845] by Demod 8114 with 2882 at 2 Id : 8187, {_}: multiply (multiply ?9845 (left_inverse ?9846)) (multiply ?9846 ?9847) =<= left_inverse (multiply (left_division ?9847 (left_division ?9845 (left_inverse ?9846))) ?9846) [9847, 9846, 9845] by Demod 8186 with 2950 at 3 Id : 8188, {_}: multiply (right_division ?9845 ?9846) (multiply ?9846 ?9847) =<= left_inverse (multiply (left_division ?9847 (left_division ?9845 (left_inverse ?9846))) ?9846) [9847, 9846, 9845] by Demod 8187 with 2964 at 1,2 Id : 8189, {_}: multiply (right_division ?9845 ?9846) (multiply ?9846 ?9847) =<= left_inverse (left_division (left_division (left_division ?9845 (left_inverse ?9846)) ?9847) ?9846) [9847, 9846, 9845] by Demod 8188 with 3218 at 1,3 Id : 8190, {_}: left_division (right_division ?9846 ?9845) (multiply ?9846 ?9847) =<= left_inverse (left_division (left_division (left_division ?9845 (left_inverse ?9846)) ?9847) ?9846) [9847, 9845, 9846] by Demod 8189 with 1426 at 2 Id : 8191, {_}: left_division (right_division ?9846 ?9845) (multiply ?9846 ?9847) =<= left_division ?9846 (left_division (left_division ?9845 (left_inverse ?9846)) ?9847) [9847, 9845, 9846] by Demod 8190 with 3057 at 3 Id : 8192, {_}: left_division (right_division ?9846 ?9845) (multiply ?9846 ?9847) =<= left_division ?9846 (left_division (left_inverse (multiply ?9846 ?9845)) ?9847) [9847, 9845, 9846] by Demod 8191 with 3145 at 1,2,3 Id : 24138, {_}: left_division (right_division ?25824 ?25825) (multiply ?25824 ?25826) =>= left_division ?25824 (multiply (multiply ?25824 ?25825) ?25826) [25826, 25825, 25824] by Demod 8192 with 1185 at 2,3 Id : 24175, {_}: left_division (multiply ?25977 ?25978) (multiply ?25977 ?25979) =<= left_division ?25977 (multiply (multiply ?25977 (left_inverse ?25978)) ?25979) [25979, 25978, 25977] by Super 24138 with 2882 at 1,2 Id : 24394, {_}: left_division (multiply ?25977 ?25978) (multiply ?25977 ?25979) =>= left_division ?25977 (multiply (right_division ?25977 ?25978) ?25979) [25979, 25978, 25977] by Demod 24175 with 2964 at 1,2,3 Id : 24395, {_}: left_division (multiply ?25977 ?25978) (multiply ?25977 ?25979) =>= left_division ?25977 (left_division (right_division ?25978 ?25977) ?25979) [25979, 25978, 25977] by Demod 24394 with 1426 at 2,3 Id : 47972, {_}: left_division ?49234 (left_division (right_division ?49235 ?49234) ?49236) =<= left_division (left_division (right_division ?49236 ?49234) ?49235) ?49234 [49236, 49235, 49234] by Demod 37605 with 24395 at 2 Id : 1255, {_}: multiply (left_inverse ?1641) (multiply ?1642 (left_inverse ?1641)) =>= multiply (left_division ?1641 ?1642) (left_inverse ?1641) [1642, 1641] by Super 70 with 1172 at 1,3 Id : 1319, {_}: left_division ?1641 (multiply ?1642 (left_inverse ?1641)) =<= multiply (left_division ?1641 ?1642) (left_inverse ?1641) [1642, 1641] by Demod 1255 with 1172 at 2 Id : 3086, {_}: left_division ?1641 (right_division ?1642 ?1641) =<= multiply (left_division ?1641 ?1642) (left_inverse ?1641) [1642, 1641] by Demod 1319 with 2964 at 2,2 Id : 3087, {_}: left_division ?1641 (right_division ?1642 ?1641) =>= right_division (left_division ?1641 ?1642) ?1641 [1642, 1641] by Demod 3086 with 2964 at 3 Id : 48040, {_}: left_division ?49524 (left_division (right_division (right_division ?49525 (right_division ?49526 ?49524)) ?49524) ?49526) =<= left_division (right_division (left_division (right_division ?49526 ?49524) ?49525) (right_division ?49526 ?49524)) ?49524 [49526, 49525, 49524] by Super 47972 with 3087 at 1,3 Id : 59, {_}: multiply (multiply ?136 ?137) ?138 =<= multiply ?137 (multiply (left_division ?137 ?136) (multiply ?137 ?138)) [138, 137, 136] by Super 56 with 4 at 1,1,2 Id : 3668, {_}: left_division ?4830 (multiply (multiply ?4831 ?4830) ?4832) =<= multiply (left_division ?4830 ?4831) (multiply ?4830 ?4832) [4832, 4831, 4830] by Super 5 with 59 at 2,2 Id : 7892, {_}: left_division ?4830 (multiply (multiply ?4831 ?4830) ?4832) =<= left_division (left_division ?4831 ?4830) (multiply ?4830 ?4832) [4832, 4831, 4830] by Demod 3668 with 3218 at 3 Id : 7900, {_}: left_inverse (left_division ?9488 (multiply (multiply ?9489 ?9488) ?9490)) =>= left_division (multiply ?9488 ?9490) (left_division ?9489 ?9488) [9490, 9489, 9488] by Super 3057 with 7892 at 1,2 Id : 7969, {_}: left_division (multiply (multiply ?9489 ?9488) ?9490) ?9488 =>= left_division (multiply ?9488 ?9490) (left_division ?9489 ?9488) [9490, 9488, 9489] by Demod 7900 with 3057 at 2 Id : 22647, {_}: left_division (multiply (left_inverse ?23598) ?23599) (left_division ?23600 (left_inverse ?23598)) =>= left_inverse (multiply ?23598 (multiply (multiply ?23600 (left_inverse ?23598)) ?23599)) [23600, 23599, 23598] by Super 3145 with 7969 at 2 Id : 22730, {_}: left_division (left_division ?23598 ?23599) (left_division ?23600 (left_inverse ?23598)) =<= left_inverse (multiply ?23598 (multiply (multiply ?23600 (left_inverse ?23598)) ?23599)) [23600, 23599, 23598] by Demod 22647 with 1172 at 1,2 Id : 22731, {_}: left_division (left_division ?23598 ?23599) (left_inverse (multiply ?23598 ?23600)) =<= left_inverse (multiply ?23598 (multiply (multiply ?23600 (left_inverse ?23598)) ?23599)) [23600, 23599, 23598] by Demod 22730 with 3145 at 2,2 Id : 22732, {_}: left_division (left_division ?23598 ?23599) (left_inverse (multiply ?23598 ?23600)) =>= left_inverse (multiply ?23598 (multiply (right_division ?23600 ?23598) ?23599)) [23600, 23599, 23598] by Demod 22731 with 2964 at 1,2,1,3 Id : 22733, {_}: left_inverse (multiply (multiply ?23598 ?23600) (left_division ?23598 ?23599)) =>= left_inverse (multiply ?23598 (multiply (right_division ?23600 ?23598) ?23599)) [23599, 23600, 23598] by Demod 22732 with 3145 at 2 Id : 22734, {_}: left_inverse (multiply (multiply ?23598 ?23600) (left_division ?23598 ?23599)) =>= left_inverse (multiply ?23598 (left_division (right_division ?23598 ?23600) ?23599)) [23599, 23600, 23598] by Demod 22733 with 1426 at 2,1,3 Id : 22735, {_}: left_inverse (right_division (multiply ?23598 ?23600) (left_division ?23599 ?23598)) =<= left_inverse (multiply ?23598 (left_division (right_division ?23598 ?23600) ?23599)) [23599, 23600, 23598] by Demod 22734 with 3222 at 1,2 Id : 22736, {_}: left_inverse (right_division (multiply ?23598 ?23600) (left_division ?23599 ?23598)) =>= left_inverse (right_division ?23598 (left_division ?23599 (right_division ?23598 ?23600))) [23599, 23600, 23598] by Demod 22735 with 3222 at 1,3 Id : 22737, {_}: right_division (left_division ?23599 ?23598) (multiply ?23598 ?23600) =<= left_inverse (right_division ?23598 (left_division ?23599 (right_division ?23598 ?23600))) [23600, 23598, 23599] by Demod 22736 with 1395 at 2 Id : 33406, {_}: right_division (left_division ?33402 ?33403) (multiply ?33403 ?33404) =<= right_division (left_division ?33402 (right_division ?33403 ?33404)) ?33403 [33404, 33403, 33402] by Demod 22737 with 1395 at 3 Id : 33487, {_}: right_division (left_division (left_inverse ?33737) ?33738) (multiply ?33738 ?33739) =>= right_division (multiply ?33737 (right_division ?33738 ?33739)) ?33738 [33739, 33738, 33737] by Super 33406 with 1185 at 1,3 Id : 33773, {_}: right_division (multiply ?33737 ?33738) (multiply ?33738 ?33739) =<= right_division (multiply ?33737 (right_division ?33738 ?33739)) ?33738 [33739, 33738, 33737] by Demod 33487 with 1185 at 1,2 Id : 2967, {_}: right_division ?3957 (right_division ?3958 ?3959) =<= multiply ?3957 (right_division ?3959 ?3958) [3959, 3958, 3957] by Super 2960 with 1395 at 2,2 Id : 33774, {_}: right_division (multiply ?33737 ?33738) (multiply ?33738 ?33739) =<= right_division (right_division ?33737 (right_division ?33739 ?33738)) ?33738 [33739, 33738, 33737] by Demod 33773 with 2967 at 1,3 Id : 48410, {_}: left_division ?49524 (left_division (right_division (multiply ?49525 ?49524) (multiply ?49524 ?49526)) ?49526) =<= left_division (right_division (left_division (right_division ?49526 ?49524) ?49525) (right_division ?49526 ?49524)) ?49524 [49526, 49525, 49524] by Demod 48040 with 33774 at 1,2,2 Id : 640, {_}: multiply (multiply ?22 (multiply ?23 ?22)) ?24 =>= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by Demod 10 with 70 at 1,2 Id : 1260, {_}: multiply (multiply ?1655 (left_division ?1656 ?1655)) ?1657 =<= multiply ?1655 (multiply (left_inverse ?1656) (multiply ?1655 ?1657)) [1657, 1656, 1655] by Super 640 with 1172 at 2,1,2 Id : 1315, {_}: multiply (multiply ?1655 (left_division ?1656 ?1655)) ?1657 =>= multiply ?1655 (left_division ?1656 (multiply ?1655 ?1657)) [1657, 1656, 1655] by Demod 1260 with 1172 at 2,3 Id : 5054, {_}: multiply (right_division ?1655 (left_division ?1655 ?1656)) ?1657 =>= multiply ?1655 (left_division ?1656 (multiply ?1655 ?1657)) [1657, 1656, 1655] by Demod 1315 with 3222 at 1,2 Id : 5055, {_}: multiply (right_division ?1655 (left_division ?1655 ?1656)) ?1657 =>= right_division ?1655 (left_division (multiply ?1655 ?1657) ?1656) [1657, 1656, 1655] by Demod 5054 with 3222 at 3 Id : 5056, {_}: left_division (right_division (left_division ?1655 ?1656) ?1655) ?1657 =>= right_division ?1655 (left_division (multiply ?1655 ?1657) ?1656) [1657, 1656, 1655] by Demod 5055 with 1426 at 2 Id : 48411, {_}: left_division ?49524 (left_division (right_division (multiply ?49525 ?49524) (multiply ?49524 ?49526)) ?49526) =>= right_division (right_division ?49526 ?49524) (left_division (multiply (right_division ?49526 ?49524) ?49524) ?49525) [49526, 49525, 49524] by Demod 48410 with 5056 at 3 Id : 3100, {_}: multiply (multiply (left_inverse ?4103) (right_division ?4104 ?4103)) ?4105 =<= multiply (left_inverse ?4103) (multiply ?4104 (multiply (left_inverse ?4103) ?4105)) [4105, 4104, 4103] by Super 640 with 2964 at 2,1,2 Id : 3156, {_}: multiply (left_division ?4103 (right_division ?4104 ?4103)) ?4105 =<= multiply (left_inverse ?4103) (multiply ?4104 (multiply (left_inverse ?4103) ?4105)) [4105, 4104, 4103] by Demod 3100 with 1172 at 1,2 Id : 3157, {_}: multiply (left_division ?4103 (right_division ?4104 ?4103)) ?4105 =<= left_division ?4103 (multiply ?4104 (multiply (left_inverse ?4103) ?4105)) [4105, 4104, 4103] by Demod 3156 with 1172 at 3 Id : 3158, {_}: multiply (right_division (left_division ?4103 ?4104) ?4103) ?4105 =<= left_division ?4103 (multiply ?4104 (multiply (left_inverse ?4103) ?4105)) [4105, 4104, 4103] by Demod 3157 with 3087 at 1,2 Id : 3159, {_}: multiply (right_division (left_division ?4103 ?4104) ?4103) ?4105 =>= left_division ?4103 (multiply ?4104 (left_division ?4103 ?4105)) [4105, 4104, 4103] by Demod 3158 with 1172 at 2,2,3 Id : 3160, {_}: left_division (right_division ?4103 (left_division ?4103 ?4104)) ?4105 =>= left_division ?4103 (multiply ?4104 (left_division ?4103 ?4105)) [4105, 4104, 4103] by Demod 3159 with 1426 at 2 Id : 7103, {_}: left_division (right_division ?4103 (left_division ?4103 ?4104)) ?4105 =>= left_division ?4103 (right_division ?4104 (left_division ?4105 ?4103)) [4105, 4104, 4103] by Demod 3160 with 3222 at 2,3 Id : 7119, {_}: left_division ?8435 (right_division ?8436 (left_division (left_inverse ?8437) ?8435)) =>= left_inverse (multiply ?8437 (right_division ?8435 (left_division ?8435 ?8436))) [8437, 8436, 8435] by Super 3145 with 7103 at 2 Id : 7221, {_}: left_division ?8435 (right_division ?8436 (multiply ?8437 ?8435)) =<= left_inverse (multiply ?8437 (right_division ?8435 (left_division ?8435 ?8436))) [8437, 8436, 8435] by Demod 7119 with 1185 at 2,2,2 Id : 7222, {_}: left_division ?8435 (right_division ?8436 (multiply ?8437 ?8435)) =<= left_inverse (right_division ?8437 (right_division (left_division ?8435 ?8436) ?8435)) [8437, 8436, 8435] by Demod 7221 with 2967 at 1,3 Id : 7223, {_}: left_division ?8435 (right_division ?8436 (multiply ?8437 ?8435)) =>= right_division (right_division (left_division ?8435 ?8436) ?8435) ?8437 [8437, 8436, 8435] by Demod 7222 with 1395 at 3 Id : 21525, {_}: left_inverse (right_division (right_division (left_division ?22100 ?22101) ?22100) ?22102) =>= left_division (right_division ?22101 (multiply ?22102 ?22100)) ?22100 [22102, 22101, 22100] by Super 3057 with 7223 at 1,2 Id : 21646, {_}: right_division ?22102 (right_division (left_division ?22100 ?22101) ?22100) =<= left_division (right_division ?22101 (multiply ?22102 ?22100)) ?22100 [22101, 22100, 22102] by Demod 21525 with 1395 at 2 Id : 48412, {_}: left_division ?49524 (right_division ?49524 (right_division (left_division ?49526 (multiply ?49525 ?49524)) ?49526)) =>= right_division (right_division ?49526 ?49524) (left_division (multiply (right_division ?49526 ?49524) ?49524) ?49525) [49525, 49526, 49524] by Demod 48411 with 21646 at 2,2 Id : 48413, {_}: left_division ?49524 (right_division ?49524 (right_division (left_division ?49526 (multiply ?49525 ?49524)) ?49526)) =>= right_division (right_division ?49526 ?49524) (left_division (left_division (right_division ?49524 ?49526) ?49524) ?49525) [49525, 49526, 49524] by Demod 48412 with 1426 at 1,2,3 Id : 3103, {_}: left_division ?4114 (right_division ?4114 ?4115) =>= left_inverse ?4115 [4115, 4114] by Super 5 with 2964 at 2,2 Id : 48414, {_}: left_inverse (right_division (left_division ?49526 (multiply ?49525 ?49524)) ?49526) =<= right_division (right_division ?49526 ?49524) (left_division (left_division (right_division ?49524 ?49526) ?49524) ?49525) [49524, 49525, 49526] by Demod 48413 with 3103 at 2 Id : 48415, {_}: left_inverse (right_division (left_division ?49526 (multiply ?49525 ?49524)) ?49526) =>= right_division (right_division ?49526 ?49524) (left_division ?49526 ?49525) [49524, 49525, 49526] by Demod 48414 with 28 at 1,2,3 Id : 48416, {_}: right_division ?49526 (left_division ?49526 (multiply ?49525 ?49524)) =<= right_division (right_division ?49526 ?49524) (left_division ?49526 ?49525) [49524, 49525, 49526] by Demod 48415 with 1395 at 2 Id : 52586, {_}: right_division (left_division ?54688 ?54689) (right_division ?54688 ?54690) =<= left_inverse (right_division ?54688 (left_division ?54688 (multiply ?54689 ?54690))) [54690, 54689, 54688] by Super 1395 with 48416 at 1,3 Id : 52816, {_}: right_division (left_division ?54688 ?54689) (right_division ?54688 ?54690) =<= right_division (left_division ?54688 (multiply ?54689 ?54690)) ?54688 [54690, 54689, 54688] by Demod 52586 with 1395 at 3 Id : 55129, {_}: right_division (left_division (left_inverse ?57654) ?57655) (right_division (left_inverse ?57654) ?57656) =>= multiply (left_division (left_inverse ?57654) (multiply ?57655 ?57656)) ?57654 [57656, 57655, 57654] by Super 2882 with 52816 at 2 Id : 55322, {_}: right_division (multiply ?57654 ?57655) (right_division (left_inverse ?57654) ?57656) =<= multiply (left_division (left_inverse ?57654) (multiply ?57655 ?57656)) ?57654 [57656, 57655, 57654] by Demod 55129 with 1185 at 1,2 Id : 55323, {_}: right_division (multiply ?57654 ?57655) (left_inverse (multiply ?57656 ?57654)) =<= multiply (left_division (left_inverse ?57654) (multiply ?57655 ?57656)) ?57654 [57656, 57655, 57654] by Demod 55322 with 2950 at 2,2 Id : 55324, {_}: right_division (multiply ?57654 ?57655) (left_inverse (multiply ?57656 ?57654)) =<= left_division (left_division (multiply ?57655 ?57656) (left_inverse ?57654)) ?57654 [57656, 57655, 57654] by Demod 55323 with 3218 at 3 Id : 55325, {_}: multiply (multiply ?57654 ?57655) (multiply ?57656 ?57654) =<= left_division (left_division (multiply ?57655 ?57656) (left_inverse ?57654)) ?57654 [57656, 57655, 57654] by Demod 55324 with 2882 at 2 Id : 55326, {_}: multiply (multiply ?57654 ?57655) (multiply ?57656 ?57654) =<= left_division (left_inverse (multiply ?57654 (multiply ?57655 ?57656))) ?57654 [57656, 57655, 57654] by Demod 55325 with 3145 at 1,3 Id : 55327, {_}: multiply (multiply ?57654 ?57655) (multiply ?57656 ?57654) =<= multiply (multiply ?57654 (multiply ?57655 ?57656)) ?57654 [57656, 57655, 57654] by Demod 55326 with 1185 at 3 Id : 55328, {_}: multiply (multiply ?57654 ?57655) (multiply ?57656 ?57654) =>= multiply ?57654 (multiply (multiply ?57655 ?57656) ?57654) [57656, 57655, 57654] by Demod 55327 with 70 at 3 Id : 57081, {_}: multiply a (multiply (multiply b c) a) =?= multiply a (multiply (multiply b c) a) [] by Demod 57080 with 55328 at 3 Id : 57080, {_}: multiply a (multiply (multiply b c) a) =<= multiply (multiply a b) (multiply c a) [] by Demod 1 with 70 at 2 Id : 1, {_}: multiply (multiply a (multiply b c)) a =>= multiply (multiply a b) (multiply c a) [] by prove_moufang1 % SZS output end CNFRefutation for GRP202-1.p 10978: solved GRP202-1.p in 14.864928 using kbo 10978: status Unsatisfiable for GRP202-1.p NO CLASH, using fixed ground order 10984: Facts: 10984: Id : 2, {_}: multiply ?2 (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4)) (inverse (multiply ?3 (multiply (inverse ?3) ?3))))) =>= ?4 [4, 3, 2] by single_axiom ?2 ?3 ?4 10984: Goal: 10984: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 10984: Order: 10984: nrkbo 10984: Leaf order: 10984: a2 2 0 2 2,2 10984: multiply 8 2 2 0,2 10984: inverse 6 1 1 0,1,1,2 10984: b2 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 10985: Facts: 10985: Id : 2, {_}: multiply ?2 (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4)) (inverse (multiply ?3 (multiply (inverse ?3) ?3))))) =>= ?4 [4, 3, 2] by single_axiom ?2 ?3 ?4 10985: Goal: 10985: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 10985: Order: 10985: kbo 10985: Leaf order: 10985: a2 2 0 2 2,2 10985: multiply 8 2 2 0,2 10985: inverse 6 1 1 0,1,1,2 10985: b2 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 10986: Facts: 10986: Id : 2, {_}: multiply ?2 (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4)) (inverse (multiply ?3 (multiply (inverse ?3) ?3))))) =>= ?4 [4, 3, 2] by single_axiom ?2 ?3 ?4 10986: Goal: 10986: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 10986: Order: 10986: lpo 10986: Leaf order: 10986: a2 2 0 2 2,2 10986: multiply 8 2 2 0,2 10986: inverse 6 1 1 0,1,1,2 10986: b2 2 0 2 1,1,1,2 % SZS status Timeout for GRP404-1.p NO CLASH, using fixed ground order 11033: Facts: 11033: Id : 2, {_}: multiply ?2 (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4)) (inverse (multiply ?3 (multiply (inverse ?3) ?3))))) =>= ?4 [4, 3, 2] by single_axiom ?2 ?3 ?4 11033: Goal: 11033: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11033: Order: 11033: nrkbo 11033: Leaf order: 11033: inverse 5 1 0 11033: c3 2 0 2 2,2 11033: multiply 10 2 4 0,2 11033: b3 2 0 2 2,1,2 11033: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 11034: Facts: 11034: Id : 2, {_}: multiply ?2 (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4)) (inverse (multiply ?3 (multiply (inverse ?3) ?3))))) =>= ?4 [4, 3, 2] by single_axiom ?2 ?3 ?4 11034: Goal: 11034: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11034: Order: 11034: kbo 11034: Leaf order: 11034: inverse 5 1 0 11034: c3 2 0 2 2,2 11034: multiply 10 2 4 0,2 11034: b3 2 0 2 2,1,2 11034: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 11035: Facts: 11035: Id : 2, {_}: multiply ?2 (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4)) (inverse (multiply ?3 (multiply (inverse ?3) ?3))))) =>= ?4 [4, 3, 2] by single_axiom ?2 ?3 ?4 11035: Goal: 11035: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11035: Order: 11035: lpo 11035: Leaf order: 11035: inverse 5 1 0 11035: c3 2 0 2 2,2 11035: multiply 10 2 4 0,2 11035: b3 2 0 2 2,1,2 11035: a3 2 0 2 1,1,2 % SZS status Timeout for GRP405-1.p NO CLASH, using fixed ground order 11052: Facts: 11052: Id : 2, {_}: multiply (multiply (inverse (multiply ?2 (inverse (multiply ?3 ?4)))) (multiply ?2 (inverse ?4))) (inverse (multiply (inverse ?4) ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 11052: Goal: 11052: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11052: Order: 11052: nrkbo 11052: Leaf order: 11052: a2 2 0 2 2,2 11052: multiply 8 2 2 0,2 11052: inverse 6 1 1 0,1,1,2 11052: b2 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 11053: Facts: 11053: Id : 2, {_}: multiply (multiply (inverse (multiply ?2 (inverse (multiply ?3 ?4)))) (multiply ?2 (inverse ?4))) (inverse (multiply (inverse ?4) ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 11053: Goal: 11053: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11053: Order: 11053: kbo 11053: Leaf order: 11053: a2 2 0 2 2,2 11053: multiply 8 2 2 0,2 11053: inverse 6 1 1 0,1,1,2 11053: b2 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 11054: Facts: 11054: Id : 2, {_}: multiply (multiply (inverse (multiply ?2 (inverse (multiply ?3 ?4)))) (multiply ?2 (inverse ?4))) (inverse (multiply (inverse ?4) ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 11054: Goal: 11054: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11054: Order: 11054: lpo 11054: Leaf order: 11054: a2 2 0 2 2,2 11054: multiply 8 2 2 0,2 11054: inverse 6 1 1 0,1,1,2 11054: b2 2 0 2 1,1,1,2 % SZS status Timeout for GRP410-1.p NO CLASH, using fixed ground order 11087: Facts: 11087: Id : 2, {_}: multiply (multiply (inverse (multiply ?2 (inverse (multiply ?3 ?4)))) (multiply ?2 (inverse ?4))) (inverse (multiply (inverse ?4) ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 11087: Goal: 11087: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11087: Order: 11087: nrkbo 11087: Leaf order: 11087: inverse 5 1 0 11087: c3 2 0 2 2,2 11087: multiply 10 2 4 0,2 11087: b3 2 0 2 2,1,2 11087: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 11088: Facts: 11088: Id : 2, {_}: multiply (multiply (inverse (multiply ?2 (inverse (multiply ?3 ?4)))) (multiply ?2 (inverse ?4))) (inverse (multiply (inverse ?4) ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 11088: Goal: 11088: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11088: Order: 11088: kbo 11088: Leaf order: 11088: inverse 5 1 0 11088: c3 2 0 2 2,2 11088: multiply 10 2 4 0,2 11088: b3 2 0 2 2,1,2 11088: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 11089: Facts: 11089: Id : 2, {_}: multiply (multiply (inverse (multiply ?2 (inverse (multiply ?3 ?4)))) (multiply ?2 (inverse ?4))) (inverse (multiply (inverse ?4) ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 11089: Goal: 11089: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11089: Order: 11089: lpo 11089: Leaf order: 11089: inverse 5 1 0 11089: c3 2 0 2 2,2 11089: multiply 10 2 4 0,2 11089: b3 2 0 2 2,1,2 11089: a3 2 0 2 1,1,2 % SZS status Timeout for GRP411-1.p NO CLASH, using fixed ground order 11106: Facts: 11106: Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (inverse (multiply ?4 (inverse (multiply (inverse ?4) ?4)))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 11106: Goal: 11106: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11106: Order: 11106: nrkbo 11106: Leaf order: 11106: a2 2 0 2 2,2 11106: multiply 8 2 2 0,2 11106: inverse 8 1 1 0,1,1,2 11106: b2 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 11107: Facts: 11107: Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (inverse (multiply ?4 (inverse (multiply (inverse ?4) ?4)))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 11107: Goal: 11107: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11107: Order: 11107: kbo 11107: Leaf order: 11107: a2 2 0 2 2,2 11107: multiply 8 2 2 0,2 11107: inverse 8 1 1 0,1,1,2 11107: b2 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 11108: Facts: 11108: Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (inverse (multiply ?4 (inverse (multiply (inverse ?4) ?4)))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 11108: Goal: 11108: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11108: Order: 11108: lpo 11108: Leaf order: 11108: a2 2 0 2 2,2 11108: multiply 8 2 2 0,2 11108: inverse 8 1 1 0,1,1,2 11108: b2 2 0 2 1,1,1,2 % SZS status Timeout for GRP419-1.p NO CLASH, using fixed ground order 11140: Facts: 11140: Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (multiply (inverse ?4) (inverse (multiply (inverse ?4) ?4))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 11140: Goal: 11140: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11140: Order: 11140: nrkbo 11140: Leaf order: 11140: a2 2 0 2 2,2 11140: multiply 8 2 2 0,2 11140: inverse 8 1 1 0,1,1,2 11140: b2 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 11141: Facts: 11141: Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (multiply (inverse ?4) (inverse (multiply (inverse ?4) ?4))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 11141: Goal: 11141: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11141: Order: 11141: kbo 11141: Leaf order: 11141: a2 2 0 2 2,2 11141: multiply 8 2 2 0,2 11141: inverse 8 1 1 0,1,1,2 11141: b2 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 11142: Facts: 11142: Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (multiply (inverse ?4) (inverse (multiply (inverse ?4) ?4))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 11142: Goal: 11142: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11142: Order: 11142: lpo 11142: Leaf order: 11142: a2 2 0 2 2,2 11142: multiply 8 2 2 0,2 11142: inverse 8 1 1 0,1,1,2 11142: b2 2 0 2 1,1,1,2 % SZS status Timeout for GRP422-1.p NO CLASH, using fixed ground order 11162: Facts: NO CLASH, using fixed ground order 11164: Facts: 11164: Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (multiply (inverse ?4) (inverse (multiply (inverse ?4) ?4))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 11164: Goal: 11164: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11164: Order: 11164: lpo 11164: Leaf order: 11164: inverse 7 1 0 11164: c3 2 0 2 2,2 11164: multiply 10 2 4 0,2 11164: b3 2 0 2 2,1,2 11164: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 11163: Facts: 11163: Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (multiply (inverse ?4) (inverse (multiply (inverse ?4) ?4))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 11163: Goal: 11163: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11163: Order: 11163: kbo 11163: Leaf order: 11163: inverse 7 1 0 11163: c3 2 0 2 2,2 11163: multiply 10 2 4 0,2 11163: b3 2 0 2 2,1,2 11163: a3 2 0 2 1,1,2 11162: Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (multiply (inverse ?4) (inverse (multiply (inverse ?4) ?4))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 11162: Goal: 11162: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11162: Order: 11162: nrkbo 11162: Leaf order: 11162: inverse 7 1 0 11162: c3 2 0 2 2,2 11162: multiply 10 2 4 0,2 11162: b3 2 0 2 2,1,2 11162: a3 2 0 2 1,1,2 % SZS status Timeout for GRP423-1.p NO CLASH, using fixed ground order 11197: Facts: 11197: Id : 2, {_}: multiply ?2 (inverse (multiply (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5) (inverse (multiply ?3 ?5)))) =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11197: Goal: 11197: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11197: Order: 11197: kbo 11197: Leaf order: 11197: inverse 5 1 0 11197: c3 2 0 2 2,2 11197: multiply 10 2 4 0,2 11197: b3 2 0 2 2,1,2 11197: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 11198: Facts: 11198: Id : 2, {_}: multiply ?2 (inverse (multiply (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5) (inverse (multiply ?3 ?5)))) =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11198: Goal: 11198: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11198: Order: 11198: lpo 11198: Leaf order: 11198: inverse 5 1 0 11198: c3 2 0 2 2,2 11198: multiply 10 2 4 0,2 11198: b3 2 0 2 2,1,2 11198: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 11196: Facts: 11196: Id : 2, {_}: multiply ?2 (inverse (multiply (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5) (inverse (multiply ?3 ?5)))) =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11196: Goal: 11196: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11196: Order: 11196: nrkbo 11196: Leaf order: 11196: inverse 5 1 0 11196: c3 2 0 2 2,2 11196: multiply 10 2 4 0,2 11196: b3 2 0 2 2,1,2 11196: a3 2 0 2 1,1,2 Statistics : Max weight : 62 Found proof, 60.632898s % SZS status Unsatisfiable for GRP429-1.p % SZS output start CNFRefutation for GRP429-1.p Id : 3, {_}: multiply ?7 (inverse (multiply (multiply (inverse (multiply (inverse ?8) (multiply (inverse ?7) ?9))) ?10) (inverse (multiply ?8 ?10)))) =>= ?9 [10, 9, 8, 7] by single_axiom ?7 ?8 ?9 ?10 Id : 2, {_}: multiply ?2 (inverse (multiply (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5) (inverse (multiply ?3 ?5)))) =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 Id : 5, {_}: multiply ?19 (inverse (multiply (multiply (inverse (multiply (inverse ?20) ?21)) ?22) (inverse (multiply ?20 ?22)))) =?= inverse (multiply (multiply (inverse (multiply (inverse ?23) (multiply (inverse (inverse ?19)) ?21))) ?24) (inverse (multiply ?23 ?24))) [24, 23, 22, 21, 20, 19] by Super 3 with 2 at 2,1,1,1,1,2,2 Id : 1086, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?5854) (multiply (inverse (inverse ?5855)) (multiply (inverse ?5855) ?5856)))) ?5857) (inverse (multiply ?5854 ?5857))) =>= ?5856 [5857, 5856, 5855, 5854] by Super 2 with 5 at 2 Id : 473, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1916) (multiply (inverse (inverse ?1917)) (multiply (inverse ?1917) ?1918)))) ?1919) (inverse (multiply ?1916 ?1919))) =>= ?1918 [1919, 1918, 1917, 1916] by Super 2 with 5 at 2 Id : 1106, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?5982) (multiply (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?5983) (multiply (inverse (inverse ?5984)) (multiply (inverse ?5984) ?5985)))) ?5986) (inverse (multiply ?5983 ?5986))))) (multiply ?5985 ?5987)))) ?5988) (inverse (multiply ?5982 ?5988))) =>= ?5987 [5988, 5987, 5986, 5985, 5984, 5983, 5982] by Super 1086 with 473 at 1,2,2,1,1,1,1,2 Id : 2050, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?13160) (multiply (inverse ?13161) (multiply ?13161 ?13162)))) ?13163) (inverse (multiply ?13160 ?13163))) =>= ?13162 [13163, 13162, 13161, 13160] by Demod 1106 with 473 at 1,1,2,1,1,1,1,2 Id : 472, {_}: multiply (inverse ?1911) (multiply ?1911 (inverse (multiply (multiply (inverse (multiply (inverse ?1912) ?1913)) ?1914) (inverse (multiply ?1912 ?1914))))) =>= ?1913 [1914, 1913, 1912, 1911] by Super 2 with 5 at 2,2 Id : 1697, {_}: multiply (inverse ?11063) (multiply ?11063 ?11064) =?= multiply (inverse (inverse ?11065)) (multiply (inverse ?11065) ?11064) [11065, 11064, 11063] by Super 472 with 473 at 2,2,2 Id : 1084, {_}: multiply (inverse ?5842) (multiply ?5842 ?5843) =?= multiply (inverse (inverse ?5844)) (multiply (inverse ?5844) ?5843) [5844, 5843, 5842] by Super 472 with 473 at 2,2,2 Id : 1735, {_}: multiply (inverse ?11276) (multiply ?11276 ?11277) =?= multiply (inverse ?11278) (multiply ?11278 ?11277) [11278, 11277, 11276] by Super 1697 with 1084 at 3 Id : 2837, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?18056) (multiply ?18056 (multiply ?18057 ?18058)))) ?18059) (inverse (multiply (inverse ?18057) ?18059))) =>= ?18058 [18059, 18058, 18057, 18056] by Super 2050 with 1735 at 1,1,1,1,2 Id : 2876, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?18341) (multiply ?18341 (multiply (inverse ?18342) (multiply ?18342 ?18343))))) ?18344) (inverse (multiply (inverse (inverse ?18345)) ?18344))) =>= multiply ?18345 ?18343 [18345, 18344, 18343, 18342, 18341] by Super 2837 with 1735 at 2,2,1,1,1,1,2 Id : 930, {_}: multiply (inverse ?5077) (multiply ?5077 (inverse (multiply (multiply (inverse (multiply (inverse ?5078) ?5079)) ?5080) (inverse (multiply ?5078 ?5080))))) =>= ?5079 [5080, 5079, 5078, 5077] by Super 2 with 5 at 2,2 Id : 983, {_}: multiply (inverse ?5420) (multiply ?5420 (multiply ?5421 (inverse (multiply (multiply (inverse (multiply (inverse ?5422) ?5423)) ?5424) (inverse (multiply ?5422 ?5424)))))) =>= multiply (inverse (inverse ?5421)) ?5423 [5424, 5423, 5422, 5421, 5420] by Super 930 with 5 at 2,2,2 Id : 1838, {_}: multiply (inverse ?11737) (multiply ?11737 (inverse (multiply (multiply (inverse (multiply (inverse ?11738) (multiply ?11738 ?11739))) ?11740) (inverse (multiply ?11741 ?11740))))) =>= multiply ?11741 ?11739 [11741, 11740, 11739, 11738, 11737] by Super 472 with 1735 at 1,1,1,1,2,2,2 Id : 2618, {_}: multiply ?16805 (inverse (multiply (multiply (inverse (multiply (inverse ?16806) (multiply ?16806 ?16807))) ?16808) (inverse (multiply (inverse ?16805) ?16808)))) =>= ?16807 [16808, 16807, 16806, 16805] by Super 2 with 1735 at 1,1,1,1,2,2 Id : 7049, {_}: multiply ?47447 (inverse (multiply (multiply (inverse (multiply (inverse ?47448) (multiply ?47448 ?47449))) (multiply ?47447 ?47450)) (inverse (multiply (inverse ?47451) (multiply ?47451 ?47450))))) =>= ?47449 [47451, 47450, 47449, 47448, 47447] by Super 2618 with 1735 at 1,2,1,2,2 Id : 7182, {_}: multiply (multiply (inverse ?48545) (multiply ?48545 ?48546)) (inverse (multiply ?48547 (inverse (multiply (inverse ?48548) (multiply ?48548 (inverse (multiply (multiply (inverse (multiply (inverse ?48549) ?48547)) ?48550) (inverse (multiply ?48549 ?48550))))))))) =>= ?48546 [48550, 48549, 48548, 48547, 48546, 48545] by Super 7049 with 472 at 1,1,2,2 Id : 7272, {_}: multiply (multiply (inverse ?48545) (multiply ?48545 ?48546)) (inverse (multiply ?48547 (inverse ?48547))) =>= ?48546 [48547, 48546, 48545] by Demod 7182 with 472 at 1,2,1,2,2 Id : 7322, {_}: multiply (inverse (multiply (inverse ?48938) (multiply ?48938 ?48939))) ?48939 =?= multiply (inverse (multiply (inverse ?48940) (multiply ?48940 ?48941))) ?48941 [48941, 48940, 48939, 48938] by Super 1838 with 7272 at 2,2 Id : 9244, {_}: multiply (inverse (inverse (multiply (inverse ?63609) (multiply ?63609 (inverse (multiply (multiply (inverse (multiply (inverse ?63610) ?63611)) ?63612) (inverse (multiply ?63610 ?63612)))))))) (multiply (inverse (multiply (inverse ?63613) (multiply ?63613 ?63614))) ?63614) =>= ?63611 [63614, 63613, 63612, 63611, 63610, 63609] by Super 472 with 7322 at 2,2 Id : 9553, {_}: multiply (inverse (inverse ?63611)) (multiply (inverse (multiply (inverse ?63613) (multiply ?63613 ?63614))) ?63614) =>= ?63611 [63614, 63613, 63611] by Demod 9244 with 472 at 1,1,1,2 Id : 9607, {_}: multiply (inverse ?66347) (multiply ?66347 (multiply ?66348 (inverse (multiply (multiply (inverse ?66349) ?66350) (inverse (multiply (inverse ?66349) ?66350)))))) =?= multiply (inverse (inverse ?66348)) (multiply (inverse (multiply (inverse ?66351) (multiply ?66351 ?66352))) ?66352) [66352, 66351, 66350, 66349, 66348, 66347] by Super 983 with 9553 at 1,1,1,1,2,2,2,2 Id : 13028, {_}: multiply (inverse ?88877) (multiply ?88877 (multiply ?88878 (inverse (multiply (multiply (inverse ?88879) ?88880) (inverse (multiply (inverse ?88879) ?88880)))))) =>= ?88878 [88880, 88879, 88878, 88877] by Demod 9607 with 9553 at 3 Id : 2125, {_}: inverse (multiply (multiply (inverse ?13666) (multiply ?13666 ?13667)) (inverse (multiply ?13668 (multiply (multiply (inverse ?13668) (multiply (inverse ?13669) (multiply ?13669 ?13670))) ?13667)))) =>= ?13670 [13670, 13669, 13668, 13667, 13666] by Super 2050 with 1735 at 1,1,2 Id : 7292, {_}: inverse (multiply (multiply (inverse ?48720) (multiply ?48720 (inverse (multiply ?48721 (inverse ?48721))))) (inverse (multiply (inverse ?48722) (multiply ?48722 ?48723)))) =>= ?48723 [48723, 48722, 48721, 48720] by Super 2125 with 7272 at 2,1,2,1,2 Id : 13145, {_}: multiply (inverse ?89741) (multiply ?89741 (multiply ?89742 (inverse (multiply ?89743 (inverse ?89743))))) =>= ?89742 [89743, 89742, 89741] by Super 13028 with 7292 at 2,2,2,2 Id : 1878, {_}: multiply ?12021 (inverse (multiply (multiply (inverse ?12022) (multiply ?12022 ?12023)) (inverse (multiply ?12024 (multiply (multiply (inverse ?12024) (multiply (inverse ?12021) ?12025)) ?12023))))) =>= ?12025 [12025, 12024, 12023, 12022, 12021] by Super 2 with 1735 at 1,1,2,2 Id : 13510, {_}: multiply (inverse (inverse ?91449)) (multiply (inverse ?91450) (multiply ?91450 (inverse (multiply ?91451 (inverse ?91451))))) =>= ?91449 [91451, 91450, 91449] by Super 9553 with 13145 at 1,1,2,2 Id : 4, {_}: multiply ?12 (inverse (multiply (multiply (inverse (multiply (inverse ?13) (multiply (inverse ?12) ?14))) (inverse (multiply (multiply (inverse (multiply (inverse ?15) (multiply (inverse ?13) ?16))) ?17) (inverse (multiply ?15 ?17))))) (inverse ?16))) =>= ?14 [17, 16, 15, 14, 13, 12] by Super 3 with 2 at 1,2,1,2,2 Id : 98, {_}: multiply ?266 (inverse (multiply (multiply (inverse (multiply (inverse ?267) ?268)) ?269) (inverse (multiply ?267 ?269)))) =?= inverse (multiply (multiply (inverse (multiply (inverse ?270) (multiply (inverse (inverse ?266)) ?268))) (inverse (multiply (multiply (inverse (multiply (inverse ?271) (multiply (inverse ?270) ?272))) ?273) (inverse (multiply ?271 ?273))))) (inverse ?272)) [273, 272, 271, 270, 269, 268, 267, 266] by Super 2 with 4 at 2,1,1,1,1,2,2 Id : 13781, {_}: multiply ?92573 (inverse (multiply (multiply (inverse (multiply (inverse ?92574) (multiply (inverse ?92573) (inverse (multiply ?92575 (inverse ?92575)))))) ?92576) (inverse (multiply ?92574 ?92576)))) =?= inverse (multiply (multiply (inverse ?92577) (inverse (multiply (multiply (inverse (multiply (inverse ?92578) (multiply (inverse (inverse ?92577)) ?92579))) ?92580) (inverse (multiply ?92578 ?92580))))) (inverse ?92579)) [92580, 92579, 92578, 92577, 92576, 92575, 92574, 92573] by Super 98 with 13510 at 1,1,1,1,3 Id : 13970, {_}: inverse (multiply ?92575 (inverse ?92575)) =?= inverse (multiply (multiply (inverse ?92577) (inverse (multiply (multiply (inverse (multiply (inverse ?92578) (multiply (inverse (inverse ?92577)) ?92579))) ?92580) (inverse (multiply ?92578 ?92580))))) (inverse ?92579)) [92580, 92579, 92578, 92577, 92575] by Demod 13781 with 2 at 2 Id : 13971, {_}: inverse (multiply ?92575 (inverse ?92575)) =?= inverse (multiply ?92579 (inverse ?92579)) [92579, 92575] by Demod 13970 with 2 at 1,1,3 Id : 14410, {_}: multiply (inverse (inverse (multiply ?96419 (inverse ?96419)))) (multiply (inverse ?96420) (multiply ?96420 (inverse (multiply ?96421 (inverse ?96421))))) =?= multiply ?96422 (inverse ?96422) [96422, 96421, 96420, 96419] by Super 13510 with 13971 at 1,1,2 Id : 14473, {_}: multiply ?96419 (inverse ?96419) =?= multiply ?96422 (inverse ?96422) [96422, 96419] by Demod 14410 with 13510 at 2 Id : 14531, {_}: multiply (multiply (inverse ?96810) (multiply ?96811 (inverse ?96811))) (inverse (multiply ?96812 (inverse ?96812))) =>= inverse ?96810 [96812, 96811, 96810] by Super 7272 with 14473 at 2,1,2 Id : 15237, {_}: multiply ?101459 (inverse (multiply (multiply (inverse ?101460) (multiply ?101460 (inverse (multiply ?101461 (inverse ?101461))))) (inverse (multiply ?101462 (inverse ?101462))))) =>= inverse (inverse ?101459) [101462, 101461, 101460, 101459] by Super 1878 with 14531 at 2,1,2,1,2,2 Id : 15353, {_}: multiply ?101459 (inverse (inverse (multiply ?101461 (inverse ?101461)))) =>= inverse (inverse ?101459) [101461, 101459] by Demod 15237 with 7272 at 1,2,2 Id : 16356, {_}: multiply (inverse (inverse ?111717)) (multiply (inverse (multiply (inverse ?111718) (inverse (inverse ?111718)))) (inverse (inverse (multiply ?111719 (inverse ?111719))))) =>= ?111717 [111719, 111718, 111717] by Super 9553 with 15353 at 2,1,1,2,2 Id : 18221, {_}: multiply (inverse (inverse ?121427)) (inverse (inverse (inverse (multiply (inverse ?121428) (inverse (inverse ?121428)))))) =>= ?121427 [121428, 121427] by Demod 16356 with 15353 at 2,2 Id : 16345, {_}: multiply ?111675 (inverse ?111675) =?= inverse (inverse (inverse (multiply ?111676 (inverse ?111676)))) [111676, 111675] by Super 14473 with 15353 at 3 Id : 18293, {_}: multiply (inverse (inverse ?121732)) (multiply ?121733 (inverse ?121733)) =>= ?121732 [121733, 121732] by Super 18221 with 16345 at 2,2 Id : 18567, {_}: multiply ?122956 (inverse (multiply ?122957 (inverse ?122957))) =>= inverse (inverse ?122956) [122957, 122956] by Super 7272 with 18293 at 1,2 Id : 18716, {_}: multiply (inverse ?89741) (multiply ?89741 (inverse (inverse ?89742))) =>= ?89742 [89742, 89741] by Demod 13145 with 18567 at 2,2,2 Id : 18916, {_}: multiply (inverse (inverse ?124642)) (inverse (inverse (multiply ?124643 (inverse ?124643)))) =>= ?124642 [124643, 124642] by Super 18293 with 18567 at 2,2 Id : 18985, {_}: inverse (inverse (inverse (inverse ?124642))) =>= ?124642 [124642] by Demod 18916 with 15353 at 2 Id : 19175, {_}: multiply (inverse ?124947) (multiply ?124947 ?124948) =>= inverse (inverse ?124948) [124948, 124947] by Super 18716 with 18985 at 2,2,2 Id : 19474, {_}: inverse (multiply (multiply (inverse (inverse (inverse (multiply (inverse ?18342) (multiply ?18342 ?18343))))) ?18344) (inverse (multiply (inverse (inverse ?18345)) ?18344))) =>= multiply ?18345 ?18343 [18345, 18344, 18343, 18342] by Demod 2876 with 19175 at 1,1,1,1,2 Id : 19475, {_}: inverse (multiply (multiply (inverse (inverse (inverse (inverse (inverse ?18343))))) ?18344) (inverse (multiply (inverse (inverse ?18345)) ?18344))) =>= multiply ?18345 ?18343 [18345, 18344, 18343] by Demod 19474 with 19175 at 1,1,1,1,1,1,2 Id : 19512, {_}: inverse (multiply (multiply (inverse ?18343) ?18344) (inverse (multiply (inverse (inverse ?18345)) ?18344))) =>= multiply ?18345 ?18343 [18345, 18344, 18343] by Demod 19475 with 18985 at 1,1,1,2 Id : 19345, {_}: multiply ?126114 (multiply ?126115 (inverse ?126115)) =>= inverse (inverse ?126114) [126115, 126114] by Super 18293 with 18985 at 1,2 Id : 19935, {_}: inverse (multiply (multiply (inverse ?128594) (multiply ?128595 (inverse ?128595))) (inverse (inverse (inverse (inverse (inverse ?128596)))))) =>= multiply ?128596 ?128594 [128596, 128595, 128594] by Super 19512 with 19345 at 1,2,1,2 Id : 19990, {_}: inverse (multiply (inverse (inverse (inverse ?128594))) (inverse (inverse (inverse (inverse (inverse ?128596)))))) =>= multiply ?128596 ?128594 [128596, 128594] by Demod 19935 with 19345 at 1,1,2 Id : 20507, {_}: inverse (multiply (inverse (inverse (inverse ?130153))) (inverse ?130154)) =>= multiply ?130154 ?130153 [130154, 130153] by Demod 19990 with 18985 at 2,1,2 Id : 20571, {_}: inverse (multiply ?130433 (inverse ?130434)) =>= multiply ?130434 (inverse ?130433) [130434, 130433] by Super 20507 with 18985 at 1,1,2 Id : 21794, {_}: multiply (multiply (inverse (inverse ?18345)) ?18344) (inverse (multiply (inverse ?18343) ?18344)) =>= multiply ?18345 ?18343 [18343, 18344, 18345] by Demod 19512 with 20571 at 2 Id : 21760, {_}: multiply ?19 (multiply (multiply ?20 ?22) (inverse (multiply (inverse (multiply (inverse ?20) ?21)) ?22))) =?= inverse (multiply (multiply (inverse (multiply (inverse ?23) (multiply (inverse (inverse ?19)) ?21))) ?24) (inverse (multiply ?23 ?24))) [24, 23, 21, 22, 20, 19] by Demod 5 with 20571 at 2,2 Id : 21761, {_}: multiply ?19 (multiply (multiply ?20 ?22) (inverse (multiply (inverse (multiply (inverse ?20) ?21)) ?22))) =?= multiply (multiply ?23 ?24) (inverse (multiply (inverse (multiply (inverse ?23) (multiply (inverse (inverse ?19)) ?21))) ?24)) [24, 23, 21, 22, 20, 19] by Demod 21760 with 20571 at 3 Id : 19480, {_}: inverse (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?1912) ?1913)) ?1914) (inverse (multiply ?1912 ?1914))))) =>= ?1913 [1914, 1913, 1912] by Demod 472 with 19175 at 2 Id : 21790, {_}: inverse (inverse (multiply (multiply ?1912 ?1914) (inverse (multiply (inverse (multiply (inverse ?1912) ?1913)) ?1914)))) =>= ?1913 [1913, 1914, 1912] by Demod 19480 with 20571 at 1,1,2 Id : 21791, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1912) ?1913)) ?1914) (inverse (multiply ?1912 ?1914))) =>= ?1913 [1914, 1913, 1912] by Demod 21790 with 20571 at 1,2 Id : 21792, {_}: multiply (multiply ?1912 ?1914) (inverse (multiply (inverse (multiply (inverse ?1912) ?1913)) ?1914)) =>= ?1913 [1913, 1914, 1912] by Demod 21791 with 20571 at 2 Id : 21810, {_}: multiply ?19 ?21 =<= multiply (multiply ?23 ?24) (inverse (multiply (inverse (multiply (inverse ?23) (multiply (inverse (inverse ?19)) ?21))) ?24)) [24, 23, 21, 19] by Demod 21761 with 21792 at 2,2 Id : 21811, {_}: multiply ?19 ?21 =<= multiply (inverse (inverse ?19)) ?21 [21, 19] by Demod 21810 with 21792 at 3 Id : 21822, {_}: multiply (multiply ?18345 ?18344) (inverse (multiply (inverse ?18343) ?18344)) =>= multiply ?18345 ?18343 [18343, 18344, 18345] by Demod 21794 with 21811 at 1,2 Id : 21949, {_}: multiply (multiply ?139581 (inverse ?139582)) (multiply ?139582 (inverse (inverse ?139583))) =>= multiply ?139581 ?139583 [139583, 139582, 139581] by Super 21822 with 20571 at 2,2 Id : 19491, {_}: multiply ?12021 (inverse (multiply (inverse (inverse ?12023)) (inverse (multiply ?12024 (multiply (multiply (inverse ?12024) (multiply (inverse ?12021) ?12025)) ?12023))))) =>= ?12025 [12025, 12024, 12023, 12021] by Demod 1878 with 19175 at 1,1,2,2 Id : 21735, {_}: multiply ?12021 (multiply (multiply ?12024 (multiply (multiply (inverse ?12024) (multiply (inverse ?12021) ?12025)) ?12023)) (inverse (inverse (inverse ?12023)))) =>= ?12025 [12023, 12025, 12024, 12021] by Demod 19491 with 20571 at 2,2 Id : 3075, {_}: multiply (inverse ?19377) (multiply ?19377 (multiply ?19378 (inverse (multiply (multiply (inverse (multiply (inverse ?19379) ?19380)) ?19381) (inverse (multiply ?19379 ?19381)))))) =>= multiply (inverse (inverse ?19378)) ?19380 [19381, 19380, 19379, 19378, 19377] by Super 930 with 5 at 2,2,2 Id : 1191, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?5982) (multiply (inverse ?5985) (multiply ?5985 ?5987)))) ?5988) (inverse (multiply ?5982 ?5988))) =>= ?5987 [5988, 5987, 5985, 5982] by Demod 1106 with 473 at 1,1,2,1,1,1,1,2 Id : 3153, {_}: multiply (inverse ?20008) (multiply ?20008 (multiply ?20009 ?20010)) =?= multiply (inverse (inverse ?20009)) (multiply (inverse ?20011) (multiply ?20011 ?20010)) [20011, 20010, 20009, 20008] by Super 3075 with 1191 at 2,2,2,2 Id : 19484, {_}: inverse (inverse (multiply ?20009 ?20010)) =<= multiply (inverse (inverse ?20009)) (multiply (inverse ?20011) (multiply ?20011 ?20010)) [20011, 20010, 20009] by Demod 3153 with 19175 at 2 Id : 19485, {_}: inverse (inverse (multiply ?20009 ?20010)) =<= multiply (inverse (inverse ?20009)) (inverse (inverse ?20010)) [20010, 20009] by Demod 19484 with 19175 at 2,3 Id : 21818, {_}: inverse (inverse (multiply ?20009 ?20010)) =<= multiply ?20009 (inverse (inverse ?20010)) [20010, 20009] by Demod 19485 with 21811 at 3 Id : 21880, {_}: multiply ?12021 (inverse (inverse (multiply (multiply ?12024 (multiply (multiply (inverse ?12024) (multiply (inverse ?12021) ?12025)) ?12023)) (inverse ?12023)))) =>= ?12025 [12023, 12025, 12024, 12021] by Demod 21735 with 21818 at 2,2 Id : 21881, {_}: inverse (inverse (multiply ?12021 (multiply (multiply ?12024 (multiply (multiply (inverse ?12024) (multiply (inverse ?12021) ?12025)) ?12023)) (inverse ?12023)))) =>= ?12025 [12023, 12025, 12024, 12021] by Demod 21880 with 21818 at 2 Id : 1840, {_}: multiply (inverse ?11749) (multiply ?11749 (inverse (multiply (multiply (inverse ?11750) (multiply ?11750 ?11751)) (inverse (multiply ?11752 (multiply (multiply (inverse ?11752) ?11753) ?11751)))))) =>= ?11753 [11753, 11752, 11751, 11750, 11749] by Super 472 with 1735 at 1,1,2,2,2 Id : 19489, {_}: inverse (inverse (inverse (multiply (multiply (inverse ?11750) (multiply ?11750 ?11751)) (inverse (multiply ?11752 (multiply (multiply (inverse ?11752) ?11753) ?11751)))))) =>= ?11753 [11753, 11752, 11751, 11750] by Demod 1840 with 19175 at 2 Id : 19490, {_}: inverse (inverse (inverse (multiply (inverse (inverse ?11751)) (inverse (multiply ?11752 (multiply (multiply (inverse ?11752) ?11753) ?11751)))))) =>= ?11753 [11753, 11752, 11751] by Demod 19489 with 19175 at 1,1,1,1,2 Id : 21784, {_}: inverse (inverse (multiply (multiply ?11752 (multiply (multiply (inverse ?11752) ?11753) ?11751)) (inverse (inverse (inverse ?11751))))) =>= ?11753 [11751, 11753, 11752] by Demod 19490 with 20571 at 1,1,2 Id : 21785, {_}: inverse (multiply (inverse (inverse ?11751)) (inverse (multiply ?11752 (multiply (multiply (inverse ?11752) ?11753) ?11751)))) =>= ?11753 [11753, 11752, 11751] by Demod 21784 with 20571 at 1,2 Id : 21786, {_}: multiply (multiply ?11752 (multiply (multiply (inverse ?11752) ?11753) ?11751)) (inverse (inverse (inverse ?11751))) =>= ?11753 [11751, 11753, 11752] by Demod 21785 with 20571 at 2 Id : 21834, {_}: inverse (inverse (multiply (multiply ?11752 (multiply (multiply (inverse ?11752) ?11753) ?11751)) (inverse ?11751))) =>= ?11753 [11751, 11753, 11752] by Demod 21786 with 21818 at 2 Id : 21842, {_}: inverse (multiply ?11751 (inverse (multiply ?11752 (multiply (multiply (inverse ?11752) ?11753) ?11751)))) =>= ?11753 [11753, 11752, 11751] by Demod 21834 with 20571 at 1,2 Id : 21843, {_}: multiply (multiply ?11752 (multiply (multiply (inverse ?11752) ?11753) ?11751)) (inverse ?11751) =>= ?11753 [11751, 11753, 11752] by Demod 21842 with 20571 at 2 Id : 21882, {_}: inverse (inverse (multiply ?12021 (multiply (inverse ?12021) ?12025))) =>= ?12025 [12025, 12021] by Demod 21881 with 21843 at 2,1,1,2 Id : 1876, {_}: multiply ?12011 (inverse (multiply (multiply (inverse (multiply (inverse ?12012) (multiply ?12012 ?12013))) ?12014) (inverse (multiply (inverse ?12011) ?12014)))) =>= ?12013 [12014, 12013, 12012, 12011] by Super 2 with 1735 at 1,1,1,1,2,2 Id : 19478, {_}: multiply ?12011 (inverse (multiply (multiply (inverse (inverse (inverse ?12013))) ?12014) (inverse (multiply (inverse ?12011) ?12014)))) =>= ?12013 [12014, 12013, 12011] by Demod 1876 with 19175 at 1,1,1,1,2,2 Id : 21793, {_}: multiply ?12011 (multiply (multiply (inverse ?12011) ?12014) (inverse (multiply (inverse (inverse (inverse ?12013))) ?12014))) =>= ?12013 [12013, 12014, 12011] by Demod 19478 with 20571 at 2,2 Id : 19486, {_}: inverse (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?11738) (multiply ?11738 ?11739))) ?11740) (inverse (multiply ?11741 ?11740))))) =>= multiply ?11741 ?11739 [11741, 11740, 11739, 11738] by Demod 1838 with 19175 at 2 Id : 19487, {_}: inverse (inverse (inverse (multiply (multiply (inverse (inverse (inverse ?11739))) ?11740) (inverse (multiply ?11741 ?11740))))) =>= multiply ?11741 ?11739 [11741, 11740, 11739] by Demod 19486 with 19175 at 1,1,1,1,1,1,2 Id : 21787, {_}: inverse (inverse (multiply (multiply ?11741 ?11740) (inverse (multiply (inverse (inverse (inverse ?11739))) ?11740)))) =>= multiply ?11741 ?11739 [11739, 11740, 11741] by Demod 19487 with 20571 at 1,1,2 Id : 21788, {_}: inverse (multiply (multiply (inverse (inverse (inverse ?11739))) ?11740) (inverse (multiply ?11741 ?11740))) =>= multiply ?11741 ?11739 [11741, 11740, 11739] by Demod 21787 with 20571 at 1,2 Id : 21789, {_}: multiply (multiply ?11741 ?11740) (inverse (multiply (inverse (inverse (inverse ?11739))) ?11740)) =>= multiply ?11741 ?11739 [11739, 11740, 11741] by Demod 21788 with 20571 at 2 Id : 21802, {_}: multiply ?12011 (multiply (inverse ?12011) ?12013) =>= ?12013 [12013, 12011] by Demod 21793 with 21789 at 2,2 Id : 21883, {_}: inverse (inverse ?12025) =>= ?12025 [12025] by Demod 21882 with 21802 at 1,1,2 Id : 22088, {_}: multiply (multiply ?140028 (inverse ?140029)) (multiply ?140029 ?140030) =>= multiply ?140028 ?140030 [140030, 140029, 140028] by Demod 21949 with 21883 at 2,2,2 Id : 21892, {_}: multiply (inverse ?124947) (multiply ?124947 ?124948) =>= ?124948 [124948, 124947] by Demod 19175 with 21883 at 3 Id : 22102, {_}: multiply (multiply ?140094 (inverse (inverse ?140095))) ?140096 =>= multiply ?140094 (multiply ?140095 ?140096) [140096, 140095, 140094] by Super 22088 with 21892 at 2,2 Id : 22180, {_}: multiply (multiply ?140094 ?140095) ?140096 =>= multiply ?140094 (multiply ?140095 ?140096) [140096, 140095, 140094] by Demod 22102 with 21883 at 2,1,2 Id : 22441, {_}: multiply a3 (multiply b3 c3) =?= multiply a3 (multiply b3 c3) [] by Demod 1 with 22180 at 2 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 % SZS output end CNFRefutation for GRP429-1.p 11197: solved GRP429-1.p in 30.365897 using kbo 11197: status Unsatisfiable for GRP429-1.p NO CLASH, using fixed ground order 11215: Facts: 11215: Id : 2, {_}: inverse (multiply ?2 (multiply ?3 (multiply (multiply ?4 (inverse ?4)) (inverse (multiply ?5 (multiply ?2 ?3)))))) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11215: Goal: 11215: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11215: Order: 11215: nrkbo 11215: Leaf order: 11215: inverse 3 1 0 11215: c3 2 0 2 2,2 11215: multiply 10 2 4 0,2 11215: b3 2 0 2 2,1,2 11215: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 11216: Facts: 11216: Id : 2, {_}: inverse (multiply ?2 (multiply ?3 (multiply (multiply ?4 (inverse ?4)) (inverse (multiply ?5 (multiply ?2 ?3)))))) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11216: Goal: 11216: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11216: Order: 11216: kbo 11216: Leaf order: 11216: inverse 3 1 0 11216: c3 2 0 2 2,2 11216: multiply 10 2 4 0,2 11216: b3 2 0 2 2,1,2 11216: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 11217: Facts: 11217: Id : 2, {_}: inverse (multiply ?2 (multiply ?3 (multiply (multiply ?4 (inverse ?4)) (inverse (multiply ?5 (multiply ?2 ?3)))))) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11217: Goal: 11217: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11217: Order: 11217: lpo 11217: Leaf order: 11217: inverse 3 1 0 11217: c3 2 0 2 2,2 11217: multiply 10 2 4 0,2 11217: b3 2 0 2 2,1,2 11217: a3 2 0 2 1,1,2 % SZS status Timeout for GRP444-1.p NO CLASH, using fixed ground order 11235: Facts: NO CLASH, using fixed ground order 11236: Facts: 11236: Id : 2, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 11236: Id : 3, {_}: multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8 11236: Id : 4, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11 11236: Goal: 11236: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11236: Order: 11236: kbo 11236: Leaf order: 11236: divide 13 2 0 11236: a2 2 0 2 2,2 11236: multiply 3 2 2 0,2 11236: inverse 2 1 1 0,1,1,2 11236: b2 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 11237: Facts: 11237: Id : 2, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 11237: Id : 3, {_}: multiply ?6 ?7 =?= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8 11237: Id : 4, {_}: inverse ?10 =?= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11 11237: Goal: 11237: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11237: Order: 11237: lpo 11237: Leaf order: 11237: divide 13 2 0 11237: a2 2 0 2 2,2 11237: multiply 3 2 2 0,2 11237: inverse 2 1 1 0,1,1,2 11237: b2 2 0 2 1,1,1,2 11235: Id : 2, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 11235: Id : 3, {_}: multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8 11235: Id : 4, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11 11235: Goal: 11235: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11235: Order: 11235: nrkbo 11235: Leaf order: 11235: divide 13 2 0 11235: a2 2 0 2 2,2 11235: multiply 3 2 2 0,2 11235: inverse 2 1 1 0,1,1,2 11235: b2 2 0 2 1,1,1,2 Statistics : Max weight : 38 Found proof, 1.775197s % SZS status Unsatisfiable for GRP452-1.p % SZS output start CNFRefutation for GRP452-1.p Id : 5, {_}: divide (divide (divide ?13 ?13) (divide ?13 (divide ?14 (divide (divide (divide ?13 ?13) ?13) ?15)))) ?15 =>= ?14 [15, 14, 13] by single_axiom ?13 ?14 ?15 Id : 35, {_}: inverse ?90 =<= divide (divide ?91 ?91) ?90 [91, 90] by inverse ?90 ?91 Id : 2, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 Id : 4, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11 Id : 3, {_}: multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8 Id : 29, {_}: multiply ?6 ?7 =<= divide ?6 (inverse ?7) [7, 6] by Demod 3 with 4 at 2,3 Id : 122, {_}: multiply (divide ?250 ?250) ?251 =>= inverse (inverse ?251) [251, 250] by Super 29 with 4 at 3 Id : 128, {_}: multiply (multiply (inverse ?268) ?268) ?269 =>= inverse (inverse ?269) [269, 268] by Super 122 with 29 at 1,2 Id : 13, {_}: divide (multiply (divide (divide ?48 ?48) (divide ?48 ?48)) (divide ?49 (divide (divide (divide (divide ?48 ?48) (divide ?48 ?48)) (divide ?48 ?48)) ?50))) ?50 =>= ?49 [50, 49, 48] by Super 2 with 3 at 1,2 Id : 32, {_}: multiply (divide ?79 ?79) ?80 =>= inverse (inverse ?80) [80, 79] by Super 29 with 4 at 3 Id : 481, {_}: divide (inverse (inverse (divide ?49 (divide (divide (divide (divide ?48 ?48) (divide ?48 ?48)) (divide ?48 ?48)) ?50)))) ?50 =>= ?49 [50, 48, 49] by Demod 13 with 32 at 1,2 Id : 482, {_}: divide (inverse (inverse (divide ?49 (divide (inverse (divide ?48 ?48)) ?50)))) ?50 =>= ?49 [50, 48, 49] by Demod 481 with 4 at 1,2,1,1,1,2 Id : 36, {_}: inverse ?93 =<= divide (inverse (divide ?94 ?94)) ?93 [94, 93] by Super 35 with 4 at 1,3 Id : 483, {_}: divide (inverse (inverse (divide ?49 (inverse ?50)))) ?50 =>= ?49 [50, 49] by Demod 482 with 36 at 2,1,1,1,2 Id : 484, {_}: divide (inverse (inverse (multiply ?49 ?50))) ?50 =>= ?49 [50, 49] by Demod 483 with 29 at 1,1,1,2 Id : 6, {_}: divide (divide (divide ?17 ?17) (divide ?17 ?18)) ?19 =<= divide (divide ?20 ?20) (divide ?20 (divide ?18 (divide (divide (divide ?20 ?20) ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Super 5 with 2 at 2,2,1,2 Id : 142, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= divide (divide ?20 ?20) (divide ?20 (divide ?18 (divide (divide (divide ?20 ?20) ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Demod 6 with 4 at 1,2 Id : 143, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= inverse (divide ?20 (divide ?18 (divide (divide (divide ?20 ?20) ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Demod 142 with 4 at 3 Id : 144, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= inverse (divide ?20 (divide ?18 (divide (inverse ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Demod 143 with 4 at 1,2,2,1,3 Id : 145, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= inverse (divide ?20 (divide ?18 (divide (inverse ?20) (divide (inverse ?17) ?19)))) [20, 19, 18, 17] by Demod 144 with 4 at 1,2,2,2,1,3 Id : 226, {_}: divide (inverse (divide ?526 ?527)) ?528 =<= inverse (divide (divide ?529 ?529) (divide ?527 (inverse (divide (inverse ?526) ?528)))) [529, 528, 527, 526] by Super 145 with 36 at 2,2,1,3 Id : 249, {_}: divide (inverse (divide ?526 ?527)) ?528 =<= inverse (inverse (divide ?527 (inverse (divide (inverse ?526) ?528)))) [528, 527, 526] by Demod 226 with 4 at 1,3 Id : 250, {_}: divide (inverse (divide ?526 ?527)) ?528 =<= inverse (inverse (multiply ?527 (divide (inverse ?526) ?528))) [528, 527, 526] by Demod 249 with 29 at 1,1,3 Id : 896, {_}: divide (inverse (divide ?1873 ?1874)) ?1875 =<= inverse (inverse (multiply ?1874 (divide (inverse ?1873) ?1875))) [1875, 1874, 1873] by Demod 249 with 29 at 1,1,3 Id : 911, {_}: divide (inverse (divide (divide ?1940 ?1940) ?1941)) ?1942 =>= inverse (inverse (multiply ?1941 (inverse ?1942))) [1942, 1941, 1940] by Super 896 with 36 at 2,1,1,3 Id : 944, {_}: divide (inverse (inverse ?1941)) ?1942 =<= inverse (inverse (multiply ?1941 (inverse ?1942))) [1942, 1941] by Demod 911 with 4 at 1,1,2 Id : 978, {_}: divide (inverse (inverse ?2088)) ?2089 =<= inverse (inverse (multiply ?2088 (inverse ?2089))) [2089, 2088] by Demod 911 with 4 at 1,1,2 Id : 989, {_}: divide (inverse (inverse (divide ?2127 ?2127))) ?2128 =?= inverse (inverse (inverse (inverse (inverse ?2128)))) [2128, 2127] by Super 978 with 32 at 1,1,3 Id : 223, {_}: inverse ?515 =<= divide (inverse (inverse (divide ?516 ?516))) ?515 [516, 515] by Super 4 with 36 at 1,3 Id : 1018, {_}: inverse ?2128 =<= inverse (inverse (inverse (inverse (inverse ?2128)))) [2128] by Demod 989 with 223 at 2 Id : 1036, {_}: multiply ?2199 (inverse (inverse (inverse (inverse ?2200)))) =>= divide ?2199 (inverse ?2200) [2200, 2199] by Super 29 with 1018 at 2,3 Id : 1074, {_}: multiply ?2199 (inverse (inverse (inverse (inverse ?2200)))) =>= multiply ?2199 ?2200 [2200, 2199] by Demod 1036 with 29 at 3 Id : 1107, {_}: divide (inverse (inverse ?2287)) (inverse (inverse (inverse ?2288))) =>= inverse (inverse (multiply ?2287 ?2288)) [2288, 2287] by Super 944 with 1074 at 1,1,3 Id : 1180, {_}: multiply (inverse (inverse ?2287)) (inverse (inverse ?2288)) =>= inverse (inverse (multiply ?2287 ?2288)) [2288, 2287] by Demod 1107 with 29 at 2 Id : 1223, {_}: divide (inverse (inverse (inverse (inverse ?2471)))) (inverse ?2472) =>= inverse (inverse (inverse (inverse (multiply ?2471 ?2472)))) [2472, 2471] by Super 944 with 1180 at 1,1,3 Id : 1540, {_}: multiply (inverse (inverse (inverse (inverse ?3274)))) ?3275 =<= inverse (inverse (inverse (inverse (multiply ?3274 ?3275)))) [3275, 3274] by Demod 1223 with 29 at 2 Id : 10, {_}: divide (divide (divide ?34 ?34) (divide ?34 (divide ?35 (multiply (divide (divide ?34 ?34) ?34) ?36)))) (divide (divide ?37 ?37) ?36) =>= ?35 [37, 36, 35, 34] by Super 2 with 3 at 2,2,2,1,2 Id : 24, {_}: multiply (divide (divide ?34 ?34) (divide ?34 (divide ?35 (multiply (divide (divide ?34 ?34) ?34) ?36)))) ?36 =>= ?35 [36, 35, 34] by Demod 10 with 3 at 2 Id : 793, {_}: multiply (inverse (divide ?34 (divide ?35 (multiply (divide (divide ?34 ?34) ?34) ?36)))) ?36 =>= ?35 [36, 35, 34] by Demod 24 with 4 at 1,2 Id : 794, {_}: multiply (inverse (divide ?34 (divide ?35 (multiply (inverse ?34) ?36)))) ?36 =>= ?35 [36, 35, 34] by Demod 793 with 4 at 1,2,2,1,1,2 Id : 1550, {_}: multiply (inverse (inverse (inverse (inverse (inverse (divide ?3307 (divide ?3308 (multiply (inverse ?3307) ?3309)))))))) ?3309 =>= inverse (inverse (inverse (inverse ?3308))) [3309, 3308, 3307] by Super 1540 with 794 at 1,1,1,1,3 Id : 1600, {_}: multiply (inverse (divide ?3307 (divide ?3308 (multiply (inverse ?3307) ?3309)))) ?3309 =>= inverse (inverse (inverse (inverse ?3308))) [3309, 3308, 3307] by Demod 1550 with 1018 at 1,2 Id : 1601, {_}: ?3308 =<= inverse (inverse (inverse (inverse ?3308))) [3308] by Demod 1600 with 794 at 2 Id : 1634, {_}: multiply ?3404 (inverse (inverse (inverse ?3405))) =>= divide ?3404 ?3405 [3405, 3404] by Super 29 with 1601 at 2,3 Id : 1707, {_}: divide (inverse (inverse ?3544)) (inverse (inverse ?3545)) =>= inverse (inverse (divide ?3544 ?3545)) [3545, 3544] by Super 944 with 1634 at 1,1,3 Id : 1741, {_}: multiply (inverse (inverse ?3544)) (inverse ?3545) =>= inverse (inverse (divide ?3544 ?3545)) [3545, 3544] by Demod 1707 with 29 at 2 Id : 1807, {_}: divide (inverse (inverse (inverse (inverse (divide ?3666 ?3667))))) (inverse ?3667) =>= inverse (inverse ?3666) [3667, 3666] by Super 484 with 1741 at 1,1,1,2 Id : 1849, {_}: multiply (inverse (inverse (inverse (inverse (divide ?3666 ?3667))))) ?3667 =>= inverse (inverse ?3666) [3667, 3666] by Demod 1807 with 29 at 2 Id : 1850, {_}: multiply (divide ?3666 ?3667) ?3667 =>= inverse (inverse ?3666) [3667, 3666] by Demod 1849 with 1601 at 1,2 Id : 1880, {_}: inverse (inverse ?3792) =<= divide (divide ?3792 (inverse (inverse (inverse ?3793)))) ?3793 [3793, 3792] by Super 1634 with 1850 at 2 Id : 2688, {_}: inverse (inverse ?5905) =<= divide (multiply ?5905 (inverse (inverse ?5906))) ?5906 [5906, 5905] by Demod 1880 with 29 at 1,3 Id : 224, {_}: multiply (inverse (inverse (divide ?518 ?518))) ?519 =>= inverse (inverse ?519) [519, 518] by Super 32 with 36 at 1,2 Id : 2714, {_}: inverse (inverse (inverse (inverse (divide ?5996 ?5996)))) =?= divide (inverse (inverse (inverse (inverse ?5997)))) ?5997 [5997, 5996] by Super 2688 with 224 at 1,3 Id : 2767, {_}: divide ?5996 ?5996 =?= divide (inverse (inverse (inverse (inverse ?5997)))) ?5997 [5997, 5996] by Demod 2714 with 1601 at 2 Id : 2768, {_}: divide ?5996 ?5996 =?= divide ?5997 ?5997 [5997, 5996] by Demod 2767 with 1601 at 1,3 Id : 2830, {_}: divide (inverse (divide ?6176 (divide (inverse ?6177) (divide (inverse ?6176) ?6178)))) ?6178 =?= inverse (divide ?6177 (divide ?6179 ?6179)) [6179, 6178, 6177, 6176] by Super 145 with 2768 at 2,1,3 Id : 30, {_}: divide (inverse (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 2 with 4 at 1,2 Id : 31, {_}: divide (inverse (divide ?2 (divide ?3 (divide (inverse ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 30 with 4 at 1,2,2,1,1,2 Id : 2905, {_}: inverse ?6177 =<= inverse (divide ?6177 (divide ?6179 ?6179)) [6179, 6177] by Demod 2830 with 31 at 2 Id : 2962, {_}: divide ?6532 (divide ?6533 ?6533) =?= inverse (inverse (inverse (inverse ?6532))) [6533, 6532] by Super 1601 with 2905 at 1,1,1,3 Id : 3014, {_}: divide ?6532 (divide ?6533 ?6533) =>= ?6532 [6533, 6532] by Demod 2962 with 1601 at 3 Id : 3088, {_}: divide (inverse (divide ?6789 ?6790)) (divide ?6791 ?6791) =>= inverse (inverse (multiply ?6790 (inverse ?6789))) [6791, 6790, 6789] by Super 250 with 3014 at 2,1,1,3 Id : 3148, {_}: inverse (divide ?6789 ?6790) =<= inverse (inverse (multiply ?6790 (inverse ?6789))) [6790, 6789] by Demod 3088 with 3014 at 2 Id : 3149, {_}: inverse (divide ?6789 ?6790) =<= divide (inverse (inverse ?6790)) ?6789 [6790, 6789] by Demod 3148 with 944 at 3 Id : 3377, {_}: inverse (divide ?50 (multiply ?49 ?50)) =>= ?49 [49, 50] by Demod 484 with 3149 at 2 Id : 3423, {_}: inverse (divide ?7500 ?7501) =<= divide (inverse (inverse ?7501)) ?7500 [7501, 7500] by Demod 3148 with 944 at 3 Id : 3441, {_}: inverse (divide ?7566 (inverse (inverse ?7567))) =>= divide ?7567 ?7566 [7567, 7566] by Super 3423 with 1601 at 1,3 Id : 3536, {_}: inverse (multiply ?7566 (inverse ?7567)) =>= divide ?7567 ?7566 [7567, 7566] by Demod 3441 with 29 at 1,2 Id : 229, {_}: inverse ?541 =<= divide (inverse (divide ?542 ?542)) ?541 [542, 541] by Super 35 with 4 at 1,3 Id : 236, {_}: inverse ?562 =<= divide (inverse (inverse (inverse (divide ?563 ?563)))) ?562 [563, 562] by Super 229 with 36 at 1,1,3 Id : 3378, {_}: inverse ?562 =<= inverse (divide ?562 (inverse (divide ?563 ?563))) [563, 562] by Demod 236 with 3149 at 3 Id : 3383, {_}: inverse ?562 =<= inverse (multiply ?562 (divide ?563 ?563)) [563, 562] by Demod 3378 with 29 at 1,3 Id : 3089, {_}: multiply ?6793 (divide ?6794 ?6794) =>= inverse (inverse ?6793) [6794, 6793] by Super 1850 with 3014 at 1,2 Id : 3760, {_}: inverse ?562 =<= inverse (inverse (inverse ?562)) [562] by Demod 3383 with 3089 at 1,3 Id : 3763, {_}: multiply ?3404 (inverse ?3405) =>= divide ?3404 ?3405 [3405, 3404] by Demod 1634 with 3760 at 2,2 Id : 3764, {_}: inverse (divide ?7566 ?7567) =>= divide ?7567 ?7566 [7567, 7566] by Demod 3536 with 3763 at 1,2 Id : 3776, {_}: divide (multiply ?49 ?50) ?50 =>= ?49 [50, 49] by Demod 3377 with 3764 at 2 Id : 1886, {_}: multiply (divide ?3813 ?3814) ?3814 =>= inverse (inverse ?3813) [3814, 3813] by Demod 1849 with 1601 at 1,2 Id : 1895, {_}: multiply (multiply ?3842 ?3843) (inverse ?3843) =>= inverse (inverse ?3842) [3843, 3842] by Super 1886 with 29 at 1,2 Id : 3766, {_}: divide (multiply ?3842 ?3843) ?3843 =>= inverse (inverse ?3842) [3843, 3842] by Demod 1895 with 3763 at 2 Id : 3800, {_}: inverse (inverse ?49) =>= ?49 [49] by Demod 3776 with 3766 at 2 Id : 3806, {_}: multiply (multiply (inverse ?268) ?268) ?269 =>= ?269 [269, 268] by Demod 128 with 3800 at 3 Id : 3889, {_}: a2 =?= a2 [] by Demod 1 with 3806 at 2 Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 % SZS output end CNFRefutation for GRP452-1.p 11236: solved GRP452-1.p in 0.984061 using kbo 11236: status Unsatisfiable for GRP452-1.p NO CLASH, using fixed ground order 11242: Facts: 11242: Id : 2, {_}: divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) (divide (divide ?5 ?4) ?2) =>= ?3 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11242: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11242: Goal: 11242: Id : 1, {_}: multiply (inverse a1) a1 =>= multiply (inverse b1) b1 [] by prove_these_axioms_1 11242: Order: 11242: nrkbo 11242: Leaf order: 11242: divide 7 2 0 11242: b1 2 0 2 1,1,3 11242: multiply 3 2 2 0,2 11242: inverse 4 1 2 0,1,2 11242: a1 2 0 2 1,1,2 NO CLASH, using fixed ground order 11243: Facts: 11243: Id : 2, {_}: divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) (divide (divide ?5 ?4) ?2) =>= ?3 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11243: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11243: Goal: 11243: Id : 1, {_}: multiply (inverse a1) a1 =>= multiply (inverse b1) b1 [] by prove_these_axioms_1 11243: Order: 11243: kbo 11243: Leaf order: 11243: divide 7 2 0 11243: b1 2 0 2 1,1,3 11243: multiply 3 2 2 0,2 11243: inverse 4 1 2 0,1,2 11243: a1 2 0 2 1,1,2 NO CLASH, using fixed ground order 11244: Facts: 11244: Id : 2, {_}: divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) (divide (divide ?5 ?4) ?2) =>= ?3 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11244: Id : 3, {_}: multiply ?7 ?8 =?= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11244: Goal: 11244: Id : 1, {_}: multiply (inverse a1) a1 =>= multiply (inverse b1) b1 [] by prove_these_axioms_1 11244: Order: 11244: lpo 11244: Leaf order: 11244: divide 7 2 0 11244: b1 2 0 2 1,1,3 11244: multiply 3 2 2 0,2 11244: inverse 4 1 2 0,1,2 11244: a1 2 0 2 1,1,2 % SZS status Timeout for GRP469-1.p NO CLASH, using fixed ground order 11271: Facts: 11271: Id : 2, {_}: divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) (divide (divide ?5 ?4) ?2) =>= ?3 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11271: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11271: Goal: 11271: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11271: Order: 11271: nrkbo 11271: Leaf order: 11271: divide 7 2 0 11271: a2 2 0 2 2,2 11271: multiply 3 2 2 0,2 11271: inverse 3 1 1 0,1,1,2 11271: b2 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 11272: Facts: 11272: Id : 2, {_}: divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) (divide (divide ?5 ?4) ?2) =>= ?3 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11272: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11272: Goal: 11272: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11272: Order: 11272: kbo 11272: Leaf order: 11272: divide 7 2 0 11272: a2 2 0 2 2,2 11272: multiply 3 2 2 0,2 11272: inverse 3 1 1 0,1,1,2 11272: b2 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 11273: Facts: 11273: Id : 2, {_}: divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) (divide (divide ?5 ?4) ?2) =>= ?3 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11273: Id : 3, {_}: multiply ?7 ?8 =?= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11273: Goal: 11273: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11273: Order: 11273: lpo 11273: Leaf order: 11273: divide 7 2 0 11273: a2 2 0 2 2,2 11273: multiply 3 2 2 0,2 11273: inverse 3 1 1 0,1,1,2 11273: b2 2 0 2 1,1,1,2 Statistics : Max weight : 55 Found proof, 64.719986s % SZS status Unsatisfiable for GRP470-1.p % SZS output start CNFRefutation for GRP470-1.p Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 Id : 2, {_}: divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) (divide (divide ?5 ?4) ?2) =>= ?3 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 Id : 4, {_}: divide (inverse (divide ?10 (divide ?11 (divide ?12 ?13)))) (divide (divide ?13 ?12) ?10) =>= ?11 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 Id : 8, {_}: divide (inverse ?35) (divide (divide ?36 ?37) (inverse (divide (divide ?37 ?36) (divide ?35 (divide ?38 ?39))))) =>= divide ?39 ?38 [39, 38, 37, 36, 35] by Super 4 with 2 at 1,1,2 Id : 377, {_}: divide (inverse ?1785) (multiply (divide ?1786 ?1787) (divide (divide ?1787 ?1786) (divide ?1785 (divide ?1788 ?1789)))) =>= divide ?1789 ?1788 [1789, 1788, 1787, 1786, 1785] by Demod 8 with 3 at 2,2 Id : 362, {_}: divide (inverse ?35) (multiply (divide ?36 ?37) (divide (divide ?37 ?36) (divide ?35 (divide ?38 ?39)))) =>= divide ?39 ?38 [39, 38, 37, 36, 35] by Demod 8 with 3 at 2,2 Id : 385, {_}: divide (inverse ?1855) (multiply (divide ?1856 ?1857) (divide (divide ?1857 ?1856) (divide ?1855 (divide ?1858 ?1859)))) =?= divide (multiply (divide ?1860 ?1861) (divide (divide ?1861 ?1860) (divide ?1862 (divide ?1859 ?1858)))) (inverse ?1862) [1862, 1861, 1860, 1859, 1858, 1857, 1856, 1855] by Super 377 with 362 at 2,2,2,2,2 Id : 436, {_}: divide ?1859 ?1858 =<= divide (multiply (divide ?1860 ?1861) (divide (divide ?1861 ?1860) (divide ?1862 (divide ?1859 ?1858)))) (inverse ?1862) [1862, 1861, 1860, 1858, 1859] by Demod 385 with 362 at 2 Id : 6830, {_}: divide ?34177 ?34178 =<= multiply (multiply (divide ?34179 ?34180) (divide (divide ?34180 ?34179) (divide ?34181 (divide ?34177 ?34178)))) ?34181 [34181, 34180, 34179, 34178, 34177] by Demod 436 with 3 at 3 Id : 6831, {_}: divide (inverse (divide ?34183 (divide ?34184 (divide ?34185 ?34186)))) (divide (divide ?34186 ?34185) ?34183) =?= multiply (multiply (divide ?34187 ?34188) (divide (divide ?34188 ?34187) (divide ?34189 ?34184))) ?34189 [34189, 34188, 34187, 34186, 34185, 34184, 34183] by Super 6830 with 2 at 2,2,2,1,3 Id : 7101, {_}: ?35399 =<= multiply (multiply (divide ?35400 ?35401) (divide (divide ?35401 ?35400) (divide ?35402 ?35399))) ?35402 [35402, 35401, 35400, 35399] by Demod 6831 with 2 at 2 Id : 7613, {_}: ?38021 =<= multiply (multiply (divide (inverse ?38022) ?38023) (divide (multiply ?38023 ?38022) (divide ?38024 ?38021))) ?38024 [38024, 38023, 38022, 38021] by Super 7101 with 3 at 1,2,1,3 Id : 7678, {_}: ?38552 =<= multiply (multiply (multiply (inverse ?38553) ?38554) (divide (multiply (inverse ?38554) ?38553) (divide ?38555 ?38552))) ?38555 [38555, 38554, 38553, 38552] by Super 7613 with 3 at 1,1,3 Id : 5, {_}: divide (inverse (divide ?15 (divide ?16 (divide (divide (divide ?17 ?18) ?19) (inverse (divide ?19 (divide ?20 (divide ?18 ?17)))))))) (divide ?20 ?15) =>= ?16 [20, 19, 18, 17, 16, 15] by Super 4 with 2 at 1,2,2 Id : 15, {_}: divide (inverse (divide ?15 (divide ?16 (multiply (divide (divide ?17 ?18) ?19) (divide ?19 (divide ?20 (divide ?18 ?17))))))) (divide ?20 ?15) =>= ?16 [20, 19, 18, 17, 16, 15] by Demod 5 with 3 at 2,2,1,1,2 Id : 18, {_}: divide (inverse (divide ?82 ?83)) (divide (divide ?84 ?85) ?82) =?= inverse (divide ?84 (divide ?83 (multiply (divide (divide ?86 ?87) ?88) (divide ?88 (divide ?85 (divide ?87 ?86)))))) [88, 87, 86, 85, 84, 83, 82] by Super 2 with 15 at 2,1,1,2 Id : 1723, {_}: divide (divide (inverse (divide ?8026 ?8027)) (divide (divide ?8028 ?8029) ?8026)) (divide ?8029 ?8028) =>= ?8027 [8029, 8028, 8027, 8026] by Super 15 with 18 at 1,2 Id : 1779, {_}: divide (divide (inverse (multiply ?8457 ?8458)) (divide (divide ?8459 ?8460) ?8457)) (divide ?8460 ?8459) =>= inverse ?8458 [8460, 8459, 8458, 8457] by Super 1723 with 3 at 1,1,1,2 Id : 6854, {_}: divide (divide (inverse (multiply ?34395 ?34396)) (divide (divide ?34397 ?34398) ?34395)) (divide ?34398 ?34397) =?= multiply (multiply (divide ?34399 ?34400) (divide (divide ?34400 ?34399) (divide ?34401 (inverse ?34396)))) ?34401 [34401, 34400, 34399, 34398, 34397, 34396, 34395] by Super 6830 with 1779 at 2,2,2,1,3 Id : 7005, {_}: inverse ?34396 =<= multiply (multiply (divide ?34399 ?34400) (divide (divide ?34400 ?34399) (divide ?34401 (inverse ?34396)))) ?34401 [34401, 34400, 34399, 34396] by Demod 6854 with 1779 at 2 Id : 7303, {_}: inverse ?36376 =<= multiply (multiply (divide ?36377 ?36378) (divide (divide ?36378 ?36377) (multiply ?36379 ?36376))) ?36379 [36379, 36378, 36377, 36376] by Demod 7005 with 3 at 2,2,1,3 Id : 7337, {_}: inverse ?36648 =<= multiply (multiply (divide (inverse ?36649) ?36650) (divide (multiply ?36650 ?36649) (multiply ?36651 ?36648))) ?36651 [36651, 36650, 36649, 36648] by Super 7303 with 3 at 1,2,1,3 Id : 2771, {_}: divide (divide (inverse (multiply ?13734 ?13735)) (divide (divide ?13736 ?13737) ?13734)) (divide ?13737 ?13736) =>= inverse ?13735 [13737, 13736, 13735, 13734] by Super 1723 with 3 at 1,1,1,2 Id : 2814, {_}: divide (divide (inverse (multiply (inverse ?14067) ?14068)) (multiply (divide ?14069 ?14070) ?14067)) (divide ?14070 ?14069) =>= inverse ?14068 [14070, 14069, 14068, 14067] by Super 2771 with 3 at 2,1,2 Id : 7163, {_}: ?35873 =<= multiply (multiply (divide (multiply (divide ?35873 ?35874) ?35875) (inverse (multiply (inverse ?35875) ?35876))) (inverse ?35876)) ?35874 [35876, 35875, 35874, 35873] by Super 7101 with 2814 at 2,1,3 Id : 7239, {_}: ?35873 =<= multiply (multiply (multiply (multiply (divide ?35873 ?35874) ?35875) (multiply (inverse ?35875) ?35876)) (inverse ?35876)) ?35874 [35876, 35875, 35874, 35873] by Demod 7163 with 3 at 1,1,3 Id : 1759, {_}: divide (divide (inverse (divide ?8306 ?8307)) (divide (multiply ?8308 ?8309) ?8306)) (divide (inverse ?8309) ?8308) =>= ?8307 [8309, 8308, 8307, 8306] by Super 1723 with 3 at 1,2,1,2 Id : 7159, {_}: ?35853 =<= multiply (multiply (divide (divide (multiply ?35853 ?35854) ?35855) (inverse (divide ?35855 ?35856))) ?35856) (inverse ?35854) [35856, 35855, 35854, 35853] by Super 7101 with 1759 at 2,1,3 Id : 7892, {_}: ?39681 =<= multiply (multiply (multiply (divide (multiply ?39681 ?39682) ?39683) (divide ?39683 ?39684)) ?39684) (inverse ?39682) [39684, 39683, 39682, 39681] by Demod 7159 with 3 at 1,1,3 Id : 9472, {_}: ?48735 =<= multiply (multiply (multiply (multiply (multiply ?48735 ?48736) ?48737) (divide (inverse ?48737) ?48738)) ?48738) (inverse ?48736) [48738, 48737, 48736, 48735] by Super 7892 with 3 at 1,1,1,3 Id : 1266, {_}: divide (divide (inverse (divide ?5775 ?5776)) (divide (divide ?5777 ?5778) ?5775)) (divide ?5778 ?5777) =>= ?5776 [5778, 5777, 5776, 5775] by Super 15 with 18 at 1,2 Id : 7158, {_}: ?35848 =<= multiply (multiply (divide (divide (divide ?35848 ?35849) ?35850) (inverse (divide ?35850 ?35851))) ?35851) ?35849 [35851, 35850, 35849, 35848] by Super 7101 with 1266 at 2,1,3 Id : 7234, {_}: ?35848 =<= multiply (multiply (multiply (divide (divide ?35848 ?35849) ?35850) (divide ?35850 ?35851)) ?35851) ?35849 [35851, 35850, 35849, 35848] by Demod 7158 with 3 at 1,1,3 Id : 9552, {_}: divide (divide ?49359 (divide (inverse ?49360) ?49361)) ?49362 =<= multiply (multiply ?49359 ?49361) (inverse (divide ?49362 ?49360)) [49362, 49361, 49360, 49359] by Super 9472 with 7234 at 1,1,3 Id : 9555, {_}: multiply (divide ?49374 (divide (inverse (inverse ?49375)) ?49376)) ?49377 =<= multiply (multiply ?49374 ?49376) (inverse (multiply (inverse ?49377) ?49375)) [49377, 49376, 49375, 49374] by Super 9472 with 7239 at 1,1,3 Id : 10048, {_}: divide (divide (multiply ?52036 ?52037) (divide (inverse ?52038) (inverse (multiply (inverse ?52039) ?52040)))) ?52041 =<= multiply (multiply (divide ?52036 (divide (inverse (inverse ?52040)) ?52037)) ?52039) (inverse (divide ?52041 ?52038)) [52041, 52040, 52039, 52038, 52037, 52036] by Super 9552 with 9555 at 1,3 Id : 10181, {_}: divide (divide (multiply ?52036 ?52037) (multiply (inverse ?52038) (multiply (inverse ?52039) ?52040))) ?52041 =<= multiply (multiply (divide ?52036 (divide (inverse (inverse ?52040)) ?52037)) ?52039) (inverse (divide ?52041 ?52038)) [52041, 52040, 52039, 52038, 52037, 52036] by Demod 10048 with 3 at 2,1,2 Id : 10182, {_}: divide (divide (multiply ?52036 ?52037) (multiply (inverse ?52038) (multiply (inverse ?52039) ?52040))) ?52041 =<= divide (divide (divide ?52036 (divide (inverse (inverse ?52040)) ?52037)) (divide (inverse ?52038) ?52039)) ?52041 [52041, 52040, 52039, 52038, 52037, 52036] by Demod 10181 with 9552 at 3 Id : 7161, {_}: ?35863 =<= multiply (multiply (divide (divide (divide ?35863 ?35864) ?35865) (inverse (multiply ?35865 ?35866))) (inverse ?35866)) ?35864 [35866, 35865, 35864, 35863] by Super 7101 with 1779 at 2,1,3 Id : 7237, {_}: ?35863 =<= multiply (multiply (multiply (divide (divide ?35863 ?35864) ?35865) (multiply ?35865 ?35866)) (inverse ?35866)) ?35864 [35866, 35865, 35864, 35863] by Demod 7161 with 3 at 1,1,3 Id : 9554, {_}: divide (divide ?49369 (divide (inverse (inverse ?49370)) ?49371)) ?49372 =>= multiply (multiply ?49369 ?49371) (inverse (multiply ?49372 ?49370)) [49372, 49371, 49370, 49369] by Super 9472 with 7237 at 1,1,3 Id : 10183, {_}: divide (divide (multiply ?52036 ?52037) (multiply (inverse ?52038) (multiply (inverse ?52039) ?52040))) ?52041 =<= divide (multiply (multiply ?52036 ?52037) (inverse (multiply (divide (inverse ?52038) ?52039) ?52040))) ?52041 [52041, 52040, 52039, 52038, 52037, 52036] by Demod 10182 with 9554 at 1,3 Id : 12174, {_}: multiply (multiply ?64029 ?64030) (inverse (multiply (divide (inverse ?64031) ?64032) ?64033)) =<= multiply (multiply (multiply (multiply (divide (divide (multiply ?64029 ?64030) (multiply (inverse ?64031) (multiply (inverse ?64032) ?64033))) ?64034) ?64035) (multiply (inverse ?64035) ?64036)) (inverse ?64036)) ?64034 [64036, 64035, 64034, 64033, 64032, 64031, 64030, 64029] by Super 7239 with 10183 at 1,1,1,1,3 Id : 12258, {_}: multiply (multiply ?64029 ?64030) (inverse (multiply (divide (inverse ?64031) ?64032) ?64033)) =>= divide (multiply ?64029 ?64030) (multiply (inverse ?64031) (multiply (inverse ?64032) ?64033)) [64033, 64032, 64031, 64030, 64029] by Demod 12174 with 7239 at 3 Id : 12491, {_}: inverse (inverse (multiply (divide (inverse ?65291) ?65292) ?65293)) =<= multiply (multiply (divide (inverse ?65294) ?65295) (divide (multiply ?65295 ?65294) (divide (multiply ?65296 ?65297) (multiply (inverse ?65291) (multiply (inverse ?65292) ?65293))))) (multiply ?65296 ?65297) [65297, 65296, 65295, 65294, 65293, 65292, 65291] by Super 7337 with 12258 at 2,2,1,3 Id : 7157, {_}: ?35843 =<= multiply (multiply (divide (inverse ?35844) ?35845) (divide (multiply ?35845 ?35844) (divide ?35846 ?35843))) ?35846 [35846, 35845, 35844, 35843] by Super 7101 with 3 at 1,2,1,3 Id : 12726, {_}: inverse (inverse (multiply (divide (inverse ?66353) ?66354) ?66355)) =>= multiply (inverse ?66353) (multiply (inverse ?66354) ?66355) [66355, 66354, 66353] by Demod 12491 with 7157 at 3 Id : 7, {_}: divide (inverse (divide ?29 ?30)) (divide (divide ?31 (divide ?32 ?33)) ?29) =>= inverse (divide ?31 (divide ?30 (divide ?33 ?32))) [33, 32, 31, 30, 29] by Super 4 with 2 at 2,1,1,2 Id : 53, {_}: inverse (divide ?279 (divide (divide ?280 (divide (divide ?281 ?282) ?279)) (divide ?282 ?281))) =>= ?280 [282, 281, 280, 279] by Super 2 with 7 at 2 Id : 12727, {_}: inverse (inverse (multiply (divide ?66357 ?66358) ?66359)) =<= multiply (inverse (divide ?66360 (divide (divide ?66357 (divide (divide ?66361 ?66362) ?66360)) (divide ?66362 ?66361)))) (multiply (inverse ?66358) ?66359) [66362, 66361, 66360, 66359, 66358, 66357] by Super 12726 with 53 at 1,1,1,1,2 Id : 12770, {_}: inverse (inverse (multiply (divide ?66357 ?66358) ?66359)) =>= multiply ?66357 (multiply (inverse ?66358) ?66359) [66359, 66358, 66357] by Demod 12727 with 53 at 1,3 Id : 12807, {_}: multiply ?66813 (inverse (multiply (divide ?66814 ?66815) ?66816)) =>= divide ?66813 (multiply ?66814 (multiply (inverse ?66815) ?66816)) [66816, 66815, 66814, 66813] by Super 3 with 12770 at 2,3 Id : 12991, {_}: inverse (inverse (divide (divide ?67798 ?67799) (multiply ?67800 (multiply (inverse ?67801) ?67802)))) =>= multiply ?67798 (multiply (inverse ?67799) (inverse (multiply (divide ?67800 ?67801) ?67802))) [67802, 67801, 67800, 67799, 67798] by Super 12770 with 12807 at 1,1,2 Id : 15565, {_}: inverse (inverse (divide (divide ?82879 ?82880) (multiply ?82881 (multiply (inverse ?82882) ?82883)))) =>= multiply ?82879 (divide (inverse ?82880) (multiply ?82881 (multiply (inverse ?82882) ?82883))) [82883, 82882, 82881, 82880, 82879] by Demod 12991 with 12807 at 2,3 Id : 6973, {_}: ?34184 =<= multiply (multiply (divide ?34187 ?34188) (divide (divide ?34188 ?34187) (divide ?34189 ?34184))) ?34189 [34189, 34188, 34187, 34184] by Demod 6831 with 2 at 2 Id : 15584, {_}: inverse (inverse (divide (divide ?83055 ?83056) ?83057)) =<= multiply ?83055 (divide (inverse ?83056) (multiply (multiply (divide ?83058 ?83059) (divide (divide ?83059 ?83058) (divide (multiply (inverse ?83060) ?83061) ?83057))) (multiply (inverse ?83060) ?83061))) [83061, 83060, 83059, 83058, 83057, 83056, 83055] by Super 15565 with 6973 at 2,1,1,2 Id : 15659, {_}: inverse (inverse (divide (divide ?83055 ?83056) ?83057)) =>= multiply ?83055 (divide (inverse ?83056) ?83057) [83057, 83056, 83055] by Demod 15584 with 6973 at 2,2,3 Id : 12825, {_}: inverse (inverse (multiply (divide ?66943 ?66944) ?66945)) =>= multiply ?66943 (multiply (inverse ?66944) ?66945) [66945, 66944, 66943] by Demod 12727 with 53 at 1,3 Id : 12858, {_}: inverse (inverse (multiply (multiply ?67174 ?67175) ?67176)) =>= multiply ?67174 (multiply (inverse (inverse ?67175)) ?67176) [67176, 67175, 67174] by Super 12825 with 3 at 1,1,1,2 Id : 13083, {_}: inverse (inverse (divide (multiply ?68472 ?68473) (multiply ?68474 (multiply (inverse ?68475) ?68476)))) =>= multiply ?68472 (multiply (inverse (inverse ?68473)) (inverse (multiply (divide ?68474 ?68475) ?68476))) [68476, 68475, 68474, 68473, 68472] by Super 12858 with 12807 at 1,1,2 Id : 14137, {_}: inverse (inverse (divide (multiply ?73757 ?73758) (multiply ?73759 (multiply (inverse ?73760) ?73761)))) =>= multiply ?73757 (divide (inverse (inverse ?73758)) (multiply ?73759 (multiply (inverse ?73760) ?73761))) [73761, 73760, 73759, 73758, 73757] by Demod 13083 with 12807 at 2,3 Id : 14155, {_}: inverse (inverse (divide (multiply ?73925 ?73926) ?73927)) =<= multiply ?73925 (divide (inverse (inverse ?73926)) (multiply (multiply (divide ?73928 ?73929) (divide (divide ?73929 ?73928) (divide (multiply (inverse ?73930) ?73931) ?73927))) (multiply (inverse ?73930) ?73931))) [73931, 73930, 73929, 73928, 73927, 73926, 73925] by Super 14137 with 6973 at 2,1,1,2 Id : 14212, {_}: inverse (inverse (divide (multiply ?73925 ?73926) ?73927)) =>= multiply ?73925 (divide (inverse (inverse ?73926)) ?73927) [73927, 73926, 73925] by Demod 14155 with 6973 at 2,2,3 Id : 15715, {_}: multiply ?83687 (inverse (divide (divide ?83688 ?83689) ?83690)) =>= divide ?83687 (multiply ?83688 (divide (inverse ?83689) ?83690)) [83690, 83689, 83688, 83687] by Super 3 with 15659 at 2,3 Id : 15912, {_}: divide (divide ?84886 (divide (inverse ?84887) ?84888)) (divide ?84889 ?84890) =<= divide (multiply ?84886 ?84888) (multiply ?84889 (divide (inverse ?84890) ?84887)) [84890, 84889, 84888, 84887, 84886] by Super 9552 with 15715 at 3 Id : 16736, {_}: inverse (inverse (divide (divide ?88411 (divide (inverse ?88412) ?88413)) (divide ?88414 ?88415))) =>= multiply ?88411 (divide (inverse (inverse ?88413)) (multiply ?88414 (divide (inverse ?88415) ?88412))) [88415, 88414, 88413, 88412, 88411] by Super 14212 with 15912 at 1,1,2 Id : 16823, {_}: multiply ?88411 (divide (inverse (divide (inverse ?88412) ?88413)) (divide ?88414 ?88415)) =<= multiply ?88411 (divide (inverse (inverse ?88413)) (multiply ?88414 (divide (inverse ?88415) ?88412))) [88415, 88414, 88413, 88412, 88411] by Demod 16736 with 15659 at 2 Id : 19503, {_}: inverse (divide (inverse (inverse ?101466)) (multiply ?101467 (divide (inverse ?101468) ?101469))) =<= multiply (multiply (divide (inverse ?101470) ?101471) (divide (multiply ?101471 ?101470) (multiply ?101472 (divide (inverse (divide (inverse ?101469) ?101466)) (divide ?101467 ?101468))))) ?101472 [101472, 101471, 101470, 101469, 101468, 101467, 101466] by Super 7337 with 16823 at 2,2,1,3 Id : 20509, {_}: inverse (divide (inverse (inverse ?107024)) (multiply ?107025 (divide (inverse ?107026) ?107027))) =>= inverse (divide (inverse (divide (inverse ?107027) ?107024)) (divide ?107025 ?107026)) [107027, 107026, 107025, 107024] by Demod 19503 with 7337 at 3 Id : 15122, {_}: multiply ?80264 (inverse (divide (multiply ?80265 ?80266) ?80267)) =<= divide ?80264 (multiply ?80265 (divide (inverse (inverse ?80266)) ?80267)) [80267, 80266, 80265, 80264] by Super 3 with 14212 at 2,3 Id : 20594, {_}: inverse (multiply (inverse (inverse ?107698)) (inverse (divide (multiply ?107699 ?107700) ?107701))) =>= inverse (divide (inverse (divide (inverse ?107701) ?107698)) (divide ?107699 (inverse ?107700))) [107701, 107700, 107699, 107698] by Super 20509 with 15122 at 1,2 Id : 20893, {_}: inverse (multiply (inverse (inverse ?108369)) (inverse (divide (multiply ?108370 ?108371) ?108372))) =>= inverse (divide (inverse (divide (inverse ?108372) ?108369)) (multiply ?108370 ?108371)) [108372, 108371, 108370, 108369] by Demod 20594 with 3 at 2,1,3 Id : 20903, {_}: inverse (multiply (inverse (inverse ?108447)) (inverse (divide ?108448 ?108449))) =<= inverse (divide (inverse (divide (inverse ?108449) ?108447)) (multiply (multiply (divide ?108450 ?108451) (divide (divide ?108451 ?108450) (divide ?108452 ?108448))) ?108452)) [108452, 108451, 108450, 108449, 108448, 108447] by Super 20893 with 6973 at 1,1,2,1,2 Id : 21279, {_}: inverse (multiply (inverse (inverse ?109423)) (inverse (divide ?109424 ?109425))) =>= inverse (divide (inverse (divide (inverse ?109425) ?109423)) ?109424) [109425, 109424, 109423] by Demod 20903 with 6973 at 2,1,3 Id : 21354, {_}: inverse (multiply (multiply ?109942 (divide (inverse ?109943) ?109944)) (inverse (divide ?109945 ?109946))) =>= inverse (divide (inverse (divide (inverse ?109946) (divide (divide ?109942 ?109943) ?109944))) ?109945) [109946, 109945, 109944, 109943, 109942] by Super 21279 with 15659 at 1,1,2 Id : 25671, {_}: inverse (divide (divide ?128948 (divide (inverse ?128949) (divide (inverse ?128950) ?128951))) ?128952) =<= inverse (divide (inverse (divide (inverse ?128949) (divide (divide ?128948 ?128950) ?128951))) ?128952) [128952, 128951, 128950, 128949, 128948] by Demod 21354 with 9552 at 1,2 Id : 25729, {_}: inverse (divide (divide ?129446 (divide (inverse (divide ?129447 (divide (divide ?129448 (divide (divide ?129449 ?129450) ?129447)) (divide ?129450 ?129449)))) (divide (inverse ?129451) ?129452))) ?129453) =>= inverse (divide (inverse (divide ?129448 (divide (divide ?129446 ?129451) ?129452))) ?129453) [129453, 129452, 129451, 129450, 129449, 129448, 129447, 129446] by Super 25671 with 53 at 1,1,1,1,3 Id : 26075, {_}: inverse (divide (divide ?131096 (divide ?131097 (divide (inverse ?131098) ?131099))) ?131100) =<= inverse (divide (inverse (divide ?131097 (divide (divide ?131096 ?131098) ?131099))) ?131100) [131100, 131099, 131098, 131097, 131096] by Demod 25729 with 53 at 1,2,1,1,2 Id : 26111, {_}: inverse (divide (divide ?131425 (divide ?131426 (divide (inverse (inverse ?131427)) ?131428))) ?131429) =>= inverse (divide (inverse (divide ?131426 (divide (multiply ?131425 ?131427) ?131428))) ?131429) [131429, 131428, 131427, 131426, 131425] by Super 26075 with 3 at 1,2,1,1,1,3 Id : 30666, {_}: inverse (inverse (divide (inverse (divide ?153822 (divide (multiply ?153823 ?153824) ?153825))) ?153826)) =>= multiply ?153823 (divide (inverse (divide ?153822 (divide (inverse (inverse ?153824)) ?153825))) ?153826) [153826, 153825, 153824, 153823, 153822] by Super 15659 with 26111 at 1,2 Id : 30731, {_}: inverse (inverse (multiply ?154370 ?154371)) =<= multiply ?154370 (divide (inverse (divide ?154372 (divide (inverse (inverse ?154371)) (divide ?154373 ?154374)))) (divide (divide ?154374 ?154373) ?154372)) [154374, 154373, 154372, 154371, 154370] by Super 30666 with 2 at 1,1,2 Id : 31025, {_}: inverse (inverse (multiply ?155310 ?155311)) =>= multiply ?155310 (inverse (inverse ?155311)) [155311, 155310] by Demod 30731 with 2 at 2,3 Id : 7367, {_}: inverse ?36880 =<= multiply (multiply (multiply ?36881 ?36882) (divide (divide (inverse ?36882) ?36881) (multiply ?36883 ?36880))) ?36883 [36883, 36882, 36881, 36880] by Super 7303 with 3 at 1,1,3 Id : 15740, {_}: inverse (inverse (divide (divide ?83867 ?83868) ?83869)) =>= multiply ?83867 (divide (inverse ?83868) ?83869) [83869, 83868, 83867] by Demod 15584 with 6973 at 2,2,3 Id : 15787, {_}: inverse (inverse (multiply (multiply ?84179 ?84180) (inverse (multiply ?84181 ?84182)))) =>= multiply ?84179 (divide (inverse (divide (inverse (inverse ?84182)) ?84180)) ?84181) [84182, 84181, 84180, 84179] by Super 15740 with 9554 at 1,1,2 Id : 15809, {_}: multiply ?84179 (multiply (inverse (inverse ?84180)) (inverse (multiply ?84181 ?84182))) =>= multiply ?84179 (divide (inverse (divide (inverse (inverse ?84182)) ?84180)) ?84181) [84182, 84181, 84180, 84179] by Demod 15787 with 12858 at 2 Id : 16238, {_}: inverse (multiply (inverse (inverse ?86040)) (inverse (multiply ?86041 ?86042))) =<= multiply (multiply (multiply ?86043 ?86044) (divide (divide (inverse ?86044) ?86043) (multiply ?86045 (divide (inverse (divide (inverse (inverse ?86042)) ?86040)) ?86041)))) ?86045 [86045, 86044, 86043, 86042, 86041, 86040] by Super 7367 with 15809 at 2,2,1,3 Id : 16326, {_}: inverse (multiply (inverse (inverse ?86040)) (inverse (multiply ?86041 ?86042))) =>= inverse (divide (inverse (divide (inverse (inverse ?86042)) ?86040)) ?86041) [86042, 86041, 86040] by Demod 16238 with 7367 at 3 Id : 31064, {_}: inverse (inverse (divide (inverse (divide (inverse (inverse ?155519)) ?155520)) ?155521)) =>= multiply (inverse (inverse ?155520)) (inverse (inverse (inverse (multiply ?155521 ?155519)))) [155521, 155520, 155519] by Super 31025 with 16326 at 1,2 Id : 30884, {_}: inverse (inverse (multiply ?154370 ?154371)) =>= multiply ?154370 (inverse (inverse ?154371)) [154371, 154370] by Demod 30731 with 2 at 2,3 Id : 32647, {_}: inverse (inverse (divide (inverse (divide (inverse (inverse ?161221)) ?161222)) ?161223)) =>= multiply (inverse (inverse ?161222)) (inverse (multiply ?161223 (inverse (inverse ?161221)))) [161223, 161222, 161221] by Demod 31064 with 30884 at 1,2,3 Id : 32648, {_}: inverse (inverse (divide (inverse (divide (inverse ?161225) ?161226)) ?161227)) =<= multiply (inverse (inverse ?161226)) (inverse (multiply ?161227 (inverse (inverse (divide ?161228 (divide (divide ?161225 (divide (divide ?161229 ?161230) ?161228)) (divide ?161230 ?161229))))))) [161230, 161229, 161228, 161227, 161226, 161225] by Super 32647 with 53 at 1,1,1,1,1,1,2 Id : 33188, {_}: inverse (inverse (divide (inverse (divide (inverse ?162681) ?162682)) ?162683)) =>= multiply (inverse (inverse ?162682)) (inverse (multiply ?162683 (inverse ?162681))) [162683, 162682, 162681] by Demod 32648 with 53 at 1,2,1,2,3 Id : 33189, {_}: inverse (inverse (divide (inverse (divide ?162685 ?162686)) ?162687)) =<= multiply (inverse (inverse ?162686)) (inverse (multiply ?162687 (inverse (divide ?162688 (divide (divide ?162685 (divide (divide ?162689 ?162690) ?162688)) (divide ?162690 ?162689)))))) [162690, 162689, 162688, 162687, 162686, 162685] by Super 33188 with 53 at 1,1,1,1,1,2 Id : 33732, {_}: inverse (inverse (divide (inverse (divide ?164373 ?164374)) ?164375)) =>= multiply (inverse (inverse ?164374)) (inverse (multiply ?164375 ?164373)) [164375, 164374, 164373] by Demod 33189 with 53 at 2,1,2,3 Id : 33815, {_}: inverse (inverse (multiply (inverse (divide ?164946 ?164947)) ?164948)) =<= multiply (inverse (inverse ?164947)) (inverse (multiply (inverse ?164948) ?164946)) [164948, 164947, 164946] by Super 33732 with 3 at 1,1,2 Id : 34748, {_}: multiply (inverse (divide ?166758 ?166759)) (inverse (inverse ?166760)) =<= multiply (inverse (inverse ?166759)) (inverse (multiply (inverse ?166760) ?166758)) [166760, 166759, 166758] by Demod 33815 with 30884 at 2 Id : 34749, {_}: multiply (inverse (divide ?166762 ?166763)) (inverse (inverse (divide ?166764 (divide (divide ?166765 (divide (divide ?166766 ?166767) ?166764)) (divide ?166767 ?166766))))) =>= multiply (inverse (inverse ?166763)) (inverse (multiply ?166765 ?166762)) [166767, 166766, 166765, 166764, 166763, 166762] by Super 34748 with 53 at 1,1,2,3 Id : 35052, {_}: multiply (inverse (divide ?166762 ?166763)) (inverse ?166765) =<= multiply (inverse (inverse ?166763)) (inverse (multiply ?166765 ?166762)) [166765, 166763, 166762] by Demod 34749 with 53 at 1,2,2 Id : 35278, {_}: multiply (inverse (divide ?167869 ?167870)) (inverse (divide ?167871 ?167872)) =<= divide (inverse (inverse ?167870)) (multiply ?167871 (multiply (inverse ?167872) ?167869)) [167872, 167871, 167870, 167869] by Super 12807 with 35052 at 2 Id : 33419, {_}: inverse (inverse (divide (inverse (divide ?162685 ?162686)) ?162687)) =>= multiply (inverse (inverse ?162686)) (inverse (multiply ?162687 ?162685)) [162687, 162686, 162685] by Demod 33189 with 53 at 2,1,2,3 Id : 35198, {_}: inverse (inverse (divide (inverse (divide ?162685 ?162686)) ?162687)) =>= multiply (inverse (divide ?162685 ?162686)) (inverse ?162687) [162687, 162686, 162685] by Demod 33419 with 35052 at 3 Id : 16, {_}: divide (inverse (divide ?64 (divide ?65 (divide (divide ?66 ?67) (inverse (divide ?67 (divide ?68 (multiply (divide (divide ?69 ?70) ?71) (divide ?71 (divide ?66 (divide ?70 ?69))))))))))) (divide ?68 ?64) =>= ?65 [71, 70, 69, 68, 67, 66, 65, 64] by Super 2 with 15 at 1,2,2 Id : 38, {_}: divide (inverse (divide ?64 (divide ?65 (multiply (divide ?66 ?67) (divide ?67 (divide ?68 (multiply (divide (divide ?69 ?70) ?71) (divide ?71 (divide ?66 (divide ?70 ?69)))))))))) (divide ?68 ?64) =>= ?65 [71, 70, 69, 68, 67, 66, 65, 64] by Demod 16 with 3 at 2,2,1,1,2 Id : 38131, {_}: inverse (inverse (divide (inverse ?178374) ?178375)) =<= multiply (inverse (divide (inverse (divide ?178376 (divide ?178374 (multiply (divide ?178377 ?178378) (divide ?178378 (divide ?178379 (multiply (divide (divide ?178380 ?178381) ?178382) (divide ?178382 (divide ?178377 (divide ?178381 ?178380)))))))))) (divide ?178379 ?178376))) (inverse ?178375) [178382, 178381, 178380, 178379, 178378, 178377, 178376, 178375, 178374] by Super 35198 with 38 at 1,1,1,1,2 Id : 38834, {_}: inverse (inverse (divide (inverse ?178374) ?178375)) =>= multiply (inverse ?178374) (inverse ?178375) [178375, 178374] by Demod 38131 with 38 at 1,1,3 Id : 39627, {_}: multiply ?187316 (inverse (divide (inverse ?187317) ?187318)) =>= divide ?187316 (multiply (inverse ?187317) (inverse ?187318)) [187318, 187317, 187316] by Super 3 with 38834 at 2,3 Id : 39628, {_}: multiply ?187320 (inverse (divide ?187321 ?187322)) =<= divide ?187320 (multiply (inverse (divide ?187323 (divide (divide ?187321 (divide (divide ?187324 ?187325) ?187323)) (divide ?187325 ?187324)))) (inverse ?187322)) [187325, 187324, 187323, 187322, 187321, 187320] by Super 39627 with 53 at 1,1,2,2 Id : 39950, {_}: multiply ?187320 (inverse (divide ?187321 ?187322)) =>= divide ?187320 (multiply ?187321 (inverse ?187322)) [187322, 187321, 187320] by Demod 39628 with 53 at 1,2,3 Id : 45468, {_}: divide (inverse (divide ?167869 ?167870)) (multiply ?167871 (inverse ?167872)) =<= divide (inverse (inverse ?167870)) (multiply ?167871 (multiply (inverse ?167872) ?167869)) [167872, 167871, 167870, 167869] by Demod 35278 with 39950 at 2 Id : 45552, {_}: divide (inverse ?204144) (multiply (divide ?204145 ?204146) (divide (divide ?204146 ?204145) (divide ?204144 (divide (inverse (divide ?204147 ?204148)) (multiply ?204149 (inverse ?204150)))))) =>= divide (multiply ?204149 (multiply (inverse ?204150) ?204147)) (inverse (inverse ?204148)) [204150, 204149, 204148, 204147, 204146, 204145, 204144] by Super 362 with 45468 at 2,2,2,2,2 Id : 45856, {_}: divide (multiply ?204149 (inverse ?204150)) (inverse (divide ?204147 ?204148)) =<= divide (multiply ?204149 (multiply (inverse ?204150) ?204147)) (inverse (inverse ?204148)) [204148, 204147, 204150, 204149] by Demod 45552 with 362 at 2 Id : 45857, {_}: divide (multiply ?204149 (inverse ?204150)) (inverse (divide ?204147 ?204148)) =<= multiply (multiply ?204149 (multiply (inverse ?204150) ?204147)) (inverse ?204148) [204148, 204147, 204150, 204149] by Demod 45856 with 3 at 3 Id : 46240, {_}: multiply (multiply ?206273 (inverse ?206274)) (divide ?206275 ?206276) =<= multiply (multiply ?206273 (multiply (inverse ?206274) ?206275)) (inverse ?206276) [206276, 206275, 206274, 206273] by Demod 45857 with 3 at 2 Id : 30915, {_}: multiply (multiply ?67174 ?67175) (inverse (inverse ?67176)) =?= multiply ?67174 (multiply (inverse (inverse ?67175)) ?67176) [67176, 67175, 67174] by Demod 12858 with 30884 at 2 Id : 46333, {_}: multiply (multiply ?207013 (inverse (inverse ?207014))) (divide ?207015 ?207016) =<= multiply (multiply (multiply ?207013 ?207014) (inverse (inverse ?207015))) (inverse ?207016) [207016, 207015, 207014, 207013] by Super 46240 with 30915 at 1,3 Id : 1890, {_}: divide (inverse (divide (divide ?8674 ?8675) ?8676)) ?8677 =<= inverse (divide (inverse (divide ?8678 ?8677)) (divide ?8676 (divide ?8678 (divide ?8675 ?8674)))) [8678, 8677, 8676, 8675, 8674] by Super 7 with 1266 at 2,2 Id : 1908, {_}: divide (inverse (divide (divide (inverse ?8832) ?8833) ?8834)) ?8835 =<= inverse (divide (inverse (divide ?8836 ?8835)) (divide ?8834 (divide ?8836 (multiply ?8833 ?8832)))) [8836, 8835, 8834, 8833, 8832] by Super 1890 with 3 at 2,2,2,1,3 Id : 61, {_}: divide (inverse (divide ?349 ?350)) (divide (divide ?351 (divide ?352 ?353)) ?349) =>= inverse (divide ?351 (divide ?350 (divide ?353 ?352))) [353, 352, 351, 350, 349] by Super 4 with 2 at 2,1,1,2 Id : 65, {_}: divide (inverse (divide ?382 ?383)) (divide (divide ?384 (multiply ?385 ?386)) ?382) =>= inverse (divide ?384 (divide ?383 (divide (inverse ?386) ?385))) [386, 385, 384, 383, 382] by Super 61 with 3 at 2,1,2,2 Id : 16676, {_}: divide (inverse ?87869) (multiply (divide ?87870 ?87871) (divide (divide ?87871 ?87870) (divide ?87869 (divide (divide ?87872 (divide (inverse ?87873) ?87874)) (divide ?87875 ?87876))))) =>= divide (multiply ?87875 (divide (inverse ?87876) ?87873)) (multiply ?87872 ?87874) [87876, 87875, 87874, 87873, 87872, 87871, 87870, 87869] by Super 362 with 15912 at 2,2,2,2,2 Id : 16850, {_}: divide (divide ?87875 ?87876) (divide ?87872 (divide (inverse ?87873) ?87874)) =<= divide (multiply ?87875 (divide (inverse ?87876) ?87873)) (multiply ?87872 ?87874) [87874, 87873, 87872, 87876, 87875] by Demod 16676 with 362 at 2 Id : 17219, {_}: inverse (inverse (divide (divide ?91192 ?91193) (divide ?91194 (divide (inverse ?91195) ?91196)))) =>= multiply ?91192 (divide (inverse (inverse (divide (inverse ?91193) ?91195))) (multiply ?91194 ?91196)) [91196, 91195, 91194, 91193, 91192] by Super 14212 with 16850 at 1,1,2 Id : 17309, {_}: multiply ?91192 (divide (inverse ?91193) (divide ?91194 (divide (inverse ?91195) ?91196))) =<= multiply ?91192 (divide (inverse (inverse (divide (inverse ?91193) ?91195))) (multiply ?91194 ?91196)) [91196, 91195, 91194, 91193, 91192] by Demod 17219 with 15659 at 2 Id : 22082, {_}: inverse (divide (inverse (inverse (divide (inverse ?112093) ?112094))) (multiply ?112095 ?112096)) =<= multiply (multiply (divide (inverse ?112097) ?112098) (divide (multiply ?112098 ?112097) (multiply ?112099 (divide (inverse ?112093) (divide ?112095 (divide (inverse ?112094) ?112096)))))) ?112099 [112099, 112098, 112097, 112096, 112095, 112094, 112093] by Super 7337 with 17309 at 2,2,1,3 Id : 22476, {_}: inverse (divide (inverse (inverse (divide (inverse ?113967) ?113968))) (multiply ?113969 ?113970)) =>= inverse (divide (inverse ?113967) (divide ?113969 (divide (inverse ?113968) ?113970))) [113970, 113969, 113968, 113967] by Demod 22082 with 7337 at 3 Id : 22508, {_}: inverse (divide (inverse (inverse (divide ?114204 ?114205))) (multiply ?114206 ?114207)) =<= inverse (divide (inverse (divide ?114208 (divide (divide ?114204 (divide (divide ?114209 ?114210) ?114208)) (divide ?114210 ?114209)))) (divide ?114206 (divide (inverse ?114205) ?114207))) [114210, 114209, 114208, 114207, 114206, 114205, 114204] by Super 22476 with 53 at 1,1,1,1,1,2 Id : 22780, {_}: inverse (divide (inverse (inverse (divide ?114204 ?114205))) (multiply ?114206 ?114207)) =>= inverse (divide ?114204 (divide ?114206 (divide (inverse ?114205) ?114207))) [114207, 114206, 114205, 114204] by Demod 22508 with 53 at 1,1,3 Id : 40158, {_}: inverse (inverse (divide ?188657 ?188658)) =<= multiply (multiply (multiply ?188659 ?188660) (divide (divide (inverse ?188660) ?188659) (divide ?188661 (multiply ?188657 (inverse ?188658))))) ?188661 [188661, 188660, 188659, 188658, 188657] by Super 7367 with 39950 at 2,2,1,3 Id : 7191, {_}: ?36095 =<= multiply (multiply (multiply ?36096 ?36097) (divide (divide (inverse ?36097) ?36096) (divide ?36098 ?36095))) ?36098 [36098, 36097, 36096, 36095] by Super 7101 with 3 at 1,1,3 Id : 40350, {_}: inverse (inverse (divide ?188657 ?188658)) =>= multiply ?188657 (inverse ?188658) [188658, 188657] by Demod 40158 with 7191 at 3 Id : 40577, {_}: inverse (divide (multiply ?114204 (inverse ?114205)) (multiply ?114206 ?114207)) =?= inverse (divide ?114204 (divide ?114206 (divide (inverse ?114205) ?114207))) [114207, 114206, 114205, 114204] by Demod 22780 with 40350 at 1,1,2 Id : 40645, {_}: divide (divide ?189801 (divide (multiply ?189802 (inverse ?189803)) ?189804)) ?189805 =<= multiply (multiply ?189801 ?189804) (inverse (multiply ?189805 (divide ?189802 ?189803))) [189805, 189804, 189803, 189802, 189801] by Super 9554 with 40350 at 1,2,1,2 Id : 30968, {_}: multiply ?154958 (inverse (multiply ?154959 ?154960)) =<= divide ?154958 (multiply ?154959 (inverse (inverse ?154960))) [154960, 154959, 154958] by Super 3 with 30884 at 2,3 Id : 40629, {_}: multiply ?189704 (inverse (multiply ?189705 (divide ?189706 ?189707))) =>= divide ?189704 (multiply ?189705 (multiply ?189706 (inverse ?189707))) [189707, 189706, 189705, 189704] by Super 30968 with 40350 at 2,2,3 Id : 62131, {_}: divide (divide ?257834 (divide (multiply ?257835 (inverse ?257836)) ?257837)) ?257838 =<= divide (multiply ?257834 ?257837) (multiply ?257838 (multiply ?257835 (inverse ?257836))) [257838, 257837, 257836, 257835, 257834] by Demod 40645 with 40629 at 3 Id : 62178, {_}: divide (divide ?258249 (divide (multiply (multiply (divide ?258250 ?258251) (divide (divide ?258251 ?258250) (divide (inverse ?258252) ?258253))) (inverse ?258252)) ?258254)) ?258255 =>= divide (multiply ?258249 ?258254) (multiply ?258255 ?258253) [258255, 258254, 258253, 258252, 258251, 258250, 258249] by Super 62131 with 6973 at 2,2,3 Id : 62493, {_}: divide (divide ?258249 (divide ?258253 ?258254)) ?258255 =<= divide (multiply ?258249 ?258254) (multiply ?258255 ?258253) [258255, 258254, 258253, 258249] by Demod 62178 with 6973 at 1,2,1,2 Id : 62632, {_}: inverse (divide (divide ?114204 (divide ?114207 (inverse ?114205))) ?114206) =?= inverse (divide ?114204 (divide ?114206 (divide (inverse ?114205) ?114207))) [114206, 114205, 114207, 114204] by Demod 40577 with 62493 at 1,2 Id : 62637, {_}: inverse (divide (divide ?114204 (multiply ?114207 ?114205)) ?114206) =<= inverse (divide ?114204 (divide ?114206 (divide (inverse ?114205) ?114207))) [114206, 114205, 114207, 114204] by Demod 62632 with 3 at 2,1,1,2 Id : 62641, {_}: divide (inverse (divide ?382 ?383)) (divide (divide ?384 (multiply ?385 ?386)) ?382) =>= inverse (divide (divide ?384 (multiply ?385 ?386)) ?383) [386, 385, 384, 383, 382] by Demod 65 with 62637 at 3 Id : 19, {_}: divide (inverse ?90) (divide (divide ?91 ?92) (inverse (divide (divide ?92 ?91) (divide ?90 (multiply (divide (divide ?93 ?94) ?95) (divide ?95 (divide ?96 (divide ?94 ?93)))))))) =>= ?96 [96, 95, 94, 93, 92, 91, 90] by Super 2 with 15 at 1,1,2 Id : 40, {_}: divide (inverse ?90) (multiply (divide ?91 ?92) (divide (divide ?92 ?91) (divide ?90 (multiply (divide (divide ?93 ?94) ?95) (divide ?95 (divide ?96 (divide ?94 ?93))))))) =>= ?96 [96, 95, 94, 93, 92, 91, 90] by Demod 19 with 3 at 2,2 Id : 89822, {_}: divide (inverse (divide ?333797 ?333798)) (divide ?333799 ?333797) =?= inverse (divide (divide (inverse ?333800) (multiply (divide ?333801 ?333802) (divide (divide ?333802 ?333801) (divide ?333800 (multiply (divide (divide ?333803 ?333804) ?333805) (divide ?333805 (divide ?333799 (divide ?333804 ?333803)))))))) ?333798) [333805, 333804, 333803, 333802, 333801, 333800, 333799, 333798, 333797] by Super 62641 with 40 at 1,2,2 Id : 90396, {_}: divide (inverse (divide ?333797 ?333798)) (divide ?333799 ?333797) =>= inverse (divide ?333799 ?333798) [333799, 333798, 333797] by Demod 89822 with 40 at 1,1,3 Id : 101099, {_}: inverse (divide (divide ?31 (divide ?32 ?33)) ?30) =?= inverse (divide ?31 (divide ?30 (divide ?33 ?32))) [30, 33, 32, 31] by Demod 7 with 90396 at 2 Id : 101112, {_}: divide (inverse (divide (divide (inverse ?8832) ?8833) ?8834)) ?8835 =<= inverse (divide (divide (inverse (divide ?8836 ?8835)) (divide (multiply ?8833 ?8832) ?8836)) ?8834) [8836, 8835, 8834, 8833, 8832] by Demod 1908 with 101099 at 3 Id : 101118, {_}: divide (inverse (divide (divide (inverse ?8832) ?8833) ?8834)) ?8835 =<= inverse (divide (inverse (divide (multiply ?8833 ?8832) ?8835)) ?8834) [8835, 8834, 8833, 8832] by Demod 101112 with 90396 at 1,1,3 Id : 101316, {_}: divide (inverse (divide (divide (inverse ?356253) ?356254) (divide ?356255 (multiply ?356254 ?356253)))) ?356256 =>= inverse (inverse (divide ?356255 ?356256)) [356256, 356255, 356254, 356253] by Super 101118 with 90396 at 1,3 Id : 12, {_}: divide (inverse (divide ?53 (divide ?54 (multiply ?55 ?56)))) (divide (divide (inverse ?56) ?55) ?53) =>= ?54 [56, 55, 54, 53] by Super 2 with 3 at 2,2,1,1,2 Id : 101095, {_}: inverse (divide (divide (inverse ?56) ?55) (divide ?54 (multiply ?55 ?56))) =>= ?54 [54, 55, 56] by Demod 12 with 90396 at 2 Id : 101519, {_}: divide ?356255 ?356256 =<= inverse (inverse (divide ?356255 ?356256)) [356256, 356255] by Demod 101316 with 101095 at 1,2 Id : 101520, {_}: divide ?356255 ?356256 =<= multiply ?356255 (inverse ?356256) [356256, 356255] by Demod 101519 with 40350 at 3 Id : 102152, {_}: multiply (divide ?207013 (inverse ?207014)) (divide ?207015 ?207016) =<= multiply (multiply (multiply ?207013 ?207014) (inverse (inverse ?207015))) (inverse ?207016) [207016, 207015, 207014, 207013] by Demod 46333 with 101520 at 1,2 Id : 102153, {_}: multiply (divide ?207013 (inverse ?207014)) (divide ?207015 ?207016) =<= divide (multiply (multiply ?207013 ?207014) (inverse (inverse ?207015))) ?207016 [207016, 207015, 207014, 207013] by Demod 102152 with 101520 at 3 Id : 102154, {_}: multiply (divide ?207013 (inverse ?207014)) (divide ?207015 ?207016) =>= divide (divide (multiply ?207013 ?207014) (inverse ?207015)) ?207016 [207016, 207015, 207014, 207013] by Demod 102153 with 101520 at 1,3 Id : 102308, {_}: multiply (multiply ?207013 ?207014) (divide ?207015 ?207016) =<= divide (divide (multiply ?207013 ?207014) (inverse ?207015)) ?207016 [207016, 207015, 207014, 207013] by Demod 102154 with 3 at 1,2 Id : 102309, {_}: multiply (multiply ?207013 ?207014) (divide ?207015 ?207016) =>= divide (multiply (multiply ?207013 ?207014) ?207015) ?207016 [207016, 207015, 207014, 207013] by Demod 102308 with 3 at 1,3 Id : 102310, {_}: ?38552 =<= multiply (divide (multiply (multiply (inverse ?38553) ?38554) (multiply (inverse ?38554) ?38553)) (divide ?38555 ?38552)) ?38555 [38555, 38554, 38553, 38552] by Demod 7678 with 102309 at 1,3 Id : 52549, {_}: multiply (multiply ?225200 (inverse (inverse ?225201))) (divide ?225202 ?225203) =<= multiply (multiply (multiply ?225200 ?225201) (inverse (inverse ?225202))) (inverse ?225203) [225203, 225202, 225201, 225200] by Super 46240 with 30915 at 1,3 Id : 52684, {_}: multiply (multiply ?226211 (inverse (inverse ?226212))) (divide ?226213 (inverse ?226214)) =<= multiply (multiply ?226211 ?226212) (multiply (inverse (inverse (inverse (inverse ?226213)))) ?226214) [226214, 226213, 226212, 226211] by Super 52549 with 30915 at 3 Id : 53235, {_}: multiply (multiply ?226211 (inverse (inverse ?226212))) (multiply ?226213 ?226214) =<= multiply (multiply ?226211 ?226212) (multiply (inverse (inverse (inverse (inverse ?226213)))) ?226214) [226214, 226213, 226212, 226211] by Demod 52684 with 3 at 2,2 Id : 102165, {_}: multiply (divide ?226211 (inverse ?226212)) (multiply ?226213 ?226214) =<= multiply (multiply ?226211 ?226212) (multiply (inverse (inverse (inverse (inverse ?226213)))) ?226214) [226214, 226213, 226212, 226211] by Demod 53235 with 101520 at 1,2 Id : 102295, {_}: multiply (multiply ?226211 ?226212) (multiply ?226213 ?226214) =<= multiply (multiply ?226211 ?226212) (multiply (inverse (inverse (inverse (inverse ?226213)))) ?226214) [226214, 226213, 226212, 226211] by Demod 102165 with 3 at 1,2 Id : 30916, {_}: multiply (divide ?66357 ?66358) (inverse (inverse ?66359)) =>= multiply ?66357 (multiply (inverse ?66358) ?66359) [66359, 66358, 66357] by Demod 12770 with 30884 at 2 Id : 9965, {_}: divide (divide ?51846 (divide (inverse (inverse ?51847)) ?51848)) ?51849 =>= multiply (multiply ?51846 ?51848) (inverse (multiply ?51849 ?51847)) [51849, 51848, 51847, 51846] by Super 9472 with 7237 at 1,1,3 Id : 9976, {_}: divide (divide ?51938 (multiply (inverse (inverse ?51939)) ?51940)) ?51941 =<= multiply (multiply ?51938 (inverse ?51940)) (inverse (multiply ?51941 ?51939)) [51941, 51940, 51939, 51938] by Super 9965 with 3 at 2,1,2 Id : 40724, {_}: inverse (inverse (divide ?190294 ?190295)) =>= multiply ?190294 (inverse ?190295) [190295, 190294] by Demod 40158 with 7191 at 3 Id : 40043, {_}: divide (divide ?49359 (divide (inverse ?49360) ?49361)) ?49362 =<= divide (multiply ?49359 ?49361) (multiply ?49362 (inverse ?49360)) [49362, 49361, 49360, 49359] by Demod 9552 with 39950 at 3 Id : 40771, {_}: inverse (inverse (divide (divide ?190577 (divide (inverse ?190578) ?190579)) ?190580)) =>= multiply (multiply ?190577 ?190579) (inverse (multiply ?190580 (inverse ?190578))) [190580, 190579, 190578, 190577] by Super 40724 with 40043 at 1,1,2 Id : 42949, {_}: multiply (divide ?196696 (divide (inverse ?196697) ?196698)) (inverse ?196699) =<= multiply (multiply ?196696 ?196698) (inverse (multiply ?196699 (inverse ?196697))) [196699, 196698, 196697, 196696] by Demod 40771 with 40350 at 2 Id : 42950, {_}: multiply (divide ?196701 (divide (inverse (divide ?196702 (divide (divide ?196703 (divide (divide ?196704 ?196705) ?196702)) (divide ?196705 ?196704)))) ?196706)) (inverse ?196707) =>= multiply (multiply ?196701 ?196706) (inverse (multiply ?196707 ?196703)) [196707, 196706, 196705, 196704, 196703, 196702, 196701] by Super 42949 with 53 at 2,1,2,3 Id : 43226, {_}: multiply (divide ?196701 (divide ?196703 ?196706)) (inverse ?196707) =<= multiply (multiply ?196701 ?196706) (inverse (multiply ?196707 ?196703)) [196707, 196706, 196703, 196701] by Demod 42950 with 53 at 1,2,1,2 Id : 43404, {_}: divide (divide ?51938 (multiply (inverse (inverse ?51939)) ?51940)) ?51941 =<= multiply (divide ?51938 (divide ?51939 (inverse ?51940))) (inverse ?51941) [51941, 51940, 51939, 51938] by Demod 9976 with 43226 at 3 Id : 43406, {_}: divide (divide ?51938 (multiply (inverse (inverse ?51939)) ?51940)) ?51941 =>= multiply (divide ?51938 (multiply ?51939 ?51940)) (inverse ?51941) [51941, 51940, 51939, 51938] by Demod 43404 with 3 at 2,1,3 Id : 62671, {_}: divide (divide (divide ?259262 (divide ?259263 ?259264)) (inverse (inverse ?259265))) ?259266 =>= multiply (divide (multiply ?259262 ?259264) (multiply ?259265 ?259263)) (inverse ?259266) [259266, 259265, 259264, 259263, 259262] by Super 43406 with 62493 at 1,2 Id : 63074, {_}: divide (multiply (divide ?259262 (divide ?259263 ?259264)) (inverse ?259265)) ?259266 =<= multiply (divide (multiply ?259262 ?259264) (multiply ?259265 ?259263)) (inverse ?259266) [259266, 259265, 259264, 259263, 259262] by Demod 62671 with 3 at 1,2 Id : 84448, {_}: divide (multiply (divide ?320603 (divide ?320604 ?320605)) (inverse ?320606)) ?320607 =<= multiply (divide (divide ?320603 (divide ?320604 ?320605)) ?320606) (inverse ?320607) [320607, 320606, 320605, 320604, 320603] by Demod 63074 with 62493 at 1,3 Id : 84555, {_}: divide (multiply (divide (inverse (divide ?321565 (divide ?321566 (multiply (divide (divide ?321567 ?321568) ?321569) (divide ?321569 (divide ?321570 (divide ?321568 ?321567))))))) (divide ?321570 ?321565)) (inverse ?321571)) ?321572 =>= multiply (divide ?321566 ?321571) (inverse ?321572) [321572, 321571, 321570, 321569, 321568, 321567, 321566, 321565] by Super 84448 with 15 at 1,1,3 Id : 85061, {_}: divide (multiply ?321566 (inverse ?321571)) ?321572 =<= multiply (divide ?321566 ?321571) (inverse ?321572) [321572, 321571, 321566] by Demod 84555 with 15 at 1,1,2 Id : 85186, {_}: divide (multiply ?66357 (inverse ?66358)) (inverse ?66359) =>= multiply ?66357 (multiply (inverse ?66358) ?66359) [66359, 66358, 66357] by Demod 30916 with 85061 at 2 Id : 85229, {_}: multiply (multiply ?66357 (inverse ?66358)) ?66359 =?= multiply ?66357 (multiply (inverse ?66358) ?66359) [66359, 66358, 66357] by Demod 85186 with 3 at 2 Id : 102180, {_}: multiply (divide ?66357 ?66358) ?66359 =<= multiply ?66357 (multiply (inverse ?66358) ?66359) [66359, 66358, 66357] by Demod 85229 with 101520 at 1,2 Id : 102296, {_}: multiply (multiply ?226211 ?226212) (multiply ?226213 ?226214) =<= multiply (divide (multiply ?226211 ?226212) (inverse (inverse (inverse ?226213)))) ?226214 [226214, 226213, 226212, 226211] by Demod 102295 with 102180 at 3 Id : 102297, {_}: multiply (multiply ?226211 ?226212) (multiply ?226213 ?226214) =<= multiply (multiply (multiply ?226211 ?226212) (inverse (inverse ?226213))) ?226214 [226214, 226213, 226212, 226211] by Demod 102296 with 3 at 1,3 Id : 102298, {_}: multiply (multiply ?226211 ?226212) (multiply ?226213 ?226214) =<= multiply (divide (multiply ?226211 ?226212) (inverse ?226213)) ?226214 [226214, 226213, 226212, 226211] by Demod 102297 with 101520 at 1,3 Id : 102299, {_}: multiply (multiply ?226211 ?226212) (multiply ?226213 ?226214) =?= multiply (multiply (multiply ?226211 ?226212) ?226213) ?226214 [226214, 226213, 226212, 226211] by Demod 102298 with 3 at 1,3 Id : 102317, {_}: ?38552 =<= multiply (divide (multiply (multiply (multiply (inverse ?38553) ?38554) (inverse ?38554)) ?38553) (divide ?38555 ?38552)) ?38555 [38555, 38554, 38553, 38552] by Demod 102310 with 102299 at 1,1,3 Id : 102318, {_}: ?38552 =<= multiply (divide (multiply (divide (multiply (inverse ?38553) ?38554) ?38554) ?38553) (divide ?38555 ?38552)) ?38555 [38555, 38554, 38553, 38552] by Demod 102317 with 101520 at 1,1,1,3 Id : 2791, {_}: divide (divide (inverse (multiply ?13892 ?13893)) (divide (divide (inverse ?13894) ?13895) ?13892)) (multiply ?13895 ?13894) =>= inverse ?13893 [13895, 13894, 13893, 13892] by Super 2771 with 3 at 2,2 Id : 89847, {_}: divide (inverse ?334058) (multiply (divide ?334059 ?334060) (divide (divide ?334060 ?334059) (divide ?334058 (multiply (divide (divide ?334061 ?334062) ?334063) (divide ?334063 (divide ?334064 (divide ?334062 ?334061))))))) =>= ?334064 [334064, 334063, 334062, 334061, 334060, 334059, 334058] by Demod 19 with 3 at 2,2 Id : 43403, {_}: divide (divide ?49369 (divide (inverse (inverse ?49370)) ?49371)) ?49372 =>= multiply (divide ?49369 (divide ?49370 ?49371)) (inverse ?49372) [49372, 49371, 49370, 49369] by Demod 9554 with 43226 at 3 Id : 85181, {_}: divide (divide ?49369 (divide (inverse (inverse ?49370)) ?49371)) ?49372 =>= divide (multiply ?49369 (inverse (divide ?49370 ?49371))) ?49372 [49372, 49371, 49370, 49369] by Demod 43403 with 85061 at 3 Id : 85235, {_}: divide (divide ?49369 (divide (inverse (inverse ?49370)) ?49371)) ?49372 =>= divide (divide ?49369 (multiply ?49370 (inverse ?49371))) ?49372 [49372, 49371, 49370, 49369] by Demod 85181 with 39950 at 1,3 Id : 89956, {_}: divide (inverse ?335244) (multiply (divide ?335245 ?335246) (divide (divide ?335246 ?335245) (divide ?335244 (multiply (divide (divide ?335247 ?335248) ?335249) (divide ?335249 (divide (divide ?335250 (multiply ?335251 (inverse ?335252))) (divide ?335248 ?335247))))))) =>= divide ?335250 (divide (inverse (inverse ?335251)) ?335252) [335252, 335251, 335250, 335249, 335248, 335247, 335246, 335245, 335244] by Super 89847 with 85235 at 2,2,2,2,2,2,2 Id : 90764, {_}: divide ?335250 (multiply ?335251 (inverse ?335252)) =<= divide ?335250 (divide (inverse (inverse ?335251)) ?335252) [335252, 335251, 335250] by Demod 89956 with 40 at 2 Id : 92959, {_}: divide (inverse (inverse ?344076)) ?344077 =<= multiply (multiply (multiply (inverse ?344078) ?344079) (divide (multiply (inverse ?344079) ?344078) (divide ?344080 (multiply ?344076 (inverse ?344077))))) ?344080 [344080, 344079, 344078, 344077, 344076] by Super 7678 with 90764 at 2,2,1,3 Id : 93432, {_}: divide (inverse (inverse ?344076)) ?344077 =>= multiply ?344076 (inverse ?344077) [344077, 344076] by Demod 92959 with 7678 at 3 Id : 94198, {_}: multiply (inverse (inverse ?346092)) (inverse (multiply ?346093 ?346094)) =?= multiply ?346092 (inverse (multiply ?346093 (inverse (inverse ?346094)))) [346094, 346093, 346092] by Super 30968 with 93432 at 3 Id : 95063, {_}: multiply (inverse (divide ?346094 ?346092)) (inverse ?346093) =<= multiply ?346092 (inverse (multiply ?346093 (inverse (inverse ?346094)))) [346093, 346092, 346094] by Demod 94198 with 35052 at 2 Id : 102213, {_}: divide (inverse (divide ?346094 ?346092)) ?346093 =<= multiply ?346092 (inverse (multiply ?346093 (inverse (inverse ?346094)))) [346093, 346092, 346094] by Demod 95063 with 101520 at 2 Id : 102214, {_}: divide (inverse (divide ?346094 ?346092)) ?346093 =<= divide ?346092 (multiply ?346093 (inverse (inverse ?346094))) [346093, 346092, 346094] by Demod 102213 with 101520 at 3 Id : 102215, {_}: divide (inverse (divide ?346094 ?346092)) ?346093 =?= divide ?346092 (divide ?346093 (inverse ?346094)) [346093, 346092, 346094] by Demod 102214 with 101520 at 2,3 Id : 102222, {_}: divide (inverse (divide ?346094 ?346092)) ?346093 =>= divide ?346092 (multiply ?346093 ?346094) [346093, 346092, 346094] by Demod 102215 with 3 at 2,3 Id : 102235, {_}: divide ?8834 (multiply ?8835 (divide (inverse ?8832) ?8833)) =<= inverse (divide (inverse (divide (multiply ?8833 ?8832) ?8835)) ?8834) [8833, 8832, 8835, 8834] by Demod 101118 with 102222 at 2 Id : 102236, {_}: divide ?8834 (multiply ?8835 (divide (inverse ?8832) ?8833)) =<= inverse (divide ?8835 (multiply ?8834 (multiply ?8833 ?8832))) [8833, 8832, 8835, 8834] by Demod 102235 with 102222 at 1,3 Id : 35199, {_}: inverse (multiply (inverse (divide ?86042 ?86040)) (inverse ?86041)) =<= inverse (divide (inverse (divide (inverse (inverse ?86042)) ?86040)) ?86041) [86041, 86040, 86042] by Demod 16326 with 35052 at 1,2 Id : 40695, {_}: inverse (multiply (inverse (divide (divide ?190115 ?190116) ?190117)) (inverse ?190118)) =>= inverse (divide (inverse (divide (multiply ?190115 (inverse ?190116)) ?190117)) ?190118) [190118, 190117, 190116, 190115] by Super 35199 with 40350 at 1,1,1,1,3 Id : 46674, {_}: inverse (inverse (divide (inverse (divide (multiply ?207380 (inverse ?207381)) ?207382)) ?207383)) =>= multiply (inverse (divide (divide ?207380 ?207381) ?207382)) (inverse (inverse (inverse ?207383))) [207383, 207382, 207381, 207380] by Super 30884 with 40695 at 1,2 Id : 47015, {_}: multiply (inverse (divide (multiply ?207380 (inverse ?207381)) ?207382)) (inverse ?207383) =<= multiply (inverse (divide (divide ?207380 ?207381) ?207382)) (inverse (inverse (inverse ?207383))) [207383, 207382, 207381, 207380] by Demod 46674 with 40350 at 2 Id : 31439, {_}: multiply ?157170 (inverse (multiply ?157171 ?157172)) =<= divide ?157170 (multiply ?157171 (inverse (inverse ?157172))) [157172, 157171, 157170] by Super 3 with 30884 at 2,3 Id : 31475, {_}: multiply ?157430 (inverse (multiply ?157431 (multiply ?157432 ?157433))) =<= divide ?157430 (multiply ?157431 (multiply ?157432 (inverse (inverse ?157433)))) [157433, 157432, 157431, 157430] by Super 31439 with 30884 at 2,2,3 Id : 45490, {_}: multiply (inverse (inverse ?203652)) (inverse (multiply ?203653 (multiply (inverse ?203654) ?203655))) =>= divide (inverse (divide (inverse (inverse ?203655)) ?203652)) (multiply ?203653 (inverse ?203654)) [203655, 203654, 203653, 203652] by Super 31475 with 45468 at 3 Id : 71413, {_}: multiply (inverse (divide (multiply (inverse ?287029) ?287030) ?287031)) (inverse ?287032) =<= divide (inverse (divide (inverse (inverse ?287030)) ?287031)) (multiply ?287032 (inverse ?287029)) [287032, 287031, 287030, 287029] by Demod 45490 with 35052 at 2 Id : 71414, {_}: multiply (inverse (divide (multiply (inverse (divide ?287034 (divide (divide ?287035 (divide (divide ?287036 ?287037) ?287034)) (divide ?287037 ?287036)))) ?287038) ?287039)) (inverse ?287040) =>= divide (inverse (divide (inverse (inverse ?287038)) ?287039)) (multiply ?287040 ?287035) [287040, 287039, 287038, 287037, 287036, 287035, 287034] by Super 71413 with 53 at 2,2,3 Id : 72001, {_}: multiply (inverse (divide (multiply ?287035 ?287038) ?287039)) (inverse ?287040) =<= divide (inverse (divide (inverse (inverse ?287038)) ?287039)) (multiply ?287040 ?287035) [287040, 287039, 287038, 287035] by Demod 71414 with 53 at 1,1,1,1,2 Id : 94096, {_}: multiply (inverse (divide (multiply ?287035 ?287038) ?287039)) (inverse ?287040) =>= divide (inverse (multiply ?287038 (inverse ?287039))) (multiply ?287040 ?287035) [287040, 287039, 287038, 287035] by Demod 72001 with 93432 at 1,1,3 Id : 94118, {_}: divide (inverse (multiply (inverse ?207381) (inverse ?207382))) (multiply ?207383 ?207380) =<= multiply (inverse (divide (divide ?207380 ?207381) ?207382)) (inverse (inverse (inverse ?207383))) [207380, 207383, 207382, 207381] by Demod 47015 with 94096 at 2 Id : 102205, {_}: divide (inverse (divide (inverse ?207381) ?207382)) (multiply ?207383 ?207380) =<= multiply (inverse (divide (divide ?207380 ?207381) ?207382)) (inverse (inverse (inverse ?207383))) [207380, 207383, 207382, 207381] by Demod 94118 with 101520 at 1,1,2 Id : 102206, {_}: divide (inverse (divide (inverse ?207381) ?207382)) (multiply ?207383 ?207380) =<= divide (inverse (divide (divide ?207380 ?207381) ?207382)) (inverse (inverse ?207383)) [207380, 207383, 207382, 207381] by Demod 102205 with 101520 at 3 Id : 102244, {_}: divide ?207382 (multiply (multiply ?207383 ?207380) (inverse ?207381)) =<= divide (inverse (divide (divide ?207380 ?207381) ?207382)) (inverse (inverse ?207383)) [207381, 207380, 207383, 207382] by Demod 102206 with 102222 at 2 Id : 102245, {_}: divide ?207382 (multiply (multiply ?207383 ?207380) (inverse ?207381)) =<= divide ?207382 (multiply (inverse (inverse ?207383)) (divide ?207380 ?207381)) [207381, 207380, 207383, 207382] by Demod 102244 with 102222 at 3 Id : 102246, {_}: divide ?207382 (divide (multiply ?207383 ?207380) ?207381) =<= divide ?207382 (multiply (inverse (inverse ?207383)) (divide ?207380 ?207381)) [207381, 207380, 207383, 207382] by Demod 102245 with 101520 at 2,2 Id : 85182, {_}: divide (divide ?51938 (multiply (inverse (inverse ?51939)) ?51940)) ?51941 =>= divide (multiply ?51938 (inverse (multiply ?51939 ?51940))) ?51941 [51941, 51940, 51939, 51938] by Demod 43406 with 85061 at 3 Id : 89950, {_}: divide (inverse ?335180) (multiply (divide ?335181 ?335182) (divide (divide ?335182 ?335181) (divide ?335180 (multiply (divide (divide ?335183 ?335184) ?335185) (divide ?335185 (divide (multiply ?335186 (inverse (multiply ?335187 ?335188))) (divide ?335184 ?335183))))))) =>= divide ?335186 (multiply (inverse (inverse ?335187)) ?335188) [335188, 335187, 335186, 335185, 335184, 335183, 335182, 335181, 335180] by Super 89847 with 85182 at 2,2,2,2,2,2,2 Id : 90760, {_}: multiply ?335186 (inverse (multiply ?335187 ?335188)) =<= divide ?335186 (multiply (inverse (inverse ?335187)) ?335188) [335188, 335187, 335186] by Demod 89950 with 40 at 2 Id : 94126, {_}: multiply (inverse (inverse ?345644)) (inverse (multiply ?345645 ?345646)) =?= multiply ?345644 (inverse (multiply (inverse (inverse ?345645)) ?345646)) [345646, 345645, 345644] by Super 90760 with 93432 at 3 Id : 95228, {_}: multiply (inverse (divide ?345646 ?345644)) (inverse ?345645) =<= multiply ?345644 (inverse (multiply (inverse (inverse ?345645)) ?345646)) [345645, 345644, 345646] by Demod 94126 with 35052 at 2 Id : 102219, {_}: divide (inverse (divide ?345646 ?345644)) ?345645 =<= multiply ?345644 (inverse (multiply (inverse (inverse ?345645)) ?345646)) [345645, 345644, 345646] by Demod 95228 with 101520 at 2 Id : 102220, {_}: divide (inverse (divide ?345646 ?345644)) ?345645 =<= divide ?345644 (multiply (inverse (inverse ?345645)) ?345646) [345645, 345644, 345646] by Demod 102219 with 101520 at 3 Id : 102238, {_}: divide ?345644 (multiply ?345645 ?345646) =<= divide ?345644 (multiply (inverse (inverse ?345645)) ?345646) [345646, 345645, 345644] by Demod 102220 with 102222 at 2 Id : 102247, {_}: divide ?207382 (divide (multiply ?207383 ?207380) ?207381) =<= divide ?207382 (multiply ?207383 (divide ?207380 ?207381)) [207381, 207380, 207383, 207382] by Demod 102246 with 102238 at 3 Id : 102262, {_}: divide ?8834 (divide (multiply ?8835 (inverse ?8832)) ?8833) =<= inverse (divide ?8835 (multiply ?8834 (multiply ?8833 ?8832))) [8833, 8832, 8835, 8834] by Demod 102236 with 102247 at 2 Id : 102264, {_}: divide ?8834 (divide (divide ?8835 ?8832) ?8833) =<= inverse (divide ?8835 (multiply ?8834 (multiply ?8833 ?8832))) [8833, 8832, 8835, 8834] by Demod 102262 with 101520 at 1,2,2 Id : 101098, {_}: inverse (divide (divide ?5 ?4) (divide ?3 (divide ?4 ?5))) =>= ?3 [3, 4, 5] by Demod 2 with 90396 at 2 Id : 102493, {_}: divide (divide (inverse (divide (inverse ?357684) ?357685)) (multiply (divide ?357686 ?357687) ?357684)) (divide ?357687 ?357686) =>= inverse (inverse ?357685) [357687, 357686, 357685, 357684] by Super 2814 with 101520 at 1,1,1,2 Id : 102761, {_}: divide (divide ?357685 (multiply (multiply (divide ?357686 ?357687) ?357684) (inverse ?357684))) (divide ?357687 ?357686) =>= inverse (inverse ?357685) [357684, 357687, 357686, 357685] by Demod 102493 with 102222 at 1,2 Id : 102131, {_}: divide ?157430 (multiply ?157431 (multiply ?157432 ?157433)) =<= divide ?157430 (multiply ?157431 (multiply ?157432 (inverse (inverse ?157433)))) [157433, 157432, 157431, 157430] by Demod 31475 with 101520 at 2 Id : 102132, {_}: divide ?157430 (multiply ?157431 (multiply ?157432 ?157433)) =<= divide ?157430 (multiply ?157431 (divide ?157432 (inverse ?157433))) [157433, 157432, 157431, 157430] by Demod 102131 with 101520 at 2,2,3 Id : 102348, {_}: divide ?157430 (multiply ?157431 (multiply ?157432 ?157433)) =<= divide ?157430 (divide (multiply ?157431 ?157432) (inverse ?157433)) [157433, 157432, 157431, 157430] by Demod 102132 with 102247 at 3 Id : 102349, {_}: divide ?157430 (multiply ?157431 (multiply ?157432 ?157433)) =?= divide ?157430 (multiply (multiply ?157431 ?157432) ?157433) [157433, 157432, 157431, 157430] by Demod 102348 with 3 at 2,3 Id : 102762, {_}: divide (divide ?357685 (multiply (divide ?357686 ?357687) (multiply ?357684 (inverse ?357684)))) (divide ?357687 ?357686) =>= inverse (inverse ?357685) [357684, 357687, 357686, 357685] by Demod 102761 with 102349 at 1,2 Id : 102763, {_}: divide (divide ?357685 (multiply (divide ?357686 ?357687) (divide ?357684 ?357684))) (divide ?357687 ?357686) =>= inverse (inverse ?357685) [357684, 357687, 357686, 357685] by Demod 102762 with 101520 at 2,2,1,2 Id : 41245, {_}: multiply ?191831 (inverse (multiply ?191832 (divide ?191833 ?191834))) =>= divide ?191831 (multiply ?191832 (multiply ?191833 (inverse ?191834))) [191834, 191833, 191832, 191831] by Super 30968 with 40350 at 2,2,3 Id : 40574, {_}: multiply (divide ?83055 ?83056) (inverse ?83057) =?= multiply ?83055 (divide (inverse ?83056) ?83057) [83057, 83056, 83055] by Demod 15659 with 40350 at 2 Id : 41328, {_}: multiply ?192465 (divide (inverse ?192466) (multiply ?192467 (divide ?192468 ?192469))) =>= divide (divide ?192465 ?192466) (multiply ?192467 (multiply ?192468 (inverse ?192469))) [192469, 192468, 192467, 192466, 192465] by Super 41245 with 40574 at 2 Id : 85188, {_}: divide (multiply ?83055 (inverse ?83056)) ?83057 =<= multiply ?83055 (divide (inverse ?83056) ?83057) [83057, 83056, 83055] by Demod 40574 with 85061 at 2 Id : 85202, {_}: divide (multiply ?192465 (inverse ?192466)) (multiply ?192467 (divide ?192468 ?192469)) =>= divide (divide ?192465 ?192466) (multiply ?192467 (multiply ?192468 (inverse ?192469))) [192469, 192468, 192467, 192466, 192465] by Demod 41328 with 85188 at 2 Id : 85220, {_}: divide (divide ?192465 (divide (divide ?192468 ?192469) (inverse ?192466))) ?192467 =?= divide (divide ?192465 ?192466) (multiply ?192467 (multiply ?192468 (inverse ?192469))) [192467, 192466, 192469, 192468, 192465] by Demod 85202 with 62493 at 2 Id : 85221, {_}: divide (divide ?192465 (multiply (divide ?192468 ?192469) ?192466)) ?192467 =<= divide (divide ?192465 ?192466) (multiply ?192467 (multiply ?192468 (inverse ?192469))) [192467, 192466, 192469, 192468, 192465] by Demod 85220 with 3 at 2,1,2 Id : 102178, {_}: divide (divide ?192465 (multiply (divide ?192468 ?192469) ?192466)) ?192467 =?= divide (divide ?192465 ?192466) (multiply ?192467 (divide ?192468 ?192469)) [192467, 192466, 192469, 192468, 192465] by Demod 85221 with 101520 at 2,2,3 Id : 102288, {_}: divide (divide ?192465 (multiply (divide ?192468 ?192469) ?192466)) ?192467 =?= divide (divide ?192465 ?192466) (divide (multiply ?192467 ?192468) ?192469) [192467, 192466, 192469, 192468, 192465] by Demod 102178 with 102247 at 3 Id : 102764, {_}: divide (divide ?357685 (divide ?357684 ?357684)) (divide (multiply (divide ?357687 ?357686) ?357686) ?357687) =>= inverse (inverse ?357685) [357686, 357687, 357684, 357685] by Demod 102763 with 102288 at 2 Id : 101094, {_}: divide (inverse (divide (divide ?5777 ?5778) ?5776)) (divide ?5778 ?5777) =>= ?5776 [5776, 5778, 5777] by Demod 1266 with 90396 at 1,2 Id : 102237, {_}: divide ?5776 (multiply (divide ?5778 ?5777) (divide ?5777 ?5778)) =>= ?5776 [5777, 5778, 5776] by Demod 101094 with 102222 at 2 Id : 102251, {_}: divide ?5776 (divide (multiply (divide ?5778 ?5777) ?5777) ?5778) =>= ?5776 [5777, 5778, 5776] by Demod 102237 with 102247 at 2 Id : 102765, {_}: divide ?357685 (divide ?357684 ?357684) =>= inverse (inverse ?357685) [357684, 357685] by Demod 102764 with 102251 at 2 Id : 102313, {_}: inverse ?36880 =<= multiply (divide (multiply (multiply ?36881 ?36882) (divide (inverse ?36882) ?36881)) (multiply ?36883 ?36880)) ?36883 [36883, 36882, 36881, 36880] by Demod 7367 with 102309 at 1,3 Id : 102314, {_}: inverse ?36880 =<= multiply (divide (divide (multiply (multiply ?36881 ?36882) (inverse ?36882)) ?36881) (multiply ?36883 ?36880)) ?36883 [36883, 36882, 36881, 36880] by Demod 102313 with 102309 at 1,1,3 Id : 102315, {_}: inverse ?36880 =<= multiply (divide (divide (divide (multiply ?36881 ?36882) ?36882) ?36881) (multiply ?36883 ?36880)) ?36883 [36883, 36882, 36881, 36880] by Demod 102314 with 101520 at 1,1,1,3 Id : 102533, {_}: inverse (inverse ?357905) =<= multiply (divide (divide (divide (multiply ?357906 ?357907) ?357907) ?357906) (divide ?357908 ?357905)) ?357908 [357908, 357907, 357906, 357905] by Super 102315 with 101520 at 2,1,3 Id : 102311, {_}: ?36095 =<= multiply (divide (multiply (multiply ?36096 ?36097) (divide (inverse ?36097) ?36096)) (divide ?36098 ?36095)) ?36098 [36098, 36097, 36096, 36095] by Demod 7191 with 102309 at 1,3 Id : 102312, {_}: ?36095 =<= multiply (divide (divide (multiply (multiply ?36096 ?36097) (inverse ?36097)) ?36096) (divide ?36098 ?36095)) ?36098 [36098, 36097, 36096, 36095] by Demod 102311 with 102309 at 1,1,3 Id : 102316, {_}: ?36095 =<= multiply (divide (divide (divide (multiply ?36096 ?36097) ?36097) ?36096) (divide ?36098 ?36095)) ?36098 [36098, 36097, 36096, 36095] by Demod 102312 with 101520 at 1,1,1,3 Id : 102664, {_}: inverse (inverse ?357905) =>= ?357905 [357905] by Demod 102533 with 102316 at 3 Id : 103069, {_}: divide ?357685 (divide ?357684 ?357684) =>= ?357685 [357684, 357685] by Demod 102765 with 102664 at 3 Id : 103199, {_}: inverse (divide ?359423 ?359424) =>= divide ?359424 ?359423 [359424, 359423] by Super 101098 with 103069 at 1,2 Id : 103718, {_}: divide ?8834 (divide (divide ?8835 ?8832) ?8833) =?= divide (multiply ?8834 (multiply ?8833 ?8832)) ?8835 [8833, 8832, 8835, 8834] by Demod 102264 with 103199 at 3 Id : 103734, {_}: divide (divide (multiply (inverse (multiply ?13892 ?13893)) (multiply ?13892 ?13895)) (inverse ?13894)) (multiply ?13895 ?13894) =>= inverse ?13893 [13894, 13895, 13893, 13892] by Demod 2791 with 103718 at 1,2 Id : 40697, {_}: multiply (inverse (divide ?190125 (divide ?190126 ?190127))) (inverse ?190128) =>= multiply (multiply ?190126 (inverse ?190127)) (inverse (multiply ?190128 ?190125)) [190128, 190127, 190126, 190125] by Super 35052 with 40350 at 1,3 Id : 40823, {_}: multiply (inverse (divide ?190125 (divide ?190126 ?190127))) (inverse ?190128) =>= divide (divide ?190126 (multiply (inverse (inverse ?190125)) ?190127)) ?190128 [190128, 190127, 190126, 190125] by Demod 40697 with 9976 at 3 Id : 43409, {_}: multiply (inverse (divide ?190125 (divide ?190126 ?190127))) (inverse ?190128) =>= multiply (divide ?190126 (multiply ?190125 ?190127)) (inverse ?190128) [190128, 190127, 190126, 190125] by Demod 40823 with 43406 at 3 Id : 85192, {_}: multiply (inverse (divide ?190125 (divide ?190126 ?190127))) (inverse ?190128) =>= divide (multiply ?190126 (inverse (multiply ?190125 ?190127))) ?190128 [190128, 190127, 190126, 190125] by Demod 43409 with 85061 at 3 Id : 102170, {_}: divide (inverse (divide ?190125 (divide ?190126 ?190127))) ?190128 =>= divide (multiply ?190126 (inverse (multiply ?190125 ?190127))) ?190128 [190128, 190127, 190126, 190125] by Demod 85192 with 101520 at 2 Id : 102171, {_}: divide (inverse (divide ?190125 (divide ?190126 ?190127))) ?190128 =>= divide (divide ?190126 (multiply ?190125 ?190127)) ?190128 [190128, 190127, 190126, 190125] by Demod 102170 with 101520 at 1,3 Id : 102293, {_}: divide (divide ?190126 ?190127) (multiply ?190128 ?190125) =?= divide (divide ?190126 (multiply ?190125 ?190127)) ?190128 [190125, 190128, 190127, 190126] by Demod 102171 with 102222 at 2 Id : 103736, {_}: divide (divide (multiply (inverse (multiply ?13892 ?13893)) (multiply ?13892 ?13895)) (multiply ?13894 (inverse ?13894))) ?13895 =>= inverse ?13893 [13894, 13895, 13893, 13892] by Demod 103734 with 102293 at 2 Id : 103737, {_}: divide (divide (divide (inverse (multiply ?13892 ?13893)) (divide (inverse ?13894) (multiply ?13892 ?13895))) ?13894) ?13895 =>= inverse ?13893 [13895, 13894, 13893, 13892] by Demod 103736 with 62493 at 1,2 Id : 40061, {_}: divide (divide ?188028 (divide (inverse (divide ?188029 ?188030)) ?188031)) ?188032 =<= divide (multiply ?188028 ?188031) (divide ?188032 (multiply ?188029 (inverse ?188030))) [188032, 188031, 188030, 188029, 188028] by Super 40043 with 39950 at 2,3 Id : 102158, {_}: divide (divide ?188028 (divide (inverse (divide ?188029 ?188030)) ?188031)) ?188032 =>= divide (multiply ?188028 ?188031) (divide ?188032 (divide ?188029 ?188030)) [188032, 188031, 188030, 188029, 188028] by Demod 40061 with 101520 at 2,2,3 Id : 102302, {_}: divide (divide ?188028 (divide ?188030 (multiply ?188031 ?188029))) ?188032 =<= divide (multiply ?188028 ?188031) (divide ?188032 (divide ?188029 ?188030)) [188032, 188029, 188031, 188030, 188028] by Demod 102158 with 102222 at 2,1,2 Id : 103711, {_}: divide ?30 (divide ?31 (divide ?32 ?33)) =<= inverse (divide ?31 (divide ?30 (divide ?33 ?32))) [33, 32, 31, 30] by Demod 101099 with 103199 at 2 Id : 103712, {_}: divide ?30 (divide ?31 (divide ?32 ?33)) =?= divide (divide ?30 (divide ?33 ?32)) ?31 [33, 32, 31, 30] by Demod 103711 with 103199 at 3 Id : 103741, {_}: divide (divide ?188028 (divide ?188030 (multiply ?188031 ?188029))) ?188032 =?= divide (divide (multiply ?188028 ?188031) (divide ?188030 ?188029)) ?188032 [188032, 188029, 188031, 188030, 188028] by Demod 102302 with 103712 at 3 Id : 103744, {_}: divide (divide (divide (multiply (inverse (multiply ?13892 ?13893)) ?13892) (divide (inverse ?13894) ?13895)) ?13894) ?13895 =>= inverse ?13893 [13895, 13894, 13893, 13892] by Demod 103737 with 103741 at 1,2 Id : 103708, {_}: divide ?114206 (divide ?114204 (multiply ?114207 ?114205)) =<= inverse (divide ?114204 (divide ?114206 (divide (inverse ?114205) ?114207))) [114205, 114207, 114204, 114206] by Demod 62637 with 103199 at 2 Id : 103709, {_}: divide ?114206 (divide ?114204 (multiply ?114207 ?114205)) =<= divide (divide ?114206 (divide (inverse ?114205) ?114207)) ?114204 [114205, 114207, 114204, 114206] by Demod 103708 with 103199 at 3 Id : 103749, {_}: divide (divide (multiply (inverse (multiply ?13892 ?13893)) ?13892) (divide ?13894 (multiply ?13895 ?13894))) ?13895 =>= inverse ?13893 [13895, 13894, 13893, 13892] by Demod 103744 with 103709 at 1,2 Id : 103750, {_}: divide (divide (multiply (multiply (inverse (multiply ?13892 ?13893)) ?13892) ?13895) (divide ?13894 ?13894)) ?13895 =>= inverse ?13893 [13894, 13895, 13893, 13892] by Demod 103749 with 103741 at 2 Id : 103751, {_}: divide (multiply (multiply (inverse (multiply ?13892 ?13893)) ?13892) ?13895) ?13895 =>= inverse ?13893 [13895, 13893, 13892] by Demod 103750 with 103069 at 1,2 Id : 2811, {_}: divide (divide (inverse (multiply ?14050 ?14051)) (divide (multiply ?14052 ?14053) ?14050)) (divide (inverse ?14053) ?14052) =>= inverse ?14051 [14053, 14052, 14051, 14050] by Super 2771 with 3 at 1,2,1,2 Id : 103699, {_}: divide (divide ?346092 ?346094) ?346093 =?= divide ?346092 (multiply ?346093 ?346094) [346093, 346094, 346092] by Demod 102222 with 103199 at 1,2 Id : 103754, {_}: divide (divide ?258249 (divide ?258253 ?258254)) ?258255 =?= divide (divide (multiply ?258249 ?258254) ?258253) ?258255 [258255, 258254, 258253, 258249] by Demod 62493 with 103699 at 3 Id : 103756, {_}: divide (divide (multiply (inverse (multiply ?14050 ?14051)) ?14050) (multiply ?14052 ?14053)) (divide (inverse ?14053) ?14052) =>= inverse ?14051 [14053, 14052, 14051, 14050] by Demod 2811 with 103754 at 2 Id : 103714, {_}: divide (divide ?54 (multiply ?55 ?56)) (divide (inverse ?56) ?55) =>= ?54 [56, 55, 54] by Demod 101095 with 103199 at 2 Id : 103765, {_}: multiply (inverse (multiply ?14050 ?14051)) ?14050 =>= inverse ?14051 [14051, 14050] by Demod 103756 with 103714 at 2 Id : 103766, {_}: divide (multiply (inverse ?13893) ?13895) ?13895 =>= inverse ?13893 [13895, 13893] by Demod 103751 with 103765 at 1,1,2 Id : 103767, {_}: ?38552 =<= multiply (divide (multiply (inverse ?38553) ?38553) (divide ?38555 ?38552)) ?38555 [38555, 38553, 38552] by Demod 102318 with 103766 at 1,1,1,3 Id : 103801, {_}: multiply ?360754 (divide ?360755 ?360756) =>= divide ?360754 (divide ?360756 ?360755) [360756, 360755, 360754] by Super 3 with 103199 at 2,3 Id : 102172, {_}: divide (divide ?83055 ?83056) ?83057 =<= multiply ?83055 (divide (inverse ?83056) ?83057) [83057, 83056, 83055] by Demod 85188 with 101520 at 1,2 Id : 102958, {_}: divide (divide ?358448 (inverse ?358449)) ?358450 =>= multiply ?358448 (divide ?358449 ?358450) [358450, 358449, 358448] by Super 102172 with 102664 at 1,2,3 Id : 103012, {_}: divide (multiply ?358448 ?358449) ?358450 =<= multiply ?358448 (divide ?358449 ?358450) [358450, 358449, 358448] by Demod 102958 with 3 at 1,2 Id : 104738, {_}: divide (multiply ?360754 ?360755) ?360756 =?= divide ?360754 (divide ?360756 ?360755) [360756, 360755, 360754] by Demod 103801 with 103012 at 2 Id : 104742, {_}: ?38552 =<= multiply (divide (multiply (multiply (inverse ?38553) ?38553) ?38552) ?38555) ?38555 [38555, 38553, 38552] by Demod 103767 with 104738 at 1,3 Id : 102256, {_}: divide (inverse ?35) (divide (multiply (divide ?36 ?37) (divide ?37 ?36)) (divide ?35 (divide ?38 ?39))) =>= divide ?39 ?38 [39, 38, 37, 36, 35] by Demod 362 with 102247 at 2 Id : 102304, {_}: divide (inverse ?35) (divide (divide (divide ?36 ?37) (divide ?39 (multiply (divide ?37 ?36) ?38))) ?35) =>= divide ?39 ?38 [38, 39, 37, 36, 35] by Demod 102256 with 102302 at 2,2 Id : 103730, {_}: divide (multiply (inverse ?35) (multiply ?35 (divide ?39 (multiply (divide ?37 ?36) ?38)))) (divide ?36 ?37) =>= divide ?39 ?38 [38, 36, 37, 39, 35] by Demod 102304 with 103718 at 2 Id : 104003, {_}: divide (multiply (inverse ?35) (divide (multiply ?35 ?39) (multiply (divide ?37 ?36) ?38))) (divide ?36 ?37) =>= divide ?39 ?38 [38, 36, 37, 39, 35] by Demod 103730 with 103012 at 2,1,2 Id : 104004, {_}: divide (divide (multiply (inverse ?35) (multiply ?35 ?39)) (multiply (divide ?37 ?36) ?38)) (divide ?36 ?37) =>= divide ?39 ?38 [38, 36, 37, 39, 35] by Demod 104003 with 103012 at 1,2 Id : 104036, {_}: divide (divide (divide (multiply (inverse ?35) (multiply ?35 ?39)) ?38) (divide ?37 ?36)) (divide ?36 ?37) =>= divide ?39 ?38 [36, 37, 38, 39, 35] by Demod 104004 with 103699 at 1,2 Id : 103700, {_}: divide (divide ?3 (divide ?4 ?5)) (divide ?5 ?4) =>= ?3 [5, 4, 3] by Demod 101098 with 103199 at 2 Id : 104037, {_}: divide (multiply (inverse ?35) (multiply ?35 ?39)) ?38 =>= divide ?39 ?38 [38, 39, 35] by Demod 104036 with 103700 at 2 Id : 21134, {_}: inverse (multiply (inverse (inverse ?108447)) (inverse (divide ?108448 ?108449))) =>= inverse (divide (inverse (divide (inverse ?108449) ?108447)) ?108448) [108449, 108448, 108447] by Demod 20903 with 6973 at 2,1,3 Id : 40046, {_}: inverse (divide (inverse (inverse ?108447)) (multiply ?108448 (inverse ?108449))) =>= inverse (divide (inverse (divide (inverse ?108449) ?108447)) ?108448) [108449, 108448, 108447] by Demod 21134 with 39950 at 1,2 Id : 40707, {_}: inverse (divide (multiply ?190184 (inverse ?190185)) (multiply ?190186 (inverse ?190187))) =<= inverse (divide (inverse (divide (inverse ?190187) (divide ?190184 ?190185))) ?190186) [190187, 190186, 190185, 190184] by Super 40046 with 40350 at 1,1,2 Id : 40813, {_}: inverse (divide (divide ?190184 (divide (inverse ?190187) (inverse ?190185))) ?190186) =<= inverse (divide (inverse (divide (inverse ?190187) (divide ?190184 ?190185))) ?190186) [190186, 190185, 190187, 190184] by Demod 40707 with 40043 at 1,2 Id : 47405, {_}: inverse (divide (divide ?210380 (multiply (inverse ?210381) ?210382)) ?210383) =<= inverse (divide (inverse (divide (inverse ?210381) (divide ?210380 ?210382))) ?210383) [210383, 210382, 210381, 210380] by Demod 40813 with 3 at 2,1,1,2 Id : 47459, {_}: inverse (divide (divide ?210809 (multiply (inverse (divide ?210810 (divide (divide ?210811 (divide (divide ?210812 ?210813) ?210810)) (divide ?210813 ?210812)))) ?210814)) ?210815) =>= inverse (divide (inverse (divide ?210811 (divide ?210809 ?210814))) ?210815) [210815, 210814, 210813, 210812, 210811, 210810, 210809] by Super 47405 with 53 at 1,1,1,1,3 Id : 48148, {_}: inverse (divide (divide ?212886 (multiply ?212887 ?212888)) ?212889) =<= inverse (divide (inverse (divide ?212887 (divide ?212886 ?212888))) ?212889) [212889, 212888, 212887, 212886] by Demod 47459 with 53 at 1,2,1,1,2 Id : 48271, {_}: inverse (divide (divide ?213823 (multiply ?213824 ?213825)) (inverse ?213826)) =<= inverse (multiply (inverse (divide ?213824 (divide ?213823 ?213825))) ?213826) [213826, 213825, 213824, 213823] by Super 48148 with 3 at 1,3 Id : 48613, {_}: inverse (multiply (divide ?213823 (multiply ?213824 ?213825)) ?213826) =<= inverse (multiply (inverse (divide ?213824 (divide ?213823 ?213825))) ?213826) [213826, 213825, 213824, 213823] by Demod 48271 with 3 at 1,2 Id : 103705, {_}: inverse (multiply (divide ?213823 (multiply ?213824 ?213825)) ?213826) =?= inverse (multiply (divide (divide ?213823 ?213825) ?213824) ?213826) [213826, 213825, 213824, 213823] by Demod 48613 with 103199 at 1,1,3 Id : 106200, {_}: divide (multiply ?367270 ?367271) ?367271 =>= ?367270 [367271, 367270] by Super 103069 with 104738 at 2 Id : 106204, {_}: divide (inverse ?367290) ?367291 =<= inverse (multiply ?367291 ?367290) [367291, 367290] by Super 106200 with 103765 at 1,2 Id : 106549, {_}: divide (inverse ?213826) (divide ?213823 (multiply ?213824 ?213825)) =<= inverse (multiply (divide (divide ?213823 ?213825) ?213824) ?213826) [213825, 213824, 213823, 213826] by Demod 103705 with 106204 at 2 Id : 106550, {_}: divide (inverse ?213826) (divide ?213823 (multiply ?213824 ?213825)) =?= divide (inverse ?213826) (divide (divide ?213823 ?213825) ?213824) [213825, 213824, 213823, 213826] by Demod 106549 with 106204 at 3 Id : 47859, {_}: inverse (divide (divide ?210809 (multiply ?210811 ?210814)) ?210815) =<= inverse (divide (inverse (divide ?210811 (divide ?210809 ?210814))) ?210815) [210815, 210814, 210811, 210809] by Demod 47459 with 53 at 1,2,1,1,2 Id : 102230, {_}: inverse (divide (divide ?210809 (multiply ?210811 ?210814)) ?210815) =?= inverse (divide (divide ?210809 ?210814) (multiply ?210815 ?210811)) [210815, 210814, 210811, 210809] by Demod 47859 with 102222 at 1,3 Id : 103696, {_}: divide ?210815 (divide ?210809 (multiply ?210811 ?210814)) =<= inverse (divide (divide ?210809 ?210814) (multiply ?210815 ?210811)) [210814, 210811, 210809, 210815] by Demod 102230 with 103199 at 2 Id : 103697, {_}: divide ?210815 (divide ?210809 (multiply ?210811 ?210814)) =?= divide (multiply ?210815 ?210811) (divide ?210809 ?210814) [210814, 210811, 210809, 210815] by Demod 103696 with 103199 at 3 Id : 106566, {_}: divide (multiply (inverse ?213826) ?213824) (divide ?213823 ?213825) =<= divide (inverse ?213826) (divide (divide ?213823 ?213825) ?213824) [213825, 213823, 213824, 213826] by Demod 106550 with 103697 at 2 Id : 106567, {_}: divide (multiply (inverse ?213826) ?213824) (divide ?213823 ?213825) =?= divide (multiply (inverse ?213826) (multiply ?213824 ?213825)) ?213823 [213825, 213823, 213824, 213826] by Demod 106566 with 103718 at 3 Id : 106568, {_}: divide (multiply (multiply (inverse ?213826) ?213824) ?213825) ?213823 =<= divide (multiply (inverse ?213826) (multiply ?213824 ?213825)) ?213823 [213823, 213825, 213824, 213826] by Demod 106567 with 104738 at 2 Id : 106569, {_}: divide (multiply (multiply (inverse ?35) ?35) ?39) ?38 =>= divide ?39 ?38 [38, 39, 35] by Demod 104037 with 106568 at 2 Id : 106570, {_}: ?38552 =<= multiply (divide ?38552 ?38555) ?38555 [38555, 38552] by Demod 104742 with 106569 at 1,3 Id : 104876, {_}: divide (multiply ?363468 ?363469) ?363469 =>= ?363468 [363469, 363468] by Super 103069 with 104738 at 2 Id : 106173, {_}: inverse ?367130 =<= divide ?367131 (multiply ?367130 ?367131) [367131, 367130] by Super 103199 with 104876 at 1,2 Id : 106805, {_}: ?367778 =<= multiply (inverse ?367779) (multiply ?367779 ?367778) [367779, 367778] by Super 106570 with 106173 at 1,3 Id : 106633, {_}: multiply ?367594 (multiply ?367595 ?367596) =<= divide ?367594 (divide (inverse ?367596) ?367595) [367596, 367595, 367594] by Super 3 with 106204 at 2,3 Id : 104940, {_}: multiply (multiply ?363900 ?363901) ?363902 =<= divide ?363900 (divide (inverse ?363902) ?363901) [363902, 363901, 363900] by Super 3 with 104738 at 3 Id : 108764, {_}: multiply ?367594 (multiply ?367595 ?367596) =?= multiply (multiply ?367594 ?367595) ?367596 [367596, 367595, 367594] by Demod 106633 with 104940 at 3 Id : 109130, {_}: ?367778 =<= multiply (multiply (inverse ?367779) ?367779) ?367778 [367779, 367778] by Demod 106805 with 108764 at 3 Id : 109444, {_}: a2 === a2 [] by Demod 1 with 109130 at 2 Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 % SZS output end CNFRefutation for GRP470-1.p 11271: solved GRP470-1.p in 32.33802 using nrkbo 11271: status Unsatisfiable for GRP470-1.p NO CLASH, using fixed ground order 11326: Facts: 11326: Id : 2, {_}: divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) (divide (divide ?5 ?4) ?2) =>= ?3 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11326: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11326: Goal: 11326: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11326: Order: 11326: nrkbo 11326: Leaf order: 11326: inverse 2 1 0 11326: divide 7 2 0 11326: c3 2 0 2 2,2 11326: multiply 5 2 4 0,2 11326: b3 2 0 2 2,1,2 11326: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 11327: Facts: 11327: Id : 2, {_}: divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) (divide (divide ?5 ?4) ?2) =>= ?3 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11327: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11327: Goal: 11327: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11327: Order: 11327: kbo 11327: Leaf order: 11327: inverse 2 1 0 11327: divide 7 2 0 11327: c3 2 0 2 2,2 11327: multiply 5 2 4 0,2 11327: b3 2 0 2 2,1,2 11327: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 11328: Facts: 11328: Id : 2, {_}: divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) (divide (divide ?5 ?4) ?2) =>= ?3 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11328: Id : 3, {_}: multiply ?7 ?8 =>= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11328: Goal: 11328: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11328: Order: 11328: lpo 11328: Leaf order: 11328: inverse 2 1 0 11328: divide 7 2 0 11328: c3 2 0 2 2,2 11328: multiply 5 2 4 0,2 11328: b3 2 0 2 2,1,2 11328: a3 2 0 2 1,1,2 Statistics : Max weight : 52 Found proof, 38.615883s % SZS status Unsatisfiable for GRP471-1.p % SZS output start CNFRefutation for GRP471-1.p Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 Id : 2, {_}: divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) (divide (divide ?5 ?4) ?2) =>= ?3 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 Id : 4, {_}: divide (inverse (divide ?10 (divide ?11 (divide ?12 ?13)))) (divide (divide ?13 ?12) ?10) =>= ?11 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 Id : 8, {_}: divide (inverse ?35) (divide (divide ?36 ?37) (inverse (divide (divide ?37 ?36) (divide ?35 (divide ?38 ?39))))) =>= divide ?39 ?38 [39, 38, 37, 36, 35] by Super 4 with 2 at 1,1,2 Id : 377, {_}: divide (inverse ?1785) (multiply (divide ?1786 ?1787) (divide (divide ?1787 ?1786) (divide ?1785 (divide ?1788 ?1789)))) =>= divide ?1789 ?1788 [1789, 1788, 1787, 1786, 1785] by Demod 8 with 3 at 2,2 Id : 362, {_}: divide (inverse ?35) (multiply (divide ?36 ?37) (divide (divide ?37 ?36) (divide ?35 (divide ?38 ?39)))) =>= divide ?39 ?38 [39, 38, 37, 36, 35] by Demod 8 with 3 at 2,2 Id : 385, {_}: divide (inverse ?1855) (multiply (divide ?1856 ?1857) (divide (divide ?1857 ?1856) (divide ?1855 (divide ?1858 ?1859)))) =?= divide (multiply (divide ?1860 ?1861) (divide (divide ?1861 ?1860) (divide ?1862 (divide ?1859 ?1858)))) (inverse ?1862) [1862, 1861, 1860, 1859, 1858, 1857, 1856, 1855] by Super 377 with 362 at 2,2,2,2,2 Id : 436, {_}: divide ?1859 ?1858 =<= divide (multiply (divide ?1860 ?1861) (divide (divide ?1861 ?1860) (divide ?1862 (divide ?1859 ?1858)))) (inverse ?1862) [1862, 1861, 1860, 1858, 1859] by Demod 385 with 362 at 2 Id : 6830, {_}: divide ?34177 ?34178 =<= multiply (multiply (divide ?34179 ?34180) (divide (divide ?34180 ?34179) (divide ?34181 (divide ?34177 ?34178)))) ?34181 [34181, 34180, 34179, 34178, 34177] by Demod 436 with 3 at 3 Id : 5, {_}: divide (inverse (divide ?15 (divide ?16 (divide (divide (divide ?17 ?18) ?19) (inverse (divide ?19 (divide ?20 (divide ?18 ?17)))))))) (divide ?20 ?15) =>= ?16 [20, 19, 18, 17, 16, 15] by Super 4 with 2 at 1,2,2 Id : 15, {_}: divide (inverse (divide ?15 (divide ?16 (multiply (divide (divide ?17 ?18) ?19) (divide ?19 (divide ?20 (divide ?18 ?17))))))) (divide ?20 ?15) =>= ?16 [20, 19, 18, 17, 16, 15] by Demod 5 with 3 at 2,2,1,1,2 Id : 18, {_}: divide (inverse (divide ?82 ?83)) (divide (divide ?84 ?85) ?82) =?= inverse (divide ?84 (divide ?83 (multiply (divide (divide ?86 ?87) ?88) (divide ?88 (divide ?85 (divide ?87 ?86)))))) [88, 87, 86, 85, 84, 83, 82] by Super 2 with 15 at 2,1,1,2 Id : 1723, {_}: divide (divide (inverse (divide ?8026 ?8027)) (divide (divide ?8028 ?8029) ?8026)) (divide ?8029 ?8028) =>= ?8027 [8029, 8028, 8027, 8026] by Super 15 with 18 at 1,2 Id : 1779, {_}: divide (divide (inverse (multiply ?8457 ?8458)) (divide (divide ?8459 ?8460) ?8457)) (divide ?8460 ?8459) =>= inverse ?8458 [8460, 8459, 8458, 8457] by Super 1723 with 3 at 1,1,1,2 Id : 6854, {_}: divide (divide (inverse (multiply ?34395 ?34396)) (divide (divide ?34397 ?34398) ?34395)) (divide ?34398 ?34397) =?= multiply (multiply (divide ?34399 ?34400) (divide (divide ?34400 ?34399) (divide ?34401 (inverse ?34396)))) ?34401 [34401, 34400, 34399, 34398, 34397, 34396, 34395] by Super 6830 with 1779 at 2,2,2,1,3 Id : 7005, {_}: inverse ?34396 =<= multiply (multiply (divide ?34399 ?34400) (divide (divide ?34400 ?34399) (divide ?34401 (inverse ?34396)))) ?34401 [34401, 34400, 34399, 34396] by Demod 6854 with 1779 at 2 Id : 7303, {_}: inverse ?36376 =<= multiply (multiply (divide ?36377 ?36378) (divide (divide ?36378 ?36377) (multiply ?36379 ?36376))) ?36379 [36379, 36378, 36377, 36376] by Demod 7005 with 3 at 2,2,1,3 Id : 7337, {_}: inverse ?36648 =<= multiply (multiply (divide (inverse ?36649) ?36650) (divide (multiply ?36650 ?36649) (multiply ?36651 ?36648))) ?36651 [36651, 36650, 36649, 36648] by Super 7303 with 3 at 1,2,1,3 Id : 6831, {_}: divide (inverse (divide ?34183 (divide ?34184 (divide ?34185 ?34186)))) (divide (divide ?34186 ?34185) ?34183) =?= multiply (multiply (divide ?34187 ?34188) (divide (divide ?34188 ?34187) (divide ?34189 ?34184))) ?34189 [34189, 34188, 34187, 34186, 34185, 34184, 34183] by Super 6830 with 2 at 2,2,2,1,3 Id : 7101, {_}: ?35399 =<= multiply (multiply (divide ?35400 ?35401) (divide (divide ?35401 ?35400) (divide ?35402 ?35399))) ?35402 [35402, 35401, 35400, 35399] by Demod 6831 with 2 at 2 Id : 2771, {_}: divide (divide (inverse (multiply ?13734 ?13735)) (divide (divide ?13736 ?13737) ?13734)) (divide ?13737 ?13736) =>= inverse ?13735 [13737, 13736, 13735, 13734] by Super 1723 with 3 at 1,1,1,2 Id : 2814, {_}: divide (divide (inverse (multiply (inverse ?14067) ?14068)) (multiply (divide ?14069 ?14070) ?14067)) (divide ?14070 ?14069) =>= inverse ?14068 [14070, 14069, 14068, 14067] by Super 2771 with 3 at 2,1,2 Id : 7163, {_}: ?35873 =<= multiply (multiply (divide (multiply (divide ?35873 ?35874) ?35875) (inverse (multiply (inverse ?35875) ?35876))) (inverse ?35876)) ?35874 [35876, 35875, 35874, 35873] by Super 7101 with 2814 at 2,1,3 Id : 7239, {_}: ?35873 =<= multiply (multiply (multiply (multiply (divide ?35873 ?35874) ?35875) (multiply (inverse ?35875) ?35876)) (inverse ?35876)) ?35874 [35876, 35875, 35874, 35873] by Demod 7163 with 3 at 1,1,3 Id : 1759, {_}: divide (divide (inverse (divide ?8306 ?8307)) (divide (multiply ?8308 ?8309) ?8306)) (divide (inverse ?8309) ?8308) =>= ?8307 [8309, 8308, 8307, 8306] by Super 1723 with 3 at 1,2,1,2 Id : 7159, {_}: ?35853 =<= multiply (multiply (divide (divide (multiply ?35853 ?35854) ?35855) (inverse (divide ?35855 ?35856))) ?35856) (inverse ?35854) [35856, 35855, 35854, 35853] by Super 7101 with 1759 at 2,1,3 Id : 7892, {_}: ?39681 =<= multiply (multiply (multiply (divide (multiply ?39681 ?39682) ?39683) (divide ?39683 ?39684)) ?39684) (inverse ?39682) [39684, 39683, 39682, 39681] by Demod 7159 with 3 at 1,1,3 Id : 9472, {_}: ?48735 =<= multiply (multiply (multiply (multiply (multiply ?48735 ?48736) ?48737) (divide (inverse ?48737) ?48738)) ?48738) (inverse ?48736) [48738, 48737, 48736, 48735] by Super 7892 with 3 at 1,1,1,3 Id : 1266, {_}: divide (divide (inverse (divide ?5775 ?5776)) (divide (divide ?5777 ?5778) ?5775)) (divide ?5778 ?5777) =>= ?5776 [5778, 5777, 5776, 5775] by Super 15 with 18 at 1,2 Id : 7158, {_}: ?35848 =<= multiply (multiply (divide (divide (divide ?35848 ?35849) ?35850) (inverse (divide ?35850 ?35851))) ?35851) ?35849 [35851, 35850, 35849, 35848] by Super 7101 with 1266 at 2,1,3 Id : 7234, {_}: ?35848 =<= multiply (multiply (multiply (divide (divide ?35848 ?35849) ?35850) (divide ?35850 ?35851)) ?35851) ?35849 [35851, 35850, 35849, 35848] by Demod 7158 with 3 at 1,1,3 Id : 9552, {_}: divide (divide ?49359 (divide (inverse ?49360) ?49361)) ?49362 =<= multiply (multiply ?49359 ?49361) (inverse (divide ?49362 ?49360)) [49362, 49361, 49360, 49359] by Super 9472 with 7234 at 1,1,3 Id : 9555, {_}: multiply (divide ?49374 (divide (inverse (inverse ?49375)) ?49376)) ?49377 =<= multiply (multiply ?49374 ?49376) (inverse (multiply (inverse ?49377) ?49375)) [49377, 49376, 49375, 49374] by Super 9472 with 7239 at 1,1,3 Id : 10048, {_}: divide (divide (multiply ?52036 ?52037) (divide (inverse ?52038) (inverse (multiply (inverse ?52039) ?52040)))) ?52041 =<= multiply (multiply (divide ?52036 (divide (inverse (inverse ?52040)) ?52037)) ?52039) (inverse (divide ?52041 ?52038)) [52041, 52040, 52039, 52038, 52037, 52036] by Super 9552 with 9555 at 1,3 Id : 10181, {_}: divide (divide (multiply ?52036 ?52037) (multiply (inverse ?52038) (multiply (inverse ?52039) ?52040))) ?52041 =<= multiply (multiply (divide ?52036 (divide (inverse (inverse ?52040)) ?52037)) ?52039) (inverse (divide ?52041 ?52038)) [52041, 52040, 52039, 52038, 52037, 52036] by Demod 10048 with 3 at 2,1,2 Id : 10182, {_}: divide (divide (multiply ?52036 ?52037) (multiply (inverse ?52038) (multiply (inverse ?52039) ?52040))) ?52041 =<= divide (divide (divide ?52036 (divide (inverse (inverse ?52040)) ?52037)) (divide (inverse ?52038) ?52039)) ?52041 [52041, 52040, 52039, 52038, 52037, 52036] by Demod 10181 with 9552 at 3 Id : 7161, {_}: ?35863 =<= multiply (multiply (divide (divide (divide ?35863 ?35864) ?35865) (inverse (multiply ?35865 ?35866))) (inverse ?35866)) ?35864 [35866, 35865, 35864, 35863] by Super 7101 with 1779 at 2,1,3 Id : 7237, {_}: ?35863 =<= multiply (multiply (multiply (divide (divide ?35863 ?35864) ?35865) (multiply ?35865 ?35866)) (inverse ?35866)) ?35864 [35866, 35865, 35864, 35863] by Demod 7161 with 3 at 1,1,3 Id : 9554, {_}: divide (divide ?49369 (divide (inverse (inverse ?49370)) ?49371)) ?49372 =>= multiply (multiply ?49369 ?49371) (inverse (multiply ?49372 ?49370)) [49372, 49371, 49370, 49369] by Super 9472 with 7237 at 1,1,3 Id : 10183, {_}: divide (divide (multiply ?52036 ?52037) (multiply (inverse ?52038) (multiply (inverse ?52039) ?52040))) ?52041 =<= divide (multiply (multiply ?52036 ?52037) (inverse (multiply (divide (inverse ?52038) ?52039) ?52040))) ?52041 [52041, 52040, 52039, 52038, 52037, 52036] by Demod 10182 with 9554 at 1,3 Id : 12174, {_}: multiply (multiply ?64029 ?64030) (inverse (multiply (divide (inverse ?64031) ?64032) ?64033)) =<= multiply (multiply (multiply (multiply (divide (divide (multiply ?64029 ?64030) (multiply (inverse ?64031) (multiply (inverse ?64032) ?64033))) ?64034) ?64035) (multiply (inverse ?64035) ?64036)) (inverse ?64036)) ?64034 [64036, 64035, 64034, 64033, 64032, 64031, 64030, 64029] by Super 7239 with 10183 at 1,1,1,1,3 Id : 12258, {_}: multiply (multiply ?64029 ?64030) (inverse (multiply (divide (inverse ?64031) ?64032) ?64033)) =>= divide (multiply ?64029 ?64030) (multiply (inverse ?64031) (multiply (inverse ?64032) ?64033)) [64033, 64032, 64031, 64030, 64029] by Demod 12174 with 7239 at 3 Id : 12491, {_}: inverse (inverse (multiply (divide (inverse ?65291) ?65292) ?65293)) =<= multiply (multiply (divide (inverse ?65294) ?65295) (divide (multiply ?65295 ?65294) (divide (multiply ?65296 ?65297) (multiply (inverse ?65291) (multiply (inverse ?65292) ?65293))))) (multiply ?65296 ?65297) [65297, 65296, 65295, 65294, 65293, 65292, 65291] by Super 7337 with 12258 at 2,2,1,3 Id : 7157, {_}: ?35843 =<= multiply (multiply (divide (inverse ?35844) ?35845) (divide (multiply ?35845 ?35844) (divide ?35846 ?35843))) ?35846 [35846, 35845, 35844, 35843] by Super 7101 with 3 at 1,2,1,3 Id : 12726, {_}: inverse (inverse (multiply (divide (inverse ?66353) ?66354) ?66355)) =>= multiply (inverse ?66353) (multiply (inverse ?66354) ?66355) [66355, 66354, 66353] by Demod 12491 with 7157 at 3 Id : 7, {_}: divide (inverse (divide ?29 ?30)) (divide (divide ?31 (divide ?32 ?33)) ?29) =>= inverse (divide ?31 (divide ?30 (divide ?33 ?32))) [33, 32, 31, 30, 29] by Super 4 with 2 at 2,1,1,2 Id : 53, {_}: inverse (divide ?279 (divide (divide ?280 (divide (divide ?281 ?282) ?279)) (divide ?282 ?281))) =>= ?280 [282, 281, 280, 279] by Super 2 with 7 at 2 Id : 12727, {_}: inverse (inverse (multiply (divide ?66357 ?66358) ?66359)) =<= multiply (inverse (divide ?66360 (divide (divide ?66357 (divide (divide ?66361 ?66362) ?66360)) (divide ?66362 ?66361)))) (multiply (inverse ?66358) ?66359) [66362, 66361, 66360, 66359, 66358, 66357] by Super 12726 with 53 at 1,1,1,1,2 Id : 12825, {_}: inverse (inverse (multiply (divide ?66943 ?66944) ?66945)) =>= multiply ?66943 (multiply (inverse ?66944) ?66945) [66945, 66944, 66943] by Demod 12727 with 53 at 1,3 Id : 12858, {_}: inverse (inverse (multiply (multiply ?67174 ?67175) ?67176)) =<= multiply ?67174 (multiply (inverse (inverse ?67175)) ?67176) [67176, 67175, 67174] by Super 12825 with 3 at 1,1,1,2 Id : 12, {_}: divide (inverse (divide ?53 (divide ?54 (multiply ?55 ?56)))) (divide (divide (inverse ?56) ?55) ?53) =>= ?54 [56, 55, 54, 53] by Super 2 with 3 at 2,2,1,1,2 Id : 17, {_}: divide (inverse (divide ?73 (divide ?74 ?75))) (divide (divide (divide ?76 ?77) (inverse (divide ?77 (divide ?75 (multiply (divide (divide ?78 ?79) ?80) (divide ?80 (divide ?76 (divide ?79 ?78)))))))) ?73) =>= ?74 [80, 79, 78, 77, 76, 75, 74, 73] by Super 2 with 15 at 2,2,1,1,2 Id : 66361, {_}: divide (inverse (divide ?259836 (divide ?259837 ?259838))) (divide (multiply (divide ?259839 ?259840) (divide ?259840 (divide ?259838 (multiply (divide (divide ?259841 ?259842) ?259843) (divide ?259843 (divide ?259839 (divide ?259842 ?259841))))))) ?259836) =>= ?259837 [259843, 259842, 259841, 259840, 259839, 259838, 259837, 259836] by Demod 17 with 3 at 1,2,2 Id : 12770, {_}: inverse (inverse (multiply (divide ?66357 ?66358) ?66359)) =>= multiply ?66357 (multiply (inverse ?66358) ?66359) [66359, 66358, 66357] by Demod 12727 with 53 at 1,3 Id : 12807, {_}: multiply ?66813 (inverse (multiply (divide ?66814 ?66815) ?66816)) =>= divide ?66813 (multiply ?66814 (multiply (inverse ?66815) ?66816)) [66816, 66815, 66814, 66813] by Super 3 with 12770 at 2,3 Id : 13153, {_}: inverse (inverse (multiply (multiply ?68629 ?68630) (inverse (multiply (divide ?68631 ?68632) ?68633)))) =<= multiply ?68629 (divide (inverse (inverse ?68630)) (multiply ?68631 (multiply (inverse ?68632) ?68633))) [68633, 68632, 68631, 68630, 68629] by Super 12858 with 12807 at 2,3 Id : 15503, {_}: inverse (inverse (divide (multiply ?81665 ?81666) (multiply ?81667 (multiply (inverse ?81668) ?81669)))) =<= multiply ?81665 (divide (inverse (inverse ?81666)) (multiply ?81667 (multiply (inverse ?81668) ?81669))) [81669, 81668, 81667, 81666, 81665] by Demod 13153 with 12807 at 1,1,2 Id : 6973, {_}: ?34184 =<= multiply (multiply (divide ?34187 ?34188) (divide (divide ?34188 ?34187) (divide ?34189 ?34184))) ?34189 [34189, 34188, 34187, 34184] by Demod 6831 with 2 at 2 Id : 15524, {_}: inverse (inverse (divide (multiply ?81857 ?81858) (multiply (multiply (divide ?81859 ?81860) (divide (divide ?81860 ?81859) (divide (multiply (inverse ?81861) ?81862) ?81863))) (multiply (inverse ?81861) ?81862)))) =>= multiply ?81857 (divide (inverse (inverse ?81858)) ?81863) [81863, 81862, 81861, 81860, 81859, 81858, 81857] by Super 15503 with 6973 at 2,2,3 Id : 15656, {_}: inverse (inverse (divide (multiply ?81857 ?81858) ?81863)) =<= multiply ?81857 (divide (inverse (inverse ?81858)) ?81863) [81863, 81858, 81857] by Demod 15524 with 6973 at 2,1,1,2 Id : 23797, {_}: divide (divide ?119374 (divide (inverse ?119375) (divide (inverse (inverse ?119376)) ?119377))) ?119378 =<= multiply (inverse (inverse (divide (multiply ?119374 ?119376) ?119377))) (inverse (divide ?119378 ?119375)) [119378, 119377, 119376, 119375, 119374] by Super 9552 with 15656 at 1,3 Id : 23859, {_}: divide (divide (multiply (divide (inverse ?119930) ?119931) (divide (multiply ?119931 ?119930) (divide ?119932 ?119933))) (divide (inverse ?119934) (divide (inverse (inverse ?119932)) ?119935))) ?119936 =>= multiply (inverse (inverse (divide ?119933 ?119935))) (inverse (divide ?119936 ?119934)) [119936, 119935, 119934, 119933, 119932, 119931, 119930] by Super 23797 with 7157 at 1,1,1,1,3 Id : 13062, {_}: inverse (inverse (divide (divide ?67961 ?67962) (multiply ?67963 (multiply (inverse ?67964) ?67965)))) =>= multiply ?67961 (multiply (inverse ?67962) (inverse (multiply (divide ?67963 ?67964) ?67965))) [67965, 67964, 67963, 67962, 67961] by Super 12770 with 12807 at 1,1,2 Id : 16664, {_}: inverse (inverse (divide (divide ?87645 ?87646) (multiply ?87647 (multiply (inverse ?87648) ?87649)))) =>= multiply ?87645 (divide (inverse ?87646) (multiply ?87647 (multiply (inverse ?87648) ?87649))) [87649, 87648, 87647, 87646, 87645] by Demod 13062 with 12807 at 2,3 Id : 16690, {_}: inverse (inverse (divide (divide ?87882 ?87883) ?87884)) =<= multiply ?87882 (divide (inverse ?87883) (multiply (multiply (divide ?87885 ?87886) (divide (divide ?87886 ?87885) (divide (multiply (inverse ?87887) ?87888) ?87884))) (multiply (inverse ?87887) ?87888))) [87888, 87887, 87886, 87885, 87884, 87883, 87882] by Super 16664 with 6973 at 2,1,1,2 Id : 16778, {_}: inverse (inverse (divide (divide ?87882 ?87883) ?87884)) =>= multiply ?87882 (divide (inverse ?87883) ?87884) [87884, 87883, 87882] by Demod 16690 with 6973 at 2,2,3 Id : 16836, {_}: multiply ?88530 (inverse (divide (divide ?88531 ?88532) ?88533)) =>= divide ?88530 (multiply ?88531 (divide (inverse ?88532) ?88533)) [88533, 88532, 88531, 88530] by Super 3 with 16778 at 2,3 Id : 16941, {_}: divide (divide ?89130 (divide (inverse ?89131) ?89132)) (divide ?89133 ?89134) =<= divide (multiply ?89130 ?89132) (multiply ?89133 (divide (inverse ?89134) ?89131)) [89134, 89133, 89132, 89131, 89130] by Super 9552 with 16836 at 3 Id : 17721, {_}: divide (inverse ?92223) (multiply (divide ?92224 ?92225) (divide (divide ?92225 ?92224) (divide ?92223 (divide (divide ?92226 (divide (inverse ?92227) ?92228)) (divide ?92229 ?92230))))) =>= divide (multiply ?92229 (divide (inverse ?92230) ?92227)) (multiply ?92226 ?92228) [92230, 92229, 92228, 92227, 92226, 92225, 92224, 92223] by Super 362 with 16941 at 2,2,2,2,2 Id : 18088, {_}: divide (divide ?94725 ?94726) (divide ?94727 (divide (inverse ?94728) ?94729)) =<= divide (multiply ?94725 (divide (inverse ?94726) ?94728)) (multiply ?94727 ?94729) [94729, 94728, 94727, 94726, 94725] by Demod 17721 with 362 at 2 Id : 18882, {_}: divide (divide ?99448 ?99449) (divide ?99450 (divide (inverse (inverse ?99451)) ?99452)) =>= divide (multiply ?99448 (multiply (inverse ?99449) ?99451)) (multiply ?99450 ?99452) [99452, 99451, 99450, 99449, 99448] by Super 18088 with 3 at 2,1,3 Id : 18956, {_}: divide (multiply ?100120 ?100121) (divide ?100122 (divide (inverse (inverse ?100123)) ?100124)) =?= divide (multiply ?100120 (multiply (inverse (inverse ?100121)) ?100123)) (multiply ?100122 ?100124) [100124, 100123, 100122, 100121, 100120] by Super 18882 with 3 at 1,2 Id : 19253, {_}: divide (multiply ?100120 ?100121) (divide ?100122 (divide (inverse (inverse ?100123)) ?100124)) =>= divide (inverse (inverse (multiply (multiply ?100120 ?100121) ?100123))) (multiply ?100122 ?100124) [100124, 100123, 100122, 100121, 100120] by Demod 18956 with 12858 at 1,3 Id : 24073, {_}: divide (divide (inverse (inverse (multiply (multiply (divide (inverse ?119930) ?119931) (divide (multiply ?119931 ?119930) (divide ?119932 ?119933))) ?119932))) (multiply (inverse ?119934) ?119935)) ?119936 =>= multiply (inverse (inverse (divide ?119933 ?119935))) (inverse (divide ?119936 ?119934)) [119936, 119935, 119934, 119933, 119932, 119931, 119930] by Demod 23859 with 19253 at 1,2 Id : 24074, {_}: divide (divide (inverse (inverse ?119933)) (multiply (inverse ?119934) ?119935)) ?119936 =<= multiply (inverse (inverse (divide ?119933 ?119935))) (inverse (divide ?119936 ?119934)) [119936, 119935, 119934, 119933] by Demod 24073 with 7157 at 1,1,1,1,2 Id : 18174, {_}: divide (divide ?95484 (inverse ?95485)) (divide ?95486 (divide (inverse ?95487) ?95488)) =>= divide (inverse (inverse (divide (multiply ?95484 ?95485) ?95487))) (multiply ?95486 ?95488) [95488, 95487, 95486, 95485, 95484] by Super 18088 with 15656 at 1,3 Id : 20071, {_}: divide (multiply ?105383 ?105384) (divide ?105385 (divide (inverse ?105386) ?105387)) =<= divide (inverse (inverse (divide (multiply ?105383 ?105384) ?105386))) (multiply ?105385 ?105387) [105387, 105386, 105385, 105384, 105383] by Demod 18174 with 3 at 1,2 Id : 20108, {_}: divide (multiply (multiply (divide ?105694 ?105695) (divide (divide ?105695 ?105694) (divide ?105696 ?105697))) ?105696) (divide ?105698 (divide (inverse ?105699) ?105700)) =>= divide (inverse (inverse (divide ?105697 ?105699))) (multiply ?105698 ?105700) [105700, 105699, 105698, 105697, 105696, 105695, 105694] by Super 20071 with 6973 at 1,1,1,1,3 Id : 20428, {_}: divide ?105697 (divide ?105698 (divide (inverse ?105699) ?105700)) =<= divide (inverse (inverse (divide ?105697 ?105699))) (multiply ?105698 ?105700) [105700, 105699, 105698, 105697] by Demod 20108 with 6973 at 1,2 Id : 20476, {_}: inverse (inverse (divide (divide ?106039 (divide ?106040 (divide (inverse ?106041) ?106042))) ?106043)) =<= multiply (inverse (inverse (divide ?106039 ?106041))) (divide (inverse (multiply ?106040 ?106042)) ?106043) [106043, 106042, 106041, 106040, 106039] by Super 16778 with 20428 at 1,1,1,2 Id : 20938, {_}: multiply ?106039 (divide (inverse (divide ?106040 (divide (inverse ?106041) ?106042))) ?106043) =<= multiply (inverse (inverse (divide ?106039 ?106041))) (divide (inverse (multiply ?106040 ?106042)) ?106043) [106043, 106042, 106041, 106040, 106039] by Demod 20476 with 16778 at 2 Id : 24149, {_}: inverse (inverse (multiply (multiply ?120312 (divide ?120313 ?120314)) (inverse (divide ?120315 ?120316)))) =<= multiply ?120312 (divide (divide (inverse (inverse ?120313)) (multiply (inverse ?120316) ?120314)) ?120315) [120316, 120315, 120314, 120313, 120312] by Super 12858 with 24074 at 2,3 Id : 24438, {_}: inverse (inverse (divide (divide ?120312 (divide (inverse ?120316) (divide ?120313 ?120314))) ?120315)) =<= multiply ?120312 (divide (divide (inverse (inverse ?120313)) (multiply (inverse ?120316) ?120314)) ?120315) [120315, 120314, 120313, 120316, 120312] by Demod 24149 with 9552 at 1,1,2 Id : 24439, {_}: multiply ?120312 (divide (inverse (divide (inverse ?120316) (divide ?120313 ?120314))) ?120315) =<= multiply ?120312 (divide (divide (inverse (inverse ?120313)) (multiply (inverse ?120316) ?120314)) ?120315) [120315, 120314, 120313, 120316, 120312] by Demod 24438 with 16778 at 2 Id : 33216, {_}: inverse (divide (divide (inverse (inverse ?156723)) (multiply (inverse ?156724) ?156725)) ?156726) =<= multiply (multiply (divide (inverse ?156727) ?156728) (divide (multiply ?156728 ?156727) (multiply ?156729 (divide (inverse (divide (inverse ?156724) (divide ?156723 ?156725))) ?156726)))) ?156729 [156729, 156728, 156727, 156726, 156725, 156724, 156723] by Super 7337 with 24439 at 2,2,1,3 Id : 33721, {_}: inverse (divide (divide (inverse (inverse ?158945)) (multiply (inverse ?158946) ?158947)) ?158948) =>= inverse (divide (inverse (divide (inverse ?158946) (divide ?158945 ?158947))) ?158948) [158948, 158947, 158946, 158945] by Demod 33216 with 7337 at 3 Id : 33722, {_}: inverse (divide (divide (inverse (inverse ?158950)) (multiply ?158951 ?158952)) ?158953) =<= inverse (divide (inverse (divide (inverse (divide ?158954 (divide (divide ?158951 (divide (divide ?158955 ?158956) ?158954)) (divide ?158956 ?158955)))) (divide ?158950 ?158952))) ?158953) [158956, 158955, 158954, 158953, 158952, 158951, 158950] by Super 33721 with 53 at 1,2,1,1,2 Id : 34010, {_}: inverse (divide (divide (inverse (inverse ?158950)) (multiply ?158951 ?158952)) ?158953) =>= inverse (divide (inverse (divide ?158951 (divide ?158950 ?158952))) ?158953) [158953, 158952, 158951, 158950] by Demod 33722 with 53 at 1,1,1,1,3 Id : 34077, {_}: inverse (inverse (divide (inverse (divide ?159790 (divide ?159791 ?159792))) ?159793)) =<= multiply (inverse (inverse ?159791)) (divide (inverse (multiply ?159790 ?159792)) ?159793) [159793, 159792, 159791, 159790] by Super 16778 with 34010 at 1,2 Id : 34441, {_}: multiply ?106039 (divide (inverse (divide ?106040 (divide (inverse ?106041) ?106042))) ?106043) =<= inverse (inverse (divide (inverse (divide ?106040 (divide (divide ?106039 ?106041) ?106042))) ?106043)) [106043, 106042, 106041, 106040, 106039] by Demod 20938 with 34077 at 3 Id : 16, {_}: divide (inverse (divide ?64 (divide ?65 (divide (divide ?66 ?67) (inverse (divide ?67 (divide ?68 (multiply (divide (divide ?69 ?70) ?71) (divide ?71 (divide ?66 (divide ?70 ?69))))))))))) (divide ?68 ?64) =>= ?65 [71, 70, 69, 68, 67, 66, 65, 64] by Super 2 with 15 at 1,2,2 Id : 38, {_}: divide (inverse (divide ?64 (divide ?65 (multiply (divide ?66 ?67) (divide ?67 (divide ?68 (multiply (divide (divide ?69 ?70) ?71) (divide ?71 (divide ?66 (divide ?70 ?69)))))))))) (divide ?68 ?64) =>= ?65 [71, 70, 69, 68, 67, 66, 65, 64] by Demod 16 with 3 at 2,2,1,1,2 Id : 43649, {_}: multiply ?191130 (divide (inverse (divide ?191131 (divide (inverse ?191132) (multiply (divide ?191133 ?191134) (divide ?191134 (divide ?191135 (multiply (divide (divide ?191136 ?191137) ?191138) (divide ?191138 (divide ?191133 (divide ?191137 ?191136)))))))))) (divide ?191135 ?191131)) =>= inverse (inverse (divide ?191130 ?191132)) [191138, 191137, 191136, 191135, 191134, 191133, 191132, 191131, 191130] by Super 34441 with 38 at 1,1,3 Id : 44429, {_}: multiply ?191130 (inverse ?191132) =<= inverse (inverse (divide ?191130 ?191132)) [191132, 191130] by Demod 43649 with 38 at 2,2 Id : 44886, {_}: divide (divide (inverse (inverse ?119933)) (multiply (inverse ?119934) ?119935)) ?119936 =>= multiply (multiply ?119933 (inverse ?119935)) (inverse (divide ?119936 ?119934)) [119936, 119935, 119934, 119933] by Demod 24074 with 44429 at 1,3 Id : 44891, {_}: divide (divide (inverse (inverse ?119933)) (multiply (inverse ?119934) ?119935)) ?119936 =>= divide (divide ?119933 (divide (inverse ?119934) (inverse ?119935))) ?119936 [119936, 119935, 119934, 119933] by Demod 44886 with 9552 at 3 Id : 44892, {_}: divide (divide (inverse (inverse ?119933)) (multiply (inverse ?119934) ?119935)) ?119936 =>= divide (divide ?119933 (multiply (inverse ?119934) ?119935)) ?119936 [119936, 119935, 119934, 119933] by Demod 44891 with 3 at 2,1,3 Id : 66804, {_}: divide (inverse (divide ?265003 (divide (divide ?265004 (multiply (inverse ?265005) ?265006)) ?265007))) (divide (multiply (divide ?265008 ?265009) (divide ?265009 (divide ?265007 (multiply (divide (divide ?265010 ?265011) ?265012) (divide ?265012 (divide ?265008 (divide ?265011 ?265010))))))) ?265003) =>= divide (inverse (inverse ?265004)) (multiply (inverse ?265005) ?265006) [265012, 265011, 265010, 265009, 265008, 265007, 265006, 265005, 265004, 265003] by Super 66361 with 44892 at 2,1,1,2 Id : 39, {_}: divide (inverse (divide ?73 (divide ?74 ?75))) (divide (multiply (divide ?76 ?77) (divide ?77 (divide ?75 (multiply (divide (divide ?78 ?79) ?80) (divide ?80 (divide ?76 (divide ?79 ?78))))))) ?73) =>= ?74 [80, 79, 78, 77, 76, 75, 74, 73] by Demod 17 with 3 at 1,2,2 Id : 67572, {_}: divide ?265004 (multiply (inverse ?265005) ?265006) =<= divide (inverse (inverse ?265004)) (multiply (inverse ?265005) ?265006) [265006, 265005, 265004] by Demod 66804 with 39 at 2 Id : 67796, {_}: divide (inverse (divide ?266802 (divide ?266803 (multiply (inverse ?266804) ?266805)))) (divide (divide (inverse ?266805) (inverse ?266804)) ?266802) =>= inverse (inverse ?266803) [266805, 266804, 266803, 266802] by Super 12 with 67572 at 2,1,1,2 Id : 68093, {_}: ?266803 =<= inverse (inverse ?266803) [266803] by Demod 67796 with 12 at 2 Id : 68404, {_}: multiply (multiply ?67174 ?67175) ?67176 =<= multiply ?67174 (multiply (inverse (inverse ?67175)) ?67176) [67176, 67175, 67174] by Demod 12858 with 68093 at 2 Id : 68405, {_}: multiply (multiply ?67174 ?67175) ?67176 =?= multiply ?67174 (multiply ?67175 ?67176) [67176, 67175, 67174] by Demod 68404 with 68093 at 1,2,3 Id : 68861, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 1 with 68405 at 2 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 % SZS output end CNFRefutation for GRP471-1.p 11326: solved GRP471-1.p in 19.353208 using nrkbo 11326: status Unsatisfiable for GRP471-1.p NO CLASH, using fixed ground order 11333: Facts: 11333: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11333: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11333: Goal: 11333: Id : 1, {_}: multiply (inverse a1) a1 =>= multiply (inverse b1) b1 [] by prove_these_axioms_1 11333: Order: 11333: nrkbo 11333: Leaf order: 11333: divide 7 2 0 11333: b1 2 0 2 1,1,3 11333: multiply 3 2 2 0,2 11333: inverse 4 1 2 0,1,2 11333: a1 2 0 2 1,1,2 NO CLASH, using fixed ground order 11334: Facts: 11334: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11334: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11334: Goal: 11334: Id : 1, {_}: multiply (inverse a1) a1 =>= multiply (inverse b1) b1 [] by prove_these_axioms_1 11334: Order: 11334: kbo 11334: Leaf order: 11334: divide 7 2 0 11334: b1 2 0 2 1,1,3 11334: multiply 3 2 2 0,2 11334: inverse 4 1 2 0,1,2 11334: a1 2 0 2 1,1,2 NO CLASH, using fixed ground order 11335: Facts: 11335: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11335: Id : 3, {_}: multiply ?7 ?8 =?= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11335: Goal: 11335: Id : 1, {_}: multiply (inverse a1) a1 =>= multiply (inverse b1) b1 [] by prove_these_axioms_1 11335: Order: 11335: lpo 11335: Leaf order: 11335: divide 7 2 0 11335: b1 2 0 2 1,1,3 11335: multiply 3 2 2 0,2 11335: inverse 4 1 2 0,1,2 11335: a1 2 0 2 1,1,2 % SZS status Timeout for GRP475-1.p NO CLASH, using fixed ground order 11373: Facts: 11373: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11373: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11373: Goal: 11373: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11373: Order: 11373: nrkbo 11373: Leaf order: 11373: divide 7 2 0 11373: a2 2 0 2 2,2 11373: multiply 3 2 2 0,2 11373: inverse 3 1 1 0,1,1,2 11373: b2 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 11374: Facts: 11374: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11374: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11374: Goal: 11374: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11374: Order: 11374: kbo 11374: Leaf order: 11374: divide 7 2 0 11374: a2 2 0 2 2,2 11374: multiply 3 2 2 0,2 11374: inverse 3 1 1 0,1,1,2 11374: b2 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 11375: Facts: 11375: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11375: Id : 3, {_}: multiply ?7 ?8 =?= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11375: Goal: 11375: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11375: Order: 11375: lpo 11375: Leaf order: 11375: divide 7 2 0 11375: a2 2 0 2 2,2 11375: multiply 3 2 2 0,2 11375: inverse 3 1 1 0,1,1,2 11375: b2 2 0 2 1,1,1,2 Statistics : Max weight : 49 Found proof, 60.308770s % SZS status Unsatisfiable for GRP476-1.p % SZS output start CNFRefutation for GRP476-1.p Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 Id : 4, {_}: divide (inverse (divide (divide (divide ?10 ?11) ?12) (divide ?13 ?12))) (divide ?11 ?10) =>= ?13 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 Id : 5, {_}: divide (inverse (divide (divide (divide (divide ?15 ?16) (inverse (divide (divide (divide ?16 ?15) ?17) (divide ?18 ?17)))) ?19) (divide ?20 ?19))) ?18 =>= ?20 [20, 19, 18, 17, 16, 15] by Super 4 with 2 at 2,2 Id : 17, {_}: divide (inverse (divide (divide (multiply (divide ?15 ?16) (divide (divide (divide ?16 ?15) ?17) (divide ?18 ?17))) ?19) (divide ?20 ?19))) ?18 =>= ?20 [20, 19, 18, 17, 16, 15] by Demod 5 with 3 at 1,1,1,1,2 Id : 20, {_}: divide (inverse (divide (divide (divide ?80 ?81) ?82) ?83)) (divide ?81 ?80) =?= inverse (divide (divide (multiply (divide ?84 ?85) (divide (divide (divide ?85 ?84) ?86) (divide ?82 ?86))) ?87) (divide ?83 ?87)) [87, 86, 85, 84, 83, 82, 81, 80] by Super 2 with 17 at 2,1,1,2 Id : 2201, {_}: divide (divide (inverse (divide (divide (divide ?9850 ?9851) ?9852) ?9853)) (divide ?9851 ?9850)) ?9852 =>= ?9853 [9853, 9852, 9851, 9850] by Super 17 with 20 at 1,2 Id : 2522, {_}: divide (divide (inverse (multiply (divide (divide ?11173 ?11174) ?11175) ?11176)) (divide ?11174 ?11173)) ?11175 =>= inverse ?11176 [11176, 11175, 11174, 11173] by Super 2201 with 3 at 1,1,1,2 Id : 3974, {_}: divide (divide (inverse (multiply (divide (divide (inverse ?18265) ?18266) ?18267) ?18268)) (multiply ?18266 ?18265)) ?18267 =>= inverse ?18268 [18268, 18267, 18266, 18265] by Super 2522 with 3 at 2,1,2 Id : 4011, {_}: divide (divide (inverse (multiply (divide (multiply (inverse ?18535) ?18536) ?18537) ?18538)) (multiply (inverse ?18536) ?18535)) ?18537 =>= inverse ?18538 [18538, 18537, 18536, 18535] by Super 3974 with 3 at 1,1,1,1,1,2 Id : 3335, {_}: divide (divide (inverse (divide (divide (divide (inverse ?15160) ?15161) ?15162) ?15163)) (multiply ?15161 ?15160)) ?15162 =>= ?15163 [15163, 15162, 15161, 15160] by Super 2201 with 3 at 2,1,2 Id : 3370, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?15416) ?15417) ?15418) ?15419)) (multiply (inverse ?15417) ?15416)) ?15418 =>= ?15419 [15419, 15418, 15417, 15416] by Super 3335 with 3 at 1,1,1,1,1,2 Id : 7, {_}: divide (inverse (divide (divide ?29 ?30) (divide ?31 ?30))) (divide (divide ?32 ?33) (inverse (divide (divide (divide ?33 ?32) ?34) (divide ?29 ?34)))) =>= ?31 [34, 33, 32, 31, 30, 29] by Super 4 with 2 at 1,1,1,1,2 Id : 602, {_}: divide (inverse (divide (divide ?2300 ?2301) (divide ?2302 ?2301))) (multiply (divide ?2303 ?2304) (divide (divide (divide ?2304 ?2303) ?2305) (divide ?2300 ?2305))) =>= ?2302 [2305, 2304, 2303, 2302, 2301, 2300] by Demod 7 with 3 at 2,2 Id : 6, {_}: divide (inverse (divide (divide (divide ?22 ?23) (divide ?24 ?25)) ?26)) (divide ?23 ?22) =?= inverse (divide (divide (divide ?25 ?24) ?27) (divide ?26 ?27)) [27, 26, 25, 24, 23, 22] by Super 4 with 2 at 2,1,1,2 Id : 300, {_}: inverse (divide (divide (divide ?1003 ?1004) ?1005) (divide (divide ?1006 (divide ?1004 ?1003)) ?1005)) =>= ?1006 [1006, 1005, 1004, 1003] by Super 2 with 6 at 2 Id : 673, {_}: divide ?2877 (multiply (divide ?2878 ?2879) (divide (divide (divide ?2879 ?2878) ?2880) (divide (divide ?2881 ?2882) ?2880))) =>= divide ?2877 (divide ?2882 ?2881) [2882, 2881, 2880, 2879, 2878, 2877] by Super 602 with 300 at 1,2 Id : 18343, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?89645) ?89646) ?89647) (divide ?89648 ?89649))) (multiply (inverse ?89646) ?89645)) ?89647 =?= multiply (divide ?89650 ?89651) (divide (divide (divide ?89651 ?89650) ?89652) (divide (divide ?89649 ?89648) ?89652)) [89652, 89651, 89650, 89649, 89648, 89647, 89646, 89645] by Super 3370 with 673 at 1,1,1,2 Id : 19039, {_}: divide ?92370 ?92371 =<= multiply (divide ?92372 ?92373) (divide (divide (divide ?92373 ?92372) ?92374) (divide (divide ?92371 ?92370) ?92374)) [92374, 92373, 92372, 92371, 92370] by Demod 18343 with 3370 at 2 Id : 19158, {_}: divide ?93334 ?93335 =<= multiply (multiply ?93336 ?93337) (divide (divide (divide (inverse ?93337) ?93336) ?93338) (divide (divide ?93335 ?93334) ?93338)) [93338, 93337, 93336, 93335, 93334] by Super 19039 with 3 at 1,3 Id : 2243, {_}: divide (divide (inverse (multiply (divide (divide ?10125 ?10126) ?10127) ?10128)) (divide ?10126 ?10125)) ?10127 =>= inverse ?10128 [10128, 10127, 10126, 10125] by Super 2201 with 3 at 1,1,1,2 Id : 18627, {_}: divide ?89648 ?89649 =<= multiply (divide ?89650 ?89651) (divide (divide (divide ?89651 ?89650) ?89652) (divide (divide ?89649 ?89648) ?89652)) [89652, 89651, 89650, 89649, 89648] by Demod 18343 with 3370 at 2 Id : 18986, {_}: divide (divide (inverse (divide ?91944 ?91945)) (divide ?91946 ?91947)) ?91948 =<= inverse (divide (divide (divide ?91948 (divide ?91947 ?91946)) ?91949) (divide (divide ?91945 ?91944) ?91949)) [91949, 91948, 91947, 91946, 91945, 91944] by Super 2243 with 18627 at 1,1,1,2 Id : 19370, {_}: divide (divide (divide (inverse (divide ?93677 ?93678)) (divide ?93679 ?93680)) ?93681) (divide (divide ?93680 ?93679) ?93681) =>= divide ?93678 ?93677 [93681, 93680, 93679, 93678, 93677] by Super 2 with 18986 at 1,2 Id : 33018, {_}: divide ?156119 ?156120 =<= multiply (multiply (divide ?156119 ?156120) (divide ?156121 ?156122)) (divide ?156122 ?156121) [156122, 156121, 156120, 156119] by Super 19158 with 19370 at 2,3 Id : 33087, {_}: divide (inverse (divide (divide (divide ?156646 ?156647) ?156648) (divide ?156649 ?156648))) (divide ?156647 ?156646) =?= multiply (multiply ?156649 (divide ?156650 ?156651)) (divide ?156651 ?156650) [156651, 156650, 156649, 156648, 156647, 156646] by Super 33018 with 2 at 1,1,3 Id : 33278, {_}: ?156649 =<= multiply (multiply ?156649 (divide ?156650 ?156651)) (divide ?156651 ?156650) [156651, 156650, 156649] by Demod 33087 with 2 at 2 Id : 412, {_}: inverse (divide (divide (divide ?1605 ?1606) ?1607) (divide (divide ?1608 (divide ?1606 ?1605)) ?1607)) =>= ?1608 [1608, 1607, 1606, 1605] by Super 2 with 6 at 2 Id : 433, {_}: inverse (divide (divide (divide ?1731 ?1732) (inverse ?1733)) (multiply (divide ?1734 (divide ?1732 ?1731)) ?1733)) =>= ?1734 [1734, 1733, 1732, 1731] by Super 412 with 3 at 2,1,2 Id : 477, {_}: inverse (divide (multiply (divide ?1731 ?1732) ?1733) (multiply (divide ?1734 (divide ?1732 ?1731)) ?1733)) =>= ?1734 [1734, 1733, 1732, 1731] by Demod 433 with 3 at 1,1,2 Id : 503, {_}: inverse (divide (multiply (divide ?1881 ?1882) ?1883) (multiply (divide ?1884 (divide ?1882 ?1881)) ?1883)) =>= ?1884 [1884, 1883, 1882, 1881] by Demod 433 with 3 at 1,1,2 Id : 511, {_}: inverse (divide (multiply (divide (inverse ?1933) ?1934) ?1935) (multiply (divide ?1936 (multiply ?1934 ?1933)) ?1935)) =>= ?1936 [1936, 1935, 1934, 1933] by Super 503 with 3 at 2,1,2,1,2 Id : 32469, {_}: divide (divide (inverse (divide ?153394 ?153395)) (divide ?153395 ?153394)) (inverse (divide ?153396 ?153397)) =>= inverse (divide ?153397 ?153396) [153397, 153396, 153395, 153394] by Super 18986 with 19370 at 1,3 Id : 32700, {_}: multiply (divide (inverse (divide ?153394 ?153395)) (divide ?153395 ?153394)) (divide ?153396 ?153397) =>= inverse (divide ?153397 ?153396) [153397, 153396, 153395, 153394] by Demod 32469 with 3 at 2 Id : 35765, {_}: inverse (divide (inverse (divide ?167563 ?167564)) (multiply (divide ?167565 (multiply (divide ?167566 ?167567) (divide ?167567 ?167566))) (divide ?167564 ?167563))) =>= ?167565 [167567, 167566, 167565, 167564, 167563] by Super 511 with 32700 at 1,1,2 Id : 9, {_}: divide (inverse (divide (divide (divide (inverse ?38) ?39) ?40) (divide ?41 ?40))) (multiply ?39 ?38) =>= ?41 [41, 40, 39, 38] by Super 2 with 3 at 2,2 Id : 32402, {_}: divide (inverse (divide ?152772 ?152773)) (multiply (divide ?152774 ?152775) (divide ?152773 ?152772)) =>= divide ?152775 ?152774 [152775, 152774, 152773, 152772] by Super 9 with 19370 at 1,1,2 Id : 36094, {_}: inverse (divide (multiply (divide ?167566 ?167567) (divide ?167567 ?167566)) ?167565) =>= ?167565 [167565, 167567, 167566] by Demod 35765 with 32402 at 1,2 Id : 36327, {_}: multiply (divide ?169738 (divide ?169739 ?169740)) (divide ?169739 ?169740) =>= ?169738 [169740, 169739, 169738] by Super 477 with 36094 at 2 Id : 36681, {_}: divide ?171580 (divide ?171581 ?171582) =<= multiply ?171580 (divide ?171582 ?171581) [171582, 171581, 171580] by Super 33278 with 36327 at 1,3 Id : 37087, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?173237) ?173238) ?173239) (divide ?173240 ?173241))) (multiply (inverse ?173238) ?173237)) ?173239 =>= inverse (divide ?173241 ?173240) [173241, 173240, 173239, 173238, 173237] by Super 4011 with 36681 at 1,1,1,2 Id : 37291, {_}: divide ?173240 ?173241 =<= inverse (divide ?173241 ?173240) [173241, 173240] by Demod 37087 with 3370 at 2 Id : 36954, {_}: inverse (divide (divide (divide ?167566 ?167567) (divide ?167566 ?167567)) ?167565) =>= ?167565 [167565, 167567, 167566] by Demod 36094 with 36681 at 1,1,2 Id : 37568, {_}: divide ?167565 (divide (divide ?167566 ?167567) (divide ?167566 ?167567)) =>= ?167565 [167567, 167566, 167565] by Demod 36954 with 37291 at 2 Id : 33466, {_}: ?158075 =<= multiply (multiply ?158075 (divide ?158076 ?158077)) (divide ?158077 ?158076) [158077, 158076, 158075] by Demod 33087 with 2 at 2 Id : 33531, {_}: ?158517 =<= multiply (multiply ?158517 (multiply ?158518 ?158519)) (divide (inverse ?158519) ?158518) [158519, 158518, 158517] by Super 33466 with 3 at 2,1,3 Id : 36952, {_}: ?158517 =<= divide (multiply ?158517 (multiply ?158518 ?158519)) (divide ?158518 (inverse ?158519)) [158519, 158518, 158517] by Demod 33531 with 36681 at 3 Id : 36955, {_}: ?158517 =<= divide (multiply ?158517 (multiply ?158518 ?158519)) (multiply ?158518 ?158519) [158519, 158518, 158517] by Demod 36952 with 3 at 2,3 Id : 36684, {_}: multiply (divide ?171593 (divide ?171594 ?171595)) (divide ?171594 ?171595) =>= ?171593 [171595, 171594, 171593] by Super 477 with 36094 at 2 Id : 36687, {_}: multiply (divide ?171605 (divide (inverse (divide (divide (divide ?171606 ?171607) ?171608) (divide ?171609 ?171608))) (divide ?171607 ?171606))) ?171609 =>= ?171605 [171609, 171608, 171607, 171606, 171605] by Super 36684 with 2 at 2,2 Id : 36819, {_}: multiply (divide ?171605 ?171609) ?171609 =>= ?171605 [171609, 171605] by Demod 36687 with 2 at 2,1,2 Id : 38144, {_}: ?175420 =<= divide (multiply ?175420 (multiply (divide ?175421 ?175422) ?175422)) ?175421 [175422, 175421, 175420] by Super 36955 with 36819 at 2,3 Id : 38311, {_}: ?175420 =<= divide (multiply ?175420 ?175421) ?175421 [175421, 175420] by Demod 38144 with 36819 at 2,1,3 Id : 38590, {_}: divide ?177333 (divide (divide (multiply ?177334 ?177335) ?177335) ?177334) =>= ?177333 [177335, 177334, 177333] by Super 37568 with 38311 at 2,2,2 Id : 38627, {_}: divide ?177333 (divide ?177334 ?177334) =>= ?177333 [177334, 177333] by Demod 38590 with 38311 at 1,2,2 Id : 41488, {_}: divide (divide ?193733 ?193733) ?193734 =>= inverse ?193734 [193734, 193733] by Super 37291 with 38627 at 1,3 Id : 42000, {_}: multiply (divide ?195057 ?195057) ?195058 =>= inverse (inverse ?195058) [195058, 195057] by Super 3 with 41488 at 3 Id : 38603, {_}: divide ?177417 (multiply ?177418 ?177417) =>= inverse ?177418 [177418, 177417] by Super 37291 with 38311 at 1,3 Id : 40108, {_}: divide (multiply ?188666 ?188667) ?188667 =>= inverse (inverse ?188666) [188667, 188666] by Super 37291 with 38603 at 1,3 Id : 40636, {_}: ?188666 =<= inverse (inverse ?188666) [188666] by Demod 40108 with 38311 at 2 Id : 43036, {_}: multiply (divide ?197334 ?197334) ?197335 =>= ?197335 [197335, 197334] by Demod 42000 with 40636 at 3 Id : 43063, {_}: multiply (multiply (inverse ?197470) ?197470) ?197471 =>= ?197471 [197471, 197470] by Super 43036 with 3 at 1,2 Id : 47549, {_}: a2 =?= a2 [] by Demod 1 with 43063 at 2 Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 % SZS output end CNFRefutation for GRP476-1.p 11374: solved GRP476-1.p in 30.053878 using kbo 11374: status Unsatisfiable for GRP476-1.p NO CLASH, using fixed ground order 11392: Facts: 11392: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11392: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11392: Goal: 11392: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11392: Order: 11392: nrkbo 11392: Leaf order: 11392: inverse 2 1 0 11392: divide 7 2 0 11392: c3 2 0 2 2,2 11392: multiply 5 2 4 0,2 11392: b3 2 0 2 2,1,2 11392: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 11393: Facts: 11393: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11393: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11393: Goal: 11393: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11393: Order: 11393: kbo 11393: Leaf order: 11393: inverse 2 1 0 11393: divide 7 2 0 11393: c3 2 0 2 2,2 11393: multiply 5 2 4 0,2 11393: b3 2 0 2 2,1,2 11393: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 11395: Facts: 11395: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11395: Id : 3, {_}: multiply ?7 ?8 =>= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11395: Goal: 11395: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11395: Order: 11395: lpo 11395: Leaf order: 11395: inverse 2 1 0 11395: divide 7 2 0 11395: c3 2 0 2 2,2 11395: multiply 5 2 4 0,2 11395: b3 2 0 2 2,1,2 11395: a3 2 0 2 1,1,2 Statistics : Max weight : 49 Found proof, 65.047626s % SZS status Unsatisfiable for GRP477-1.p % SZS output start CNFRefutation for GRP477-1.p Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 Id : 4, {_}: divide (inverse (divide (divide (divide ?10 ?11) ?12) (divide ?13 ?12))) (divide ?11 ?10) =>= ?13 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 Id : 5, {_}: divide (inverse (divide (divide (divide (divide ?15 ?16) (inverse (divide (divide (divide ?16 ?15) ?17) (divide ?18 ?17)))) ?19) (divide ?20 ?19))) ?18 =>= ?20 [20, 19, 18, 17, 16, 15] by Super 4 with 2 at 2,2 Id : 17, {_}: divide (inverse (divide (divide (multiply (divide ?15 ?16) (divide (divide (divide ?16 ?15) ?17) (divide ?18 ?17))) ?19) (divide ?20 ?19))) ?18 =>= ?20 [20, 19, 18, 17, 16, 15] by Demod 5 with 3 at 1,1,1,1,2 Id : 20, {_}: divide (inverse (divide (divide (divide ?80 ?81) ?82) ?83)) (divide ?81 ?80) =?= inverse (divide (divide (multiply (divide ?84 ?85) (divide (divide (divide ?85 ?84) ?86) (divide ?82 ?86))) ?87) (divide ?83 ?87)) [87, 86, 85, 84, 83, 82, 81, 80] by Super 2 with 17 at 2,1,1,2 Id : 2201, {_}: divide (divide (inverse (divide (divide (divide ?9850 ?9851) ?9852) ?9853)) (divide ?9851 ?9850)) ?9852 =>= ?9853 [9853, 9852, 9851, 9850] by Super 17 with 20 at 1,2 Id : 2216, {_}: divide (divide (inverse (divide (divide (divide (inverse ?9957) ?9958) ?9959) ?9960)) (multiply ?9958 ?9957)) ?9959 =>= ?9960 [9960, 9959, 9958, 9957] by Super 2201 with 3 at 2,1,2 Id : 2522, {_}: divide (divide (inverse (multiply (divide (divide ?11173 ?11174) ?11175) ?11176)) (divide ?11174 ?11173)) ?11175 =>= inverse ?11176 [11176, 11175, 11174, 11173] by Super 2201 with 3 at 1,1,1,2 Id : 3974, {_}: divide (divide (inverse (multiply (divide (divide (inverse ?18265) ?18266) ?18267) ?18268)) (multiply ?18266 ?18265)) ?18267 =>= inverse ?18268 [18268, 18267, 18266, 18265] by Super 2522 with 3 at 2,1,2 Id : 4011, {_}: divide (divide (inverse (multiply (divide (multiply (inverse ?18535) ?18536) ?18537) ?18538)) (multiply (inverse ?18536) ?18535)) ?18537 =>= inverse ?18538 [18538, 18537, 18536, 18535] by Super 3974 with 3 at 1,1,1,1,1,2 Id : 3335, {_}: divide (divide (inverse (divide (divide (divide (inverse ?15160) ?15161) ?15162) ?15163)) (multiply ?15161 ?15160)) ?15162 =>= ?15163 [15163, 15162, 15161, 15160] by Super 2201 with 3 at 2,1,2 Id : 3370, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?15416) ?15417) ?15418) ?15419)) (multiply (inverse ?15417) ?15416)) ?15418 =>= ?15419 [15419, 15418, 15417, 15416] by Super 3335 with 3 at 1,1,1,1,1,2 Id : 7, {_}: divide (inverse (divide (divide ?29 ?30) (divide ?31 ?30))) (divide (divide ?32 ?33) (inverse (divide (divide (divide ?33 ?32) ?34) (divide ?29 ?34)))) =>= ?31 [34, 33, 32, 31, 30, 29] by Super 4 with 2 at 1,1,1,1,2 Id : 602, {_}: divide (inverse (divide (divide ?2300 ?2301) (divide ?2302 ?2301))) (multiply (divide ?2303 ?2304) (divide (divide (divide ?2304 ?2303) ?2305) (divide ?2300 ?2305))) =>= ?2302 [2305, 2304, 2303, 2302, 2301, 2300] by Demod 7 with 3 at 2,2 Id : 6, {_}: divide (inverse (divide (divide (divide ?22 ?23) (divide ?24 ?25)) ?26)) (divide ?23 ?22) =?= inverse (divide (divide (divide ?25 ?24) ?27) (divide ?26 ?27)) [27, 26, 25, 24, 23, 22] by Super 4 with 2 at 2,1,1,2 Id : 300, {_}: inverse (divide (divide (divide ?1003 ?1004) ?1005) (divide (divide ?1006 (divide ?1004 ?1003)) ?1005)) =>= ?1006 [1006, 1005, 1004, 1003] by Super 2 with 6 at 2 Id : 673, {_}: divide ?2877 (multiply (divide ?2878 ?2879) (divide (divide (divide ?2879 ?2878) ?2880) (divide (divide ?2881 ?2882) ?2880))) =>= divide ?2877 (divide ?2882 ?2881) [2882, 2881, 2880, 2879, 2878, 2877] by Super 602 with 300 at 1,2 Id : 18343, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?89645) ?89646) ?89647) (divide ?89648 ?89649))) (multiply (inverse ?89646) ?89645)) ?89647 =?= multiply (divide ?89650 ?89651) (divide (divide (divide ?89651 ?89650) ?89652) (divide (divide ?89649 ?89648) ?89652)) [89652, 89651, 89650, 89649, 89648, 89647, 89646, 89645] by Super 3370 with 673 at 1,1,1,2 Id : 19039, {_}: divide ?92370 ?92371 =<= multiply (divide ?92372 ?92373) (divide (divide (divide ?92373 ?92372) ?92374) (divide (divide ?92371 ?92370) ?92374)) [92374, 92373, 92372, 92371, 92370] by Demod 18343 with 3370 at 2 Id : 19158, {_}: divide ?93334 ?93335 =<= multiply (multiply ?93336 ?93337) (divide (divide (divide (inverse ?93337) ?93336) ?93338) (divide (divide ?93335 ?93334) ?93338)) [93338, 93337, 93336, 93335, 93334] by Super 19039 with 3 at 1,3 Id : 2243, {_}: divide (divide (inverse (multiply (divide (divide ?10125 ?10126) ?10127) ?10128)) (divide ?10126 ?10125)) ?10127 =>= inverse ?10128 [10128, 10127, 10126, 10125] by Super 2201 with 3 at 1,1,1,2 Id : 18627, {_}: divide ?89648 ?89649 =<= multiply (divide ?89650 ?89651) (divide (divide (divide ?89651 ?89650) ?89652) (divide (divide ?89649 ?89648) ?89652)) [89652, 89651, 89650, 89649, 89648] by Demod 18343 with 3370 at 2 Id : 18986, {_}: divide (divide (inverse (divide ?91944 ?91945)) (divide ?91946 ?91947)) ?91948 =<= inverse (divide (divide (divide ?91948 (divide ?91947 ?91946)) ?91949) (divide (divide ?91945 ?91944) ?91949)) [91949, 91948, 91947, 91946, 91945, 91944] by Super 2243 with 18627 at 1,1,1,2 Id : 19370, {_}: divide (divide (divide (inverse (divide ?93677 ?93678)) (divide ?93679 ?93680)) ?93681) (divide (divide ?93680 ?93679) ?93681) =>= divide ?93678 ?93677 [93681, 93680, 93679, 93678, 93677] by Super 2 with 18986 at 1,2 Id : 33018, {_}: divide ?156119 ?156120 =<= multiply (multiply (divide ?156119 ?156120) (divide ?156121 ?156122)) (divide ?156122 ?156121) [156122, 156121, 156120, 156119] by Super 19158 with 19370 at 2,3 Id : 33087, {_}: divide (inverse (divide (divide (divide ?156646 ?156647) ?156648) (divide ?156649 ?156648))) (divide ?156647 ?156646) =?= multiply (multiply ?156649 (divide ?156650 ?156651)) (divide ?156651 ?156650) [156651, 156650, 156649, 156648, 156647, 156646] by Super 33018 with 2 at 1,1,3 Id : 33278, {_}: ?156649 =<= multiply (multiply ?156649 (divide ?156650 ?156651)) (divide ?156651 ?156650) [156651, 156650, 156649] by Demod 33087 with 2 at 2 Id : 412, {_}: inverse (divide (divide (divide ?1605 ?1606) ?1607) (divide (divide ?1608 (divide ?1606 ?1605)) ?1607)) =>= ?1608 [1608, 1607, 1606, 1605] by Super 2 with 6 at 2 Id : 433, {_}: inverse (divide (divide (divide ?1731 ?1732) (inverse ?1733)) (multiply (divide ?1734 (divide ?1732 ?1731)) ?1733)) =>= ?1734 [1734, 1733, 1732, 1731] by Super 412 with 3 at 2,1,2 Id : 477, {_}: inverse (divide (multiply (divide ?1731 ?1732) ?1733) (multiply (divide ?1734 (divide ?1732 ?1731)) ?1733)) =>= ?1734 [1734, 1733, 1732, 1731] by Demod 433 with 3 at 1,1,2 Id : 503, {_}: inverse (divide (multiply (divide ?1881 ?1882) ?1883) (multiply (divide ?1884 (divide ?1882 ?1881)) ?1883)) =>= ?1884 [1884, 1883, 1882, 1881] by Demod 433 with 3 at 1,1,2 Id : 511, {_}: inverse (divide (multiply (divide (inverse ?1933) ?1934) ?1935) (multiply (divide ?1936 (multiply ?1934 ?1933)) ?1935)) =>= ?1936 [1936, 1935, 1934, 1933] by Super 503 with 3 at 2,1,2,1,2 Id : 32469, {_}: divide (divide (inverse (divide ?153394 ?153395)) (divide ?153395 ?153394)) (inverse (divide ?153396 ?153397)) =>= inverse (divide ?153397 ?153396) [153397, 153396, 153395, 153394] by Super 18986 with 19370 at 1,3 Id : 32700, {_}: multiply (divide (inverse (divide ?153394 ?153395)) (divide ?153395 ?153394)) (divide ?153396 ?153397) =>= inverse (divide ?153397 ?153396) [153397, 153396, 153395, 153394] by Demod 32469 with 3 at 2 Id : 35765, {_}: inverse (divide (inverse (divide ?167563 ?167564)) (multiply (divide ?167565 (multiply (divide ?167566 ?167567) (divide ?167567 ?167566))) (divide ?167564 ?167563))) =>= ?167565 [167567, 167566, 167565, 167564, 167563] by Super 511 with 32700 at 1,1,2 Id : 9, {_}: divide (inverse (divide (divide (divide (inverse ?38) ?39) ?40) (divide ?41 ?40))) (multiply ?39 ?38) =>= ?41 [41, 40, 39, 38] by Super 2 with 3 at 2,2 Id : 32402, {_}: divide (inverse (divide ?152772 ?152773)) (multiply (divide ?152774 ?152775) (divide ?152773 ?152772)) =>= divide ?152775 ?152774 [152775, 152774, 152773, 152772] by Super 9 with 19370 at 1,1,2 Id : 36094, {_}: inverse (divide (multiply (divide ?167566 ?167567) (divide ?167567 ?167566)) ?167565) =>= ?167565 [167565, 167567, 167566] by Demod 35765 with 32402 at 1,2 Id : 36327, {_}: multiply (divide ?169738 (divide ?169739 ?169740)) (divide ?169739 ?169740) =>= ?169738 [169740, 169739, 169738] by Super 477 with 36094 at 2 Id : 36681, {_}: divide ?171580 (divide ?171581 ?171582) =<= multiply ?171580 (divide ?171582 ?171581) [171582, 171581, 171580] by Super 33278 with 36327 at 1,3 Id : 37087, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?173237) ?173238) ?173239) (divide ?173240 ?173241))) (multiply (inverse ?173238) ?173237)) ?173239 =>= inverse (divide ?173241 ?173240) [173241, 173240, 173239, 173238, 173237] by Super 4011 with 36681 at 1,1,1,2 Id : 37291, {_}: divide ?173240 ?173241 =<= inverse (divide ?173241 ?173240) [173241, 173240] by Demod 37087 with 3370 at 2 Id : 37631, {_}: divide (divide (divide ?9960 (divide (divide (inverse ?9957) ?9958) ?9959)) (multiply ?9958 ?9957)) ?9959 =>= ?9960 [9959, 9958, 9957, 9960] by Demod 2216 with 37291 at 1,1,2 Id : 37745, {_}: divide ?174363 ?174364 =<= inverse (divide ?174364 ?174363) [174364, 174363] by Demod 37087 with 3370 at 2 Id : 37810, {_}: divide (inverse ?174753) ?174754 =>= inverse (multiply ?174754 ?174753) [174754, 174753] by Super 37745 with 3 at 1,3 Id : 38028, {_}: divide (divide (divide ?9960 (divide (inverse (multiply ?9958 ?9957)) ?9959)) (multiply ?9958 ?9957)) ?9959 =>= ?9960 [9959, 9957, 9958, 9960] by Demod 37631 with 37810 at 1,2,1,1,2 Id : 38029, {_}: divide (divide (divide ?9960 (inverse (multiply ?9959 (multiply ?9958 ?9957)))) (multiply ?9958 ?9957)) ?9959 =>= ?9960 [9957, 9958, 9959, 9960] by Demod 38028 with 37810 at 2,1,1,2 Id : 38096, {_}: divide (divide (multiply ?9960 (multiply ?9959 (multiply ?9958 ?9957))) (multiply ?9958 ?9957)) ?9959 =>= ?9960 [9957, 9958, 9959, 9960] by Demod 38029 with 3 at 1,1,2 Id : 36684, {_}: multiply (divide ?171593 (divide ?171594 ?171595)) (divide ?171594 ?171595) =>= ?171593 [171595, 171594, 171593] by Super 477 with 36094 at 2 Id : 36687, {_}: multiply (divide ?171605 (divide (inverse (divide (divide (divide ?171606 ?171607) ?171608) (divide ?171609 ?171608))) (divide ?171607 ?171606))) ?171609 =>= ?171605 [171609, 171608, 171607, 171606, 171605] by Super 36684 with 2 at 2,2 Id : 36819, {_}: multiply (divide ?171605 ?171609) ?171609 =>= ?171605 [171609, 171605] by Demod 36687 with 2 at 2,1,2 Id : 51854, {_}: divide (divide ?212601 (multiply ?212602 ?212603)) ?212604 =>= divide ?212601 (multiply ?212604 (multiply ?212602 ?212603)) [212604, 212603, 212602, 212601] by Super 38096 with 36819 at 1,1,2 Id : 18, {_}: multiply (inverse (divide (divide (multiply (divide ?64 ?65) (divide (divide (divide ?65 ?64) ?66) (divide (inverse ?67) ?66))) ?68) (divide ?69 ?68))) ?67 =>= ?69 [69, 68, 67, 66, 65, 64] by Super 3 with 17 at 3 Id : 1822, {_}: multiply (divide (inverse (divide (divide (divide ?7521 ?7522) (inverse ?7523)) ?7524)) (divide ?7522 ?7521)) ?7523 =>= ?7524 [7524, 7523, 7522, 7521] by Super 18 with 20 at 1,2 Id : 2348, {_}: multiply (divide (inverse (divide (multiply (divide ?10333 ?10334) ?10335) ?10336)) (divide ?10334 ?10333)) ?10335 =>= ?10336 [10336, 10335, 10334, 10333] by Demod 1822 with 3 at 1,1,1,1,2 Id : 2690, {_}: multiply (divide (inverse (multiply (multiply (divide ?11645 ?11646) ?11647) ?11648)) (divide ?11646 ?11645)) ?11647 =>= inverse ?11648 [11648, 11647, 11646, 11645] by Super 2348 with 3 at 1,1,1,2 Id : 2723, {_}: multiply (divide (inverse (multiply (multiply (multiply ?11878 ?11879) ?11880) ?11881)) (divide (inverse ?11879) ?11878)) ?11880 =>= inverse ?11881 [11881, 11880, 11879, 11878] by Super 2690 with 3 at 1,1,1,1,1,2 Id : 38038, {_}: multiply (inverse (multiply (divide (inverse ?11879) ?11878) (multiply (multiply (multiply ?11878 ?11879) ?11880) ?11881))) ?11880 =>= inverse ?11881 [11881, 11880, 11878, 11879] by Demod 2723 with 37810 at 1,2 Id : 38039, {_}: multiply (inverse (multiply (inverse (multiply ?11878 ?11879)) (multiply (multiply (multiply ?11878 ?11879) ?11880) ?11881))) ?11880 =>= inverse ?11881 [11881, 11880, 11879, 11878] by Demod 38038 with 37810 at 1,1,1,2 Id : 38184, {_}: multiply (inverse ?175473) ?175474 =<= inverse (multiply (inverse ?175474) ?175473) [175474, 175473] by Super 3 with 37810 at 3 Id : 38716, {_}: multiply (multiply (inverse (multiply (multiply (multiply ?11878 ?11879) ?11880) ?11881)) (multiply ?11878 ?11879)) ?11880 =>= inverse ?11881 [11881, 11880, 11879, 11878] by Demod 38039 with 38184 at 1,2 Id : 51866, {_}: divide (divide ?212677 (inverse ?212678)) ?212679 =<= divide ?212677 (multiply ?212679 (multiply (multiply (inverse (multiply (multiply (multiply ?212680 ?212681) ?212682) ?212678)) (multiply ?212680 ?212681)) ?212682)) [212682, 212681, 212680, 212679, 212678, 212677] by Super 51854 with 38716 at 2,1,2 Id : 52301, {_}: divide (multiply ?212677 ?212678) ?212679 =<= divide ?212677 (multiply ?212679 (multiply (multiply (inverse (multiply (multiply (multiply ?212680 ?212681) ?212682) ?212678)) (multiply ?212680 ?212681)) ?212682)) [212682, 212681, 212680, 212679, 212678, 212677] by Demod 51866 with 3 at 1,2 Id : 52302, {_}: divide (multiply ?212677 ?212678) ?212679 =<= divide ?212677 (multiply ?212679 (inverse ?212678)) [212679, 212678, 212677] by Demod 52301 with 38716 at 2,2,3 Id : 38247, {_}: divide ?175863 (inverse ?175864) =<= inverse (inverse (multiply ?175863 ?175864)) [175864, 175863] by Super 37291 with 37810 at 1,3 Id : 38843, {_}: multiply ?176435 ?176436 =<= inverse (inverse (multiply ?176435 ?176436)) [176436, 176435] by Demod 38247 with 3 at 2 Id : 3670, {_}: multiply (divide (inverse (divide (multiply (divide (inverse ?16718) ?16719) ?16720) ?16721)) (multiply ?16719 ?16718)) ?16720 =>= ?16721 [16721, 16720, 16719, 16718] by Super 2348 with 3 at 2,1,2 Id : 3706, {_}: multiply (divide (inverse (divide (multiply (multiply (inverse ?16981) ?16982) ?16983) ?16984)) (multiply (inverse ?16982) ?16981)) ?16983 =>= ?16984 [16984, 16983, 16982, 16981] by Super 3670 with 3 at 1,1,1,1,1,2 Id : 37609, {_}: multiply (divide (divide ?16984 (multiply (multiply (inverse ?16981) ?16982) ?16983)) (multiply (inverse ?16982) ?16981)) ?16983 =>= ?16984 [16983, 16982, 16981, 16984] by Demod 3706 with 37291 at 1,1,2 Id : 38847, {_}: multiply (divide (divide ?176447 (multiply (multiply (inverse ?176448) ?176449) ?176450)) (multiply (inverse ?176449) ?176448)) ?176450 =>= inverse (inverse ?176447) [176450, 176449, 176448, 176447] by Super 38843 with 37609 at 1,1,3 Id : 38880, {_}: ?176447 =<= inverse (inverse ?176447) [176447] by Demod 38847 with 37609 at 2 Id : 40331, {_}: multiply ?187278 (inverse ?187279) =>= divide ?187278 ?187279 [187279, 187278] by Super 3 with 38880 at 2,3 Id : 52303, {_}: divide (multiply ?212677 ?212678) ?212679 =>= divide ?212677 (divide ?212679 ?212678) [212679, 212678, 212677] by Demod 52302 with 40331 at 2,3 Id : 53261, {_}: multiply (multiply ?214472 ?214473) ?214474 =<= divide ?214472 (divide (inverse ?214474) ?214473) [214474, 214473, 214472] by Super 3 with 52303 at 3 Id : 53437, {_}: multiply (multiply ?214472 ?214473) ?214474 =<= divide ?214472 (inverse (multiply ?214473 ?214474)) [214474, 214473, 214472] by Demod 53261 with 37810 at 2,3 Id : 53438, {_}: multiply (multiply ?214472 ?214473) ?214474 =>= multiply ?214472 (multiply ?214473 ?214474) [214474, 214473, 214472] by Demod 53437 with 3 at 3 Id : 53834, {_}: multiply a3 (multiply b3 c3) =?= multiply a3 (multiply b3 c3) [] by Demod 1 with 53438 at 2 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 % SZS output end CNFRefutation for GRP477-1.p 11393: solved GRP477-1.p in 32.410025 using kbo 11393: status Unsatisfiable for GRP477-1.p NO CLASH, using fixed ground order 11411: Facts: 11411: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5)))) ?5 =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11411: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11411: Goal: 11411: Id : 1, {_}: multiply (inverse a1) a1 =>= multiply (inverse b1) b1 [] by prove_these_axioms_1 11411: Order: 11411: nrkbo 11411: Leaf order: 11411: divide 7 2 0 11411: b1 2 0 2 1,1,3 11411: multiply 3 2 2 0,2 11411: inverse 4 1 2 0,1,2 11411: a1 2 0 2 1,1,2 NO CLASH, using fixed ground order 11412: Facts: 11412: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5)))) ?5 =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11412: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11412: Goal: 11412: Id : 1, {_}: multiply (inverse a1) a1 =>= multiply (inverse b1) b1 [] by prove_these_axioms_1 11412: Order: 11412: kbo 11412: Leaf order: 11412: divide 7 2 0 11412: b1 2 0 2 1,1,3 11412: multiply 3 2 2 0,2 11412: inverse 4 1 2 0,1,2 11412: a1 2 0 2 1,1,2 NO CLASH, using fixed ground order 11413: Facts: 11413: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5)))) ?5 =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11413: Id : 3, {_}: multiply ?7 ?8 =?= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11413: Goal: 11413: Id : 1, {_}: multiply (inverse a1) a1 =>= multiply (inverse b1) b1 [] by prove_these_axioms_1 11413: Order: 11413: lpo 11413: Leaf order: 11413: divide 7 2 0 11413: b1 2 0 2 1,1,3 11413: multiply 3 2 2 0,2 11413: inverse 4 1 2 0,1,2 11413: a1 2 0 2 1,1,2 % SZS status Timeout for GRP478-1.p NO CLASH, using fixed ground order 11446: Facts: 11446: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5)))) ?5 =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11446: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11446: Goal: 11446: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11446: Order: 11446: nrkbo 11446: Leaf order: 11446: divide 7 2 0 11446: a2 2 0 2 2,2 11446: multiply 3 2 2 0,2 11446: inverse 3 1 1 0,1,1,2 11446: b2 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 11447: Facts: 11447: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5)))) ?5 =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11447: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11447: Goal: 11447: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11447: Order: 11447: kbo 11447: Leaf order: 11447: divide 7 2 0 11447: a2 2 0 2 2,2 11447: multiply 3 2 2 0,2 11447: inverse 3 1 1 0,1,1,2 11447: b2 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 11448: Facts: 11448: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5)))) ?5 =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11448: Id : 3, {_}: multiply ?7 ?8 =?= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11448: Goal: 11448: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 11448: Order: 11448: lpo 11448: Leaf order: 11448: divide 7 2 0 11448: a2 2 0 2 2,2 11448: multiply 3 2 2 0,2 11448: inverse 3 1 1 0,1,1,2 11448: b2 2 0 2 1,1,1,2 % SZS status Timeout for GRP479-1.p NO CLASH, using fixed ground order 11491: Facts: NO CLASH, using fixed ground order 11492: Facts: 11492: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5)))) ?5 =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11492: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11492: Goal: 11492: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11492: Order: 11492: kbo 11492: Leaf order: 11492: inverse 2 1 0 11492: divide 7 2 0 11492: c3 2 0 2 2,2 11492: multiply 5 2 4 0,2 11492: b3 2 0 2 2,1,2 11492: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 11493: Facts: 11493: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5)))) ?5 =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11493: Id : 3, {_}: multiply ?7 ?8 =>= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11493: Goal: 11493: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11493: Order: 11493: lpo 11493: Leaf order: 11493: inverse 2 1 0 11493: divide 7 2 0 11493: c3 2 0 2 2,2 11493: multiply 5 2 4 0,2 11493: b3 2 0 2 2,1,2 11493: a3 2 0 2 1,1,2 11491: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5)))) ?5 =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 11491: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 11491: Goal: 11491: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 11491: Order: 11491: nrkbo 11491: Leaf order: 11491: inverse 2 1 0 11491: divide 7 2 0 11491: c3 2 0 2 2,2 11491: multiply 5 2 4 0,2 11491: b3 2 0 2 2,1,2 11491: a3 2 0 2 1,1,2 Statistics : Max weight : 78 Found proof, 69.885629s % SZS status Unsatisfiable for GRP480-1.p % SZS output start CNFRefutation for GRP480-1.p Id : 4, {_}: divide (inverse (divide (divide (divide ?10 ?10) ?11) (divide ?12 (divide ?11 ?13)))) ?13 =>= ?12 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5)))) ?5 =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 Id : 8, {_}: divide (inverse (divide (divide (divide ?31 ?31) ?32) (divide ?33 (multiply ?32 ?34)))) (inverse ?34) =>= ?33 [34, 33, 32, 31] by Super 2 with 3 at 2,2,1,1,2 Id : 44, {_}: multiply (inverse (divide (divide (divide ?198 ?198) ?199) (divide ?200 (multiply ?199 ?201)))) ?201 =>= ?200 [201, 200, 199, 198] by Demod 8 with 3 at 2 Id : 46, {_}: multiply (inverse (divide (divide (divide ?210 ?210) ?211) ?212)) ?213 =?= inverse (divide (divide (divide ?214 ?214) ?215) (divide ?212 (divide ?215 (multiply ?211 ?213)))) [215, 214, 213, 212, 211, 210] by Super 44 with 2 at 2,1,1,2 Id : 5, {_}: divide (inverse (divide (divide (divide ?15 ?15) (inverse (divide (divide (divide ?16 ?16) ?17) (divide ?18 (divide ?17 ?19))))) (divide ?20 ?18))) ?19 =>= ?20 [20, 19, 18, 17, 16, 15] by Super 4 with 2 at 2,2,1,1,2 Id : 22, {_}: divide (inverse (divide (multiply (divide ?87 ?87) (divide (divide (divide ?88 ?88) ?89) (divide ?90 (divide ?89 ?91)))) (divide ?92 ?90))) ?91 =>= ?92 [92, 91, 90, 89, 88, 87] by Demod 5 with 3 at 1,1,1,2 Id : 18, {_}: divide (inverse (divide (multiply (divide ?15 ?15) (divide (divide (divide ?16 ?16) ?17) (divide ?18 (divide ?17 ?19)))) (divide ?20 ?18))) ?19 =>= ?20 [20, 19, 18, 17, 16, 15] by Demod 5 with 3 at 1,1,1,2 Id : 30, {_}: divide (inverse (divide (multiply (divide ?157 ?157) (divide (divide (divide ?158 ?158) ?159) ?160)) (divide ?161 (inverse (divide (multiply (divide ?162 ?162) (divide (divide (divide ?163 ?163) ?164) (divide ?165 (divide ?164 (divide ?159 ?166))))) (divide ?160 ?165)))))) ?166 =>= ?161 [166, 165, 164, 163, 162, 161, 160, 159, 158, 157] by Super 22 with 18 at 2,2,1,1,1,2 Id : 42, {_}: divide (inverse (divide (multiply (divide ?157 ?157) (divide (divide (divide ?158 ?158) ?159) ?160)) (multiply ?161 (divide (multiply (divide ?162 ?162) (divide (divide (divide ?163 ?163) ?164) (divide ?165 (divide ?164 (divide ?159 ?166))))) (divide ?160 ?165))))) ?166 =>= ?161 [166, 165, 164, 163, 162, 161, 160, 159, 158, 157] by Demod 30 with 3 at 2,1,1,2 Id : 6, {_}: divide (inverse (divide (divide (divide ?22 ?22) ?23) ?24)) ?25 =?= inverse (divide (divide (divide ?26 ?26) ?27) (divide ?24 (divide ?27 (divide ?23 ?25)))) [27, 26, 25, 24, 23, 22] by Super 4 with 2 at 2,1,1,2 Id : 202, {_}: divide (divide (inverse (divide (divide (divide ?974 ?974) ?975) ?976)) ?977) (divide ?975 ?977) =>= ?976 [977, 976, 975, 974] by Super 2 with 6 at 1,2 Id : 208, {_}: divide (divide (inverse (divide (divide (divide ?1018 ?1018) ?1019) ?1020)) (inverse ?1021)) (multiply ?1019 ?1021) =>= ?1020 [1021, 1020, 1019, 1018] by Super 202 with 3 at 2,2 Id : 372, {_}: divide (multiply (inverse (divide (divide (divide ?1664 ?1664) ?1665) ?1666)) ?1667) (multiply ?1665 ?1667) =>= ?1666 [1667, 1666, 1665, 1664] by Demod 208 with 3 at 1,2 Id : 378, {_}: divide (multiply (inverse (divide (multiply (divide ?1702 ?1702) ?1703) ?1704)) ?1705) (multiply (inverse ?1703) ?1705) =>= ?1704 [1705, 1704, 1703, 1702] by Super 372 with 3 at 1,1,1,1,2 Id : 15, {_}: multiply (inverse (divide (divide (divide ?31 ?31) ?32) (divide ?33 (multiply ?32 ?34)))) ?34 =>= ?33 [34, 33, 32, 31] by Demod 8 with 3 at 2 Id : 86, {_}: divide (divide (inverse (divide (divide (divide ?404 ?404) ?405) ?406)) ?407) (divide ?405 ?407) =>= ?406 [407, 406, 405, 404] by Super 2 with 6 at 1,2 Id : 193, {_}: multiply (inverse (divide ?902 (divide ?903 (multiply (divide ?904 (inverse (divide (divide (divide ?905 ?905) ?904) ?902))) ?906)))) ?906 =>= ?903 [906, 905, 904, 903, 902] by Super 15 with 86 at 1,1,1,2 Id : 223, {_}: multiply (inverse (divide ?902 (divide ?903 (multiply (multiply ?904 (divide (divide (divide ?905 ?905) ?904) ?902)) ?906)))) ?906 =>= ?903 [906, 905, 904, 903, 902] by Demod 193 with 3 at 1,2,2,1,1,2 Id : 88082, {_}: divide ?485240 (multiply (inverse ?485241) ?485242) =<= divide ?485240 (multiply (multiply ?485243 (divide (divide (divide ?485244 ?485244) ?485243) (multiply (divide ?485245 ?485245) ?485241))) ?485242) [485245, 485244, 485243, 485242, 485241, 485240] by Super 378 with 223 at 1,2 Id : 89234, {_}: divide (inverse (divide (multiply (divide ?494319 ?494319) (divide (divide (divide ?494320 ?494320) ?494321) ?494322)) (multiply (inverse ?494323) (divide (multiply (divide ?494324 ?494324) (divide (divide (divide ?494325 ?494325) ?494326) (divide ?494327 (divide ?494326 (divide ?494321 ?494328))))) (divide ?494322 ?494327))))) ?494328 =?= multiply ?494329 (divide (divide (divide ?494330 ?494330) ?494329) (multiply (divide ?494331 ?494331) ?494323)) [494331, 494330, 494329, 494328, 494327, 494326, 494325, 494324, 494323, 494322, 494321, 494320, 494319] by Super 42 with 88082 at 1,1,2 Id : 89554, {_}: inverse ?494323 =<= multiply ?494329 (divide (divide (divide ?494330 ?494330) ?494329) (multiply (divide ?494331 ?494331) ?494323)) [494331, 494330, 494329, 494323] by Demod 89234 with 42 at 2 Id : 23, {_}: divide (inverse (divide (multiply (divide ?94 ?94) (divide (divide (divide ?95 ?95) ?96) (divide ?97 (divide ?96 ?98)))) ?99)) ?98 =?= inverse (divide (divide (divide ?100 ?100) ?101) (divide ?99 (divide ?101 ?97))) [101, 100, 99, 98, 97, 96, 95, 94] by Super 22 with 2 at 2,1,1,2 Id : 1304, {_}: inverse (divide (divide (divide ?6515 ?6515) ?6516) (divide (divide ?6517 ?6518) (divide ?6516 ?6518))) =>= ?6517 [6518, 6517, 6516, 6515] by Super 18 with 23 at 2 Id : 2998, {_}: inverse (divide (divide (multiply (inverse ?16319) ?16319) ?16320) (divide (divide ?16321 ?16322) (divide ?16320 ?16322))) =>= ?16321 [16322, 16321, 16320, 16319] by Super 1304 with 3 at 1,1,1,2 Id : 3072, {_}: inverse (divide (multiply (multiply (inverse ?16865) ?16865) ?16866) (divide (divide ?16867 ?16868) (divide (inverse ?16866) ?16868))) =>= ?16867 [16868, 16867, 16866, 16865] by Super 2998 with 3 at 1,1,2 Id : 1319, {_}: inverse (divide (divide (divide ?6630 ?6630) ?6631) (divide (divide ?6632 (inverse ?6633)) (multiply ?6631 ?6633))) =>= ?6632 [6633, 6632, 6631, 6630] by Super 1304 with 3 at 2,2,1,2 Id : 1369, {_}: inverse (divide (divide (divide ?6630 ?6630) ?6631) (divide (multiply ?6632 ?6633) (multiply ?6631 ?6633))) =>= ?6632 [6633, 6632, 6631, 6630] by Demod 1319 with 3 at 1,2,1,2 Id : 1389, {_}: multiply ?6881 (divide (divide (divide ?6882 ?6882) ?6883) (divide (multiply ?6884 ?6885) (multiply ?6883 ?6885))) =>= divide ?6881 ?6884 [6885, 6884, 6883, 6882, 6881] by Super 3 with 1369 at 2,3 Id : 90512, {_}: multiply (inverse (divide ?497368 (divide ?497369 (inverse ?497370)))) (divide (divide (divide ?497371 ?497371) (multiply ?497372 (divide (divide (divide ?497373 ?497373) ?497372) ?497368))) (multiply (divide ?497374 ?497374) ?497370)) =>= ?497369 [497374, 497373, 497372, 497371, 497370, 497369, 497368] by Super 223 with 89554 at 2,2,1,1,2 Id : 196, {_}: divide (inverse (divide (divide (divide ?925 ?925) ?926) (divide (inverse (divide (divide (divide ?927 ?927) ?928) ?929)) (divide ?926 ?930)))) ?930 =?= inverse (divide (divide (divide ?931 ?931) ?928) ?929) [931, 930, 929, 928, 927, 926, 925] by Super 6 with 86 at 2,1,3 Id : 6409, {_}: inverse (divide (divide (divide ?34204 ?34204) ?34205) ?34206) =?= inverse (divide (divide (divide ?34207 ?34207) ?34205) ?34206) [34207, 34206, 34205, 34204] by Demod 196 with 2 at 2 Id : 6420, {_}: inverse (divide (divide (divide ?34278 ?34278) (divide ?34279 (inverse (divide (divide (divide ?34280 ?34280) ?34279) ?34281)))) ?34282) =>= inverse (divide ?34281 ?34282) [34282, 34281, 34280, 34279, 34278] by Super 6409 with 86 at 1,1,3 Id : 6497, {_}: inverse (divide (divide (divide ?34278 ?34278) (multiply ?34279 (divide (divide (divide ?34280 ?34280) ?34279) ?34281))) ?34282) =>= inverse (divide ?34281 ?34282) [34282, 34281, 34280, 34279, 34278] by Demod 6420 with 3 at 2,1,1,2 Id : 28325, {_}: multiply ?153090 (divide (divide (divide ?153091 ?153091) (multiply ?153092 (divide (divide (divide ?153093 ?153093) ?153092) ?153094))) ?153095) =>= divide ?153090 (inverse (divide ?153094 ?153095)) [153095, 153094, 153093, 153092, 153091, 153090] by Super 3 with 6497 at 2,3 Id : 28522, {_}: multiply ?153090 (divide (divide (divide ?153091 ?153091) (multiply ?153092 (divide (divide (divide ?153093 ?153093) ?153092) ?153094))) ?153095) =>= multiply ?153090 (divide ?153094 ?153095) [153095, 153094, 153093, 153092, 153091, 153090] by Demod 28325 with 3 at 3 Id : 91190, {_}: multiply (inverse (divide ?497368 (divide ?497369 (inverse ?497370)))) (divide ?497368 (multiply (divide ?497374 ?497374) ?497370)) =>= ?497369 [497374, 497370, 497369, 497368] by Demod 90512 with 28522 at 2 Id : 91665, {_}: multiply (inverse (divide ?503116 (multiply ?503117 ?503118))) (divide ?503116 (multiply (divide ?503119 ?503119) ?503118)) =>= ?503117 [503119, 503118, 503117, 503116] by Demod 91190 with 3 at 2,1,1,2 Id : 231, {_}: divide (multiply (inverse (divide (divide (divide ?1018 ?1018) ?1019) ?1020)) ?1021) (multiply ?1019 ?1021) =>= ?1020 [1021, 1020, 1019, 1018] by Demod 208 with 3 at 1,2 Id : 1057, {_}: inverse (divide (divide (divide ?5280 ?5280) ?5281) (divide (divide ?5282 ?5283) (divide ?5281 ?5283))) =>= ?5282 [5283, 5282, 5281, 5280] by Super 18 with 23 at 2 Id : 1292, {_}: divide (divide ?6440 ?6441) (divide ?6442 ?6441) =?= divide (divide ?6440 ?6443) (divide ?6442 ?6443) [6443, 6442, 6441, 6440] by Super 86 with 1057 at 1,1,2 Id : 2334, {_}: divide (multiply (inverse (divide (divide (divide ?12626 ?12626) ?12627) (divide ?12628 ?12627))) ?12629) (multiply ?12630 ?12629) =>= divide ?12628 ?12630 [12630, 12629, 12628, 12627, 12626] by Super 231 with 1292 at 1,1,1,2 Id : 91784, {_}: multiply (inverse (divide (multiply (inverse (divide (divide (divide ?504066 ?504066) ?504067) (divide ?504068 ?504067))) ?504069) (multiply ?504070 ?504069))) (divide ?504068 (divide ?504071 ?504071)) =>= ?504070 [504071, 504070, 504069, 504068, 504067, 504066] by Super 91665 with 2334 at 2,2 Id : 92186, {_}: multiply (inverse (divide ?504068 ?504070)) (divide ?504068 (divide ?504071 ?504071)) =>= ?504070 [504071, 504070, 504068] by Demod 91784 with 2334 at 1,1,2 Id : 92346, {_}: ?505751 =<= divide (inverse (divide (divide (divide ?505752 ?505752) ?505753) ?505751)) ?505753 [505753, 505752, 505751] by Super 1389 with 92186 at 2 Id : 93111, {_}: divide ?509269 (divide ?509270 ?509270) =>= ?509269 [509270, 509269] by Super 2 with 92346 at 2 Id : 100321, {_}: inverse (multiply (multiply (inverse ?535124) ?535124) ?535125) =>= inverse ?535125 [535125, 535124] by Super 3072 with 93111 at 1,2 Id : 100420, {_}: inverse (inverse ?535740) =<= inverse (divide (divide (divide ?535741 ?535741) (multiply (inverse ?535742) ?535742)) (multiply (divide ?535743 ?535743) ?535740)) [535743, 535742, 535741, 535740] by Super 100321 with 89554 at 1,2 Id : 94282, {_}: divide ?515515 (divide ?515516 ?515516) =>= ?515515 [515516, 515515] by Super 2 with 92346 at 2 Id : 94361, {_}: divide ?515973 (multiply (inverse ?515974) ?515974) =>= ?515973 [515974, 515973] by Super 94282 with 3 at 2,2 Id : 100488, {_}: inverse (inverse ?535740) =<= inverse (divide (divide ?535741 ?535741) (multiply (divide ?535743 ?535743) ?535740)) [535743, 535741, 535740] by Demod 100420 with 94361 at 1,1,3 Id : 93886, {_}: inverse (divide (divide ?513000 ?513000) ?513001) =>= ?513001 [513001, 513000] by Super 1369 with 93111 at 1,2 Id : 100489, {_}: inverse (inverse ?535740) =<= multiply (divide ?535743 ?535743) ?535740 [535743, 535740] by Demod 100488 with 93886 at 3 Id : 100491, {_}: inverse ?494323 =<= multiply ?494329 (divide (divide (divide ?494330 ?494330) ?494329) (inverse (inverse ?494323))) [494330, 494329, 494323] by Demod 89554 with 100489 at 2,2,3 Id : 100612, {_}: inverse ?494323 =<= multiply ?494329 (multiply (divide (divide ?494330 ?494330) ?494329) (inverse ?494323)) [494330, 494329, 494323] by Demod 100491 with 3 at 2,3 Id : 1348, {_}: inverse (divide (multiply (divide ?6830 ?6830) ?6831) (divide (divide ?6832 ?6833) (divide (inverse ?6831) ?6833))) =>= ?6832 [6833, 6832, 6831, 6830] by Super 1304 with 3 at 1,1,2 Id : 3107, {_}: multiply ?16917 (divide (multiply (divide ?16918 ?16918) ?16919) (divide (divide ?16920 ?16921) (divide (inverse ?16919) ?16921))) =>= divide ?16917 ?16920 [16921, 16920, 16919, 16918, 16917] by Super 3 with 1348 at 2,3 Id : 100541, {_}: multiply ?16917 (divide (inverse (inverse ?16919)) (divide (divide ?16920 ?16921) (divide (inverse ?16919) ?16921))) =>= divide ?16917 ?16920 [16921, 16920, 16919, 16917] by Demod 3107 with 100489 at 1,2,2 Id : 100747, {_}: inverse (inverse (divide (inverse (inverse ?536517)) (divide (divide ?536518 ?536519) (divide (inverse ?536517) ?536519)))) =?= divide (divide ?536520 ?536520) ?536518 [536520, 536519, 536518, 536517] by Super 100541 with 100489 at 2 Id : 100526, {_}: inverse (divide (inverse (inverse ?6831)) (divide (divide ?6832 ?6833) (divide (inverse ?6831) ?6833))) =>= ?6832 [6833, 6832, 6831] by Demod 1348 with 100489 at 1,1,2 Id : 100849, {_}: inverse ?536518 =<= divide (divide ?536520 ?536520) ?536518 [536520, 536518] by Demod 100747 with 100526 at 1,2 Id : 101341, {_}: inverse ?494323 =<= multiply ?494329 (multiply (inverse ?494329) (inverse ?494323)) [494329, 494323] by Demod 100612 with 100849 at 1,2,3 Id : 101328, {_}: inverse (inverse ?513001) =>= ?513001 [513001] by Demod 93886 with 100849 at 1,2 Id : 101357, {_}: multiply ?16917 (divide ?16919 (divide (divide ?16920 ?16921) (divide (inverse ?16919) ?16921))) =>= divide ?16917 ?16920 [16921, 16920, 16919, 16917] by Demod 100541 with 101328 at 1,2,2 Id : 210, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?1032) ?1032) ?1033) ?1034)) ?1035) (divide ?1033 ?1035) =>= ?1034 [1035, 1034, 1033, 1032] by Super 202 with 3 at 1,1,1,1,1,2 Id : 2224, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?11772) ?11772) ?11773) (divide ?11774 ?11773))) ?11775) (divide ?11776 ?11775) =>= divide ?11774 ?11776 [11776, 11775, 11774, 11773, 11772] by Super 210 with 1292 at 1,1,1,2 Id : 778, {_}: divide (inverse (divide (divide (divide ?3892 ?3892) ?3893) (divide (inverse (divide (divide (multiply (inverse ?3894) ?3894) ?3895) ?3896)) (divide ?3893 ?3897)))) ?3897 =?= inverse (divide (divide (divide ?3898 ?3898) ?3895) ?3896) [3898, 3897, 3896, 3895, 3894, 3893, 3892] by Super 6 with 210 at 2,1,3 Id : 811, {_}: inverse (divide (divide (multiply (inverse ?3894) ?3894) ?3895) ?3896) =?= inverse (divide (divide (divide ?3898 ?3898) ?3895) ?3896) [3898, 3896, 3895, 3894] by Demod 778 with 2 at 2 Id : 101312, {_}: inverse (divide (divide (multiply (inverse ?3894) ?3894) ?3895) ?3896) =>= inverse (divide (inverse ?3895) ?3896) [3896, 3895, 3894] by Demod 811 with 100849 at 1,1,3 Id : 101430, {_}: divide (divide (inverse (divide (inverse ?11773) (divide ?11774 ?11773))) ?11775) (divide ?11776 ?11775) =>= divide ?11774 ?11776 [11776, 11775, 11774, 11773] by Demod 2224 with 101312 at 1,1,2 Id : 375, {_}: divide (multiply (inverse (divide (divide (multiply (inverse ?1685) ?1685) ?1686) ?1687)) ?1688) (multiply ?1686 ?1688) =>= ?1687 [1688, 1687, 1686, 1685] by Super 372 with 3 at 1,1,1,1,1,2 Id : 2362, {_}: divide (multiply (inverse (divide (divide (multiply (inverse ?12860) ?12860) ?12861) (divide ?12862 ?12861))) ?12863) (multiply ?12864 ?12863) =>= divide ?12862 ?12864 [12864, 12863, 12862, 12861, 12860] by Super 375 with 1292 at 1,1,1,2 Id : 101423, {_}: divide (multiply (inverse (divide (inverse ?12861) (divide ?12862 ?12861))) ?12863) (multiply ?12864 ?12863) =>= divide ?12862 ?12864 [12864, 12863, 12862, 12861] by Demod 2362 with 101312 at 1,1,2 Id : 1298, {_}: divide (multiply ?6472 ?6473) (multiply ?6474 ?6473) =?= divide (divide ?6472 ?6475) (divide ?6474 ?6475) [6475, 6474, 6473, 6472] by Super 231 with 1057 at 1,1,2 Id : 2653, {_}: divide (multiply (inverse (divide (multiply (divide ?14473 ?14473) ?14474) (multiply ?14475 ?14474))) ?14476) (multiply ?14477 ?14476) =>= divide ?14475 ?14477 [14477, 14476, 14475, 14474, 14473] by Super 231 with 1298 at 1,1,1,2 Id : 100505, {_}: divide (multiply (inverse (divide (inverse (inverse ?14474)) (multiply ?14475 ?14474))) ?14476) (multiply ?14477 ?14476) =>= divide ?14475 ?14477 [14477, 14476, 14475, 14474] by Demod 2653 with 100489 at 1,1,1,1,2 Id : 101382, {_}: divide (multiply (inverse (divide ?14474 (multiply ?14475 ?14474))) ?14476) (multiply ?14477 ?14476) =>= divide ?14475 ?14477 [14477, 14476, 14475, 14474] by Demod 100505 with 101328 at 1,1,1,1,2 Id : 101429, {_}: divide (multiply (inverse (divide (inverse ?1686) ?1687)) ?1688) (multiply ?1686 ?1688) =>= ?1687 [1688, 1687, 1686] by Demod 375 with 101312 at 1,1,2 Id : 101386, {_}: ?535740 =<= multiply (divide ?535743 ?535743) ?535740 [535743, 535740] by Demod 100489 with 101328 at 2 Id : 101594, {_}: ?537458 =<= multiply (inverse (divide ?537459 ?537459)) ?537458 [537459, 537458] by Super 101386 with 100849 at 1,3 Id : 101980, {_}: divide ?538112 (multiply ?538113 ?538112) =>= inverse ?538113 [538113, 538112] by Super 101429 with 101594 at 1,2 Id : 102412, {_}: divide (multiply (inverse (inverse ?14475)) ?14476) (multiply ?14477 ?14476) =>= divide ?14475 ?14477 [14477, 14476, 14475] by Demod 101382 with 101980 at 1,1,1,2 Id : 102413, {_}: divide (multiply ?14475 ?14476) (multiply ?14477 ?14476) =>= divide ?14475 ?14477 [14477, 14476, 14475] by Demod 102412 with 101328 at 1,1,2 Id : 102434, {_}: divide (inverse (divide (inverse ?12861) (divide ?12862 ?12861))) ?12864 =>= divide ?12862 ?12864 [12864, 12862, 12861] by Demod 101423 with 102413 at 2 Id : 102436, {_}: divide (divide ?11774 ?11775) (divide ?11776 ?11775) =>= divide ?11774 ?11776 [11776, 11775, 11774] by Demod 101430 with 102434 at 1,2 Id : 102441, {_}: multiply ?16917 (divide ?16919 (divide ?16920 (inverse ?16919))) =>= divide ?16917 ?16920 [16920, 16919, 16917] by Demod 101357 with 102436 at 2,2,2 Id : 102474, {_}: multiply ?16917 (divide ?16919 (multiply ?16920 ?16919)) =>= divide ?16917 ?16920 [16920, 16919, 16917] by Demod 102441 with 3 at 2,2,2 Id : 102475, {_}: multiply ?16917 (inverse ?16920) =>= divide ?16917 ?16920 [16920, 16917] by Demod 102474 with 101980 at 2,2 Id : 102476, {_}: inverse ?494323 =<= multiply ?494329 (divide (inverse ?494329) ?494323) [494329, 494323] by Demod 101341 with 102475 at 2,3 Id : 102520, {_}: inverse (multiply ?538987 (inverse ?538988)) =>= multiply ?538988 (inverse ?538987) [538988, 538987] by Super 102476 with 101980 at 2,3 Id : 102785, {_}: inverse (divide ?538987 ?538988) =<= multiply ?538988 (inverse ?538987) [538988, 538987] by Demod 102520 with 102475 at 1,2 Id : 102786, {_}: inverse (divide ?538987 ?538988) =>= divide ?538988 ?538987 [538988, 538987] by Demod 102785 with 102475 at 3 Id : 104734, {_}: multiply (divide ?212 (divide (divide ?210 ?210) ?211)) ?213 =?= inverse (divide (divide (divide ?214 ?214) ?215) (divide ?212 (divide ?215 (multiply ?211 ?213)))) [215, 214, 213, 211, 210, 212] by Demod 46 with 102786 at 1,2 Id : 104735, {_}: multiply (divide ?212 (divide (divide ?210 ?210) ?211)) ?213 =?= divide (divide ?212 (divide ?215 (multiply ?211 ?213))) (divide (divide ?214 ?214) ?215) [214, 215, 213, 211, 210, 212] by Demod 104734 with 102786 at 3 Id : 104736, {_}: multiply (divide ?212 (inverse ?211)) ?213 =<= divide (divide ?212 (divide ?215 (multiply ?211 ?213))) (divide (divide ?214 ?214) ?215) [214, 215, 213, 211, 212] by Demod 104735 with 100849 at 2,1,2 Id : 104737, {_}: multiply (divide ?212 (inverse ?211)) ?213 =<= divide (divide ?212 (divide ?215 (multiply ?211 ?213))) (inverse ?215) [215, 213, 211, 212] by Demod 104736 with 100849 at 2,3 Id : 104738, {_}: multiply (multiply ?212 ?211) ?213 =<= divide (divide ?212 (divide ?215 (multiply ?211 ?213))) (inverse ?215) [215, 213, 211, 212] by Demod 104737 with 3 at 1,2 Id : 104739, {_}: multiply (multiply ?212 ?211) ?213 =<= multiply (divide ?212 (divide ?215 (multiply ?211 ?213))) ?215 [215, 213, 211, 212] by Demod 104738 with 3 at 3 Id : 104774, {_}: multiply (multiply ?542474 ?542475) ?542476 =<= multiply (divide ?542474 (divide ?542477 (multiply ?542475 ?542476))) ?542477 [542477, 542476, 542475, 542474] by Demod 104738 with 3 at 3 Id : 104783, {_}: multiply (multiply ?542524 (divide ?542525 ?542525)) ?542526 =?= multiply (divide ?542524 (divide ?542527 ?542526)) ?542527 [542527, 542526, 542525, 542524] by Super 104774 with 101386 at 2,2,1,3 Id : 102917, {_}: multiply ?539648 (divide ?539649 ?539650) =>= divide ?539648 (divide ?539650 ?539649) [539650, 539649, 539648] by Super 102475 with 102786 at 2,2 Id : 104878, {_}: multiply (divide ?542524 (divide ?542525 ?542525)) ?542526 =?= multiply (divide ?542524 (divide ?542527 ?542526)) ?542527 [542527, 542526, 542525, 542524] by Demod 104783 with 102917 at 1,2 Id : 104879, {_}: multiply ?542524 ?542526 =<= multiply (divide ?542524 (divide ?542527 ?542526)) ?542527 [542527, 542526, 542524] by Demod 104878 with 93111 at 1,2 Id : 107171, {_}: multiply (multiply ?212 ?211) ?213 =?= multiply ?212 (multiply ?211 ?213) [213, 211, 212] by Demod 104739 with 104879 at 3 Id : 107392, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 1 with 107171 at 2 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 % SZS output end CNFRefutation for GRP480-1.p 11491: solved GRP480-1.p in 34.906181 using nrkbo 11491: status Unsatisfiable for GRP480-1.p NO CLASH, using fixed ground order 11510: Facts: 11510: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 11510: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 11510: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 11510: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 11510: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 11510: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 11510: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 11510: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 11510: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?26 ?27) (meet (join ?26 ?28) (join ?27 (meet ?26 ?28)))) [28, 27, 26] by equation_H18_dual ?26 ?27 ?28 11510: Goal: 11510: Id : 1, {_}: meet a (join b c) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H58 11510: Order: 11510: nrkbo 11510: Leaf order: 11510: meet 17 2 4 0,2 11510: join 19 2 4 0,2,2 11510: c 2 0 2 2,2,2 11510: b 4 0 4 1,2,2 11510: a 4 0 4 1,2 NO CLASH, using fixed ground order 11511: Facts: 11511: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 11511: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 11511: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 11511: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 11511: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 11511: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 11511: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 11511: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 11511: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?26 ?27) (meet (join ?26 ?28) (join ?27 (meet ?26 ?28)))) [28, 27, 26] by equation_H18_dual ?26 ?27 ?28 11511: Goal: 11511: Id : 1, {_}: meet a (join b c) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H58 11511: Order: 11511: kbo 11511: Leaf order: 11511: meet 17 2 4 0,2 11511: join 19 2 4 0,2,2 11511: c 2 0 2 2,2,2 11511: b 4 0 4 1,2,2 11511: a 4 0 4 1,2 NO CLASH, using fixed ground order 11512: Facts: 11512: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 11512: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 11512: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 11512: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 11512: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 11512: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 11512: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 11512: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 11512: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?26 ?27) (meet (join ?26 ?28) (join ?27 (meet ?26 ?28)))) [28, 27, 26] by equation_H18_dual ?26 ?27 ?28 11512: Goal: 11512: Id : 1, {_}: meet a (join b c) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H58 11512: Order: 11512: lpo 11512: Leaf order: 11512: meet 17 2 4 0,2 11512: join 19 2 4 0,2,2 11512: c 2 0 2 2,2,2 11512: b 4 0 4 1,2,2 11512: a 4 0 4 1,2 % SZS status Timeout for LAT168-1.p NO CLASH, using fixed ground order 11539: Facts: 11539: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 11539: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 11539: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 11539: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 11539: Goal: 11539: Id : 1, {_}: implies (implies (implies a b) (implies b a)) (implies b a) =>= truth [] by prove_wajsberg_mv_4 11539: Order: 11539: nrkbo 11539: Leaf order: 11539: not 2 1 0 11539: truth 4 0 1 3 11539: implies 18 2 5 0,2 11539: b 3 0 3 2,1,1,2 11539: a 3 0 3 1,1,1,2 NO CLASH, using fixed ground order 11540: Facts: 11540: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 11540: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 11540: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 11540: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 11540: Goal: 11540: Id : 1, {_}: implies (implies (implies a b) (implies b a)) (implies b a) =>= truth [] by prove_wajsberg_mv_4 11540: Order: 11540: kbo 11540: Leaf order: 11540: not 2 1 0 11540: truth 4 0 1 3 11540: implies 18 2 5 0,2 11540: b 3 0 3 2,1,1,2 11540: a 3 0 3 1,1,1,2 NO CLASH, using fixed ground order 11541: Facts: 11541: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 11541: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 11541: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 11541: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 11541: Goal: 11541: Id : 1, {_}: implies (implies (implies a b) (implies b a)) (implies b a) =>= truth [] by prove_wajsberg_mv_4 11541: Order: 11541: lpo 11541: Leaf order: 11541: not 2 1 0 11541: truth 4 0 1 3 11541: implies 18 2 5 0,2 11541: b 3 0 3 2,1,1,2 11541: a 3 0 3 1,1,1,2 % SZS status Timeout for LCL109-2.p NO CLASH, using fixed ground order 11558: Facts: 11558: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 11558: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 11558: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 11558: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 11558: Goal: 11558: Id : 1, {_}: implies x (implies y z) =>= implies y (implies x z) [] by prove_wajsberg_lemma 11558: Order: 11558: nrkbo 11558: Leaf order: 11558: not 2 1 0 11558: truth 3 0 0 11558: implies 17 2 4 0,2 11558: z 2 0 2 2,2,2 11558: y 2 0 2 1,2,2 11558: x 2 0 2 1,2 NO CLASH, using fixed ground order 11559: Facts: 11559: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 11559: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 11559: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 11559: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 11559: Goal: 11559: Id : 1, {_}: implies x (implies y z) =>= implies y (implies x z) [] by prove_wajsberg_lemma 11559: Order: 11559: kbo 11559: Leaf order: 11559: not 2 1 0 11559: truth 3 0 0 11559: implies 17 2 4 0,2 11559: z 2 0 2 2,2,2 11559: y 2 0 2 1,2,2 11559: x 2 0 2 1,2 NO CLASH, using fixed ground order 11560: Facts: 11560: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 11560: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 11560: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 11560: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 11560: Goal: 11560: Id : 1, {_}: implies x (implies y z) =>= implies y (implies x z) [] by prove_wajsberg_lemma 11560: Order: 11560: lpo 11560: Leaf order: 11560: not 2 1 0 11560: truth 3 0 0 11560: implies 17 2 4 0,2 11560: z 2 0 2 2,2,2 11560: y 2 0 2 1,2,2 11560: x 2 0 2 1,2 % SZS status Timeout for LCL138-1.p NO CLASH, using fixed ground order 11593: Facts: 11593: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 11593: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 11593: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 11593: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 11593: Id : 6, {_}: or ?14 ?15 =<= implies (not ?14) ?15 [15, 14] by or_definition ?14 ?15 11593: Id : 7, {_}: or (or ?17 ?18) ?19 =?= or ?17 (or ?18 ?19) [19, 18, 17] by or_associativity ?17 ?18 ?19 11593: Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22 11593: Id : 9, {_}: and ?24 ?25 =<= not (or (not ?24) (not ?25)) [25, 24] by and_definition ?24 ?25 11593: Id : 10, {_}: and (and ?27 ?28) ?29 =?= and ?27 (and ?28 ?29) [29, 28, 27] by and_associativity ?27 ?28 ?29 11593: Id : 11, {_}: and ?31 ?32 =?= and ?32 ?31 [32, 31] by and_commutativity ?31 ?32 11593: Id : 12, {_}: xor ?34 ?35 =<= or (and ?34 (not ?35)) (and (not ?34) ?35) [35, 34] by xor_definition ?34 ?35 11593: Id : 13, {_}: xor ?37 ?38 =?= xor ?38 ?37 [38, 37] by xor_commutativity ?37 ?38 11593: Id : 14, {_}: and_star ?40 ?41 =<= not (or (not ?40) (not ?41)) [41, 40] by and_star_definition ?40 ?41 11593: Id : 15, {_}: and_star (and_star ?43 ?44) ?45 =?= and_star ?43 (and_star ?44 ?45) [45, 44, 43] by and_star_associativity ?43 ?44 ?45 11593: Id : 16, {_}: and_star ?47 ?48 =?= and_star ?48 ?47 [48, 47] by and_star_commutativity ?47 ?48 11593: Id : 17, {_}: not truth =>= falsehood [] by false_definition 11593: Goal: 11593: Id : 1, {_}: xor x (xor truth y) =<= xor (xor x truth) y [] by prove_alternative_wajsberg_axiom 11593: Order: 11593: nrkbo 11593: Leaf order: 11593: falsehood 1 0 0 11593: and_star 7 2 0 11593: and 9 2 0 11593: or 10 2 0 11593: not 12 1 0 11593: implies 14 2 0 11593: xor 7 2 4 0,2 11593: y 2 0 2 2,2,2 11593: truth 6 0 2 1,2,2 11593: x 2 0 2 1,2 NO CLASH, using fixed ground order 11594: Facts: 11594: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 11594: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 11594: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 11594: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 11594: Id : 6, {_}: or ?14 ?15 =<= implies (not ?14) ?15 [15, 14] by or_definition ?14 ?15 11594: Id : 7, {_}: or (or ?17 ?18) ?19 =>= or ?17 (or ?18 ?19) [19, 18, 17] by or_associativity ?17 ?18 ?19 11594: Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22 11594: Id : 9, {_}: and ?24 ?25 =<= not (or (not ?24) (not ?25)) [25, 24] by and_definition ?24 ?25 11594: Id : 10, {_}: and (and ?27 ?28) ?29 =>= and ?27 (and ?28 ?29) [29, 28, 27] by and_associativity ?27 ?28 ?29 11594: Id : 11, {_}: and ?31 ?32 =?= and ?32 ?31 [32, 31] by and_commutativity ?31 ?32 11594: Id : 12, {_}: xor ?34 ?35 =<= or (and ?34 (not ?35)) (and (not ?34) ?35) [35, 34] by xor_definition ?34 ?35 11594: Id : 13, {_}: xor ?37 ?38 =?= xor ?38 ?37 [38, 37] by xor_commutativity ?37 ?38 11594: Id : 14, {_}: and_star ?40 ?41 =<= not (or (not ?40) (not ?41)) [41, 40] by and_star_definition ?40 ?41 11594: Id : 15, {_}: and_star (and_star ?43 ?44) ?45 =>= and_star ?43 (and_star ?44 ?45) [45, 44, 43] by and_star_associativity ?43 ?44 ?45 11594: Id : 16, {_}: and_star ?47 ?48 =?= and_star ?48 ?47 [48, 47] by and_star_commutativity ?47 ?48 11594: Id : 17, {_}: not truth =>= falsehood [] by false_definition 11594: Goal: 11594: Id : 1, {_}: xor x (xor truth y) =<= xor (xor x truth) y [] by prove_alternative_wajsberg_axiom 11594: Order: 11594: kbo 11594: Leaf order: 11594: falsehood 1 0 0 11594: and_star 7 2 0 11594: and 9 2 0 11594: or 10 2 0 11594: not 12 1 0 11594: implies 14 2 0 11594: xor 7 2 4 0,2 11594: y 2 0 2 2,2,2 11594: truth 6 0 2 1,2,2 11594: x 2 0 2 1,2 NO CLASH, using fixed ground order 11595: Facts: 11595: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 11595: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 11595: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 11595: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 11595: Id : 6, {_}: or ?14 ?15 =<= implies (not ?14) ?15 [15, 14] by or_definition ?14 ?15 11595: Id : 7, {_}: or (or ?17 ?18) ?19 =>= or ?17 (or ?18 ?19) [19, 18, 17] by or_associativity ?17 ?18 ?19 11595: Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22 11595: Id : 9, {_}: and ?24 ?25 =<= not (or (not ?24) (not ?25)) [25, 24] by and_definition ?24 ?25 11595: Id : 10, {_}: and (and ?27 ?28) ?29 =>= and ?27 (and ?28 ?29) [29, 28, 27] by and_associativity ?27 ?28 ?29 11595: Id : 11, {_}: and ?31 ?32 =?= and ?32 ?31 [32, 31] by and_commutativity ?31 ?32 11595: Id : 12, {_}: xor ?34 ?35 =>= or (and ?34 (not ?35)) (and (not ?34) ?35) [35, 34] by xor_definition ?34 ?35 11595: Id : 13, {_}: xor ?37 ?38 =?= xor ?38 ?37 [38, 37] by xor_commutativity ?37 ?38 11595: Id : 14, {_}: and_star ?40 ?41 =<= not (or (not ?40) (not ?41)) [41, 40] by and_star_definition ?40 ?41 11595: Id : 15, {_}: and_star (and_star ?43 ?44) ?45 =>= and_star ?43 (and_star ?44 ?45) [45, 44, 43] by and_star_associativity ?43 ?44 ?45 11595: Id : 16, {_}: and_star ?47 ?48 =?= and_star ?48 ?47 [48, 47] by and_star_commutativity ?47 ?48 11595: Id : 17, {_}: not truth =>= falsehood [] by false_definition 11595: Goal: 11595: Id : 1, {_}: xor x (xor truth y) =<= xor (xor x truth) y [] by prove_alternative_wajsberg_axiom 11595: Order: 11595: lpo 11595: Leaf order: 11595: falsehood 1 0 0 11595: and_star 7 2 0 11595: and 9 2 0 11595: or 10 2 0 11595: not 12 1 0 11595: implies 14 2 0 11595: xor 7 2 4 0,2 11595: y 2 0 2 2,2,2 11595: truth 6 0 2 1,2,2 11595: x 2 0 2 1,2 Statistics : Max weight : 25 Found proof, 7.279985s % SZS status Unsatisfiable for LCL159-1.p % SZS output start CNFRefutation for LCL159-1.p Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 Id : 7, {_}: or (or ?17 ?18) ?19 =>= or ?17 (or ?18 ?19) [19, 18, 17] by or_associativity ?17 ?18 ?19 Id : 39, {_}: implies (implies ?111 ?112) ?112 =?= implies (implies ?112 ?111) ?111 [112, 111] by wajsberg_3 ?111 ?112 Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 Id : 20, {_}: implies (implies ?55 ?56) (implies (implies ?56 ?57) (implies ?55 ?57)) =>= truth [57, 56, 55] by wajsberg_2 ?55 ?56 ?57 Id : 17, {_}: not truth =>= falsehood [] by false_definition Id : 6, {_}: or ?14 ?15 =<= implies (not ?14) ?15 [15, 14] by or_definition ?14 ?15 Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 Id : 11, {_}: and ?31 ?32 =?= and ?32 ?31 [32, 31] by and_commutativity ?31 ?32 Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22 Id : 9, {_}: and ?24 ?25 =<= not (or (not ?24) (not ?25)) [25, 24] by and_definition ?24 ?25 Id : 14, {_}: and_star ?40 ?41 =<= not (or (not ?40) (not ?41)) [41, 40] by and_star_definition ?40 ?41 Id : 12, {_}: xor ?34 ?35 =>= or (and ?34 (not ?35)) (and (not ?34) ?35) [35, 34] by xor_definition ?34 ?35 Id : 207, {_}: and_star ?40 ?41 =<= and ?40 ?41 [41, 40] by Demod 14 with 9 at 3 Id : 212, {_}: xor ?34 ?35 =>= or (and_star ?34 (not ?35)) (and (not ?34) ?35) [35, 34] by Demod 12 with 207 at 1,3 Id : 213, {_}: xor ?34 ?35 =>= or (and_star ?34 (not ?35)) (and_star (not ?34) ?35) [35, 34] by Demod 212 with 207 at 2,3 Id : 219, {_}: and_star ?31 ?32 =<= and ?32 ?31 [32, 31] by Demod 11 with 207 at 2 Id : 220, {_}: and_star ?31 ?32 =?= and_star ?32 ?31 [32, 31] by Demod 219 with 207 at 3 Id : 240, {_}: or truth ?463 =<= implies falsehood ?463 [463] by Super 6 with 17 at 1,3 Id : 286, {_}: implies (implies ?477 falsehood) falsehood =>= implies (or truth ?477) ?477 [477] by Super 4 with 240 at 1,3 Id : 22, {_}: implies (implies (implies ?62 ?63) ?64) (implies (implies ?64 (implies (implies ?63 ?65) (implies ?62 ?65))) truth) =>= truth [65, 64, 63, 62] by Super 20 with 3 at 2,2,2 Id : 784, {_}: implies (implies ?990 truth) (implies ?991 (implies ?990 ?991)) =>= truth [991, 990] by Super 20 with 2 at 1,2,2 Id : 785, {_}: implies (implies truth truth) (implies ?993 ?993) =>= truth [993] by Super 784 with 2 at 2,2,2 Id : 818, {_}: implies truth (implies ?993 ?993) =>= truth [993] by Demod 785 with 2 at 1,2 Id : 819, {_}: implies ?993 ?993 =>= truth [993] by Demod 818 with 2 at 2 Id : 870, {_}: implies (implies (implies ?1070 ?1070) ?1071) (implies (implies ?1071 truth) truth) =>= truth [1071, 1070] by Super 22 with 819 at 2,1,2,2 Id : 898, {_}: implies (implies truth ?1071) (implies (implies ?1071 truth) truth) =>= truth [1071] by Demod 870 with 819 at 1,1,2 Id : 40, {_}: implies (implies ?114 truth) truth =>= implies ?114 ?114 [114] by Super 39 with 2 at 1,3 Id : 864, {_}: implies (implies ?114 truth) truth =>= truth [114] by Demod 40 with 819 at 3 Id : 899, {_}: implies (implies truth ?1071) truth =>= truth [1071] by Demod 898 with 864 at 2,2 Id : 900, {_}: implies ?1071 truth =>= truth [1071] by Demod 899 with 2 at 1,2 Id : 980, {_}: or ?1117 truth =>= truth [1117] by Super 6 with 900 at 3 Id : 1078, {_}: or truth ?1157 =>= truth [1157] by Super 8 with 980 at 3 Id : 1116, {_}: implies (implies ?477 falsehood) falsehood =>= implies truth ?477 [477] by Demod 286 with 1078 at 1,3 Id : 1117, {_}: implies (implies ?477 falsehood) falsehood =>= ?477 [477] by Demod 1116 with 2 at 3 Id : 218, {_}: and_star ?24 ?25 =<= not (or (not ?24) (not ?25)) [25, 24] by Demod 9 with 207 at 2 Id : 239, {_}: and_star truth ?461 =<= not (or falsehood (not ?461)) [461] by Super 218 with 17 at 1,1,3 Id : 517, {_}: or (or falsehood (not ?805)) ?806 =<= implies (and_star truth ?805) ?806 [806, 805] by Super 6 with 239 at 1,3 Id : 1565, {_}: or falsehood (or (not ?1468) ?1469) =<= implies (and_star truth ?1468) ?1469 [1469, 1468] by Demod 517 with 7 at 2 Id : 1566, {_}: or falsehood (or (not ?1471) ?1472) =<= implies (and_star ?1471 truth) ?1472 [1472, 1471] by Super 1565 with 220 at 1,3 Id : 525, {_}: or falsehood (or (not ?805) ?806) =<= implies (and_star truth ?805) ?806 [806, 805] by Demod 517 with 7 at 2 Id : 520, {_}: and_star truth ?814 =<= not (or falsehood (not ?814)) [814] by Super 218 with 17 at 1,1,3 Id : 521, {_}: and_star truth truth =<= not (or falsehood falsehood) [] by Super 520 with 17 at 2,1,3 Id : 564, {_}: or (or falsehood falsehood) ?828 =<= implies (and_star truth truth) ?828 [828] by Super 6 with 521 at 1,3 Id : 589, {_}: or falsehood (or falsehood ?828) =<= implies (and_star truth truth) ?828 [828] by Demod 564 with 7 at 2 Id : 1273, {_}: implies (or falsehood (or falsehood falsehood)) falsehood =>= and_star truth truth [] by Super 1117 with 589 at 1,2 Id : 69, {_}: implies (or ?11 (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by Demod 5 with 6 at 1,2 Id : 241, {_}: implies (or ?465 falsehood) (implies truth ?465) =>= truth [465] by Super 69 with 17 at 2,1,2 Id : 260, {_}: implies (or ?465 falsehood) ?465 =>= truth [465] by Demod 241 with 2 at 2,2 Id : 1322, {_}: implies truth falsehood =>= or falsehood falsehood [] by Super 1117 with 260 at 1,2 Id : 1344, {_}: falsehood =<= or falsehood falsehood [] by Demod 1322 with 2 at 2 Id : 1375, {_}: or falsehood ?1348 =<= or falsehood (or falsehood ?1348) [1348] by Super 7 with 1344 at 1,2 Id : 2080, {_}: implies (or falsehood falsehood) falsehood =>= and_star truth truth [] by Demod 1273 with 1375 at 1,2 Id : 2081, {_}: truth =<= and_star truth truth [] by Demod 2080 with 260 at 2 Id : 2088, {_}: or falsehood (or (not truth) ?1976) =<= implies truth ?1976 [1976] by Super 525 with 2081 at 1,3 Id : 2092, {_}: or falsehood (or falsehood ?1976) =<= implies truth ?1976 [1976] by Demod 2088 with 17 at 1,2,2 Id : 2093, {_}: or falsehood (or falsehood ?1976) =>= ?1976 [1976] by Demod 2092 with 2 at 3 Id : 2094, {_}: or falsehood ?1976 =>= ?1976 [1976] by Demod 2093 with 1375 at 2 Id : 2619, {_}: or (not ?1471) ?1472 =<= implies (and_star ?1471 truth) ?1472 [1472, 1471] by Demod 1566 with 2094 at 2 Id : 2636, {_}: implies (or (not ?2581) falsehood) falsehood =>= and_star ?2581 truth [2581] by Super 1117 with 2619 at 1,2 Id : 2658, {_}: implies (or falsehood (not ?2581)) falsehood =>= and_star ?2581 truth [2581] by Demod 2636 with 8 at 1,2 Id : 2659, {_}: implies (not ?2581) falsehood =>= and_star ?2581 truth [2581] by Demod 2658 with 2094 at 1,2 Id : 2660, {_}: or ?2581 falsehood =>= and_star ?2581 truth [2581] by Demod 2659 with 6 at 2 Id : 1407, {_}: or falsehood ?1358 =<= or falsehood (or falsehood ?1358) [1358] by Super 7 with 1344 at 1,2 Id : 1408, {_}: or falsehood ?1360 =<= or falsehood (or ?1360 falsehood) [1360] by Super 1407 with 8 at 2,3 Id : 2132, {_}: ?1360 =<= or falsehood (or ?1360 falsehood) [1360] by Demod 1408 with 2094 at 2 Id : 2133, {_}: ?1360 =<= or ?1360 falsehood [1360] by Demod 2132 with 2094 at 3 Id : 2661, {_}: ?2581 =<= and_star ?2581 truth [2581] by Demod 2660 with 2133 at 2 Id : 2708, {_}: or (not ?1471) ?1472 =<= implies ?1471 ?1472 [1472, 1471] by Demod 2619 with 2661 at 1,3 Id : 2725, {_}: or (not (implies ?477 falsehood)) falsehood =>= ?477 [477] by Demod 1117 with 2708 at 2 Id : 2726, {_}: or (not (or (not ?477) falsehood)) falsehood =>= ?477 [477] by Demod 2725 with 2708 at 1,1,2 Id : 2767, {_}: or falsehood (not (or (not ?477) falsehood)) =>= ?477 [477] by Demod 2726 with 8 at 2 Id : 2768, {_}: not (or (not ?477) falsehood) =>= ?477 [477] by Demod 2767 with 2094 at 2 Id : 2769, {_}: not (or falsehood (not ?477)) =>= ?477 [477] by Demod 2768 with 8 at 1,2 Id : 2770, {_}: not (not ?477) =>= ?477 [477] by Demod 2769 with 2094 at 1,2 Id : 2131, {_}: and_star truth ?461 =<= not (not ?461) [461] by Demod 239 with 2094 at 1,3 Id : 2771, {_}: and_star truth ?477 =>= ?477 [477] by Demod 2770 with 2131 at 2 Id : 563, {_}: and_star (or falsehood falsehood) ?826 =<= not (or (and_star truth truth) (not ?826)) [826] by Super 218 with 521 at 1,1,3 Id : 3108, {_}: and_star falsehood ?826 =<= not (or (and_star truth truth) (not ?826)) [826] by Demod 563 with 2094 at 1,2 Id : 3109, {_}: and_star falsehood ?826 =<= not (or truth (not ?826)) [826] by Demod 3108 with 2771 at 1,1,3 Id : 3110, {_}: and_star falsehood ?826 =?= not truth [826] by Demod 3109 with 1078 at 1,3 Id : 3111, {_}: and_star falsehood ?826 =>= falsehood [826] by Demod 3110 with 17 at 3 Id : 2777, {_}: ?461 =<= not (not ?461) [461] by Demod 2131 with 2771 at 2 Id : 3185, {_}: or (and_star y x) (and_star (not y) (not x)) === or (and_star y x) (and_star (not y) (not x)) [] by Demod 3184 with 220 at 1,2 Id : 3184, {_}: or (and_star x y) (and_star (not y) (not x)) =>= or (and_star y x) (and_star (not y) (not x)) [] by Demod 3183 with 8 at 2 Id : 3183, {_}: or (and_star (not y) (not x)) (and_star x y) =>= or (and_star y x) (and_star (not y) (not x)) [] by Demod 3182 with 2777 at 2,2,2 Id : 3182, {_}: or (and_star (not y) (not x)) (and_star x (not (not y))) =>= or (and_star y x) (and_star (not y) (not x)) [] by Demod 3181 with 2094 at 1,1,2 Id : 3181, {_}: or (and_star (or falsehood (not y)) (not x)) (and_star x (not (not y))) =>= or (and_star y x) (and_star (not y) (not x)) [] by Demod 3180 with 8 at 3 Id : 3180, {_}: or (and_star (or falsehood (not y)) (not x)) (and_star x (not (not y))) =>= or (and_star (not y) (not x)) (and_star y x) [] by Demod 3179 with 2094 at 1,2,2,2 Id : 3179, {_}: or (and_star (or falsehood (not y)) (not x)) (and_star x (not (or falsehood (not y)))) =>= or (and_star (not y) (not x)) (and_star y x) [] by Demod 3178 with 3111 at 1,1,1,2 Id : 3178, {_}: or (and_star (or (and_star falsehood y) (not y)) (not x)) (and_star x (not (or falsehood (not y)))) =>= or (and_star (not y) (not x)) (and_star y x) [] by Demod 3177 with 2777 at 2,2,3 Id : 3177, {_}: or (and_star (or (and_star falsehood y) (not y)) (not x)) (and_star x (not (or falsehood (not y)))) =<= or (and_star (not y) (not x)) (and_star y (not (not x))) [] by Demod 3176 with 3111 at 1,1,2,2,2 Id : 3176, {_}: or (and_star (or (and_star falsehood y) (not y)) (not x)) (and_star x (not (or (and_star falsehood y) (not y)))) =<= or (and_star (not y) (not x)) (and_star y (not (not x))) [] by Demod 3175 with 220 at 1,1,1,2 Id : 3175, {_}: or (and_star (or (and_star y falsehood) (not y)) (not x)) (and_star x (not (or (and_star falsehood y) (not y)))) =<= or (and_star (not y) (not x)) (and_star y (not (not x))) [] by Demod 3174 with 2094 at 1,2,2,3 Id : 3174, {_}: or (and_star (or (and_star y falsehood) (not y)) (not x)) (and_star x (not (or (and_star falsehood y) (not y)))) =<= or (and_star (not y) (not x)) (and_star y (not (or falsehood (not x)))) [] by Demod 3173 with 2094 at 2,1,3 Id : 3173, {_}: or (and_star (or (and_star y falsehood) (not y)) (not x)) (and_star x (not (or (and_star falsehood y) (not y)))) =<= or (and_star (not y) (or falsehood (not x))) (and_star y (not (or falsehood (not x)))) [] by Demod 3172 with 220 at 1,1,2,2,2 Id : 3172, {_}: or (and_star (or (and_star y falsehood) (not y)) (not x)) (and_star x (not (or (and_star y falsehood) (not y)))) =<= or (and_star (not y) (or falsehood (not x))) (and_star y (not (or falsehood (not x)))) [] by Demod 3171 with 8 at 1,1,2 Id : 3171, {_}: or (and_star (or (not y) (and_star y falsehood)) (not x)) (and_star x (not (or (and_star y falsehood) (not y)))) =<= or (and_star (not y) (or falsehood (not x))) (and_star y (not (or falsehood (not x)))) [] by Demod 3170 with 3111 at 1,1,2,2,3 Id : 3170, {_}: or (and_star (or (not y) (and_star y falsehood)) (not x)) (and_star x (not (or (and_star y falsehood) (not y)))) =<= or (and_star (not y) (or falsehood (not x))) (and_star y (not (or (and_star falsehood x) (not x)))) [] by Demod 3169 with 3111 at 1,2,1,3 Id : 3169, {_}: or (and_star (or (not y) (and_star y falsehood)) (not x)) (and_star x (not (or (and_star y falsehood) (not y)))) =<= or (and_star (not y) (or (and_star falsehood x) (not x))) (and_star y (not (or (and_star falsehood x) (not x)))) [] by Demod 3168 with 8 at 1,2,2,2 Id : 3168, {_}: or (and_star (or (not y) (and_star y falsehood)) (not x)) (and_star x (not (or (not y) (and_star y falsehood)))) =<= or (and_star (not y) (or (and_star falsehood x) (not x))) (and_star y (not (or (and_star falsehood x) (not x)))) [] by Demod 3167 with 17 at 2,2,1,1,2 Id : 3167, {_}: or (and_star (or (not y) (and_star y (not truth))) (not x)) (and_star x (not (or (not y) (and_star y falsehood)))) =<= or (and_star (not y) (or (and_star falsehood x) (not x))) (and_star y (not (or (and_star falsehood x) (not x)))) [] by Demod 3166 with 2771 at 2,1,2,2,3 Id : 3166, {_}: or (and_star (or (not y) (and_star y (not truth))) (not x)) (and_star x (not (or (not y) (and_star y falsehood)))) =<= or (and_star (not y) (or (and_star falsehood x) (not x))) (and_star y (not (or (and_star falsehood x) (and_star truth (not x))))) [] by Demod 3165 with 220 at 1,1,2,2,3 Id : 3165, {_}: or (and_star (or (not y) (and_star y (not truth))) (not x)) (and_star x (not (or (not y) (and_star y falsehood)))) =<= or (and_star (not y) (or (and_star falsehood x) (not x))) (and_star y (not (or (and_star x falsehood) (and_star truth (not x))))) [] by Demod 3164 with 2771 at 2,2,1,3 Id : 3164, {_}: or (and_star (or (not y) (and_star y (not truth))) (not x)) (and_star x (not (or (not y) (and_star y falsehood)))) =<= or (and_star (not y) (or (and_star falsehood x) (and_star truth (not x)))) (and_star y (not (or (and_star x falsehood) (and_star truth (not x))))) [] by Demod 3163 with 220 at 1,2,1,3 Id : 3163, {_}: or (and_star (or (not y) (and_star y (not truth))) (not x)) (and_star x (not (or (not y) (and_star y falsehood)))) =<= or (and_star (not y) (or (and_star x falsehood) (and_star truth (not x)))) (and_star y (not (or (and_star x falsehood) (and_star truth (not x))))) [] by Demod 3162 with 17 at 2,2,1,2,2,2 Id : 3162, {_}: or (and_star (or (not y) (and_star y (not truth))) (not x)) (and_star x (not (or (not y) (and_star y (not truth))))) =<= or (and_star (not y) (or (and_star x falsehood) (and_star truth (not x)))) (and_star y (not (or (and_star x falsehood) (and_star truth (not x))))) [] by Demod 3161 with 220 at 2,1,1,2 Id : 3161, {_}: or (and_star (or (not y) (and_star (not truth) y)) (not x)) (and_star x (not (or (not y) (and_star y (not truth))))) =<= or (and_star (not y) (or (and_star x falsehood) (and_star truth (not x)))) (and_star y (not (or (and_star x falsehood) (and_star truth (not x))))) [] by Demod 3160 with 2771 at 1,1,1,2 Id : 3160, {_}: or (and_star (or (and_star truth (not y)) (and_star (not truth) y)) (not x)) (and_star x (not (or (not y) (and_star y (not truth))))) =<= or (and_star (not y) (or (and_star x falsehood) (and_star truth (not x)))) (and_star y (not (or (and_star x falsehood) (and_star truth (not x))))) [] by Demod 3159 with 220 at 2,1,2,2,3 Id : 3159, {_}: or (and_star (or (and_star truth (not y)) (and_star (not truth) y)) (not x)) (and_star x (not (or (not y) (and_star y (not truth))))) =<= or (and_star (not y) (or (and_star x falsehood) (and_star truth (not x)))) (and_star y (not (or (and_star x falsehood) (and_star (not x) truth)))) [] by Demod 3158 with 17 at 2,1,1,2,2,3 Id : 3158, {_}: or (and_star (or (and_star truth (not y)) (and_star (not truth) y)) (not x)) (and_star x (not (or (not y) (and_star y (not truth))))) =<= or (and_star (not y) (or (and_star x falsehood) (and_star truth (not x)))) (and_star y (not (or (and_star x (not truth)) (and_star (not x) truth)))) [] by Demod 3157 with 220 at 2,2,1,3 Id : 3157, {_}: or (and_star (or (and_star truth (not y)) (and_star (not truth) y)) (not x)) (and_star x (not (or (not y) (and_star y (not truth))))) =<= or (and_star (not y) (or (and_star x falsehood) (and_star (not x) truth))) (and_star y (not (or (and_star x (not truth)) (and_star (not x) truth)))) [] by Demod 3156 with 17 at 2,1,2,1,3 Id : 3156, {_}: or (and_star (or (and_star truth (not y)) (and_star (not truth) y)) (not x)) (and_star x (not (or (not y) (and_star y (not truth))))) =<= or (and_star (not y) (or (and_star x (not truth)) (and_star (not x) truth))) (and_star y (not (or (and_star x (not truth)) (and_star (not x) truth)))) [] by Demod 3155 with 220 at 2,1,2,2,2 Id : 3155, {_}: or (and_star (or (and_star truth (not y)) (and_star (not truth) y)) (not x)) (and_star x (not (or (not y) (and_star (not truth) y)))) =<= or (and_star (not y) (or (and_star x (not truth)) (and_star (not x) truth))) (and_star y (not (or (and_star x (not truth)) (and_star (not x) truth)))) [] by Demod 3154 with 2771 at 1,1,2,2,2 Id : 3154, {_}: or (and_star (or (and_star truth (not y)) (and_star (not truth) y)) (not x)) (and_star x (not (or (and_star truth (not y)) (and_star (not truth) y)))) =<= or (and_star (not y) (or (and_star x (not truth)) (and_star (not x) truth))) (and_star y (not (or (and_star x (not truth)) (and_star (not x) truth)))) [] by Demod 3153 with 220 at 1,2 Id : 3153, {_}: or (and_star (not x) (or (and_star truth (not y)) (and_star (not truth) y))) (and_star x (not (or (and_star truth (not y)) (and_star (not truth) y)))) =<= or (and_star (not y) (or (and_star x (not truth)) (and_star (not x) truth))) (and_star y (not (or (and_star x (not truth)) (and_star (not x) truth)))) [] by Demod 3152 with 213 at 1,2,2,3 Id : 3152, {_}: or (and_star (not x) (or (and_star truth (not y)) (and_star (not truth) y))) (and_star x (not (or (and_star truth (not y)) (and_star (not truth) y)))) =<= or (and_star (not y) (or (and_star x (not truth)) (and_star (not x) truth))) (and_star y (not (xor x truth))) [] by Demod 3151 with 213 at 2,1,3 Id : 3151, {_}: or (and_star (not x) (or (and_star truth (not y)) (and_star (not truth) y))) (and_star x (not (or (and_star truth (not y)) (and_star (not truth) y)))) =<= or (and_star (not y) (xor x truth)) (and_star y (not (xor x truth))) [] by Demod 3150 with 213 at 1,2,2,2 Id : 3150, {_}: or (and_star (not x) (or (and_star truth (not y)) (and_star (not truth) y))) (and_star x (not (xor truth y))) =<= or (and_star (not y) (xor x truth)) (and_star y (not (xor x truth))) [] by Demod 3149 with 213 at 2,1,2 Id : 3149, {_}: or (and_star (not x) (xor truth y)) (and_star x (not (xor truth y))) =<= or (and_star (not y) (xor x truth)) (and_star y (not (xor x truth))) [] by Demod 3148 with 220 at 2,3 Id : 3148, {_}: or (and_star (not x) (xor truth y)) (and_star x (not (xor truth y))) =<= or (and_star (not y) (xor x truth)) (and_star (not (xor x truth)) y) [] by Demod 3147 with 220 at 1,3 Id : 3147, {_}: or (and_star (not x) (xor truth y)) (and_star x (not (xor truth y))) =<= or (and_star (xor x truth) (not y)) (and_star (not (xor x truth)) y) [] by Demod 3146 with 8 at 2 Id : 3146, {_}: or (and_star x (not (xor truth y))) (and_star (not x) (xor truth y)) =<= or (and_star (xor x truth) (not y)) (and_star (not (xor x truth)) y) [] by Demod 3145 with 213 at 3 Id : 3145, {_}: or (and_star x (not (xor truth y))) (and_star (not x) (xor truth y)) =<= xor (xor x truth) y [] by Demod 1 with 213 at 2 Id : 1, {_}: xor x (xor truth y) =<= xor (xor x truth) y [] by prove_alternative_wajsberg_axiom % SZS output end CNFRefutation for LCL159-1.p 11595: solved LCL159-1.p in 3.608225 using lpo 11595: status Unsatisfiable for LCL159-1.p NO CLASH, using fixed ground order 11600: Facts: 11600: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 11600: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 11600: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 11600: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 11600: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 11600: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 11600: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 11600: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 11600: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 11600: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 11600: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 11600: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 11600: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 11600: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 11600: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 11600: Goal: 11600: Id : 1, {_}: associator x y (add u v) =<= add (associator x y u) (associator x y v) [] by prove_linearised_form1 11600: Order: 11600: nrkbo 11600: Leaf order: 11600: commutator 1 2 0 11600: additive_inverse 6 1 0 11600: multiply 22 2 0 11600: additive_identity 8 0 0 11600: associator 4 3 3 0,2 11600: add 18 2 2 0,3,2 11600: v 2 0 2 2,3,2 11600: u 2 0 2 1,3,2 11600: y 3 0 3 2,2 11600: x 3 0 3 1,2 NO CLASH, using fixed ground order 11601: Facts: 11601: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 11601: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 11601: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 11601: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 11601: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 11601: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 11601: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 11601: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 11601: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 11601: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 11601: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 11601: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 11601: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 11601: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 11601: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 11601: Goal: 11601: Id : 1, {_}: associator x y (add u v) =<= add (associator x y u) (associator x y v) [] by prove_linearised_form1 11601: Order: 11601: kbo 11601: Leaf order: 11601: commutator 1 2 0 11601: additive_inverse 6 1 0 11601: multiply 22 2 0 11601: additive_identity 8 0 0 11601: associator 4 3 3 0,2 11601: add 18 2 2 0,3,2 11601: v 2 0 2 2,3,2 11601: u 2 0 2 1,3,2 11601: y 3 0 3 2,2 11601: x 3 0 3 1,2 NO CLASH, using fixed ground order 11602: Facts: 11602: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 11602: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 11602: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 11602: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 11602: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 11602: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 11602: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 11602: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 11602: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 11602: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 11602: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 11602: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 11602: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 11602: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 11602: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 11602: Goal: 11602: Id : 1, {_}: associator x y (add u v) =<= add (associator x y u) (associator x y v) [] by prove_linearised_form1 11602: Order: 11602: lpo 11602: Leaf order: 11602: commutator 1 2 0 11602: additive_inverse 6 1 0 11602: multiply 22 2 0 11602: additive_identity 8 0 0 11602: associator 4 3 3 0,2 11602: add 18 2 2 0,3,2 11602: v 2 0 2 2,3,2 11602: u 2 0 2 1,3,2 11602: y 3 0 3 2,2 11602: x 3 0 3 1,2 % SZS status Timeout for RNG019-6.p NO CLASH, using fixed ground order 11618: Facts: 11618: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 11618: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 11618: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 11618: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 11618: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 11618: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 11618: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 11618: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 11618: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 11618: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 11618: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 11618: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 11618: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 11618: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 11618: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 11618: Goal: 11618: Id : 1, {_}: associator (add u v) x y =<= add (associator u x y) (associator v x y) [] by prove_linearised_form3 11618: Order: 11618: nrkbo 11618: Leaf order: 11618: commutator 1 2 0 11618: additive_inverse 6 1 0 11618: multiply 22 2 0 11618: additive_identity 8 0 0 11618: associator 4 3 3 0,2 11618: y 3 0 3 3,2 11618: x 3 0 3 2,2 11618: add 18 2 2 0,1,2 11618: v 2 0 2 2,1,2 11618: u 2 0 2 1,1,2 NO CLASH, using fixed ground order 11619: Facts: 11619: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 11619: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 11619: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 11619: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 11619: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 11619: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 11619: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 11619: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 11619: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 11619: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 11619: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 11619: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 11619: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 11619: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 11619: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 11619: Goal: 11619: Id : 1, {_}: associator (add u v) x y =<= add (associator u x y) (associator v x y) [] by prove_linearised_form3 11619: Order: 11619: kbo 11619: Leaf order: 11619: commutator 1 2 0 11619: additive_inverse 6 1 0 11619: multiply 22 2 0 11619: additive_identity 8 0 0 11619: associator 4 3 3 0,2 11619: y 3 0 3 3,2 11619: x 3 0 3 2,2 11619: add 18 2 2 0,1,2 11619: v 2 0 2 2,1,2 11619: u 2 0 2 1,1,2 NO CLASH, using fixed ground order 11620: Facts: 11620: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 11620: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 11620: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 11620: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 11620: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 11620: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 11620: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 11620: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 11620: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 11620: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 11620: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 11620: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 11620: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 11620: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 11620: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 11620: Goal: 11620: Id : 1, {_}: associator (add u v) x y =<= add (associator u x y) (associator v x y) [] by prove_linearised_form3 11620: Order: 11620: lpo 11620: Leaf order: 11620: commutator 1 2 0 11620: additive_inverse 6 1 0 11620: multiply 22 2 0 11620: additive_identity 8 0 0 11620: associator 4 3 3 0,2 11620: y 3 0 3 3,2 11620: x 3 0 3 2,2 11620: add 18 2 2 0,1,2 11620: v 2 0 2 2,1,2 11620: u 2 0 2 1,1,2 % SZS status Timeout for RNG021-6.p NO CLASH, using fixed ground order 11722: Facts: 11722: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 11722: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 11722: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 11722: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 11722: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 11722: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 11722: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 11722: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 11722: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 11722: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 11722: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 11722: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 11722: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 11722: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 11722: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 11722: Goal: 11722: Id : 1, {_}: associator x y x =>= additive_identity [] by prove_flexible_law 11722: Order: 11722: nrkbo 11722: Leaf order: 11722: commutator 1 2 0 11722: additive_inverse 6 1 0 11722: multiply 22 2 0 11722: add 16 2 0 11722: additive_identity 9 0 1 3 11722: associator 2 3 1 0,2 11722: y 1 0 1 2,2 11722: x 2 0 2 1,2 NO CLASH, using fixed ground order 11723: Facts: 11723: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 11723: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 11723: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 11723: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 11723: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 11723: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 11723: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 11723: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 11723: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 11723: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 11723: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 11723: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 11723: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 11723: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 11723: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 11723: Goal: 11723: Id : 1, {_}: associator x y x =>= additive_identity [] by prove_flexible_law 11723: Order: 11723: kbo 11723: Leaf order: 11723: commutator 1 2 0 11723: additive_inverse 6 1 0 11723: multiply 22 2 0 11723: add 16 2 0 11723: additive_identity 9 0 1 3 11723: associator 2 3 1 0,2 11723: y 1 0 1 2,2 11723: x 2 0 2 1,2 NO CLASH, using fixed ground order 11724: Facts: 11724: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 11724: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 11724: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 11724: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 11724: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 11724: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 11724: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 11724: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 11724: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 11724: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 11724: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 11724: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 11724: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 11724: Id : 15, {_}: associator ?37 ?38 ?39 =>= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 11724: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 11724: Goal: 11724: Id : 1, {_}: associator x y x =>= additive_identity [] by prove_flexible_law 11724: Order: 11724: lpo 11724: Leaf order: 11724: commutator 1 2 0 11724: additive_inverse 6 1 0 11724: multiply 22 2 0 11724: add 16 2 0 11724: additive_identity 9 0 1 3 11724: associator 2 3 1 0,2 11724: y 1 0 1 2,2 11724: x 2 0 2 1,2 % SZS status Timeout for RNG025-6.p NO CLASH, using fixed ground order 11740: Facts: 11740: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 11740: Id : 3, {_}: add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 11740: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 11740: Id : 5, {_}: add c c =>= c [] by idempotence 11740: Goal: 11740: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 11740: Order: 11740: nrkbo 11740: Leaf order: 11740: c 3 0 0 11740: add 13 2 3 0,2 11740: negate 9 1 5 0,1,2 11740: b 3 0 3 1,2,1,1,2 11740: a 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 11741: Facts: 11741: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 11741: Id : 3, {_}: add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 11741: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 11741: Id : 5, {_}: add c c =>= c [] by idempotence 11741: Goal: 11741: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 11741: Order: 11741: kbo 11741: Leaf order: 11741: c 3 0 0 11741: add 13 2 3 0,2 11741: negate 9 1 5 0,1,2 11741: b 3 0 3 1,2,1,1,2 11741: a 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 11742: Facts: 11742: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 11742: Id : 3, {_}: add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 11742: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 11742: Id : 5, {_}: add c c =>= c [] by idempotence 11742: Goal: 11742: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 11742: Order: 11742: lpo 11742: Leaf order: 11742: c 3 0 0 11742: add 13 2 3 0,2 11742: negate 9 1 5 0,1,2 11742: b 3 0 3 1,2,1,1,2 11742: a 2 0 2 1,1,1,2 % SZS status Timeout for ROB005-1.p NO CLASH, using fixed ground order 11769: Facts: 11769: Id : 2, {_}: multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6) =>= multiply ?2 ?3 (multiply ?4 ?5 ?6) [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6 11769: Id : 3, {_}: multiply ?8 ?8 ?9 =>= ?8 [9, 8] by ternary_multiply_2 ?8 ?9 11769: Id : 4, {_}: multiply (inverse ?11) ?11 ?12 =>= ?12 [12, 11] by left_inverse ?11 ?12 11769: Id : 5, {_}: multiply ?14 ?15 (inverse ?15) =>= ?14 [15, 14] by right_inverse ?14 ?15 11769: Goal: 11769: Id : 1, {_}: multiply y x x =>= x [] by prove_ternary_multiply_1_independant 11769: Order: 11769: nrkbo 11769: Leaf order: 11769: inverse 2 1 0 11769: multiply 9 3 1 0,2 11769: x 3 0 3 2,2 11769: y 1 0 1 1,2 NO CLASH, using fixed ground order 11770: Facts: 11770: Id : 2, {_}: multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6) =>= multiply ?2 ?3 (multiply ?4 ?5 ?6) [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6 11770: Id : 3, {_}: multiply ?8 ?8 ?9 =>= ?8 [9, 8] by ternary_multiply_2 ?8 ?9 11770: Id : 4, {_}: multiply (inverse ?11) ?11 ?12 =>= ?12 [12, 11] by left_inverse ?11 ?12 11770: Id : 5, {_}: multiply ?14 ?15 (inverse ?15) =>= ?14 [15, 14] by right_inverse ?14 ?15 11770: Goal: 11770: Id : 1, {_}: multiply y x x =>= x [] by prove_ternary_multiply_1_independant 11770: Order: 11770: kbo 11770: Leaf order: 11770: inverse 2 1 0 11770: multiply 9 3 1 0,2 11770: x 3 0 3 2,2 11770: y 1 0 1 1,2 NO CLASH, using fixed ground order 11771: Facts: 11771: Id : 2, {_}: multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6) =>= multiply ?2 ?3 (multiply ?4 ?5 ?6) [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6 11771: Id : 3, {_}: multiply ?8 ?8 ?9 =>= ?8 [9, 8] by ternary_multiply_2 ?8 ?9 11771: Id : 4, {_}: multiply (inverse ?11) ?11 ?12 =>= ?12 [12, 11] by left_inverse ?11 ?12 11771: Id : 5, {_}: multiply ?14 ?15 (inverse ?15) =>= ?14 [15, 14] by right_inverse ?14 ?15 11771: Goal: 11771: Id : 1, {_}: multiply y x x =>= x [] by prove_ternary_multiply_1_independant 11771: Order: 11771: lpo 11771: Leaf order: 11771: inverse 2 1 0 11771: multiply 9 3 1 0,2 11771: x 3 0 3 2,2 11771: y 1 0 1 1,2 % SZS status Timeout for BOO019-1.p CLASH, statistics insufficient 11791: Facts: 11791: Id : 2, {_}: add ?2 (multiply ?3 (multiply ?2 ?4)) =>= ?2 [4, 3, 2] by l1 ?2 ?3 ?4 11791: Id : 3, {_}: add (add (multiply ?6 ?7) (multiply ?7 ?8)) ?7 =>= ?7 [8, 7, 6] by l3 ?6 ?7 ?8 11791: Id : 4, {_}: multiply (add ?10 ?11) (add ?10 (inverse ?11)) =>= ?10 [11, 10] by b1 ?10 ?11 11791: Id : 5, {_}: multiply (add (multiply ?13 ?14) ?13) (add ?13 ?14) =>= ?13 [14, 13] by majority1 ?13 ?14 11791: Id : 6, {_}: multiply (add (multiply ?16 ?16) ?17) (add ?16 ?16) =>= ?16 [17, 16] by majority2 ?16 ?17 11791: Id : 7, {_}: multiply (add (multiply ?19 ?20) ?20) (add ?19 ?20) =>= ?20 [20, 19] by majority3 ?19 ?20 11791: Goal: 11791: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution 11791: Order: 11791: nrkbo 11791: Leaf order: 11791: add 11 2 0 11791: multiply 11 2 0 11791: inverse 3 1 2 0,2 11791: a 2 0 2 1,1,2 CLASH, statistics insufficient 11792: Facts: 11792: Id : 2, {_}: add ?2 (multiply ?3 (multiply ?2 ?4)) =>= ?2 [4, 3, 2] by l1 ?2 ?3 ?4 11792: Id : 3, {_}: add (add (multiply ?6 ?7) (multiply ?7 ?8)) ?7 =>= ?7 [8, 7, 6] by l3 ?6 ?7 ?8 11792: Id : 4, {_}: multiply (add ?10 ?11) (add ?10 (inverse ?11)) =>= ?10 [11, 10] by b1 ?10 ?11 11792: Id : 5, {_}: multiply (add (multiply ?13 ?14) ?13) (add ?13 ?14) =>= ?13 [14, 13] by majority1 ?13 ?14 11792: Id : 6, {_}: multiply (add (multiply ?16 ?16) ?17) (add ?16 ?16) =>= ?16 [17, 16] by majority2 ?16 ?17 11792: Id : 7, {_}: multiply (add (multiply ?19 ?20) ?20) (add ?19 ?20) =>= ?20 [20, 19] by majority3 ?19 ?20 11792: Goal: 11792: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution 11792: Order: 11792: kbo 11792: Leaf order: 11792: add 11 2 0 11792: multiply 11 2 0 11792: inverse 3 1 2 0,2 11792: a 2 0 2 1,1,2 CLASH, statistics insufficient 11793: Facts: 11793: Id : 2, {_}: add ?2 (multiply ?3 (multiply ?2 ?4)) =>= ?2 [4, 3, 2] by l1 ?2 ?3 ?4 11793: Id : 3, {_}: add (add (multiply ?6 ?7) (multiply ?7 ?8)) ?7 =>= ?7 [8, 7, 6] by l3 ?6 ?7 ?8 11793: Id : 4, {_}: multiply (add ?10 ?11) (add ?10 (inverse ?11)) =>= ?10 [11, 10] by b1 ?10 ?11 11793: Id : 5, {_}: multiply (add (multiply ?13 ?14) ?13) (add ?13 ?14) =>= ?13 [14, 13] by majority1 ?13 ?14 11793: Id : 6, {_}: multiply (add (multiply ?16 ?16) ?17) (add ?16 ?16) =>= ?16 [17, 16] by majority2 ?16 ?17 11793: Id : 7, {_}: multiply (add (multiply ?19 ?20) ?20) (add ?19 ?20) =>= ?20 [20, 19] by majority3 ?19 ?20 11793: Goal: 11793: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution 11793: Order: 11793: lpo 11793: Leaf order: 11793: add 11 2 0 11793: multiply 11 2 0 11793: inverse 3 1 2 0,2 11793: a 2 0 2 1,1,2 % SZS status Timeout for BOO030-1.p CLASH, statistics insufficient 11822: Facts: 11822: Id : 2, {_}: add ?2 (multiply ?3 (multiply ?2 ?4)) =>= ?2 [4, 3, 2] by l1 ?2 ?3 ?4 11822: Id : 3, {_}: add (add (multiply ?6 ?7) (multiply ?7 ?8)) ?7 =>= ?7 [8, 7, 6] by l3 ?6 ?7 ?8 11822: Id : 4, {_}: multiply (add ?10 (inverse ?10)) ?11 =>= ?11 [11, 10] by property3 ?10 ?11 11822: Id : 5, {_}: multiply ?13 (add ?14 (add ?13 ?15)) =>= ?13 [15, 14, 13] by l2 ?13 ?14 ?15 11822: Id : 6, {_}: multiply (multiply (add ?17 ?18) (add ?18 ?19)) ?18 =>= ?18 [19, 18, 17] by l4 ?17 ?18 ?19 11822: Id : 7, {_}: add (multiply ?21 (inverse ?21)) ?22 =>= ?22 [22, 21] by property3_dual ?21 ?22 11822: Id : 8, {_}: add (multiply (add ?24 ?25) ?24) (multiply ?24 ?25) =>= ?24 [25, 24] by majority1 ?24 ?25 11822: Id : 9, {_}: add (multiply (add ?27 ?27) ?28) (multiply ?27 ?27) =>= ?27 [28, 27] by majority2 ?27 ?28 11822: Id : 10, {_}: add (multiply (add ?30 ?31) ?31) (multiply ?30 ?31) =>= ?31 [31, 30] by majority3 ?30 ?31 11822: Id : 11, {_}: multiply (add (multiply ?33 ?34) ?33) (add ?33 ?34) =>= ?33 [34, 33] by majority1_dual ?33 ?34 11822: Id : 12, {_}: multiply (add (multiply ?36 ?36) ?37) (add ?36 ?36) =>= ?36 [37, 36] by majority2_dual ?36 ?37 11822: Id : 13, {_}: multiply (add (multiply ?39 ?40) ?40) (add ?39 ?40) =>= ?40 [40, 39] by majority3_dual ?39 ?40 11822: Goal: 11822: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution 11822: Order: 11822: lpo 11822: Leaf order: 11822: add 21 2 0 11822: multiply 21 2 0 11822: inverse 4 1 2 0,2 11822: a 2 0 2 1,1,2 CLASH, statistics insufficient 11821: Facts: 11821: Id : 2, {_}: add ?2 (multiply ?3 (multiply ?2 ?4)) =>= ?2 [4, 3, 2] by l1 ?2 ?3 ?4 11821: Id : 3, {_}: add (add (multiply ?6 ?7) (multiply ?7 ?8)) ?7 =>= ?7 [8, 7, 6] by l3 ?6 ?7 ?8 11821: Id : 4, {_}: multiply (add ?10 (inverse ?10)) ?11 =>= ?11 [11, 10] by property3 ?10 ?11 11821: Id : 5, {_}: multiply ?13 (add ?14 (add ?13 ?15)) =>= ?13 [15, 14, 13] by l2 ?13 ?14 ?15 11821: Id : 6, {_}: multiply (multiply (add ?17 ?18) (add ?18 ?19)) ?18 =>= ?18 [19, 18, 17] by l4 ?17 ?18 ?19 11821: Id : 7, {_}: add (multiply ?21 (inverse ?21)) ?22 =>= ?22 [22, 21] by property3_dual ?21 ?22 11821: Id : 8, {_}: add (multiply (add ?24 ?25) ?24) (multiply ?24 ?25) =>= ?24 [25, 24] by majority1 ?24 ?25 11821: Id : 9, {_}: add (multiply (add ?27 ?27) ?28) (multiply ?27 ?27) =>= ?27 [28, 27] by majority2 ?27 ?28 11821: Id : 10, {_}: add (multiply (add ?30 ?31) ?31) (multiply ?30 ?31) =>= ?31 [31, 30] by majority3 ?30 ?31 11821: Id : 11, {_}: multiply (add (multiply ?33 ?34) ?33) (add ?33 ?34) =>= ?33 [34, 33] by majority1_dual ?33 ?34 11821: Id : 12, {_}: multiply (add (multiply ?36 ?36) ?37) (add ?36 ?36) =>= ?36 [37, 36] by majority2_dual ?36 ?37 11821: Id : 13, {_}: multiply (add (multiply ?39 ?40) ?40) (add ?39 ?40) =>= ?40 [40, 39] by majority3_dual ?39 ?40 11821: Goal: 11821: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution 11821: Order: 11821: kbo 11821: Leaf order: 11821: add 21 2 0 11821: multiply 21 2 0 11821: inverse 4 1 2 0,2 11821: a 2 0 2 1,1,2 CLASH, statistics insufficient 11820: Facts: 11820: Id : 2, {_}: add ?2 (multiply ?3 (multiply ?2 ?4)) =>= ?2 [4, 3, 2] by l1 ?2 ?3 ?4 11820: Id : 3, {_}: add (add (multiply ?6 ?7) (multiply ?7 ?8)) ?7 =>= ?7 [8, 7, 6] by l3 ?6 ?7 ?8 11820: Id : 4, {_}: multiply (add ?10 (inverse ?10)) ?11 =>= ?11 [11, 10] by property3 ?10 ?11 11820: Id : 5, {_}: multiply ?13 (add ?14 (add ?13 ?15)) =>= ?13 [15, 14, 13] by l2 ?13 ?14 ?15 11820: Id : 6, {_}: multiply (multiply (add ?17 ?18) (add ?18 ?19)) ?18 =>= ?18 [19, 18, 17] by l4 ?17 ?18 ?19 11820: Id : 7, {_}: add (multiply ?21 (inverse ?21)) ?22 =>= ?22 [22, 21] by property3_dual ?21 ?22 11820: Id : 8, {_}: add (multiply (add ?24 ?25) ?24) (multiply ?24 ?25) =>= ?24 [25, 24] by majority1 ?24 ?25 11820: Id : 9, {_}: add (multiply (add ?27 ?27) ?28) (multiply ?27 ?27) =>= ?27 [28, 27] by majority2 ?27 ?28 11820: Id : 10, {_}: add (multiply (add ?30 ?31) ?31) (multiply ?30 ?31) =>= ?31 [31, 30] by majority3 ?30 ?31 11820: Id : 11, {_}: multiply (add (multiply ?33 ?34) ?33) (add ?33 ?34) =>= ?33 [34, 33] by majority1_dual ?33 ?34 11820: Id : 12, {_}: multiply (add (multiply ?36 ?36) ?37) (add ?36 ?36) =>= ?36 [37, 36] by majority2_dual ?36 ?37 11820: Id : 13, {_}: multiply (add (multiply ?39 ?40) ?40) (add ?39 ?40) =>= ?40 [40, 39] by majority3_dual ?39 ?40 11820: Goal: 11820: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution 11820: Order: 11820: nrkbo 11820: Leaf order: 11820: add 21 2 0 11820: multiply 21 2 0 11820: inverse 4 1 2 0,2 11820: a 2 0 2 1,1,2 % SZS status Timeout for BOO032-1.p NO CLASH, using fixed ground order 11838: Facts: 11838: Id : 2, {_}: add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) =<= multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2)) [4, 3, 2] by distributivity ?2 ?3 ?4 11838: Id : 3, {_}: add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6 [8, 7, 6] by l1 ?6 ?7 ?8 11838: Id : 4, {_}: add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11 [12, 11, 10] by l3 ?10 ?11 ?12 11838: Id : 5, {_}: multiply (add ?14 (inverse ?14)) ?15 =>= ?15 [15, 14] by property3 ?14 ?15 11838: Id : 6, {_}: multiply (add (multiply ?17 ?18) ?17) (add ?17 ?18) =>= ?17 [18, 17] by majority1 ?17 ?18 11838: Id : 7, {_}: multiply (add (multiply ?20 ?20) ?21) (add ?20 ?20) =>= ?20 [21, 20] by majority2 ?20 ?21 11838: Id : 8, {_}: multiply (add (multiply ?23 ?24) ?24) (add ?23 ?24) =>= ?24 [24, 23] by majority3 ?23 ?24 11838: Goal: 11838: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution 11838: Order: 11838: nrkbo 11838: Leaf order: 11838: add 15 2 0 multiply 11838: multiply 16 2 0 add 11838: inverse 3 1 2 0,2 11838: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 11839: Facts: 11839: Id : 2, {_}: add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) =<= multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2)) [4, 3, 2] by distributivity ?2 ?3 ?4 11839: Id : 3, {_}: add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6 [8, 7, 6] by l1 ?6 ?7 ?8 11839: Id : 4, {_}: add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11 [12, 11, 10] by l3 ?10 ?11 ?12 11839: Id : 5, {_}: multiply (add ?14 (inverse ?14)) ?15 =>= ?15 [15, 14] by property3 ?14 ?15 11839: Id : 6, {_}: multiply (add (multiply ?17 ?18) ?17) (add ?17 ?18) =>= ?17 [18, 17] by majority1 ?17 ?18 11839: Id : 7, {_}: multiply (add (multiply ?20 ?20) ?21) (add ?20 ?20) =>= ?20 [21, 20] by majority2 ?20 ?21 11839: Id : 8, {_}: multiply (add (multiply ?23 ?24) ?24) (add ?23 ?24) =>= ?24 [24, 23] by majority3 ?23 ?24 11839: Goal: 11839: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution 11839: Order: 11839: kbo 11839: Leaf order: 11839: add 15 2 0 multiply 11839: multiply 16 2 0 add 11839: inverse 3 1 2 0,2 11839: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 11840: Facts: 11840: Id : 2, {_}: add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) =<= multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2)) [4, 3, 2] by distributivity ?2 ?3 ?4 11840: Id : 3, {_}: add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6 [8, 7, 6] by l1 ?6 ?7 ?8 11840: Id : 4, {_}: add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11 [12, 11, 10] by l3 ?10 ?11 ?12 11840: Id : 5, {_}: multiply (add ?14 (inverse ?14)) ?15 =>= ?15 [15, 14] by property3 ?14 ?15 11840: Id : 6, {_}: multiply (add (multiply ?17 ?18) ?17) (add ?17 ?18) =>= ?17 [18, 17] by majority1 ?17 ?18 11840: Id : 7, {_}: multiply (add (multiply ?20 ?20) ?21) (add ?20 ?20) =>= ?20 [21, 20] by majority2 ?20 ?21 11840: Id : 8, {_}: multiply (add (multiply ?23 ?24) ?24) (add ?23 ?24) =>= ?24 [24, 23] by majority3 ?23 ?24 11840: Goal: 11840: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution 11840: Order: 11840: lpo 11840: Leaf order: 11840: add 15 2 0 multiply 11840: multiply 16 2 0 add 11840: inverse 3 1 2 0,2 11840: a 2 0 2 1,1,2 % SZS status Timeout for BOO033-1.p NO CLASH, using fixed ground order 11868: Facts: 11868: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 11868: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 11868: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply w w)) (apply (apply b (apply b w)) (apply (apply b b) b)) [] by strong_fixed_point 11868: Goal: 11868: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 11868: Order: 11868: nrkbo 11868: Leaf order: 11868: w 4 0 0 11868: b 7 0 0 11868: apply 20 2 3 0,2 11868: fixed_pt 3 0 3 2,2 11868: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 11869: Facts: 11869: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 11869: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 11869: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply w w)) (apply (apply b (apply b w)) (apply (apply b b) b)) [] by strong_fixed_point 11869: Goal: 11869: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 11869: Order: 11869: kbo 11869: Leaf order: 11869: w 4 0 0 11869: b 7 0 0 11869: apply 20 2 3 0,2 11869: fixed_pt 3 0 3 2,2 11869: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 11870: Facts: 11870: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 11870: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 11870: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply w w)) (apply (apply b (apply b w)) (apply (apply b b) b)) [] by strong_fixed_point 11870: Goal: 11870: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 11870: Order: 11870: lpo 11870: Leaf order: 11870: w 4 0 0 11870: b 7 0 0 11870: apply 20 2 3 0,2 11870: fixed_pt 3 0 3 2,2 11870: strong_fixed_point 3 0 2 1,2 % SZS status Timeout for COL003-20.p NO CLASH, using fixed ground order NO CLASH, using fixed ground order 11889: Facts: 11889: Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4 11889: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 11889: Goal: 11889: Id : 1, {_}: apply (apply (apply (apply s (apply k (apply s (apply (apply s k) k)))) (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))) x) y =>= apply y (apply (apply x x) y) [] by prove_u_combinator 11889: Order: 11889: kbo 11889: Leaf order: 11889: y 3 0 3 2,2 11889: x 3 0 3 2,1,2 11889: apply 25 2 17 0,2 11889: k 8 0 7 1,2,1,1,1,2 11889: s 7 0 6 1,1,1,1,2 11888: Facts: 11888: Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4 11888: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 11888: Goal: 11888: Id : 1, {_}: apply (apply (apply (apply s (apply k (apply s (apply (apply s k) k)))) (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))) x) y =>= apply y (apply (apply x x) y) [] by prove_u_combinator 11888: Order: 11888: nrkbo 11888: Leaf order: 11888: y 3 0 3 2,2 11888: x 3 0 3 2,1,2 11888: apply 25 2 17 0,2 11888: k 8 0 7 1,2,1,1,1,2 11888: s 7 0 6 1,1,1,1,2 NO CLASH, using fixed ground order 11890: Facts: 11890: Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4 11890: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 11890: Goal: 11890: Id : 1, {_}: apply (apply (apply (apply s (apply k (apply s (apply (apply s k) k)))) (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))) x) y =>= apply y (apply (apply x x) y) [] by prove_u_combinator 11890: Order: 11890: lpo 11890: Leaf order: 11890: y 3 0 3 2,2 11890: x 3 0 3 2,1,2 11890: apply 25 2 17 0,2 11890: k 8 0 7 1,2,1,1,1,2 11890: s 7 0 6 1,1,1,1,2 Statistics : Max weight : 29 Found proof, 0.014068s % SZS status Unsatisfiable for COL004-3.p % SZS output start CNFRefutation for COL004-3.p Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4 Id : 35, {_}: apply y (apply (apply x x) y) === apply y (apply (apply x x) y) [] by Demod 34 with 3 at 1,2 Id : 34, {_}: apply (apply (apply k y) (apply k y)) (apply (apply x x) y) =>= apply y (apply (apply x x) y) [] by Demod 33 with 2 at 1,2 Id : 33, {_}: apply (apply (apply (apply s k) k) y) (apply (apply x x) y) =>= apply y (apply (apply x x) y) [] by Demod 32 with 2 at 2 Id : 32, {_}: apply (apply (apply s (apply (apply s k) k)) (apply x x)) y =>= apply y (apply (apply x x) y) [] by Demod 31 with 3 at 2,2,1,2 Id : 31, {_}: apply (apply (apply s (apply (apply s k) k)) (apply x (apply (apply k x) (apply k x)))) y =>= apply y (apply (apply x x) y) [] by Demod 30 with 3 at 1,2,1,2 Id : 30, {_}: apply (apply (apply s (apply (apply s k) k)) (apply (apply (apply k x) (apply k x)) (apply (apply k x) (apply k x)))) y =>= apply y (apply (apply x x) y) [] by Demod 20 with 3 at 1,1,2 Id : 20, {_}: apply (apply (apply (apply k (apply s (apply (apply s k) k))) x) (apply (apply (apply k x) (apply k x)) (apply (apply k x) (apply k x)))) y =>= apply y (apply (apply x x) y) [] by Demod 19 with 2 at 2,2,1,2 Id : 19, {_}: apply (apply (apply (apply k (apply s (apply (apply s k) k))) x) (apply (apply (apply k x) (apply k x)) (apply (apply (apply s k) k) x))) y =>= apply y (apply (apply x x) y) [] by Demod 18 with 2 at 1,2,1,2 Id : 18, {_}: apply (apply (apply (apply k (apply s (apply (apply s k) k))) x) (apply (apply (apply (apply s k) k) x) (apply (apply (apply s k) k) x))) y =>= apply y (apply (apply x x) y) [] by Demod 17 with 2 at 2,1,2 Id : 17, {_}: apply (apply (apply (apply k (apply s (apply (apply s k) k))) x) (apply (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)) x)) y =>= apply y (apply (apply x x) y) [] by Demod 1 with 2 at 1,2 Id : 1, {_}: apply (apply (apply (apply s (apply k (apply s (apply (apply s k) k)))) (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))) x) y =>= apply y (apply (apply x x) y) [] by prove_u_combinator % SZS output end CNFRefutation for COL004-3.p 11890: solved COL004-3.p in 0.020001 using lpo 11890: status Unsatisfiable for COL004-3.p CLASH, statistics insufficient 11895: Facts: 11895: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 11895: Id : 3, {_}: apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 [8, 7] by w_definition ?7 ?8 11895: Goal: 11895: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_model ?1 11895: Order: 11895: nrkbo 11895: Leaf order: 11895: w 1 0 0 11895: s 1 0 0 11895: apply 11 2 1 0,3 11895: combinator 1 0 1 1,3 CLASH, statistics insufficient 11896: Facts: 11896: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 11896: Id : 3, {_}: apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 [8, 7] by w_definition ?7 ?8 11896: Goal: 11896: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_model ?1 11896: Order: 11896: kbo 11896: Leaf order: 11896: w 1 0 0 11896: s 1 0 0 11896: apply 11 2 1 0,3 11896: combinator 1 0 1 1,3 CLASH, statistics insufficient 11897: Facts: 11897: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 11897: Id : 3, {_}: apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 [8, 7] by w_definition ?7 ?8 11897: Goal: 11897: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_model ?1 11897: Order: 11897: lpo 11897: Leaf order: 11897: w 1 0 0 11897: s 1 0 0 11897: apply 11 2 1 0,3 11897: combinator 1 0 1 1,3 % SZS status Timeout for COL005-1.p CLASH, statistics insufficient 11929: Facts: 11929: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 11929: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 11929: Id : 4, {_}: apply (apply (apply v ?9) ?10) ?11 =>= apply (apply ?11 ?9) ?10 [11, 10, 9] by v_definition ?9 ?10 ?11 11929: Goal: 11929: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 11929: Order: 11929: nrkbo 11929: Leaf order: 11929: v 1 0 0 11929: m 1 0 0 11929: b 1 0 0 11929: apply 15 2 3 0,2 11929: f 3 1 3 0,2,2 CLASH, statistics insufficient 11930: Facts: 11930: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 11930: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 11930: Id : 4, {_}: apply (apply (apply v ?9) ?10) ?11 =>= apply (apply ?11 ?9) ?10 [11, 10, 9] by v_definition ?9 ?10 ?11 11930: Goal: 11930: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 11930: Order: 11930: kbo 11930: Leaf order: 11930: v 1 0 0 11930: m 1 0 0 11930: b 1 0 0 11930: apply 15 2 3 0,2 11930: f 3 1 3 0,2,2 CLASH, statistics insufficient 11931: Facts: 11931: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 11931: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 11931: Id : 4, {_}: apply (apply (apply v ?9) ?10) ?11 =?= apply (apply ?11 ?9) ?10 [11, 10, 9] by v_definition ?9 ?10 ?11 11931: Goal: 11931: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 11931: Order: 11931: lpo 11931: Leaf order: 11931: v 1 0 0 11931: m 1 0 0 11931: b 1 0 0 11931: apply 15 2 3 0,2 11931: f 3 1 3 0,2,2 Goal subsumed Statistics : Max weight : 78 Found proof, 6.233757s % SZS status Unsatisfiable for COL038-1.p % SZS output start CNFRefutation for COL038-1.p Id : 4, {_}: apply (apply (apply v ?9) ?10) ?11 =>= apply (apply ?11 ?9) ?10 [11, 10, 9] by v_definition ?9 ?10 ?11 Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 Id : 19, {_}: apply (apply (apply v ?47) ?48) ?49 =>= apply (apply ?49 ?47) ?48 [49, 48, 47] by v_definition ?47 ?48 ?49 Id : 5, {_}: apply (apply (apply b ?13) ?14) ?15 =>= apply ?13 (apply ?14 ?15) [15, 14, 13] by b_definition ?13 ?14 ?15 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 Id : 6, {_}: apply ?17 (apply ?18 ?19) =?= apply ?17 (apply ?18 ?19) [19, 18, 17] by Super 5 with 2 at 2 Id : 1244, {_}: apply (apply m (apply v ?1596)) ?1597 =?= apply (apply ?1597 ?1596) (apply v ?1596) [1597, 1596] by Super 19 with 3 at 1,2 Id : 18, {_}: apply m (apply (apply v ?44) ?45) =<= apply (apply (apply (apply v ?44) ?45) ?44) ?45 [45, 44] by Super 3 with 4 at 3 Id : 224, {_}: apply m (apply (apply v ?485) ?486) =<= apply (apply (apply ?485 ?485) ?486) ?486 [486, 485] by Demod 18 with 4 at 1,3 Id : 232, {_}: apply m (apply (apply v ?509) ?510) =<= apply (apply (apply m ?509) ?510) ?510 [510, 509] by Super 224 with 3 at 1,1,3 Id : 7751, {_}: apply (apply m (apply v ?7787)) (apply (apply m ?7788) ?7787) =<= apply (apply m (apply (apply v ?7788) ?7787)) (apply v ?7787) [7788, 7787] by Super 1244 with 232 at 1,3 Id : 9, {_}: apply (apply (apply m b) ?24) ?25 =>= apply b (apply ?24 ?25) [25, 24] by Super 2 with 3 at 1,1,2 Id : 236, {_}: apply m (apply (apply v (apply v ?521)) ?522) =<= apply (apply (apply ?522 ?521) (apply v ?521)) ?522 [522, 521] by Super 224 with 4 at 1,3 Id : 2866, {_}: apply m (apply (apply v (apply v b)) m) =>= apply b (apply (apply v b) m) [] by Super 9 with 236 at 2 Id : 7790, {_}: apply (apply m (apply v m)) (apply (apply m (apply v b)) m) =>= apply (apply b (apply (apply v b) m)) (apply v m) [] by Super 7751 with 2866 at 1,3 Id : 20, {_}: apply (apply m (apply v ?51)) ?52 =?= apply (apply ?52 ?51) (apply v ?51) [52, 51] by Super 19 with 3 at 1,2 Id : 7860, {_}: apply (apply m (apply v m)) (apply (apply m b) (apply v b)) =>= apply (apply b (apply (apply v b) m)) (apply v m) [] by Demod 7790 with 20 at 2,2 Id : 11, {_}: apply m (apply (apply b ?30) ?31) =<= apply ?30 (apply ?31 (apply (apply b ?30) ?31)) [31, 30] by Super 2 with 3 at 2 Id : 9568, {_}: apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) b)) (apply m (apply (apply b (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) b))) m)) =?= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) b)) (apply m (apply (apply b (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) b))) m)) [] by Super 9567 with 11 at 2 Id : 9567, {_}: apply m (apply (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771))) m) =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply m (apply (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771))) m)) [8771] by Demod 9566 with 2 at 2,3 Id : 9566, {_}: apply m (apply (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771))) m) =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply (apply (apply b m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) m) [8771] by Demod 9565 with 2 at 2 Id : 9565, {_}: apply (apply (apply b m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) m =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply (apply (apply b m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) m) [8771] by Demod 9564 with 4 at 1,2,3 Id : 9564, {_}: apply (apply (apply b m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) m =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply (apply (apply (apply v m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) b) m) [8771] by Demod 9563 with 4 at 1,2 Id : 9563, {_}: apply (apply (apply (apply v m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) b) m =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply (apply (apply (apply v m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) b) m) [8771] by Demod 9562 with 4 at 2,3 Id : 9562, {_}: apply (apply (apply (apply v m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) b) m =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply (apply (apply v b) m) (apply (apply v m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771))))) [8771] by Demod 9561 with 4 at 2 Id : 9561, {_}: apply (apply (apply v b) m) (apply (apply v m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply (apply (apply v b) m) (apply (apply v m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771))))) [8771] by Demod 9560 with 2 at 2,3 Id : 9560, {_}: apply (apply (apply v b) m) (apply (apply v m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply (apply (apply b (apply (apply v b) m)) (apply v m)) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) [8771] by Demod 9559 with 2 at 2 Id : 9559, {_}: apply (apply (apply b (apply (apply v b) m)) (apply v m)) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771))) =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply (apply (apply b (apply (apply v b) m)) (apply v m)) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) [8771] by Demod 9558 with 7860 at 1,2,3 Id : 9558, {_}: apply (apply (apply b (apply (apply v b) m)) (apply v m)) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771))) =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply (apply (apply m (apply v m)) (apply (apply m b) (apply v b))) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) [8771] by Demod 9557 with 7860 at 2,1,1,1,3 Id : 9557, {_}: apply (apply (apply b (apply (apply v b) m)) (apply v m)) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771))) =<= apply (f (apply (apply b (apply (apply m (apply v m)) (apply (apply m b) (apply v b)))) ?8771)) (apply (apply (apply m (apply v m)) (apply (apply m b) (apply v b))) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) [8771] by Demod 9556 with 7860 at 2,1,1,2,2,2 Id : 9556, {_}: apply (apply (apply b (apply (apply v b) m)) (apply v m)) (apply ?8771 (f (apply (apply b (apply (apply m (apply v m)) (apply (apply m b) (apply v b)))) ?8771))) =<= apply (f (apply (apply b (apply (apply m (apply v m)) (apply (apply m b) (apply v b)))) ?8771)) (apply (apply (apply m (apply v m)) (apply (apply m b) (apply v b))) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) [8771] by Demod 9078 with 7860 at 1,2 Id : 9078, {_}: apply (apply (apply m (apply v m)) (apply (apply m b) (apply v b))) (apply ?8771 (f (apply (apply b (apply (apply m (apply v m)) (apply (apply m b) (apply v b)))) ?8771))) =<= apply (f (apply (apply b (apply (apply m (apply v m)) (apply (apply m b) (apply v b)))) ?8771)) (apply (apply (apply m (apply v m)) (apply (apply m b) (apply v b))) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) [8771] by Super 174 with 7860 at 2,1,1,2,2,2,3 Id : 174, {_}: apply (apply ?379 ?380) (apply ?381 (f (apply (apply b (apply ?379 ?380)) ?381))) =<= apply (f (apply (apply b (apply ?379 ?380)) ?381)) (apply (apply ?379 ?380) (apply ?381 (f (apply (apply b (apply ?379 ?380)) ?381)))) [381, 380, 379] by Super 8 with 6 at 1,1,2,2,2,3 Id : 8, {_}: apply ?21 (apply ?22 (f (apply (apply b ?21) ?22))) =<= apply (f (apply (apply b ?21) ?22)) (apply ?21 (apply ?22 (f (apply (apply b ?21) ?22)))) [22, 21] by Demod 7 with 2 at 2 Id : 7, {_}: apply (apply (apply b ?21) ?22) (f (apply (apply b ?21) ?22)) =<= apply (f (apply (apply b ?21) ?22)) (apply ?21 (apply ?22 (f (apply (apply b ?21) ?22)))) [22, 21] by Super 1 with 2 at 2,3 Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 % SZS output end CNFRefutation for COL038-1.p 11930: solved COL038-1.p in 3.116194 using kbo 11930: status Unsatisfiable for COL038-1.p CLASH, statistics insufficient 11936: Facts: 11936: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 11936: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 11936: Id : 4, {_}: apply m ?11 =?= apply ?11 ?11 [11] by m_definition ?11 11936: Goal: 11936: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 11936: Order: 11936: nrkbo 11936: Leaf order: 11936: m 1 0 0 11936: b 1 0 0 11936: s 1 0 0 11936: apply 16 2 3 0,2 11936: f 3 1 3 0,2,2 CLASH, statistics insufficient 11937: Facts: 11937: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 11937: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 11937: Id : 4, {_}: apply m ?11 =?= apply ?11 ?11 [11] by m_definition ?11 11937: Goal: 11937: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 11937: Order: 11937: kbo 11937: Leaf order: 11937: m 1 0 0 11937: b 1 0 0 11937: s 1 0 0 11937: apply 16 2 3 0,2 11937: f 3 1 3 0,2,2 CLASH, statistics insufficient 11938: Facts: 11938: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 11938: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 11938: Id : 4, {_}: apply m ?11 =?= apply ?11 ?11 [11] by m_definition ?11 11938: Goal: 11938: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 11938: Order: 11938: lpo 11938: Leaf order: 11938: m 1 0 0 11938: b 1 0 0 11938: s 1 0 0 11938: apply 16 2 3 0,2 11938: f 3 1 3 0,2,2 % SZS status Timeout for COL046-1.p CLASH, statistics insufficient 11954: Facts: 11954: Id : 2, {_}: apply (apply l ?3) ?4 =?= apply ?3 (apply ?4 ?4) [4, 3] by l_definition ?3 ?4 11954: Id : 3, {_}: apply (apply (apply q ?6) ?7) ?8 =>= apply ?7 (apply ?6 ?8) [8, 7, 6] by q_definition ?6 ?7 ?8 11954: Goal: 11954: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_model ?1 11954: Order: 11954: nrkbo 11954: Leaf order: 11954: q 1 0 0 11954: l 1 0 0 11954: apply 12 2 3 0,2 11954: f 3 1 3 0,2,2 CLASH, statistics insufficient 11955: Facts: 11955: Id : 2, {_}: apply (apply l ?3) ?4 =?= apply ?3 (apply ?4 ?4) [4, 3] by l_definition ?3 ?4 11955: Id : 3, {_}: apply (apply (apply q ?6) ?7) ?8 =>= apply ?7 (apply ?6 ?8) [8, 7, 6] by q_definition ?6 ?7 ?8 11955: Goal: 11955: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_model ?1 11955: Order: 11955: kbo 11955: Leaf order: 11955: q 1 0 0 11955: l 1 0 0 11955: apply 12 2 3 0,2 11955: f 3 1 3 0,2,2 CLASH, statistics insufficient 11956: Facts: 11956: Id : 2, {_}: apply (apply l ?3) ?4 =?= apply ?3 (apply ?4 ?4) [4, 3] by l_definition ?3 ?4 11956: Id : 3, {_}: apply (apply (apply q ?6) ?7) ?8 =>= apply ?7 (apply ?6 ?8) [8, 7, 6] by q_definition ?6 ?7 ?8 11956: Goal: 11956: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_model ?1 11956: Order: 11956: lpo 11956: Leaf order: 11956: q 1 0 0 11956: l 1 0 0 11956: apply 12 2 3 0,2 11956: f 3 1 3 0,2,2 % SZS status Timeout for COL047-1.p CLASH, statistics insufficient 11983: Facts: 11983: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 11983: Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 11983: Goal: 11983: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (g ?1) (apply (f ?1) (h ?1)) [1] by prove_q_combinator ?1 11983: Order: 11983: nrkbo 11983: Leaf order: 11983: t 1 0 0 11983: b 1 0 0 11983: h 2 1 2 0,2,2 11983: g 2 1 2 0,2,1,2 11983: apply 13 2 5 0,2 11983: f 2 1 2 0,2,1,1,2 CLASH, statistics insufficient 11984: Facts: 11984: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 11984: Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 11984: Goal: 11984: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (g ?1) (apply (f ?1) (h ?1)) [1] by prove_q_combinator ?1 11984: Order: 11984: kbo 11984: Leaf order: 11984: t 1 0 0 11984: b 1 0 0 11984: h 2 1 2 0,2,2 11984: g 2 1 2 0,2,1,2 11984: apply 13 2 5 0,2 11984: f 2 1 2 0,2,1,1,2 CLASH, statistics insufficient 11985: Facts: 11985: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 11985: Id : 3, {_}: apply (apply t ?7) ?8 =?= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 11985: Goal: 11985: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (g ?1) (apply (f ?1) (h ?1)) [1] by prove_q_combinator ?1 11985: Order: 11985: lpo 11985: Leaf order: 11985: t 1 0 0 11985: b 1 0 0 11985: h 2 1 2 0,2,2 11985: g 2 1 2 0,2,1,2 11985: apply 13 2 5 0,2 11985: f 2 1 2 0,2,1,1,2 Goal subsumed Statistics : Max weight : 76 Found proof, 1.436300s % SZS status Unsatisfiable for COL060-1.p % SZS output start CNFRefutation for COL060-1.p Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 Id : 447, {_}: apply (g (apply (apply b (apply t b)) (apply (apply b b) t))) (apply (f (apply (apply b (apply t b)) (apply (apply b b) t))) (h (apply (apply b (apply t b)) (apply (apply b b) t)))) === apply (g (apply (apply b (apply t b)) (apply (apply b b) t))) (apply (f (apply (apply b (apply t b)) (apply (apply b b) t))) (h (apply (apply b (apply t b)) (apply (apply b b) t)))) [] by Super 445 with 2 at 2 Id : 445, {_}: apply (apply (apply ?1404 (g (apply (apply b (apply t ?1404)) (apply (apply b b) t)))) (f (apply (apply b (apply t ?1404)) (apply (apply b b) t)))) (h (apply (apply b (apply t ?1404)) (apply (apply b b) t))) =>= apply (g (apply (apply b (apply t ?1404)) (apply (apply b b) t))) (apply (f (apply (apply b (apply t ?1404)) (apply (apply b b) t))) (h (apply (apply b (apply t ?1404)) (apply (apply b b) t)))) [1404] by Super 277 with 3 at 1,2 Id : 277, {_}: apply (apply (apply ?900 (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (apply ?901 (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))))) (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) =>= apply (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) (apply (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) [901, 900] by Super 29 with 2 at 1,2 Id : 29, {_}: apply (apply (apply (apply ?85 (apply ?86 (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))))) ?87) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) =>= apply (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) (apply (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) [87, 86, 85] by Super 13 with 3 at 1,1,2 Id : 13, {_}: apply (apply (apply ?33 (apply ?34 (apply ?35 (f (apply (apply b ?33) (apply (apply b ?34) ?35)))))) (g (apply (apply b ?33) (apply (apply b ?34) ?35)))) (h (apply (apply b ?33) (apply (apply b ?34) ?35))) =>= apply (g (apply (apply b ?33) (apply (apply b ?34) ?35))) (apply (f (apply (apply b ?33) (apply (apply b ?34) ?35))) (h (apply (apply b ?33) (apply (apply b ?34) ?35)))) [35, 34, 33] by Super 6 with 2 at 2,1,1,2 Id : 6, {_}: apply (apply (apply ?18 (apply ?19 (f (apply (apply b ?18) ?19)))) (g (apply (apply b ?18) ?19))) (h (apply (apply b ?18) ?19)) =>= apply (g (apply (apply b ?18) ?19)) (apply (f (apply (apply b ?18) ?19)) (h (apply (apply b ?18) ?19))) [19, 18] by Super 1 with 2 at 1,1,2 Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (g ?1) (apply (f ?1) (h ?1)) [1] by prove_q_combinator ?1 % SZS output end CNFRefutation for COL060-1.p 11983: solved COL060-1.p in 0.376023 using nrkbo 11983: status Unsatisfiable for COL060-1.p CLASH, statistics insufficient 11990: Facts: 11990: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 11990: Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 11990: Goal: 11990: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (f ?1) (apply (h ?1) (g ?1)) [1] by prove_q1_combinator ?1 11990: Order: 11990: nrkbo 11990: Leaf order: 11990: t 1 0 0 11990: b 1 0 0 11990: h 2 1 2 0,2,2 11990: g 2 1 2 0,2,1,2 11990: apply 13 2 5 0,2 11990: f 2 1 2 0,2,1,1,2 CLASH, statistics insufficient 11991: Facts: 11991: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 11991: Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 11991: Goal: 11991: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (f ?1) (apply (h ?1) (g ?1)) [1] by prove_q1_combinator ?1 11991: Order: 11991: kbo 11991: Leaf order: 11991: t 1 0 0 11991: b 1 0 0 11991: h 2 1 2 0,2,2 11991: g 2 1 2 0,2,1,2 11991: apply 13 2 5 0,2 11991: f 2 1 2 0,2,1,1,2 CLASH, statistics insufficient 11992: Facts: 11992: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 11992: Id : 3, {_}: apply (apply t ?7) ?8 =?= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 11992: Goal: 11992: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (f ?1) (apply (h ?1) (g ?1)) [1] by prove_q1_combinator ?1 11992: Order: 11992: lpo 11992: Leaf order: 11992: t 1 0 0 11992: b 1 0 0 11992: h 2 1 2 0,2,2 11992: g 2 1 2 0,2,1,2 11992: apply 13 2 5 0,2 11992: f 2 1 2 0,2,1,1,2 Goal subsumed Statistics : Max weight : 76 Found proof, 2.573692s % SZS status Unsatisfiable for COL061-1.p % SZS output start CNFRefutation for COL061-1.p Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 Id : 447, {_}: apply (f (apply (apply b (apply t t)) (apply (apply b b) b))) (apply (h (apply (apply b (apply t t)) (apply (apply b b) b))) (g (apply (apply b (apply t t)) (apply (apply b b) b)))) === apply (f (apply (apply b (apply t t)) (apply (apply b b) b))) (apply (h (apply (apply b (apply t t)) (apply (apply b b) b))) (g (apply (apply b (apply t t)) (apply (apply b b) b)))) [] by Super 446 with 3 at 2,2 Id : 446, {_}: apply (f (apply (apply b (apply t ?1406)) (apply (apply b b) b))) (apply (apply ?1406 (g (apply (apply b (apply t ?1406)) (apply (apply b b) b)))) (h (apply (apply b (apply t ?1406)) (apply (apply b b) b)))) =>= apply (f (apply (apply b (apply t ?1406)) (apply (apply b b) b))) (apply (h (apply (apply b (apply t ?1406)) (apply (apply b b) b))) (g (apply (apply b (apply t ?1406)) (apply (apply b b) b)))) [1406] by Super 277 with 2 at 2 Id : 277, {_}: apply (apply (apply ?900 (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (apply ?901 (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))))) (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) =>= apply (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) (apply (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) [901, 900] by Super 29 with 2 at 1,2 Id : 29, {_}: apply (apply (apply (apply ?85 (apply ?86 (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))))) ?87) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) =>= apply (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) (apply (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) [87, 86, 85] by Super 13 with 3 at 1,1,2 Id : 13, {_}: apply (apply (apply ?33 (apply ?34 (apply ?35 (f (apply (apply b ?33) (apply (apply b ?34) ?35)))))) (g (apply (apply b ?33) (apply (apply b ?34) ?35)))) (h (apply (apply b ?33) (apply (apply b ?34) ?35))) =>= apply (f (apply (apply b ?33) (apply (apply b ?34) ?35))) (apply (h (apply (apply b ?33) (apply (apply b ?34) ?35))) (g (apply (apply b ?33) (apply (apply b ?34) ?35)))) [35, 34, 33] by Super 6 with 2 at 2,1,1,2 Id : 6, {_}: apply (apply (apply ?18 (apply ?19 (f (apply (apply b ?18) ?19)))) (g (apply (apply b ?18) ?19))) (h (apply (apply b ?18) ?19)) =>= apply (f (apply (apply b ?18) ?19)) (apply (h (apply (apply b ?18) ?19)) (g (apply (apply b ?18) ?19))) [19, 18] by Super 1 with 2 at 1,1,2 Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (f ?1) (apply (h ?1) (g ?1)) [1] by prove_q1_combinator ?1 % SZS output end CNFRefutation for COL061-1.p 11990: solved COL061-1.p in 0.344021 using nrkbo 11990: status Unsatisfiable for COL061-1.p CLASH, statistics insufficient 11997: Facts: 11997: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 11997: Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 11997: Goal: 11997: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (f ?1) (h ?1)) (g ?1) [1] by prove_c_combinator ?1 11997: Order: 11997: nrkbo 11997: Leaf order: 11997: t 1 0 0 11997: b 1 0 0 11997: h 2 1 2 0,2,2 11997: g 2 1 2 0,2,1,2 11997: apply 13 2 5 0,2 11997: f 2 1 2 0,2,1,1,2 CLASH, statistics insufficient 11998: Facts: 11998: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 11998: Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 11998: Goal: 11998: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (f ?1) (h ?1)) (g ?1) [1] by prove_c_combinator ?1 11998: Order: 11998: kbo 11998: Leaf order: 11998: t 1 0 0 11998: b 1 0 0 11998: h 2 1 2 0,2,2 11998: g 2 1 2 0,2,1,2 11998: apply 13 2 5 0,2 11998: f 2 1 2 0,2,1,1,2 CLASH, statistics insufficient 11999: Facts: 11999: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 11999: Id : 3, {_}: apply (apply t ?7) ?8 =?= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 11999: Goal: 11999: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (f ?1) (h ?1)) (g ?1) [1] by prove_c_combinator ?1 11999: Order: 11999: lpo 11999: Leaf order: 11999: t 1 0 0 11999: b 1 0 0 11999: h 2 1 2 0,2,2 11999: g 2 1 2 0,2,1,2 11999: apply 13 2 5 0,2 11999: f 2 1 2 0,2,1,1,2 Goal subsumed Statistics : Max weight : 100 Found proof, 3.178698s % SZS status Unsatisfiable for COL062-1.p % SZS output start CNFRefutation for COL062-1.p Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 Id : 1574, {_}: apply (apply (f (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))) (h (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)))) (g (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))) === apply (apply (f (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))) (h (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)))) (g (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))) [] by Super 1573 with 3 at 2 Id : 1573, {_}: apply (apply ?5215 (g (apply (apply b (apply t (apply (apply b b) ?5215))) (apply (apply b b) t)))) (apply (f (apply (apply b (apply t (apply (apply b b) ?5215))) (apply (apply b b) t))) (h (apply (apply b (apply t (apply (apply b b) ?5215))) (apply (apply b b) t)))) =>= apply (apply (f (apply (apply b (apply t (apply (apply b b) ?5215))) (apply (apply b b) t))) (h (apply (apply b (apply t (apply (apply b b) ?5215))) (apply (apply b b) t)))) (g (apply (apply b (apply t (apply (apply b b) ?5215))) (apply (apply b b) t))) [5215] by Super 447 with 2 at 2 Id : 447, {_}: apply (apply (apply ?1408 (apply ?1409 (g (apply (apply b (apply t (apply (apply b ?1408) ?1409))) (apply (apply b b) t))))) (f (apply (apply b (apply t (apply (apply b ?1408) ?1409))) (apply (apply b b) t)))) (h (apply (apply b (apply t (apply (apply b ?1408) ?1409))) (apply (apply b b) t))) =>= apply (apply (f (apply (apply b (apply t (apply (apply b ?1408) ?1409))) (apply (apply b b) t))) (h (apply (apply b (apply t (apply (apply b ?1408) ?1409))) (apply (apply b b) t)))) (g (apply (apply b (apply t (apply (apply b ?1408) ?1409))) (apply (apply b b) t))) [1409, 1408] by Super 445 with 2 at 1,1,2 Id : 445, {_}: apply (apply (apply ?1404 (g (apply (apply b (apply t ?1404)) (apply (apply b b) t)))) (f (apply (apply b (apply t ?1404)) (apply (apply b b) t)))) (h (apply (apply b (apply t ?1404)) (apply (apply b b) t))) =>= apply (apply (f (apply (apply b (apply t ?1404)) (apply (apply b b) t))) (h (apply (apply b (apply t ?1404)) (apply (apply b b) t)))) (g (apply (apply b (apply t ?1404)) (apply (apply b b) t))) [1404] by Super 277 with 3 at 1,2 Id : 277, {_}: apply (apply (apply ?900 (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (apply ?901 (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))))) (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) =>= apply (apply (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) [901, 900] by Super 29 with 2 at 1,2 Id : 29, {_}: apply (apply (apply (apply ?85 (apply ?86 (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))))) ?87) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) =>= apply (apply (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) [87, 86, 85] by Super 13 with 3 at 1,1,2 Id : 13, {_}: apply (apply (apply ?33 (apply ?34 (apply ?35 (f (apply (apply b ?33) (apply (apply b ?34) ?35)))))) (g (apply (apply b ?33) (apply (apply b ?34) ?35)))) (h (apply (apply b ?33) (apply (apply b ?34) ?35))) =>= apply (apply (f (apply (apply b ?33) (apply (apply b ?34) ?35))) (h (apply (apply b ?33) (apply (apply b ?34) ?35)))) (g (apply (apply b ?33) (apply (apply b ?34) ?35))) [35, 34, 33] by Super 6 with 2 at 2,1,1,2 Id : 6, {_}: apply (apply (apply ?18 (apply ?19 (f (apply (apply b ?18) ?19)))) (g (apply (apply b ?18) ?19))) (h (apply (apply b ?18) ?19)) =>= apply (apply (f (apply (apply b ?18) ?19)) (h (apply (apply b ?18) ?19))) (g (apply (apply b ?18) ?19)) [19, 18] by Super 1 with 2 at 1,1,2 Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (f ?1) (h ?1)) (g ?1) [1] by prove_c_combinator ?1 % SZS output end CNFRefutation for COL062-1.p 11997: solved COL062-1.p in 1.812113 using nrkbo 11997: status Unsatisfiable for COL062-1.p CLASH, statistics insufficient 12004: Facts: 12004: Id : 2, {_}: apply (apply (apply n ?3) ?4) ?5 =?= apply (apply (apply ?3 ?5) ?4) ?5 [5, 4, 3] by n_definition ?3 ?4 ?5 CLASH, statistics insufficient 12006: Facts: 12006: Id : 2, {_}: apply (apply (apply n ?3) ?4) ?5 =?= apply (apply (apply ?3 ?5) ?4) ?5 [5, 4, 3] by n_definition ?3 ?4 ?5 12006: Id : 3, {_}: apply (apply (apply q ?7) ?8) ?9 =>= apply ?8 (apply ?7 ?9) [9, 8, 7] by q_definition ?7 ?8 ?9 12006: Goal: 12006: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 12006: Order: 12006: lpo 12006: Leaf order: 12006: q 1 0 0 12006: n 1 0 0 12006: apply 14 2 3 0,2 12006: f 3 1 3 0,2,2 12004: Id : 3, {_}: apply (apply (apply q ?7) ?8) ?9 =>= apply ?8 (apply ?7 ?9) [9, 8, 7] by q_definition ?7 ?8 ?9 12004: Goal: 12004: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 12004: Order: 12004: nrkbo 12004: Leaf order: 12004: q 1 0 0 12004: n 1 0 0 12004: apply 14 2 3 0,2 12004: f 3 1 3 0,2,2 CLASH, statistics insufficient 12005: Facts: 12005: Id : 2, {_}: apply (apply (apply n ?3) ?4) ?5 =?= apply (apply (apply ?3 ?5) ?4) ?5 [5, 4, 3] by n_definition ?3 ?4 ?5 12005: Id : 3, {_}: apply (apply (apply q ?7) ?8) ?9 =>= apply ?8 (apply ?7 ?9) [9, 8, 7] by q_definition ?7 ?8 ?9 12005: Goal: 12005: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 12005: Order: 12005: kbo 12005: Leaf order: 12005: q 1 0 0 12005: n 1 0 0 12005: apply 14 2 3 0,2 12005: f 3 1 3 0,2,2 % SZS status Timeout for COL071-1.p CLASH, statistics insufficient 12093: Facts: 12093: Id : 2, {_}: apply (apply (apply n1 ?3) ?4) ?5 =?= apply (apply (apply ?3 ?4) ?4) ?5 [5, 4, 3] by n1_definition ?3 ?4 ?5 12093: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 12093: Goal: 12093: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 12093: Order: 12093: nrkbo 12093: Leaf order: 12093: b 1 0 0 12093: n1 1 0 0 12093: apply 14 2 3 0,2 12093: f 3 1 3 0,2,2 CLASH, statistics insufficient 12094: Facts: 12094: Id : 2, {_}: apply (apply (apply n1 ?3) ?4) ?5 =?= apply (apply (apply ?3 ?4) ?4) ?5 [5, 4, 3] by n1_definition ?3 ?4 ?5 12094: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 12094: Goal: 12094: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 12094: Order: 12094: kbo 12094: Leaf order: 12094: b 1 0 0 12094: n1 1 0 0 12094: apply 14 2 3 0,2 12094: f 3 1 3 0,2,2 CLASH, statistics insufficient 12095: Facts: 12095: Id : 2, {_}: apply (apply (apply n1 ?3) ?4) ?5 =?= apply (apply (apply ?3 ?4) ?4) ?5 [5, 4, 3] by n1_definition ?3 ?4 ?5 12095: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 12095: Goal: 12095: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 12095: Order: 12095: lpo 12095: Leaf order: 12095: b 1 0 0 12095: n1 1 0 0 12095: apply 14 2 3 0,2 12095: f 3 1 3 0,2,2 % SZS status Timeout for COL073-1.p NO CLASH, using fixed ground order 12117: Facts: 12117: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12117: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12117: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12117: Id : 5, {_}: commutator ?10 ?11 =<= multiply (inverse ?10) (multiply (inverse ?11) (multiply ?10 ?11)) [11, 10] by name ?10 ?11 12117: Id : 6, {_}: commutator (commutator ?13 ?14) ?15 =?= commutator ?13 (commutator ?14 ?15) [15, 14, 13] by associativity_of_commutator ?13 ?14 ?15 12117: Goal: 12117: Id : 1, {_}: multiply a (commutator b c) =<= multiply (commutator b c) a [] by prove_center 12117: Order: 12117: nrkbo 12117: Leaf order: 12117: inverse 3 1 0 12117: identity 2 0 0 12117: multiply 11 2 2 0,2 12117: commutator 7 2 2 0,2,2 12117: c 2 0 2 2,2,2 12117: b 2 0 2 1,2,2 12117: a 2 0 2 1,2 NO CLASH, using fixed ground order 12118: Facts: 12118: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12118: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12118: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12118: Id : 5, {_}: commutator ?10 ?11 =<= multiply (inverse ?10) (multiply (inverse ?11) (multiply ?10 ?11)) [11, 10] by name ?10 ?11 12118: Id : 6, {_}: commutator (commutator ?13 ?14) ?15 =>= commutator ?13 (commutator ?14 ?15) [15, 14, 13] by associativity_of_commutator ?13 ?14 ?15 12118: Goal: 12118: Id : 1, {_}: multiply a (commutator b c) =<= multiply (commutator b c) a [] by prove_center 12118: Order: 12118: kbo 12118: Leaf order: 12118: inverse 3 1 0 12118: identity 2 0 0 12118: multiply 11 2 2 0,2 12118: commutator 7 2 2 0,2,2 12118: c 2 0 2 2,2,2 12118: b 2 0 2 1,2,2 12118: a 2 0 2 1,2 NO CLASH, using fixed ground order 12119: Facts: 12119: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12119: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12119: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12119: Id : 5, {_}: commutator ?10 ?11 =>= multiply (inverse ?10) (multiply (inverse ?11) (multiply ?10 ?11)) [11, 10] by name ?10 ?11 12119: Id : 6, {_}: commutator (commutator ?13 ?14) ?15 =>= commutator ?13 (commutator ?14 ?15) [15, 14, 13] by associativity_of_commutator ?13 ?14 ?15 12119: Goal: 12119: Id : 1, {_}: multiply a (commutator b c) =<= multiply (commutator b c) a [] by prove_center 12119: Order: 12119: lpo 12119: Leaf order: 12119: inverse 3 1 0 12119: identity 2 0 0 12119: multiply 11 2 2 0,2 12119: commutator 7 2 2 0,2,2 12119: c 2 0 2 2,2,2 12119: b 2 0 2 1,2,2 12119: a 2 0 2 1,2 % SZS status Timeout for GRP024-5.p CLASH, statistics insufficient 12145: Facts: 12145: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12145: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12145: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12145: Id : 5, {_}: inverse identity =>= identity [] by inverse_of_identity 12145: Id : 6, {_}: inverse (inverse ?11) =>= ?11 [11] by inverse_involution ?11 12145: Id : 7, {_}: inverse (multiply ?13 ?14) =<= multiply (inverse ?14) (inverse ?13) [14, 13] by inverse_product_lemma ?13 ?14 12145: Id : 8, {_}: intersection ?16 ?16 =>= ?16 [16] by intersection_idempotent ?16 12145: Id : 9, {_}: union ?18 ?18 =>= ?18 [18] by union_idempotent ?18 12145: Id : 10, {_}: intersection ?20 ?21 =?= intersection ?21 ?20 [21, 20] by intersection_commutative ?20 ?21 CLASH, statistics insufficient 12146: Facts: 12146: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12146: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12146: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12146: Id : 5, {_}: inverse identity =>= identity [] by inverse_of_identity 12146: Id : 6, {_}: inverse (inverse ?11) =>= ?11 [11] by inverse_involution ?11 12146: Id : 7, {_}: inverse (multiply ?13 ?14) =?= multiply (inverse ?14) (inverse ?13) [14, 13] by inverse_product_lemma ?13 ?14 12146: Id : 8, {_}: intersection ?16 ?16 =>= ?16 [16] by intersection_idempotent ?16 12146: Id : 9, {_}: union ?18 ?18 =>= ?18 [18] by union_idempotent ?18 12146: Id : 10, {_}: intersection ?20 ?21 =?= intersection ?21 ?20 [21, 20] by intersection_commutative ?20 ?21 12146: Id : 11, {_}: union ?23 ?24 =?= union ?24 ?23 [24, 23] by union_commutative ?23 ?24 12146: Id : 12, {_}: intersection ?26 (intersection ?27 ?28) =<= intersection (intersection ?26 ?27) ?28 [28, 27, 26] by intersection_associative ?26 ?27 ?28 12146: Id : 13, {_}: union ?30 (union ?31 ?32) =<= union (union ?30 ?31) ?32 [32, 31, 30] by union_associative ?30 ?31 ?32 12146: Id : 14, {_}: union (intersection ?34 ?35) ?35 =>= ?35 [35, 34] by union_intersection_absorbtion ?34 ?35 12146: Id : 15, {_}: intersection (union ?37 ?38) ?38 =>= ?38 [38, 37] by intersection_union_absorbtion ?37 ?38 12146: Id : 16, {_}: multiply ?40 (union ?41 ?42) =>= union (multiply ?40 ?41) (multiply ?40 ?42) [42, 41, 40] by multiply_union1 ?40 ?41 ?42 12146: Id : 17, {_}: multiply ?44 (intersection ?45 ?46) =>= intersection (multiply ?44 ?45) (multiply ?44 ?46) [46, 45, 44] by multiply_intersection1 ?44 ?45 ?46 12146: Id : 18, {_}: multiply (union ?48 ?49) ?50 =>= union (multiply ?48 ?50) (multiply ?49 ?50) [50, 49, 48] by multiply_union2 ?48 ?49 ?50 12146: Id : 19, {_}: multiply (intersection ?52 ?53) ?54 =>= intersection (multiply ?52 ?54) (multiply ?53 ?54) [54, 53, 52] by multiply_intersection2 ?52 ?53 ?54 12146: Id : 20, {_}: positive_part ?56 =>= union ?56 identity [56] by positive_part ?56 12146: Id : 21, {_}: negative_part ?58 =>= intersection ?58 identity [58] by negative_part ?58 12146: Goal: 12146: Id : 1, {_}: multiply (positive_part a) (negative_part a) =>= a [] by prove_product 12146: Order: 12146: lpo 12146: Leaf order: 12146: union 14 2 0 12146: intersection 14 2 0 12146: inverse 7 1 0 12146: identity 6 0 0 12146: multiply 21 2 1 0,2 12146: negative_part 2 1 1 0,2,2 12146: positive_part 2 1 1 0,1,2 12146: a 3 0 3 1,1,2 12145: Id : 11, {_}: union ?23 ?24 =?= union ?24 ?23 [24, 23] by union_commutative ?23 ?24 12145: Id : 12, {_}: intersection ?26 (intersection ?27 ?28) =<= intersection (intersection ?26 ?27) ?28 [28, 27, 26] by intersection_associative ?26 ?27 ?28 12145: Id : 13, {_}: union ?30 (union ?31 ?32) =<= union (union ?30 ?31) ?32 [32, 31, 30] by union_associative ?30 ?31 ?32 12145: Id : 14, {_}: union (intersection ?34 ?35) ?35 =>= ?35 [35, 34] by union_intersection_absorbtion ?34 ?35 12145: Id : 15, {_}: intersection (union ?37 ?38) ?38 =>= ?38 [38, 37] by intersection_union_absorbtion ?37 ?38 12145: Id : 16, {_}: multiply ?40 (union ?41 ?42) =<= union (multiply ?40 ?41) (multiply ?40 ?42) [42, 41, 40] by multiply_union1 ?40 ?41 ?42 12145: Id : 17, {_}: multiply ?44 (intersection ?45 ?46) =<= intersection (multiply ?44 ?45) (multiply ?44 ?46) [46, 45, 44] by multiply_intersection1 ?44 ?45 ?46 12145: Id : 18, {_}: multiply (union ?48 ?49) ?50 =<= union (multiply ?48 ?50) (multiply ?49 ?50) [50, 49, 48] by multiply_union2 ?48 ?49 ?50 12145: Id : 19, {_}: multiply (intersection ?52 ?53) ?54 =<= intersection (multiply ?52 ?54) (multiply ?53 ?54) [54, 53, 52] by multiply_intersection2 ?52 ?53 ?54 12145: Id : 20, {_}: positive_part ?56 =<= union ?56 identity [56] by positive_part ?56 12145: Id : 21, {_}: negative_part ?58 =<= intersection ?58 identity [58] by negative_part ?58 12145: Goal: 12145: Id : 1, {_}: multiply (positive_part a) (negative_part a) =>= a [] by prove_product 12145: Order: 12145: kbo 12145: Leaf order: 12145: union 14 2 0 12145: intersection 14 2 0 12145: inverse 7 1 0 12145: identity 6 0 0 12145: multiply 21 2 1 0,2 12145: negative_part 2 1 1 0,2,2 12145: positive_part 2 1 1 0,1,2 12145: a 3 0 3 1,1,2 CLASH, statistics insufficient 12144: Facts: 12144: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12144: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12144: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12144: Id : 5, {_}: inverse identity =>= identity [] by inverse_of_identity 12144: Id : 6, {_}: inverse (inverse ?11) =>= ?11 [11] by inverse_involution ?11 12144: Id : 7, {_}: inverse (multiply ?13 ?14) =<= multiply (inverse ?14) (inverse ?13) [14, 13] by inverse_product_lemma ?13 ?14 12144: Id : 8, {_}: intersection ?16 ?16 =>= ?16 [16] by intersection_idempotent ?16 12144: Id : 9, {_}: union ?18 ?18 =>= ?18 [18] by union_idempotent ?18 12144: Id : 10, {_}: intersection ?20 ?21 =?= intersection ?21 ?20 [21, 20] by intersection_commutative ?20 ?21 12144: Id : 11, {_}: union ?23 ?24 =?= union ?24 ?23 [24, 23] by union_commutative ?23 ?24 12144: Id : 12, {_}: intersection ?26 (intersection ?27 ?28) =?= intersection (intersection ?26 ?27) ?28 [28, 27, 26] by intersection_associative ?26 ?27 ?28 12144: Id : 13, {_}: union ?30 (union ?31 ?32) =?= union (union ?30 ?31) ?32 [32, 31, 30] by union_associative ?30 ?31 ?32 12144: Id : 14, {_}: union (intersection ?34 ?35) ?35 =>= ?35 [35, 34] by union_intersection_absorbtion ?34 ?35 12144: Id : 15, {_}: intersection (union ?37 ?38) ?38 =>= ?38 [38, 37] by intersection_union_absorbtion ?37 ?38 12144: Id : 16, {_}: multiply ?40 (union ?41 ?42) =<= union (multiply ?40 ?41) (multiply ?40 ?42) [42, 41, 40] by multiply_union1 ?40 ?41 ?42 12144: Id : 17, {_}: multiply ?44 (intersection ?45 ?46) =<= intersection (multiply ?44 ?45) (multiply ?44 ?46) [46, 45, 44] by multiply_intersection1 ?44 ?45 ?46 12144: Id : 18, {_}: multiply (union ?48 ?49) ?50 =<= union (multiply ?48 ?50) (multiply ?49 ?50) [50, 49, 48] by multiply_union2 ?48 ?49 ?50 12144: Id : 19, {_}: multiply (intersection ?52 ?53) ?54 =<= intersection (multiply ?52 ?54) (multiply ?53 ?54) [54, 53, 52] by multiply_intersection2 ?52 ?53 ?54 12144: Id : 20, {_}: positive_part ?56 =<= union ?56 identity [56] by positive_part ?56 12144: Id : 21, {_}: negative_part ?58 =<= intersection ?58 identity [58] by negative_part ?58 12144: Goal: 12144: Id : 1, {_}: multiply (positive_part a) (negative_part a) =>= a [] by prove_product 12144: Order: 12144: nrkbo 12144: Leaf order: 12144: union 14 2 0 12144: intersection 14 2 0 12144: inverse 7 1 0 12144: identity 6 0 0 12144: multiply 21 2 1 0,2 12144: negative_part 2 1 1 0,2,2 12144: positive_part 2 1 1 0,1,2 12144: a 3 0 3 1,1,2 Statistics : Max weight : 15 Found proof, 17.397670s % SZS status Unsatisfiable for GRP114-1.p % SZS output start CNFRefutation for GRP114-1.p Id : 12, {_}: intersection ?26 (intersection ?27 ?28) =<= intersection (intersection ?26 ?27) ?28 [28, 27, 26] by intersection_associative ?26 ?27 ?28 Id : 14, {_}: union (intersection ?34 ?35) ?35 =>= ?35 [35, 34] by union_intersection_absorbtion ?34 ?35 Id : 13, {_}: union ?30 (union ?31 ?32) =<= union (union ?30 ?31) ?32 [32, 31, 30] by union_associative ?30 ?31 ?32 Id : 235, {_}: multiply (union ?499 ?500) ?501 =<= union (multiply ?499 ?501) (multiply ?500 ?501) [501, 500, 499] by multiply_union2 ?499 ?500 ?501 Id : 15, {_}: intersection (union ?37 ?38) ?38 =>= ?38 [38, 37] by intersection_union_absorbtion ?37 ?38 Id : 195, {_}: multiply ?427 (intersection ?428 ?429) =<= intersection (multiply ?427 ?428) (multiply ?427 ?429) [429, 428, 427] by multiply_intersection1 ?427 ?428 ?429 Id : 10, {_}: intersection ?20 ?21 =?= intersection ?21 ?20 [21, 20] by intersection_commutative ?20 ?21 Id : 21, {_}: negative_part ?58 =<= intersection ?58 identity [58] by negative_part ?58 Id : 17, {_}: multiply ?44 (intersection ?45 ?46) =<= intersection (multiply ?44 ?45) (multiply ?44 ?46) [46, 45, 44] by multiply_intersection1 ?44 ?45 ?46 Id : 7, {_}: inverse (multiply ?13 ?14) =<= multiply (inverse ?14) (inverse ?13) [14, 13] by inverse_product_lemma ?13 ?14 Id : 11, {_}: union ?23 ?24 =?= union ?24 ?23 [24, 23] by union_commutative ?23 ?24 Id : 20, {_}: positive_part ?56 =<= union ?56 identity [56] by positive_part ?56 Id : 5, {_}: inverse identity =>= identity [] by inverse_of_identity Id : 16, {_}: multiply ?40 (union ?41 ?42) =<= union (multiply ?40 ?41) (multiply ?40 ?42) [42, 41, 40] by multiply_union1 ?40 ?41 ?42 Id : 6, {_}: inverse (inverse ?11) =>= ?11 [11] by inverse_involution ?11 Id : 48, {_}: inverse (multiply ?104 ?105) =<= multiply (inverse ?105) (inverse ?104) [105, 104] by inverse_product_lemma ?104 ?105 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 Id : 26, {_}: multiply (multiply ?67 ?68) ?69 =>= multiply ?67 (multiply ?68 ?69) [69, 68, 67] by associativity ?67 ?68 ?69 Id : 28, {_}: multiply identity ?74 =<= multiply (inverse ?75) (multiply ?75 ?74) [75, 74] by Super 26 with 3 at 1,2 Id : 32, {_}: ?74 =<= multiply (inverse ?75) (multiply ?75 ?74) [75, 74] by Demod 28 with 2 at 2 Id : 50, {_}: inverse (multiply (inverse ?109) ?110) =>= multiply (inverse ?110) ?109 [110, 109] by Super 48 with 6 at 2,3 Id : 49, {_}: inverse (multiply identity ?107) =<= multiply (inverse ?107) identity [107] by Super 48 with 5 at 2,3 Id : 835, {_}: inverse ?1371 =<= multiply (inverse ?1371) identity [1371] by Demod 49 with 2 at 1,2 Id : 841, {_}: inverse (inverse ?1382) =<= multiply ?1382 identity [1382] by Super 835 with 6 at 1,3 Id : 864, {_}: ?1382 =<= multiply ?1382 identity [1382] by Demod 841 with 6 at 2 Id : 881, {_}: multiply ?1419 (union ?1420 identity) =?= union (multiply ?1419 ?1420) ?1419 [1420, 1419] by Super 16 with 864 at 2,3 Id : 900, {_}: multiply ?1419 (positive_part ?1420) =<= union (multiply ?1419 ?1420) ?1419 [1420, 1419] by Demod 881 with 20 at 2,2 Id : 2897, {_}: multiply ?3964 (positive_part ?3965) =<= union ?3964 (multiply ?3964 ?3965) [3965, 3964] by Demod 900 with 11 at 3 Id : 2901, {_}: multiply (inverse ?3975) (positive_part ?3975) =>= union (inverse ?3975) identity [3975] by Super 2897 with 3 at 2,3 Id : 2938, {_}: multiply (inverse ?3975) (positive_part ?3975) =>= union identity (inverse ?3975) [3975] by Demod 2901 with 11 at 3 Id : 296, {_}: union identity ?627 =>= positive_part ?627 [627] by Super 11 with 20 at 3 Id : 2939, {_}: multiply (inverse ?3975) (positive_part ?3975) =>= positive_part (inverse ?3975) [3975] by Demod 2938 with 296 at 3 Id : 2958, {_}: inverse (positive_part (inverse ?4028)) =<= multiply (inverse (positive_part ?4028)) ?4028 [4028] by Super 50 with 2939 at 1,2 Id : 3609, {_}: ?4904 =<= multiply (inverse (inverse (positive_part ?4904))) (inverse (positive_part (inverse ?4904))) [4904] by Super 32 with 2958 at 2,3 Id : 3661, {_}: ?4904 =<= inverse (multiply (positive_part (inverse ?4904)) (inverse (positive_part ?4904))) [4904] by Demod 3609 with 7 at 3 Id : 52, {_}: inverse (multiply ?114 (inverse ?115)) =>= multiply ?115 (inverse ?114) [115, 114] by Super 48 with 6 at 1,3 Id : 3662, {_}: ?4904 =<= multiply (positive_part ?4904) (inverse (positive_part (inverse ?4904))) [4904] by Demod 3661 with 52 at 3 Id : 875, {_}: multiply ?1405 (intersection ?1406 identity) =?= intersection (multiply ?1405 ?1406) ?1405 [1406, 1405] by Super 17 with 864 at 2,3 Id : 906, {_}: multiply ?1405 (negative_part ?1406) =<= intersection (multiply ?1405 ?1406) ?1405 [1406, 1405] by Demod 875 with 21 at 2,2 Id : 3727, {_}: multiply ?5043 (negative_part ?5044) =<= intersection ?5043 (multiply ?5043 ?5044) [5044, 5043] by Demod 906 with 10 at 3 Id : 40, {_}: multiply ?89 (inverse ?89) =>= identity [89] by Super 3 with 6 at 1,2 Id : 3734, {_}: multiply ?5063 (negative_part (inverse ?5063)) =>= intersection ?5063 identity [5063] by Super 3727 with 40 at 2,3 Id : 3782, {_}: multiply ?5063 (negative_part (inverse ?5063)) =>= negative_part ?5063 [5063] by Demod 3734 with 21 at 3 Id : 201, {_}: multiply (inverse ?449) (intersection ?449 ?450) =>= intersection identity (multiply (inverse ?449) ?450) [450, 449] by Super 195 with 3 at 1,3 Id : 311, {_}: intersection identity ?654 =>= negative_part ?654 [654] by Super 10 with 21 at 3 Id : 8114, {_}: multiply (inverse ?449) (intersection ?449 ?450) =>= negative_part (multiply (inverse ?449) ?450) [450, 449] by Demod 201 with 311 at 3 Id : 135, {_}: intersection ?38 (union ?37 ?38) =>= ?38 [37, 38] by Demod 15 with 10 at 2 Id : 701, {_}: intersection ?1238 (positive_part ?1238) =>= ?1238 [1238] by Super 135 with 296 at 2,2 Id : 241, {_}: multiply (union (inverse ?521) ?522) ?521 =>= union identity (multiply ?522 ?521) [522, 521] by Super 235 with 3 at 1,3 Id : 8575, {_}: multiply (union (inverse ?10997) ?10998) ?10997 =>= positive_part (multiply ?10998 ?10997) [10998, 10997] by Demod 241 with 296 at 3 Id : 699, {_}: union identity (union ?1233 ?1234) =>= union (positive_part ?1233) ?1234 [1234, 1233] by Super 13 with 296 at 1,3 Id : 716, {_}: positive_part (union ?1233 ?1234) =>= union (positive_part ?1233) ?1234 [1234, 1233] by Demod 699 with 296 at 2 Id : 299, {_}: union ?634 (union ?635 identity) =>= positive_part (union ?634 ?635) [635, 634] by Super 13 with 20 at 3 Id : 307, {_}: union ?634 (positive_part ?635) =<= positive_part (union ?634 ?635) [635, 634] by Demod 299 with 20 at 2,2 Id : 1223, {_}: union ?1233 (positive_part ?1234) =<= union (positive_part ?1233) ?1234 [1234, 1233] by Demod 716 with 307 at 2 Id : 2971, {_}: multiply (inverse ?4064) (positive_part ?4064) =>= positive_part (inverse ?4064) [4064] by Demod 2938 with 296 at 3 Id : 121, {_}: union ?35 (intersection ?34 ?35) =>= ?35 [34, 35] by Demod 14 with 11 at 2 Id : 700, {_}: positive_part (intersection ?1236 identity) =>= identity [1236] by Super 121 with 296 at 2 Id : 715, {_}: positive_part (negative_part ?1236) =>= identity [1236] by Demod 700 with 21 at 1,2 Id : 2976, {_}: multiply (inverse (negative_part ?4073)) identity =>= positive_part (inverse (negative_part ?4073)) [4073] by Super 2971 with 715 at 2,2 Id : 3014, {_}: inverse (negative_part ?4073) =<= positive_part (inverse (negative_part ?4073)) [4073] by Demod 2976 with 864 at 2 Id : 3035, {_}: union (inverse (negative_part ?4112)) (positive_part ?4113) =>= union (inverse (negative_part ?4112)) ?4113 [4113, 4112] by Super 1223 with 3014 at 1,3 Id : 8597, {_}: multiply (union (inverse (negative_part ?11063)) ?11064) (negative_part ?11063) =>= positive_part (multiply (positive_part ?11064) (negative_part ?11063)) [11064, 11063] by Super 8575 with 3035 at 1,2 Id : 8560, {_}: multiply (union (inverse ?521) ?522) ?521 =>= positive_part (multiply ?522 ?521) [522, 521] by Demod 241 with 296 at 3 Id : 8643, {_}: positive_part (multiply ?11064 (negative_part ?11063)) =<= positive_part (multiply (positive_part ?11064) (negative_part ?11063)) [11063, 11064] by Demod 8597 with 8560 at 2 Id : 907, {_}: multiply ?1405 (negative_part ?1406) =<= intersection ?1405 (multiply ?1405 ?1406) [1406, 1405] by Demod 906 with 10 at 3 Id : 8600, {_}: multiply (positive_part (inverse ?11072)) ?11072 =>= positive_part (multiply identity ?11072) [11072] by Super 8575 with 20 at 1,2 Id : 8645, {_}: multiply (positive_part (inverse ?11072)) ?11072 =>= positive_part ?11072 [11072] by Demod 8600 with 2 at 1,3 Id : 8660, {_}: multiply (positive_part (inverse ?11112)) (negative_part ?11112) =>= intersection (positive_part (inverse ?11112)) (positive_part ?11112) [11112] by Super 907 with 8645 at 2,3 Id : 8719, {_}: multiply (positive_part (inverse ?11112)) (negative_part ?11112) =>= intersection (positive_part ?11112) (positive_part (inverse ?11112)) [11112] by Demod 8660 with 10 at 3 Id : 9585, {_}: positive_part (multiply (inverse ?11973) (negative_part ?11973)) =<= positive_part (intersection (positive_part ?11973) (positive_part (inverse ?11973))) [11973] by Super 8643 with 8719 at 1,3 Id : 3731, {_}: multiply (inverse ?5054) (negative_part ?5054) =>= intersection (inverse ?5054) identity [5054] by Super 3727 with 3 at 2,3 Id : 3776, {_}: multiply (inverse ?5054) (negative_part ?5054) =>= intersection identity (inverse ?5054) [5054] by Demod 3731 with 10 at 3 Id : 3777, {_}: multiply (inverse ?5054) (negative_part ?5054) =>= negative_part (inverse ?5054) [5054] by Demod 3776 with 311 at 3 Id : 9660, {_}: positive_part (negative_part (inverse ?11973)) =<= positive_part (intersection (positive_part ?11973) (positive_part (inverse ?11973))) [11973] by Demod 9585 with 3777 at 1,2 Id : 9661, {_}: identity =<= positive_part (intersection (positive_part ?11973) (positive_part (inverse ?11973))) [11973] by Demod 9660 with 715 at 2 Id : 37105, {_}: intersection (intersection (positive_part ?38557) (positive_part (inverse ?38557))) identity =>= intersection (positive_part ?38557) (positive_part (inverse ?38557)) [38557] by Super 701 with 9661 at 2,2 Id : 37338, {_}: intersection identity (intersection (positive_part ?38557) (positive_part (inverse ?38557))) =>= intersection (positive_part ?38557) (positive_part (inverse ?38557)) [38557] by Demod 37105 with 10 at 2 Id : 37339, {_}: negative_part (intersection (positive_part ?38557) (positive_part (inverse ?38557))) =>= intersection (positive_part ?38557) (positive_part (inverse ?38557)) [38557] by Demod 37338 with 311 at 2 Id : 314, {_}: intersection ?661 (intersection ?662 identity) =>= negative_part (intersection ?661 ?662) [662, 661] by Super 12 with 21 at 3 Id : 321, {_}: intersection ?661 (negative_part ?662) =<= negative_part (intersection ?661 ?662) [662, 661] by Demod 314 with 21 at 2,2 Id : 37340, {_}: intersection (positive_part ?38557) (negative_part (positive_part (inverse ?38557))) =>= intersection (positive_part ?38557) (positive_part (inverse ?38557)) [38557] by Demod 37339 with 321 at 2 Id : 743, {_}: intersection identity (intersection ?1274 ?1275) =>= intersection (negative_part ?1274) ?1275 [1275, 1274] by Super 12 with 311 at 1,3 Id : 757, {_}: negative_part (intersection ?1274 ?1275) =>= intersection (negative_part ?1274) ?1275 [1275, 1274] by Demod 743 with 311 at 2 Id : 1432, {_}: intersection ?2159 (negative_part ?2160) =<= intersection (negative_part ?2159) ?2160 [2160, 2159] by Demod 757 with 321 at 2 Id : 738, {_}: negative_part (union ?1265 identity) =>= identity [1265] by Super 135 with 311 at 2 Id : 761, {_}: negative_part (positive_part ?1265) =>= identity [1265] by Demod 738 with 20 at 1,2 Id : 1437, {_}: intersection (positive_part ?2173) (negative_part ?2174) =>= intersection identity ?2174 [2174, 2173] by Super 1432 with 761 at 1,3 Id : 1472, {_}: intersection (positive_part ?2173) (negative_part ?2174) =>= negative_part ?2174 [2174, 2173] by Demod 1437 with 311 at 3 Id : 37341, {_}: negative_part (positive_part (inverse ?38557)) =<= intersection (positive_part ?38557) (positive_part (inverse ?38557)) [38557] by Demod 37340 with 1472 at 2 Id : 37342, {_}: identity =<= intersection (positive_part ?38557) (positive_part (inverse ?38557)) [38557] by Demod 37341 with 761 at 2 Id : 37637, {_}: multiply (inverse (positive_part ?38828)) identity =<= negative_part (multiply (inverse (positive_part ?38828)) (positive_part (inverse ?38828))) [38828] by Super 8114 with 37342 at 2,2 Id : 37769, {_}: inverse (positive_part ?38828) =<= negative_part (multiply (inverse (positive_part ?38828)) (positive_part (inverse ?38828))) [38828] by Demod 37637 with 864 at 2 Id : 8675, {_}: multiply (positive_part (inverse ?11150)) ?11150 =>= positive_part ?11150 [11150] by Demod 8600 with 2 at 1,3 Id : 8679, {_}: multiply (positive_part ?11157) (inverse ?11157) =>= positive_part (inverse ?11157) [11157] by Super 8675 with 6 at 1,1,2 Id : 8754, {_}: inverse ?11202 =<= multiply (inverse (positive_part ?11202)) (positive_part (inverse ?11202)) [11202] by Super 32 with 8679 at 2,3 Id : 37770, {_}: inverse (positive_part ?38828) =<= negative_part (inverse ?38828) [38828] by Demod 37769 with 8754 at 1,3 Id : 37939, {_}: multiply ?5063 (inverse (positive_part ?5063)) =>= negative_part ?5063 [5063] by Demod 3782 with 37770 at 2,2 Id : 8672, {_}: inverse (positive_part (inverse ?11144)) =<= multiply ?11144 (inverse (positive_part (inverse (inverse ?11144)))) [11144] by Super 52 with 8645 at 1,2 Id : 8705, {_}: inverse (positive_part (inverse ?11144)) =<= multiply ?11144 (inverse (positive_part ?11144)) [11144] by Demod 8672 with 6 at 1,1,2,3 Id : 37967, {_}: inverse (positive_part (inverse ?5063)) =>= negative_part ?5063 [5063] by Demod 37939 with 8705 at 2 Id : 37970, {_}: ?4904 =<= multiply (positive_part ?4904) (negative_part ?4904) [4904] by Demod 3662 with 37967 at 2,3 Id : 38259, {_}: a =?= a [] by Demod 1 with 37970 at 2 Id : 1, {_}: multiply (positive_part a) (negative_part a) =>= a [] by prove_product % SZS output end CNFRefutation for GRP114-1.p 12145: solved GRP114-1.p in 5.996374 using kbo 12145: status Unsatisfiable for GRP114-1.p NO CLASH, using fixed ground order 12157: Facts: 12157: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12157: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12157: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12157: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12157: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12157: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12157: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12157: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12157: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12157: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12157: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12157: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12157: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12157: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12157: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12157: Id : 17, {_}: inverse identity =>= identity [] by p19_1 12157: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p19_2 ?51 12157: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p19_3 ?53 ?54 12157: Goal: 12157: Id : 1, {_}: a =<= multiply (least_upper_bound a identity) (greatest_lower_bound a identity) [] by prove_p19 12157: Order: 12157: nrkbo 12157: Leaf order: 12157: inverse 7 1 0 12157: multiply 21 2 1 0,3 12157: greatest_lower_bound 14 2 1 0,2,3 12157: least_upper_bound 14 2 1 0,1,3 12157: identity 6 0 2 2,1,3 12157: a 3 0 3 2 NO CLASH, using fixed ground order 12158: Facts: 12158: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12158: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12158: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12158: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12158: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12158: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12158: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12158: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12158: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12158: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12158: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12158: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12158: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12158: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12158: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12158: Id : 17, {_}: inverse identity =>= identity [] by p19_1 12158: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p19_2 ?51 12158: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p19_3 ?53 ?54 12158: Goal: 12158: Id : 1, {_}: a =<= multiply (least_upper_bound a identity) (greatest_lower_bound a identity) [] by prove_p19 12158: Order: 12158: kbo 12158: Leaf order: 12158: inverse 7 1 0 12158: multiply 21 2 1 0,3 12158: greatest_lower_bound 14 2 1 0,2,3 12158: least_upper_bound 14 2 1 0,1,3 12158: identity 6 0 2 2,1,3 12158: a 3 0 3 2 NO CLASH, using fixed ground order 12159: Facts: 12159: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12159: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12159: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12159: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12159: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12159: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12159: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12159: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12159: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12159: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12159: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12159: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12159: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12159: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12159: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12159: Id : 17, {_}: inverse identity =>= identity [] by p19_1 12159: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p19_2 ?51 12159: Id : 19, {_}: inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53) [54, 53] by p19_3 ?53 ?54 12159: Goal: 12159: Id : 1, {_}: a =<= multiply (least_upper_bound a identity) (greatest_lower_bound a identity) [] by prove_p19 12159: Order: 12159: lpo 12159: Leaf order: 12159: inverse 7 1 0 12159: multiply 21 2 1 0,3 12159: greatest_lower_bound 14 2 1 0,2,3 12159: least_upper_bound 14 2 1 0,1,3 12159: identity 6 0 2 2,1,3 12159: a 3 0 3 2 % SZS status Timeout for GRP167-4.p NO CLASH, using fixed ground order 12195: Facts: 12195: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12195: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12195: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12195: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12195: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12195: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12195: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12195: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12195: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12195: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12195: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12195: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12195: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12195: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12195: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12195: Id : 17, {_}: greatest_lower_bound identity a =>= identity [] by p08b_1 12195: Id : 18, {_}: greatest_lower_bound identity b =>= identity [] by p08b_2 12195: Id : 19, {_}: greatest_lower_bound identity c =>= identity [] by p08b_3 12195: Goal: 12195: Id : 1, {_}: greatest_lower_bound (greatest_lower_bound a (multiply b c)) (multiply (greatest_lower_bound a b) (greatest_lower_bound a c)) =>= greatest_lower_bound a (multiply b c) [] by prove_p08b 12195: Order: 12195: nrkbo 12195: Leaf order: 12195: least_upper_bound 13 2 0 12195: inverse 1 1 0 12195: identity 8 0 0 12195: greatest_lower_bound 21 2 5 0,2 12195: multiply 21 2 3 0,2,1,2 12195: c 4 0 3 2,2,1,2 12195: b 4 0 3 1,2,1,2 12195: a 5 0 4 1,1,2 NO CLASH, using fixed ground order 12196: Facts: 12196: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12196: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12196: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12196: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12196: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12196: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12196: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12196: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12196: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12196: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12196: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12196: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12196: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12196: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12196: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12196: Id : 17, {_}: greatest_lower_bound identity a =>= identity [] by p08b_1 12196: Id : 18, {_}: greatest_lower_bound identity b =>= identity [] by p08b_2 12196: Id : 19, {_}: greatest_lower_bound identity c =>= identity [] by p08b_3 12196: Goal: 12196: Id : 1, {_}: greatest_lower_bound (greatest_lower_bound a (multiply b c)) (multiply (greatest_lower_bound a b) (greatest_lower_bound a c)) =>= greatest_lower_bound a (multiply b c) [] by prove_p08b 12196: Order: 12196: kbo 12196: Leaf order: 12196: least_upper_bound 13 2 0 12196: inverse 1 1 0 12196: identity 8 0 0 12196: greatest_lower_bound 21 2 5 0,2 12196: multiply 21 2 3 0,2,1,2 12196: c 4 0 3 2,2,1,2 12196: b 4 0 3 1,2,1,2 12196: a 5 0 4 1,1,2 NO CLASH, using fixed ground order 12197: Facts: 12197: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12197: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12197: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12197: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12197: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12197: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12197: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12197: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12197: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12197: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12197: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12197: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12197: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =>= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12197: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12197: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =>= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12197: Id : 17, {_}: greatest_lower_bound identity a =>= identity [] by p08b_1 12197: Id : 18, {_}: greatest_lower_bound identity b =>= identity [] by p08b_2 12197: Id : 19, {_}: greatest_lower_bound identity c =>= identity [] by p08b_3 12197: Goal: 12197: Id : 1, {_}: greatest_lower_bound (greatest_lower_bound a (multiply b c)) (multiply (greatest_lower_bound a b) (greatest_lower_bound a c)) =>= greatest_lower_bound a (multiply b c) [] by prove_p08b 12197: Order: 12197: lpo 12197: Leaf order: 12197: least_upper_bound 13 2 0 12197: inverse 1 1 0 12197: identity 8 0 0 12197: greatest_lower_bound 21 2 5 0,2 12197: multiply 21 2 3 0,2,1,2 12197: c 4 0 3 2,2,1,2 12197: b 4 0 3 1,2,1,2 12197: a 5 0 4 1,1,2 % SZS status Timeout for GRP177-2.p NO CLASH, using fixed ground order 12224: Facts: 12224: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12224: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12224: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12224: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12224: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12224: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12224: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12224: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12224: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12224: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12224: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12224: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12224: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12224: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12224: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12224: Id : 17, {_}: inverse identity =>= identity [] by p18_1 12224: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p18_2 ?51 12224: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p18_3 ?53 ?54 12224: Goal: 12224: Id : 1, {_}: least_upper_bound (inverse a) identity =<= inverse (greatest_lower_bound a identity) [] by prove_p18 12224: Order: 12224: nrkbo 12224: Leaf order: 12224: multiply 20 2 0 12224: greatest_lower_bound 14 2 1 0,1,3 12224: least_upper_bound 14 2 1 0,2 12224: identity 6 0 2 2,2 12224: inverse 9 1 2 0,1,2 12224: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 12225: Facts: 12225: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12225: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12225: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12225: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12225: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12225: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12225: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12225: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12225: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 NO CLASH, using fixed ground order 12226: Facts: 12226: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12226: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12226: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12226: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12226: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12226: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12226: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12226: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12226: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12226: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12226: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12226: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12226: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12226: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12226: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12226: Id : 17, {_}: inverse identity =>= identity [] by p18_1 12226: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p18_2 ?51 12226: Id : 19, {_}: inverse (multiply ?53 ?54) =>= multiply (inverse ?54) (inverse ?53) [54, 53] by p18_3 ?53 ?54 12226: Goal: 12226: Id : 1, {_}: least_upper_bound (inverse a) identity =<= inverse (greatest_lower_bound a identity) [] by prove_p18 12226: Order: 12226: lpo 12226: Leaf order: 12226: multiply 20 2 0 12226: greatest_lower_bound 14 2 1 0,1,3 12226: least_upper_bound 14 2 1 0,2 12226: identity 6 0 2 2,2 12226: inverse 9 1 2 0,1,2 12226: a 2 0 2 1,1,2 12225: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12225: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12225: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12225: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12225: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12225: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12225: Id : 17, {_}: inverse identity =>= identity [] by p18_1 12225: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p18_2 ?51 12225: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p18_3 ?53 ?54 12225: Goal: 12225: Id : 1, {_}: least_upper_bound (inverse a) identity =<= inverse (greatest_lower_bound a identity) [] by prove_p18 12225: Order: 12225: kbo 12225: Leaf order: 12225: multiply 20 2 0 12225: greatest_lower_bound 14 2 1 0,1,3 12225: least_upper_bound 14 2 1 0,2 12225: identity 6 0 2 2,2 12225: inverse 9 1 2 0,1,2 12225: a 2 0 2 1,1,2 % SZS status Timeout for GRP179-3.p NO CLASH, using fixed ground order 12243: Facts: 12243: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12243: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12243: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12243: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12243: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12243: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12243: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12243: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12243: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12243: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12243: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12243: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12243: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12243: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12243: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12243: Id : 17, {_}: inverse identity =>= identity [] by p11_1 12243: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p11_2 ?51 12243: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p11_3 ?53 ?54 12243: Goal: 12243: Id : 1, {_}: multiply a (multiply (inverse (greatest_lower_bound a b)) b) =>= least_upper_bound a b [] by prove_p11 12243: Order: 12243: nrkbo 12243: Leaf order: 12243: identity 4 0 0 12243: least_upper_bound 14 2 1 0,3 12243: multiply 22 2 2 0,2 12243: inverse 8 1 1 0,1,2,2 12243: greatest_lower_bound 14 2 1 0,1,1,2,2 12243: b 3 0 3 2,1,1,2,2 12243: a 3 0 3 1,2 NO CLASH, using fixed ground order 12244: Facts: 12244: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12244: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12244: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12244: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12244: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12244: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12244: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12244: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12244: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12244: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12244: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12244: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12244: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12244: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12244: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12244: Id : 17, {_}: inverse identity =>= identity [] by p11_1 12244: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p11_2 ?51 12244: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p11_3 ?53 ?54 12244: Goal: 12244: Id : 1, {_}: multiply a (multiply (inverse (greatest_lower_bound a b)) b) =>= least_upper_bound a b [] by prove_p11 12244: Order: 12244: kbo 12244: Leaf order: 12244: identity 4 0 0 12244: least_upper_bound 14 2 1 0,3 12244: multiply 22 2 2 0,2 12244: inverse 8 1 1 0,1,2,2 12244: greatest_lower_bound 14 2 1 0,1,1,2,2 12244: b 3 0 3 2,1,1,2,2 12244: a 3 0 3 1,2 NO CLASH, using fixed ground order 12245: Facts: 12245: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12245: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12245: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12245: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12245: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12245: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12245: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12245: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12245: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12245: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12245: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12245: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12245: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12245: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12245: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12245: Id : 17, {_}: inverse identity =>= identity [] by p11_1 12245: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p11_2 ?51 12245: Id : 19, {_}: inverse (multiply ?53 ?54) =>= multiply (inverse ?54) (inverse ?53) [54, 53] by p11_3 ?53 ?54 12245: Goal: 12245: Id : 1, {_}: multiply a (multiply (inverse (greatest_lower_bound a b)) b) =>= least_upper_bound a b [] by prove_p11 12245: Order: 12245: lpo 12245: Leaf order: 12245: identity 4 0 0 12245: least_upper_bound 14 2 1 0,3 12245: multiply 22 2 2 0,2 12245: inverse 8 1 1 0,1,2,2 12245: greatest_lower_bound 14 2 1 0,1,1,2,2 12245: b 3 0 3 2,1,1,2,2 12245: a 3 0 3 1,2 % SZS status Timeout for GRP180-2.p CLASH, statistics insufficient 12274: Facts: 12274: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12274: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12274: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12274: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12274: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12274: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12274: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12274: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12274: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12274: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12274: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12274: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12274: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12274: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12274: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12274: Id : 17, {_}: inverse identity =>= identity [] by p12x_1 12274: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p12x_2 ?51 12274: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p12x_3 ?53 ?54 12274: Id : 20, {_}: greatest_lower_bound a c =>= greatest_lower_bound b c [] by p12x_4 12274: Id : 21, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_5 12274: Id : 22, {_}: inverse (greatest_lower_bound ?58 ?59) =<= least_upper_bound (inverse ?58) (inverse ?59) [59, 58] by p12x_6 ?58 ?59 12274: Id : 23, {_}: inverse (least_upper_bound ?61 ?62) =<= greatest_lower_bound (inverse ?61) (inverse ?62) [62, 61] by p12x_7 ?61 ?62 12274: Goal: 12274: Id : 1, {_}: a =>= b [] by prove_p12x 12274: Order: 12274: nrkbo 12274: Leaf order: 12274: c 4 0 0 12274: least_upper_bound 17 2 0 12274: greatest_lower_bound 17 2 0 12274: inverse 13 1 0 12274: multiply 20 2 0 12274: identity 4 0 0 12274: b 3 0 1 3 12274: a 3 0 1 2 CLASH, statistics insufficient 12275: Facts: 12275: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12275: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12275: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12275: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12275: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12275: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12275: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12275: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12275: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12275: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12275: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12275: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12275: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12275: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12275: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12275: Id : 17, {_}: inverse identity =>= identity [] by p12x_1 12275: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p12x_2 ?51 12275: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p12x_3 ?53 ?54 12275: Id : 20, {_}: greatest_lower_bound a c =>= greatest_lower_bound b c [] by p12x_4 12275: Id : 21, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_5 12275: Id : 22, {_}: inverse (greatest_lower_bound ?58 ?59) =<= least_upper_bound (inverse ?58) (inverse ?59) [59, 58] by p12x_6 ?58 ?59 12275: Id : 23, {_}: inverse (least_upper_bound ?61 ?62) =<= greatest_lower_bound (inverse ?61) (inverse ?62) [62, 61] by p12x_7 ?61 ?62 12275: Goal: 12275: Id : 1, {_}: a =>= b [] by prove_p12x 12275: Order: 12275: kbo 12275: Leaf order: 12275: c 4 0 0 12275: least_upper_bound 17 2 0 12275: greatest_lower_bound 17 2 0 12275: inverse 13 1 0 12275: multiply 20 2 0 12275: identity 4 0 0 12275: b 3 0 1 3 12275: a 3 0 1 2 CLASH, statistics insufficient 12276: Facts: 12276: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12276: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12276: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12276: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12276: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12276: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12276: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12276: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12276: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12276: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12276: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12276: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12276: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =>= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12276: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12276: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =>= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12276: Id : 17, {_}: inverse identity =>= identity [] by p12x_1 12276: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p12x_2 ?51 12276: Id : 19, {_}: inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53) [54, 53] by p12x_3 ?53 ?54 12276: Id : 20, {_}: greatest_lower_bound a c =>= greatest_lower_bound b c [] by p12x_4 12276: Id : 21, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_5 12276: Id : 22, {_}: inverse (greatest_lower_bound ?58 ?59) =>= least_upper_bound (inverse ?58) (inverse ?59) [59, 58] by p12x_6 ?58 ?59 12276: Id : 23, {_}: inverse (least_upper_bound ?61 ?62) =>= greatest_lower_bound (inverse ?61) (inverse ?62) [62, 61] by p12x_7 ?61 ?62 12276: Goal: 12276: Id : 1, {_}: a =>= b [] by prove_p12x 12276: Order: 12276: lpo 12276: Leaf order: 12276: c 4 0 0 12276: least_upper_bound 17 2 0 12276: greatest_lower_bound 17 2 0 12276: inverse 13 1 0 12276: multiply 20 2 0 12276: identity 4 0 0 12276: b 3 0 1 3 12276: a 3 0 1 2 Statistics : Max weight : 16 Found proof, 22.107626s % SZS status Unsatisfiable for GRP181-4.p % SZS output start CNFRefutation for GRP181-4.p Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 Id : 20, {_}: greatest_lower_bound a c =>= greatest_lower_bound b c [] by p12x_4 Id : 188, {_}: multiply ?586 (greatest_lower_bound ?587 ?588) =<= greatest_lower_bound (multiply ?586 ?587) (multiply ?586 ?588) [588, 587, 586] by monotony_glb1 ?586 ?587 ?588 Id : 21, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_5 Id : 364, {_}: inverse (least_upper_bound ?929 ?930) =<= greatest_lower_bound (inverse ?929) (inverse ?930) [930, 929] by p12x_7 ?929 ?930 Id : 342, {_}: inverse (greatest_lower_bound ?890 ?891) =<= least_upper_bound (inverse ?890) (inverse ?891) [891, 890] by p12x_6 ?890 ?891 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 Id : 158, {_}: multiply ?515 (least_upper_bound ?516 ?517) =<= least_upper_bound (multiply ?515 ?516) (multiply ?515 ?517) [517, 516, 515] by monotony_lub1 ?515 ?516 ?517 Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p12x_3 ?53 ?54 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 17, {_}: inverse identity =>= identity [] by p12x_1 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 Id : 28, {_}: multiply (multiply ?71 ?72) ?73 =?= multiply ?71 (multiply ?72 ?73) [73, 72, 71] by associativity ?71 ?72 ?73 Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p12x_2 ?51 Id : 302, {_}: inverse (multiply ?845 ?846) =<= multiply (inverse ?846) (inverse ?845) [846, 845] by p12x_3 ?845 ?846 Id : 803, {_}: inverse (multiply ?1561 (inverse ?1562)) =>= multiply ?1562 (inverse ?1561) [1562, 1561] by Super 302 with 18 at 1,3 Id : 30, {_}: multiply (multiply ?78 (inverse ?79)) ?79 =>= multiply ?78 identity [79, 78] by Super 28 with 3 at 2,3 Id : 303, {_}: inverse (multiply identity ?848) =<= multiply (inverse ?848) identity [848] by Super 302 with 17 at 2,3 Id : 394, {_}: inverse ?984 =<= multiply (inverse ?984) identity [984] by Demod 303 with 2 at 1,2 Id : 396, {_}: inverse (inverse ?987) =<= multiply ?987 identity [987] by Super 394 with 18 at 1,3 Id : 406, {_}: ?987 =<= multiply ?987 identity [987] by Demod 396 with 18 at 2 Id : 638, {_}: multiply (multiply ?78 (inverse ?79)) ?79 =>= ?78 [79, 78] by Demod 30 with 406 at 3 Id : 816, {_}: inverse ?1599 =<= multiply ?1600 (inverse (multiply ?1599 (inverse (inverse ?1600)))) [1600, 1599] by Super 803 with 638 at 1,2 Id : 306, {_}: inverse (multiply ?855 (inverse ?856)) =>= multiply ?856 (inverse ?855) [856, 855] by Super 302 with 18 at 1,3 Id : 837, {_}: inverse ?1599 =<= multiply ?1600 (multiply (inverse ?1600) (inverse ?1599)) [1600, 1599] by Demod 816 with 306 at 2,3 Id : 838, {_}: inverse ?1599 =<= multiply ?1600 (inverse (multiply ?1599 ?1600)) [1600, 1599] by Demod 837 with 19 at 2,3 Id : 285, {_}: multiply ?794 (inverse ?794) =>= identity [794] by Super 3 with 18 at 1,2 Id : 607, {_}: multiply (multiply ?1261 ?1262) (inverse ?1262) =>= multiply ?1261 identity [1262, 1261] by Super 4 with 285 at 2,3 Id : 19344, {_}: multiply (multiply ?27523 ?27524) (inverse ?27524) =>= ?27523 [27524, 27523] by Demod 607 with 406 at 3 Id : 160, {_}: multiply (inverse ?522) (least_upper_bound ?523 ?522) =>= least_upper_bound (multiply (inverse ?522) ?523) identity [523, 522] by Super 158 with 3 at 2,3 Id : 177, {_}: multiply (inverse ?522) (least_upper_bound ?523 ?522) =>= least_upper_bound identity (multiply (inverse ?522) ?523) [523, 522] by Demod 160 with 6 at 3 Id : 345, {_}: inverse (greatest_lower_bound identity ?898) =>= least_upper_bound identity (inverse ?898) [898] by Super 342 with 17 at 1,3 Id : 487, {_}: inverse (multiply (greatest_lower_bound identity ?1114) ?1115) =<= multiply (inverse ?1115) (least_upper_bound identity (inverse ?1114)) [1115, 1114] by Super 19 with 345 at 2,3 Id : 11534, {_}: inverse (multiply (greatest_lower_bound identity ?15482) (inverse ?15482)) =>= least_upper_bound identity (multiply (inverse (inverse ?15482)) identity) [15482] by Super 177 with 487 at 2 Id : 11607, {_}: multiply ?15482 (inverse (greatest_lower_bound identity ?15482)) =?= least_upper_bound identity (multiply (inverse (inverse ?15482)) identity) [15482] by Demod 11534 with 306 at 2 Id : 11608, {_}: multiply ?15482 (inverse (greatest_lower_bound identity ?15482)) =>= least_upper_bound identity (inverse (inverse ?15482)) [15482] by Demod 11607 with 406 at 2,3 Id : 11609, {_}: multiply ?15482 (least_upper_bound identity (inverse ?15482)) =>= least_upper_bound identity (inverse (inverse ?15482)) [15482] by Demod 11608 with 345 at 2,2 Id : 11610, {_}: multiply ?15482 (least_upper_bound identity (inverse ?15482)) =>= least_upper_bound identity ?15482 [15482] by Demod 11609 with 18 at 2,3 Id : 19409, {_}: multiply (least_upper_bound identity ?27743) (inverse (least_upper_bound identity (inverse ?27743))) =>= ?27743 [27743] by Super 19344 with 11610 at 1,2 Id : 366, {_}: inverse (least_upper_bound ?934 (inverse ?935)) =>= greatest_lower_bound (inverse ?934) ?935 [935, 934] by Super 364 with 18 at 2,3 Id : 19451, {_}: multiply (least_upper_bound identity ?27743) (greatest_lower_bound (inverse identity) ?27743) =>= ?27743 [27743] by Demod 19409 with 366 at 2,2 Id : 44019, {_}: multiply (least_upper_bound identity ?52011) (greatest_lower_bound identity ?52011) =>= ?52011 [52011] by Demod 19451 with 17 at 1,2,2 Id : 367, {_}: inverse (least_upper_bound identity ?937) =>= greatest_lower_bound identity (inverse ?937) [937] by Super 364 with 17 at 1,3 Id : 8913, {_}: multiply (inverse ?11632) (least_upper_bound ?11632 ?11633) =>= least_upper_bound identity (multiply (inverse ?11632) ?11633) [11633, 11632] by Super 158 with 3 at 1,3 Id : 326, {_}: least_upper_bound c a =<= least_upper_bound b c [] by Demod 21 with 6 at 2 Id : 327, {_}: least_upper_bound c a =>= least_upper_bound c b [] by Demod 326 with 6 at 3 Id : 8921, {_}: multiply (inverse c) (least_upper_bound c b) =>= least_upper_bound identity (multiply (inverse c) a) [] by Super 8913 with 327 at 2,2 Id : 164, {_}: multiply (inverse ?538) (least_upper_bound ?538 ?539) =>= least_upper_bound identity (multiply (inverse ?538) ?539) [539, 538] by Super 158 with 3 at 1,3 Id : 9001, {_}: least_upper_bound identity (multiply (inverse c) b) =<= least_upper_bound identity (multiply (inverse c) a) [] by Demod 8921 with 164 at 2 Id : 9081, {_}: inverse (least_upper_bound identity (multiply (inverse c) b)) =>= greatest_lower_bound identity (inverse (multiply (inverse c) a)) [] by Super 367 with 9001 at 1,2 Id : 9110, {_}: greatest_lower_bound identity (inverse (multiply (inverse c) b)) =<= greatest_lower_bound identity (inverse (multiply (inverse c) a)) [] by Demod 9081 with 367 at 2 Id : 304, {_}: inverse (multiply (inverse ?850) ?851) =>= multiply (inverse ?851) ?850 [851, 850] by Super 302 with 18 at 2,3 Id : 9111, {_}: greatest_lower_bound identity (inverse (multiply (inverse c) b)) =>= greatest_lower_bound identity (multiply (inverse a) c) [] by Demod 9110 with 304 at 2,3 Id : 9112, {_}: greatest_lower_bound identity (multiply (inverse b) c) =<= greatest_lower_bound identity (multiply (inverse a) c) [] by Demod 9111 with 304 at 2,2 Id : 44043, {_}: multiply (least_upper_bound identity (multiply (inverse a) c)) (greatest_lower_bound identity (multiply (inverse b) c)) =>= multiply (inverse a) c [] by Super 44019 with 9112 at 2,2 Id : 10178, {_}: multiply (inverse ?13641) (greatest_lower_bound ?13641 ?13642) =>= greatest_lower_bound identity (multiply (inverse ?13641) ?13642) [13642, 13641] by Super 188 with 3 at 1,3 Id : 315, {_}: greatest_lower_bound c a =<= greatest_lower_bound b c [] by Demod 20 with 5 at 2 Id : 316, {_}: greatest_lower_bound c a =>= greatest_lower_bound c b [] by Demod 315 with 5 at 3 Id : 10190, {_}: multiply (inverse c) (greatest_lower_bound c b) =>= greatest_lower_bound identity (multiply (inverse c) a) [] by Super 10178 with 316 at 2,2 Id : 194, {_}: multiply (inverse ?609) (greatest_lower_bound ?609 ?610) =>= greatest_lower_bound identity (multiply (inverse ?609) ?610) [610, 609] by Super 188 with 3 at 1,3 Id : 10270, {_}: greatest_lower_bound identity (multiply (inverse c) b) =<= greatest_lower_bound identity (multiply (inverse c) a) [] by Demod 10190 with 194 at 2 Id : 10361, {_}: inverse (greatest_lower_bound identity (multiply (inverse c) b)) =>= least_upper_bound identity (inverse (multiply (inverse c) a)) [] by Super 345 with 10270 at 1,2 Id : 10393, {_}: least_upper_bound identity (inverse (multiply (inverse c) b)) =<= least_upper_bound identity (inverse (multiply (inverse c) a)) [] by Demod 10361 with 345 at 2 Id : 10394, {_}: least_upper_bound identity (inverse (multiply (inverse c) b)) =>= least_upper_bound identity (multiply (inverse a) c) [] by Demod 10393 with 304 at 2,3 Id : 10395, {_}: least_upper_bound identity (multiply (inverse b) c) =<= least_upper_bound identity (multiply (inverse a) c) [] by Demod 10394 with 304 at 2,2 Id : 44130, {_}: multiply (least_upper_bound identity (multiply (inverse b) c)) (greatest_lower_bound identity (multiply (inverse b) c)) =>= multiply (inverse a) c [] by Demod 44043 with 10395 at 1,2 Id : 19452, {_}: multiply (least_upper_bound identity ?27743) (greatest_lower_bound identity ?27743) =>= ?27743 [27743] by Demod 19451 with 17 at 1,2,2 Id : 44131, {_}: multiply (inverse b) c =<= multiply (inverse a) c [] by Demod 44130 with 19452 at 2 Id : 44165, {_}: inverse (inverse a) =<= multiply c (inverse (multiply (inverse b) c)) [] by Super 838 with 44131 at 1,2,3 Id : 44200, {_}: a =<= multiply c (inverse (multiply (inverse b) c)) [] by Demod 44165 with 18 at 2 Id : 44201, {_}: a =<= inverse (inverse b) [] by Demod 44200 with 838 at 3 Id : 44202, {_}: a =>= b [] by Demod 44201 with 18 at 3 Id : 44399, {_}: b === b [] by Demod 1 with 44202 at 2 Id : 1, {_}: a =>= b [] by prove_p12x % SZS output end CNFRefutation for GRP181-4.p 12274: solved GRP181-4.p in 8.100505 using nrkbo 12274: status Unsatisfiable for GRP181-4.p NO CLASH, using fixed ground order 12282: Facts: 12282: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12282: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12282: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12282: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12282: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12282: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12282: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12282: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12282: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12282: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12282: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12282: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12282: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12282: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12282: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12282: Goal: 12282: Id : 1, {_}: greatest_lower_bound (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= identity [] by prove_p20 12282: Order: 12282: kbo 12282: Leaf order: 12282: multiply 18 2 0 12282: inverse 2 1 1 0,2,2 12282: greatest_lower_bound 15 2 2 0,2 12282: least_upper_bound 14 2 1 0,1,2 12282: identity 5 0 3 2,1,2 12282: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 12283: Facts: 12283: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12283: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12283: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12283: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12283: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12283: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12283: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12283: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12283: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12283: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12283: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12283: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12283: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12283: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12283: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12283: Goal: 12283: Id : 1, {_}: greatest_lower_bound (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= identity [] by prove_p20 12283: Order: 12283: lpo 12283: Leaf order: 12283: multiply 18 2 0 12283: inverse 2 1 1 0,2,2 12283: greatest_lower_bound 15 2 2 0,2 12283: least_upper_bound 14 2 1 0,1,2 12283: identity 5 0 3 2,1,2 12283: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 12281: Facts: 12281: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12281: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12281: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12281: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12281: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12281: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12281: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12281: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12281: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12281: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12281: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12281: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12281: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12281: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12281: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12281: Goal: 12281: Id : 1, {_}: greatest_lower_bound (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= identity [] by prove_p20 12281: Order: 12281: nrkbo 12281: Leaf order: 12281: multiply 18 2 0 12281: inverse 2 1 1 0,2,2 12281: greatest_lower_bound 15 2 2 0,2 12281: least_upper_bound 14 2 1 0,1,2 12281: identity 5 0 3 2,1,2 12281: a 2 0 2 1,1,2 % SZS status Timeout for GRP183-1.p NO CLASH, using fixed ground order 12310: Facts: 12310: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12310: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12310: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12310: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12310: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12310: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12310: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12310: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12310: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12310: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12310: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12310: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12310: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12310: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12310: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12310: Goal: 12310: Id : 1, {_}: greatest_lower_bound (least_upper_bound a identity) (least_upper_bound (inverse a) identity) =>= identity [] by prove_20x 12310: Order: 12310: nrkbo 12310: Leaf order: 12310: multiply 18 2 0 12310: greatest_lower_bound 14 2 1 0,2 12310: inverse 2 1 1 0,1,2,2 12310: least_upper_bound 15 2 2 0,1,2 12310: identity 5 0 3 2,1,2 12310: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 12311: Facts: 12311: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12311: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12311: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12311: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12311: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12311: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12311: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12311: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12311: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12311: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12311: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12311: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12311: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12311: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12311: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12311: Goal: 12311: Id : 1, {_}: greatest_lower_bound (least_upper_bound a identity) (least_upper_bound (inverse a) identity) =>= identity [] by prove_20x 12311: Order: 12311: kbo 12311: Leaf order: 12311: multiply 18 2 0 12311: greatest_lower_bound 14 2 1 0,2 12311: inverse 2 1 1 0,1,2,2 12311: least_upper_bound 15 2 2 0,1,2 12311: identity 5 0 3 2,1,2 12311: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 12312: Facts: 12312: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12312: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12312: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12312: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12312: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12312: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12312: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12312: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12312: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12312: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12312: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12312: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12312: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12312: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12312: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12312: Goal: 12312: Id : 1, {_}: greatest_lower_bound (least_upper_bound a identity) (least_upper_bound (inverse a) identity) =>= identity [] by prove_20x 12312: Order: 12312: lpo 12312: Leaf order: 12312: multiply 18 2 0 12312: greatest_lower_bound 14 2 1 0,2 12312: inverse 2 1 1 0,1,2,2 12312: least_upper_bound 15 2 2 0,1,2 12312: identity 5 0 3 2,1,2 12312: a 2 0 2 1,1,2 % SZS status Timeout for GRP183-3.p NO CLASH, using fixed ground order 12349: Facts: 12349: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12349: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12349: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12349: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12349: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12349: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12349: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12349: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12349: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12349: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12349: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12349: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12349: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12349: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12349: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12349: Id : 17, {_}: inverse identity =>= identity [] by p20x_1 12349: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p20x_1 ?51 12349: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p20x_3 ?53 ?54 12349: Goal: 12349: Id : 1, {_}: greatest_lower_bound (least_upper_bound a identity) (least_upper_bound (inverse a) identity) =>= identity [] by prove_20x 12349: Order: 12349: nrkbo 12349: Leaf order: 12349: multiply 20 2 0 12349: greatest_lower_bound 14 2 1 0,2 12349: inverse 8 1 1 0,1,2,2 12349: least_upper_bound 15 2 2 0,1,2 12349: identity 7 0 3 2,1,2 12349: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 12350: Facts: 12350: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12350: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12350: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12350: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12350: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12350: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12350: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12350: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12350: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12350: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12350: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12350: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12350: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12350: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12350: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12350: Id : 17, {_}: inverse identity =>= identity [] by p20x_1 12350: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p20x_1 ?51 12350: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p20x_3 ?53 ?54 12350: Goal: 12350: Id : 1, {_}: greatest_lower_bound (least_upper_bound a identity) (least_upper_bound (inverse a) identity) =>= identity [] by prove_20x 12350: Order: 12350: kbo 12350: Leaf order: 12350: multiply 20 2 0 12350: greatest_lower_bound 14 2 1 0,2 12350: inverse 8 1 1 0,1,2,2 12350: least_upper_bound 15 2 2 0,1,2 12350: identity 7 0 3 2,1,2 12350: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 12351: Facts: 12351: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12351: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12351: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12351: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12351: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12351: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12351: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12351: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12351: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12351: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12351: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12351: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12351: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12351: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12351: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12351: Id : 17, {_}: inverse identity =>= identity [] by p20x_1 12351: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p20x_1 ?51 12351: Id : 19, {_}: inverse (multiply ?53 ?54) =>= multiply (inverse ?54) (inverse ?53) [54, 53] by p20x_3 ?53 ?54 12351: Goal: 12351: Id : 1, {_}: greatest_lower_bound (least_upper_bound a identity) (least_upper_bound (inverse a) identity) =>= identity [] by prove_20x 12351: Order: 12351: lpo 12351: Leaf order: 12351: multiply 20 2 0 12351: greatest_lower_bound 14 2 1 0,2 12351: inverse 8 1 1 0,1,2,2 12351: least_upper_bound 15 2 2 0,1,2 12351: identity 7 0 3 2,1,2 12351: a 2 0 2 1,1,2 % SZS status Timeout for GRP183-4.p NO CLASH, using fixed ground order 12378: Facts: 12378: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12378: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12378: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12378: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12378: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12378: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12378: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12378: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12378: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12378: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12378: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12378: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12378: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12378: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12378: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12378: Goal: 12378: Id : 1, {_}: multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by prove_p21 12378: Order: 12378: nrkbo 12378: Leaf order: 12378: multiply 20 2 2 0,2 12378: inverse 3 1 2 0,2,2 12378: greatest_lower_bound 15 2 2 0,1,2,2 12378: least_upper_bound 15 2 2 0,1,2 12378: identity 6 0 4 2,1,2 12378: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 12379: Facts: 12379: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12379: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12379: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12379: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12379: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12379: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12379: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12379: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12379: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12379: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12379: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12379: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12379: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12379: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12379: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12379: Goal: 12379: Id : 1, {_}: multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =<= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by prove_p21 12379: Order: 12379: kbo 12379: Leaf order: 12379: multiply 20 2 2 0,2 12379: inverse 3 1 2 0,2,2 12379: greatest_lower_bound 15 2 2 0,1,2,2 12379: least_upper_bound 15 2 2 0,1,2 12379: identity 6 0 4 2,1,2 12379: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 12380: Facts: 12380: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12380: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12380: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12380: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12380: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12380: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12380: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12380: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12380: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12380: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12380: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12380: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12380: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12380: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12380: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12380: Goal: 12380: Id : 1, {_}: multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by prove_p21 12380: Order: 12380: lpo 12380: Leaf order: 12380: multiply 20 2 2 0,2 12380: inverse 3 1 2 0,2,2 12380: greatest_lower_bound 15 2 2 0,1,2,2 12380: least_upper_bound 15 2 2 0,1,2 12380: identity 6 0 4 2,1,2 12380: a 4 0 4 1,1,2 % SZS status Timeout for GRP184-1.p NO CLASH, using fixed ground order 12396: Facts: 12396: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12396: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12396: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12396: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12396: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12396: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12396: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12396: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12396: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12396: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12396: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12396: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12396: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12396: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12396: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12396: Goal: 12396: Id : 1, {_}: multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by prove_p21x 12396: Order: 12396: nrkbo 12396: Leaf order: 12396: multiply 20 2 2 0,2 12396: inverse 3 1 2 0,2,2 12396: greatest_lower_bound 15 2 2 0,1,2,2 12396: least_upper_bound 15 2 2 0,1,2 12396: identity 6 0 4 2,1,2 12396: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 12397: Facts: 12397: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12397: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12397: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12397: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12397: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12397: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12397: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12397: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12397: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12397: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12397: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12397: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12397: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12397: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12397: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12397: Goal: 12397: Id : 1, {_}: multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =<= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by prove_p21x 12397: Order: 12397: kbo 12397: Leaf order: 12397: multiply 20 2 2 0,2 12397: inverse 3 1 2 0,2,2 12397: greatest_lower_bound 15 2 2 0,1,2,2 12397: least_upper_bound 15 2 2 0,1,2 12397: identity 6 0 4 2,1,2 12397: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 12398: Facts: 12398: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12398: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12398: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12398: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12398: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12398: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12398: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12398: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12398: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12398: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12398: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12398: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12398: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12398: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12398: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12398: Goal: 12398: Id : 1, {_}: multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by prove_p21x 12398: Order: 12398: lpo 12398: Leaf order: 12398: multiply 20 2 2 0,2 12398: inverse 3 1 2 0,2,2 12398: greatest_lower_bound 15 2 2 0,1,2,2 12398: least_upper_bound 15 2 2 0,1,2 12398: identity 6 0 4 2,1,2 12398: a 4 0 4 1,1,2 % SZS status Timeout for GRP184-3.p NO CLASH, using fixed ground order 12794: Facts: 12794: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12794: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12794: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12794: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12794: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12794: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12794: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12794: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12794: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12794: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12794: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12794: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12794: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12794: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12794: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12794: Goal: 12794: Id : 1, {_}: greatest_lower_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by prove_p22b 12794: Order: 12794: nrkbo 12794: Leaf order: 12794: inverse 1 1 0 12794: greatest_lower_bound 14 2 1 0,2 12794: least_upper_bound 17 2 4 0,1,2 12794: identity 6 0 4 2,1,2 12794: multiply 21 2 3 0,1,1,2 12794: b 3 0 3 2,1,1,2 12794: a 3 0 3 1,1,1,2 NO CLASH, using fixed ground order 12795: Facts: 12795: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12795: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12795: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12795: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12795: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12795: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12795: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12795: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12795: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12795: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 NO CLASH, using fixed ground order 12796: Facts: 12796: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12796: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12796: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12796: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12796: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12796: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12796: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12796: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12796: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12796: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12796: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12795: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12795: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12795: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12795: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12795: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12795: Goal: 12795: Id : 1, {_}: greatest_lower_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by prove_p22b 12795: Order: 12795: kbo 12795: Leaf order: 12795: inverse 1 1 0 12795: greatest_lower_bound 14 2 1 0,2 12795: least_upper_bound 17 2 4 0,1,2 12795: identity 6 0 4 2,1,2 12795: multiply 21 2 3 0,1,1,2 12795: b 3 0 3 2,1,1,2 12795: a 3 0 3 1,1,1,2 12796: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12796: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =>= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12796: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12796: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =>= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12796: Goal: 12796: Id : 1, {_}: greatest_lower_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by prove_p22b 12796: Order: 12796: lpo 12796: Leaf order: 12796: inverse 1 1 0 12796: greatest_lower_bound 14 2 1 0,2 12796: least_upper_bound 17 2 4 0,1,2 12796: identity 6 0 4 2,1,2 12796: multiply 21 2 3 0,1,1,2 12796: b 3 0 3 2,1,1,2 12796: a 3 0 3 1,1,1,2 Statistics : Max weight : 21 Found proof, 1.752071s % SZS status Unsatisfiable for GRP185-3.p % SZS output start CNFRefutation for GRP185-3.p Id : 120, {_}: greatest_lower_bound ?251 (least_upper_bound ?251 ?252) =>= ?251 [252, 251] by glb_absorbtion ?251 ?252 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 Id : 21, {_}: multiply (multiply ?57 ?58) ?59 =>= multiply ?57 (multiply ?58 ?59) [59, 58, 57] by associativity ?57 ?58 ?59 Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 Id : 23, {_}: multiply identity ?64 =<= multiply (inverse ?65) (multiply ?65 ?64) [65, 64] by Super 21 with 3 at 1,2 Id : 436, {_}: ?594 =<= multiply (inverse ?595) (multiply ?595 ?594) [595, 594] by Demod 23 with 2 at 2 Id : 438, {_}: ?599 =<= multiply (inverse (inverse ?599)) identity [599] by Super 436 with 3 at 2,3 Id : 27, {_}: ?64 =<= multiply (inverse ?65) (multiply ?65 ?64) [65, 64] by Demod 23 with 2 at 2 Id : 444, {_}: multiply ?621 ?622 =<= multiply (inverse (inverse ?621)) ?622 [622, 621] by Super 436 with 27 at 2,3 Id : 599, {_}: ?599 =<= multiply ?599 identity [599] by Demod 438 with 444 at 3 Id : 63, {_}: least_upper_bound ?143 (least_upper_bound ?144 ?145) =?= least_upper_bound ?144 (least_upper_bound ?145 ?143) [145, 144, 143] by Super 6 with 8 at 3 Id : 894, {_}: greatest_lower_bound ?1092 (least_upper_bound ?1093 ?1092) =>= ?1092 [1093, 1092] by Super 120 with 6 at 2,2 Id : 901, {_}: greatest_lower_bound ?1112 (least_upper_bound ?1113 (least_upper_bound ?1114 ?1112)) =>= ?1112 [1114, 1113, 1112] by Super 894 with 8 at 2,2 Id : 2450, {_}: least_upper_bound identity (multiply a b) === least_upper_bound identity (multiply a b) [] by Demod 2449 with 901 at 2 Id : 2449, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b)))) =>= least_upper_bound identity (multiply a b) [] by Demod 2448 with 2 at 1,2,2,2,2 Id : 2448, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound a (least_upper_bound b (least_upper_bound (multiply identity identity) (multiply a b)))) =>= least_upper_bound identity (multiply a b) [] by Demod 2447 with 2 at 1,2,2,2 Id : 2447, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound a (least_upper_bound (multiply identity b) (least_upper_bound (multiply identity identity) (multiply a b)))) =>= least_upper_bound identity (multiply a b) [] by Demod 2446 with 63 at 2,2,2 Id : 2446, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound a (least_upper_bound (multiply identity identity) (least_upper_bound (multiply a b) (multiply identity b)))) =>= least_upper_bound identity (multiply a b) [] by Demod 2445 with 599 at 1,2,2 Id : 2445, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply a identity) (least_upper_bound (multiply identity identity) (least_upper_bound (multiply a b) (multiply identity b)))) =>= least_upper_bound identity (multiply a b) [] by Demod 2444 with 8 at 2,2 Id : 2444, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound (multiply a identity) (multiply identity identity)) (least_upper_bound (multiply a b) (multiply identity b))) =>= least_upper_bound identity (multiply a b) [] by Demod 2443 with 15 at 2,2,2 Id : 2443, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound (multiply a identity) (multiply identity identity)) (multiply (least_upper_bound a identity) b)) =>= least_upper_bound identity (multiply a b) [] by Demod 2442 with 15 at 1,2,2 Id : 2442, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply (least_upper_bound a identity) identity) (multiply (least_upper_bound a identity) b)) =>= least_upper_bound identity (multiply a b) [] by Demod 2441 with 6 at 2,2 Id : 2441, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity)) =>= least_upper_bound identity (multiply a b) [] by Demod 2440 with 6 at 3 Id : 2440, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 2439 with 13 at 2,2 Id : 2439, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 1 with 6 at 1,2 Id : 1, {_}: greatest_lower_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by prove_p22b % SZS output end CNFRefutation for GRP185-3.p 12796: solved GRP185-3.p in 0.64804 using lpo 12796: status Unsatisfiable for GRP185-3.p NO CLASH, using fixed ground order 12801: Facts: 12801: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12801: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12801: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12801: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12801: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12801: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12801: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12801: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12801: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12801: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12801: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12801: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12801: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12801: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12801: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12801: Id : 17, {_}: inverse identity =>= identity [] by p22b_1 12801: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22b_2 ?51 12801: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p22b_3 ?53 ?54 12801: Goal: 12801: Id : 1, {_}: greatest_lower_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by prove_p22b 12801: Order: 12801: nrkbo 12801: Leaf order: 12801: inverse 7 1 0 12801: greatest_lower_bound 14 2 1 0,2 12801: least_upper_bound 17 2 4 0,1,2 12801: identity 8 0 4 2,1,2 12801: multiply 23 2 3 0,1,1,2 12801: b 3 0 3 2,1,1,2 12801: a 3 0 3 1,1,1,2 NO CLASH, using fixed ground order 12802: Facts: 12802: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12802: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12802: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12802: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12802: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12802: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12802: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12802: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12802: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12802: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12802: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12802: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12802: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12802: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12802: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12802: Id : 17, {_}: inverse identity =>= identity [] by p22b_1 12802: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22b_2 ?51 12802: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p22b_3 ?53 ?54 12802: Goal: 12802: Id : 1, {_}: greatest_lower_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by prove_p22b 12802: Order: 12802: kbo 12802: Leaf order: 12802: inverse 7 1 0 12802: greatest_lower_bound 14 2 1 0,2 12802: least_upper_bound 17 2 4 0,1,2 12802: identity 8 0 4 2,1,2 12802: multiply 23 2 3 0,1,1,2 12802: b 3 0 3 2,1,1,2 12802: a 3 0 3 1,1,1,2 NO CLASH, using fixed ground order 12803: Facts: 12803: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12803: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12803: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12803: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12803: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12803: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12803: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12803: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12803: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12803: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12803: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12803: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12803: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =>= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12803: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12803: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =>= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12803: Id : 17, {_}: inverse identity =>= identity [] by p22b_1 12803: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22b_2 ?51 12803: Id : 19, {_}: inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53) [54, 53] by p22b_3 ?53 ?54 12803: Goal: 12803: Id : 1, {_}: greatest_lower_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by prove_p22b 12803: Order: 12803: lpo 12803: Leaf order: 12803: inverse 7 1 0 12803: greatest_lower_bound 14 2 1 0,2 12803: least_upper_bound 17 2 4 0,1,2 12803: identity 8 0 4 2,1,2 12803: multiply 23 2 3 0,1,1,2 12803: b 3 0 3 2,1,1,2 12803: a 3 0 3 1,1,1,2 Statistics : Max weight : 21 Found proof, 2.993705s % SZS status Unsatisfiable for GRP185-4.p % SZS output start CNFRefutation for GRP185-4.p Id : 123, {_}: greatest_lower_bound ?257 (least_upper_bound ?257 ?258) =>= ?257 [258, 257] by glb_absorbtion ?257 ?258 Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22b_2 ?51 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 17, {_}: inverse identity =>= identity [] by p22b_1 Id : 382, {_}: inverse (multiply ?520 ?521) =?= multiply (inverse ?521) (inverse ?520) [521, 520] by p22b_3 ?520 ?521 Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 Id : 383, {_}: inverse (multiply identity ?523) =<= multiply (inverse ?523) identity [523] by Super 382 with 17 at 2,3 Id : 422, {_}: inverse ?569 =<= multiply (inverse ?569) identity [569] by Demod 383 with 2 at 1,2 Id : 424, {_}: inverse (inverse ?572) =<= multiply ?572 identity [572] by Super 422 with 18 at 1,3 Id : 432, {_}: ?572 =<= multiply ?572 identity [572] by Demod 424 with 18 at 2 Id : 66, {_}: least_upper_bound ?149 (least_upper_bound ?150 ?151) =?= least_upper_bound ?150 (least_upper_bound ?151 ?149) [151, 150, 149] by Super 6 with 8 at 3 Id : 766, {_}: greatest_lower_bound ?881 (least_upper_bound ?882 ?881) =>= ?881 [882, 881] by Super 123 with 6 at 2,2 Id : 773, {_}: greatest_lower_bound ?901 (least_upper_bound ?902 (least_upper_bound ?903 ?901)) =>= ?901 [903, 902, 901] by Super 766 with 8 at 2,2 Id : 4003, {_}: least_upper_bound identity (multiply a b) === least_upper_bound identity (multiply a b) [] by Demod 4002 with 773 at 2 Id : 4002, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b)))) =>= least_upper_bound identity (multiply a b) [] by Demod 4001 with 2 at 1,2,2,2,2 Id : 4001, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound a (least_upper_bound b (least_upper_bound (multiply identity identity) (multiply a b)))) =>= least_upper_bound identity (multiply a b) [] by Demod 4000 with 2 at 1,2,2,2 Id : 4000, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound a (least_upper_bound (multiply identity b) (least_upper_bound (multiply identity identity) (multiply a b)))) =>= least_upper_bound identity (multiply a b) [] by Demod 3999 with 66 at 2,2,2 Id : 3999, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound a (least_upper_bound (multiply identity identity) (least_upper_bound (multiply a b) (multiply identity b)))) =>= least_upper_bound identity (multiply a b) [] by Demod 3998 with 432 at 1,2,2 Id : 3998, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply a identity) (least_upper_bound (multiply identity identity) (least_upper_bound (multiply a b) (multiply identity b)))) =>= least_upper_bound identity (multiply a b) [] by Demod 3997 with 8 at 2,2 Id : 3997, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound (multiply a identity) (multiply identity identity)) (least_upper_bound (multiply a b) (multiply identity b))) =>= least_upper_bound identity (multiply a b) [] by Demod 3996 with 15 at 2,2,2 Id : 3996, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound (multiply a identity) (multiply identity identity)) (multiply (least_upper_bound a identity) b)) =>= least_upper_bound identity (multiply a b) [] by Demod 3995 with 15 at 1,2,2 Id : 3995, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply (least_upper_bound a identity) identity) (multiply (least_upper_bound a identity) b)) =>= least_upper_bound identity (multiply a b) [] by Demod 3994 with 6 at 2,2 Id : 3994, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity)) =>= least_upper_bound identity (multiply a b) [] by Demod 3993 with 6 at 3 Id : 3993, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 3992 with 13 at 2,2 Id : 3992, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 1 with 6 at 1,2 Id : 1, {_}: greatest_lower_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by prove_p22b % SZS output end CNFRefutation for GRP185-4.p 12803: solved GRP185-4.p in 0.988061 using lpo 12803: status Unsatisfiable for GRP185-4.p NO CLASH, using fixed ground order 12808: Facts: 12808: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12808: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12808: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12808: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12808: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12808: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12808: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12808: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12808: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12808: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12808: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12808: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12808: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12808: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12808: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12808: Id : 17, {_}: inverse identity =>= identity [] by p23_1 12808: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p23_2 ?51 12808: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p23_3 ?53 ?54 12808: Goal: 12808: Id : 1, {_}: least_upper_bound (multiply a b) identity =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by prove_p23 12808: Order: 12808: nrkbo 12808: Leaf order: 12808: greatest_lower_bound 14 2 1 0,1,2,3 12808: inverse 9 1 2 0,2,3 12808: least_upper_bound 14 2 1 0,2 12808: identity 5 0 1 2,2 12808: multiply 22 2 2 0,1,2 12808: b 2 0 2 2,1,2 12808: a 3 0 3 1,1,2 NO CLASH, using fixed ground order 12809: Facts: 12809: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12809: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12809: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12809: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12809: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12809: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12809: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12809: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12809: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12809: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12809: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12809: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12809: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12809: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12809: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12809: Id : 17, {_}: inverse identity =>= identity [] by p23_1 12809: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p23_2 ?51 12809: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p23_3 ?53 ?54 12809: Goal: 12809: Id : 1, {_}: least_upper_bound (multiply a b) identity =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by prove_p23 12809: Order: 12809: kbo 12809: Leaf order: 12809: greatest_lower_bound 14 2 1 0,1,2,3 12809: inverse 9 1 2 0,2,3 12809: least_upper_bound 14 2 1 0,2 12809: identity 5 0 1 2,2 12809: multiply 22 2 2 0,1,2 12809: b 2 0 2 2,1,2 12809: a 3 0 3 1,1,2 NO CLASH, using fixed ground order 12810: Facts: 12810: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12810: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12810: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 12810: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 12810: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 12810: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 12810: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 12810: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 12810: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 12810: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 12810: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 12810: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 12810: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =>= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 12810: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 12810: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =>= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 12810: Id : 17, {_}: inverse identity =>= identity [] by p23_1 12810: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p23_2 ?51 12810: Id : 19, {_}: inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53) [54, 53] by p23_3 ?53 ?54 12810: Goal: 12810: Id : 1, {_}: least_upper_bound (multiply a b) identity =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by prove_p23 12810: Order: 12810: lpo 12810: Leaf order: 12810: greatest_lower_bound 14 2 1 0,1,2,3 12810: inverse 9 1 2 0,2,3 12810: least_upper_bound 14 2 1 0,2 12810: identity 5 0 1 2,2 12810: multiply 22 2 2 0,1,2 12810: b 2 0 2 2,1,2 12810: a 3 0 3 1,1,2 % SZS status Timeout for GRP186-2.p NO CLASH, using fixed ground order 12831: Facts: 12831: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12831: Id : 3, {_}: multiply (left_inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12831: Id : 4, {_}: multiply (multiply ?6 (multiply ?7 ?8)) ?6 =?= multiply (multiply ?6 ?7) (multiply ?8 ?6) [8, 7, 6] by moufang1 ?6 ?7 ?8 12831: Goal: 12831: Id : 1, {_}: multiply (multiply (multiply a b) c) b =>= multiply a (multiply b (multiply c b)) [] by prove_moufang2 12831: Order: 12831: nrkbo 12831: Leaf order: 12831: left_inverse 1 1 0 12831: identity 2 0 0 12831: c 2 0 2 2,1,2 12831: multiply 14 2 6 0,2 12831: b 4 0 4 2,1,1,2 12831: a 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 12833: Facts: 12833: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12833: Id : 3, {_}: multiply (left_inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12833: Id : 4, {_}: multiply (multiply ?6 (multiply ?7 ?8)) ?6 =>= multiply (multiply ?6 ?7) (multiply ?8 ?6) [8, 7, 6] by moufang1 ?6 ?7 ?8 12833: Goal: 12833: Id : 1, {_}: multiply (multiply (multiply a b) c) b =>= multiply a (multiply b (multiply c b)) [] by prove_moufang2 12833: Order: 12833: lpo 12833: Leaf order: 12833: left_inverse 1 1 0 12833: identity 2 0 0 12833: c 2 0 2 2,1,2 12833: multiply 14 2 6 0,2 12833: b 4 0 4 2,1,1,2 12833: a 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 12832: Facts: 12832: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12832: Id : 3, {_}: multiply (left_inverse ?4) ?4 =>= identity [4] by left_inverse ?4 12832: Id : 4, {_}: multiply (multiply ?6 (multiply ?7 ?8)) ?6 =>= multiply (multiply ?6 ?7) (multiply ?8 ?6) [8, 7, 6] by moufang1 ?6 ?7 ?8 12832: Goal: 12832: Id : 1, {_}: multiply (multiply (multiply a b) c) b =>= multiply a (multiply b (multiply c b)) [] by prove_moufang2 12832: Order: 12832: kbo 12832: Leaf order: 12832: left_inverse 1 1 0 12832: identity 2 0 0 12832: c 2 0 2 2,1,2 12832: multiply 14 2 6 0,2 12832: b 4 0 4 2,1,1,2 12832: a 2 0 2 1,1,1,2 % SZS status Timeout for GRP204-1.p CLASH, statistics insufficient 12860: Facts: 12860: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12860: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 12860: Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 12860: Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 12860: Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 12860: Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 12860: Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 12860: Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 12860: Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?22) ?24 =?= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by moufang3 ?22 ?23 ?24 12860: Goal: 12860: Id : 1, {_}: multiply x (multiply (multiply y z) x) =<= multiply (multiply x y) (multiply z x) [] by prove_moufang4 12860: Order: 12860: nrkbo 12860: Leaf order: 12860: left_inverse 1 1 0 12860: right_inverse 1 1 0 12860: right_division 2 2 0 12860: left_division 2 2 0 12860: identity 4 0 0 12860: multiply 20 2 6 0,2 12860: z 2 0 2 2,1,2,2 12860: y 2 0 2 1,1,2,2 12860: x 4 0 4 1,2 CLASH, statistics insufficient 12861: Facts: 12861: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12861: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 12861: Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 12861: Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 12861: Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 12861: Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 12861: Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 12861: Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 12861: Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?22) ?24 =>= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by moufang3 ?22 ?23 ?24 12861: Goal: 12861: Id : 1, {_}: multiply x (multiply (multiply y z) x) =<= multiply (multiply x y) (multiply z x) [] by prove_moufang4 12861: Order: 12861: kbo 12861: Leaf order: 12861: left_inverse 1 1 0 12861: right_inverse 1 1 0 12861: right_division 2 2 0 12861: left_division 2 2 0 12861: identity 4 0 0 12861: multiply 20 2 6 0,2 12861: z 2 0 2 2,1,2,2 12861: y 2 0 2 1,1,2,2 12861: x 4 0 4 1,2 CLASH, statistics insufficient 12862: Facts: 12862: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 12862: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 12862: Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 12862: Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 12862: Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 12862: Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 12862: Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 12862: Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 12862: Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?22) ?24 =>= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by moufang3 ?22 ?23 ?24 12862: Goal: 12862: Id : 1, {_}: multiply x (multiply (multiply y z) x) =<= multiply (multiply x y) (multiply z x) [] by prove_moufang4 12862: Order: 12862: lpo 12862: Leaf order: 12862: left_inverse 1 1 0 12862: right_inverse 1 1 0 12862: right_division 2 2 0 12862: left_division 2 2 0 12862: identity 4 0 0 12862: multiply 20 2 6 0,2 12862: z 2 0 2 2,1,2,2 12862: y 2 0 2 1,1,2,2 12862: x 4 0 4 1,2 Statistics : Max weight : 20 Found proof, 29.150598s % SZS status Unsatisfiable for GRP205-1.p % SZS output start CNFRefutation for GRP205-1.p Id : 56, {_}: multiply (multiply (multiply ?126 ?127) ?126) ?128 =>= multiply ?126 (multiply ?127 (multiply ?126 ?128)) [128, 127, 126] by moufang3 ?126 ?127 ?128 Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 Id : 22, {_}: left_division ?48 (multiply ?48 ?49) =>= ?49 [49, 48] by left_division_multiply ?48 ?49 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?22) ?24 =>= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by moufang3 ?22 ?23 ?24 Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 Id : 53, {_}: multiply ?115 (multiply ?116 (multiply ?115 identity)) =>= multiply (multiply ?115 ?116) ?115 [116, 115] by Super 3 with 10 at 2 Id : 70, {_}: multiply ?115 (multiply ?116 ?115) =<= multiply (multiply ?115 ?116) ?115 [116, 115] by Demod 53 with 3 at 2,2,2 Id : 889, {_}: right_division (multiply ?1099 (multiply ?1100 ?1099)) ?1099 =>= multiply ?1099 ?1100 [1100, 1099] by Super 7 with 70 at 1,2 Id : 895, {_}: right_division (multiply ?1115 ?1116) ?1115 =<= multiply ?1115 (right_division ?1116 ?1115) [1116, 1115] by Super 889 with 6 at 2,1,2 Id : 55, {_}: right_division (multiply ?122 (multiply ?123 (multiply ?122 ?124))) ?124 =>= multiply (multiply ?122 ?123) ?122 [124, 123, 122] by Super 7 with 10 at 1,2 Id : 2553, {_}: right_division (multiply ?3478 (multiply ?3479 (multiply ?3478 ?3480))) ?3480 =>= multiply ?3478 (multiply ?3479 ?3478) [3480, 3479, 3478] by Demod 55 with 70 at 3 Id : 647, {_}: multiply ?831 (multiply ?832 ?831) =<= multiply (multiply ?831 ?832) ?831 [832, 831] by Demod 53 with 3 at 2,2,2 Id : 654, {_}: multiply ?850 (multiply (right_inverse ?850) ?850) =>= multiply identity ?850 [850] by Super 647 with 8 at 1,3 Id : 677, {_}: multiply ?850 (multiply (right_inverse ?850) ?850) =>= ?850 [850] by Demod 654 with 2 at 3 Id : 763, {_}: left_division ?991 ?991 =<= multiply (right_inverse ?991) ?991 [991] by Super 5 with 677 at 2,2 Id : 24, {_}: left_division ?53 ?53 =>= identity [53] by Super 22 with 3 at 2,2 Id : 789, {_}: identity =<= multiply (right_inverse ?991) ?991 [991] by Demod 763 with 24 at 2 Id : 816, {_}: right_division identity ?1047 =>= right_inverse ?1047 [1047] by Super 7 with 789 at 1,2 Id : 45, {_}: right_division identity ?99 =>= left_inverse ?99 [99] by Super 7 with 9 at 1,2 Id : 843, {_}: left_inverse ?1047 =<= right_inverse ?1047 [1047] by Demod 816 with 45 at 2 Id : 857, {_}: multiply ?18 (left_inverse ?18) =>= identity [18] by Demod 8 with 843 at 2,2 Id : 2562, {_}: right_division (multiply ?3513 (multiply ?3514 identity)) (left_inverse ?3513) =>= multiply ?3513 (multiply ?3514 ?3513) [3514, 3513] by Super 2553 with 857 at 2,2,1,2 Id : 2621, {_}: right_division (multiply ?3513 ?3514) (left_inverse ?3513) =>= multiply ?3513 (multiply ?3514 ?3513) [3514, 3513] by Demod 2562 with 3 at 2,1,2 Id : 2806, {_}: right_division (multiply (left_inverse ?3781) (multiply ?3781 ?3782)) (left_inverse ?3781) =>= multiply (left_inverse ?3781) (multiply ?3781 (multiply ?3782 ?3781)) [3782, 3781] by Super 895 with 2621 at 2,3 Id : 52, {_}: multiply ?111 (multiply ?112 (multiply ?111 (left_division (multiply (multiply ?111 ?112) ?111) ?113))) =>= ?113 [113, 112, 111] by Super 4 with 10 at 2 Id : 963, {_}: multiply ?1216 (multiply ?1217 (multiply ?1216 (left_division (multiply ?1216 (multiply ?1217 ?1216)) ?1218))) =>= ?1218 [1218, 1217, 1216] by Demod 52 with 70 at 1,2,2,2,2 Id : 970, {_}: multiply ?1242 (multiply (left_inverse ?1242) (multiply ?1242 (left_division (multiply ?1242 identity) ?1243))) =>= ?1243 [1243, 1242] by Super 963 with 9 at 2,1,2,2,2,2 Id : 1030, {_}: multiply ?1242 (multiply (left_inverse ?1242) (multiply ?1242 (left_division ?1242 ?1243))) =>= ?1243 [1243, 1242] by Demod 970 with 3 at 1,2,2,2,2 Id : 1031, {_}: multiply ?1242 (multiply (left_inverse ?1242) ?1243) =>= ?1243 [1243, 1242] by Demod 1030 with 4 at 2,2,2 Id : 1164, {_}: left_division ?1548 ?1549 =<= multiply (left_inverse ?1548) ?1549 [1549, 1548] by Super 5 with 1031 at 2,2 Id : 2852, {_}: right_division (left_division ?3781 (multiply ?3781 ?3782)) (left_inverse ?3781) =<= multiply (left_inverse ?3781) (multiply ?3781 (multiply ?3782 ?3781)) [3782, 3781] by Demod 2806 with 1164 at 1,2 Id : 2853, {_}: right_division (left_division ?3781 (multiply ?3781 ?3782)) (left_inverse ?3781) =>= left_division ?3781 (multiply ?3781 (multiply ?3782 ?3781)) [3782, 3781] by Demod 2852 with 1164 at 3 Id : 2854, {_}: right_division ?3782 (left_inverse ?3781) =<= left_division ?3781 (multiply ?3781 (multiply ?3782 ?3781)) [3781, 3782] by Demod 2853 with 5 at 1,2 Id : 2855, {_}: right_division ?3782 (left_inverse ?3781) =>= multiply ?3782 ?3781 [3781, 3782] by Demod 2854 with 5 at 3 Id : 1378, {_}: right_division (left_division ?1827 ?1828) ?1828 =>= left_inverse ?1827 [1828, 1827] by Super 7 with 1164 at 1,2 Id : 28, {_}: left_division (right_division ?62 ?63) ?62 =>= ?63 [63, 62] by Super 5 with 6 at 2,2 Id : 1384, {_}: right_division ?1844 ?1845 =<= left_inverse (right_division ?1845 ?1844) [1845, 1844] by Super 1378 with 28 at 1,2 Id : 3643, {_}: multiply (multiply ?4879 ?4880) ?4881 =<= multiply ?4880 (multiply (left_division ?4880 ?4879) (multiply ?4880 ?4881)) [4881, 4880, 4879] by Super 56 with 4 at 1,1,2 Id : 3648, {_}: multiply (multiply ?4897 ?4898) (left_division ?4898 ?4899) =>= multiply ?4898 (multiply (left_division ?4898 ?4897) ?4899) [4899, 4898, 4897] by Super 3643 with 4 at 2,2,3 Id : 2922, {_}: right_division (left_inverse ?3910) ?3911 =>= left_inverse (multiply ?3911 ?3910) [3911, 3910] by Super 1384 with 2855 at 1,3 Id : 3008, {_}: left_inverse (multiply (left_inverse ?4021) ?4022) =>= multiply (left_inverse ?4022) ?4021 [4022, 4021] by Super 2855 with 2922 at 2 Id : 3027, {_}: left_inverse (left_division ?4021 ?4022) =<= multiply (left_inverse ?4022) ?4021 [4022, 4021] by Demod 3008 with 1164 at 1,2 Id : 3028, {_}: left_inverse (left_division ?4021 ?4022) =>= left_division ?4022 ?4021 [4022, 4021] by Demod 3027 with 1164 at 3 Id : 3191, {_}: right_division ?4224 (left_division ?4225 ?4226) =<= multiply ?4224 (left_division ?4226 ?4225) [4226, 4225, 4224] by Super 2855 with 3028 at 2,2 Id : 8019, {_}: right_division (multiply ?4897 ?4898) (left_division ?4899 ?4898) =<= multiply ?4898 (multiply (left_division ?4898 ?4897) ?4899) [4899, 4898, 4897] by Demod 3648 with 3191 at 2 Id : 3187, {_}: left_division (left_division ?4210 ?4211) ?4212 =<= multiply (left_division ?4211 ?4210) ?4212 [4212, 4211, 4210] by Super 1164 with 3028 at 1,3 Id : 8020, {_}: right_division (multiply ?4897 ?4898) (left_division ?4899 ?4898) =<= multiply ?4898 (left_division (left_division ?4897 ?4898) ?4899) [4899, 4898, 4897] by Demod 8019 with 3187 at 2,3 Id : 8021, {_}: right_division (multiply ?4897 ?4898) (left_division ?4899 ?4898) =>= right_division ?4898 (left_division ?4899 (left_division ?4897 ?4898)) [4899, 4898, 4897] by Demod 8020 with 3191 at 3 Id : 8034, {_}: right_division (left_division ?9766 ?9767) (multiply ?9768 ?9767) =<= left_inverse (right_division ?9767 (left_division ?9766 (left_division ?9768 ?9767))) [9768, 9767, 9766] by Super 1384 with 8021 at 1,3 Id : 8099, {_}: right_division (left_division ?9766 ?9767) (multiply ?9768 ?9767) =<= right_division (left_division ?9766 (left_division ?9768 ?9767)) ?9767 [9768, 9767, 9766] by Demod 8034 with 1384 at 3 Id : 23672, {_}: right_division (left_division ?25246 (left_inverse ?25247)) (multiply ?25248 (left_inverse ?25247)) =>= multiply (left_division ?25246 (left_division ?25248 (left_inverse ?25247))) ?25247 [25248, 25247, 25246] by Super 2855 with 8099 at 2 Id : 2932, {_}: right_division ?3937 (left_inverse ?3938) =>= multiply ?3937 ?3938 [3938, 3937] by Demod 2854 with 5 at 3 Id : 46, {_}: left_division (left_inverse ?101) identity =>= ?101 [101] by Super 5 with 9 at 2,2 Id : 40, {_}: left_division ?91 identity =>= right_inverse ?91 [91] by Super 5 with 8 at 2,2 Id : 426, {_}: right_inverse (left_inverse ?101) =>= ?101 [101] by Demod 46 with 40 at 2 Id : 860, {_}: left_inverse (left_inverse ?101) =>= ?101 [101] by Demod 426 with 843 at 2 Id : 2936, {_}: right_division ?3949 ?3950 =<= multiply ?3949 (left_inverse ?3950) [3950, 3949] by Super 2932 with 860 at 2,2 Id : 3077, {_}: left_division ?4125 (left_inverse ?4126) =>= right_division (left_inverse ?4125) ?4126 [4126, 4125] by Super 1164 with 2936 at 3 Id : 3115, {_}: left_division ?4125 (left_inverse ?4126) =>= left_inverse (multiply ?4126 ?4125) [4126, 4125] by Demod 3077 with 2922 at 3 Id : 23819, {_}: right_division (left_inverse (multiply ?25247 ?25246)) (multiply ?25248 (left_inverse ?25247)) =>= multiply (left_division ?25246 (left_division ?25248 (left_inverse ?25247))) ?25247 [25248, 25246, 25247] by Demod 23672 with 3115 at 1,2 Id : 23820, {_}: right_division (left_inverse (multiply ?25247 ?25246)) (right_division ?25248 ?25247) =<= multiply (left_division ?25246 (left_division ?25248 (left_inverse ?25247))) ?25247 [25248, 25246, 25247] by Demod 23819 with 2936 at 2,2 Id : 23821, {_}: right_division (left_inverse (multiply ?25247 ?25246)) (right_division ?25248 ?25247) =<= left_division (left_division (left_division ?25248 (left_inverse ?25247)) ?25246) ?25247 [25248, 25246, 25247] by Demod 23820 with 3187 at 3 Id : 23822, {_}: left_inverse (multiply (right_division ?25248 ?25247) (multiply ?25247 ?25246)) =<= left_division (left_division (left_division ?25248 (left_inverse ?25247)) ?25246) ?25247 [25246, 25247, 25248] by Demod 23821 with 2922 at 2 Id : 23823, {_}: left_inverse (multiply (right_division ?25248 ?25247) (multiply ?25247 ?25246)) =<= left_division (left_division (left_inverse (multiply ?25247 ?25248)) ?25246) ?25247 [25246, 25247, 25248] by Demod 23822 with 3115 at 1,1,3 Id : 1167, {_}: multiply ?1556 (multiply (left_inverse ?1556) ?1557) =>= ?1557 [1557, 1556] by Demod 1030 with 4 at 2,2,2 Id : 1177, {_}: multiply ?1584 ?1585 =<= left_division (left_inverse ?1584) ?1585 [1585, 1584] by Super 1167 with 4 at 2,2 Id : 1414, {_}: multiply (right_division ?1873 ?1874) ?1875 =>= left_division (right_division ?1874 ?1873) ?1875 [1875, 1874, 1873] by Super 1177 with 1384 at 1,3 Id : 23824, {_}: left_inverse (left_division (right_division ?25247 ?25248) (multiply ?25247 ?25246)) =<= left_division (left_division (left_inverse (multiply ?25247 ?25248)) ?25246) ?25247 [25246, 25248, 25247] by Demod 23823 with 1414 at 1,2 Id : 23825, {_}: left_inverse (left_division (right_division ?25247 ?25248) (multiply ?25247 ?25246)) =>= left_division (multiply (multiply ?25247 ?25248) ?25246) ?25247 [25246, 25248, 25247] by Demod 23824 with 1177 at 1,3 Id : 37248, {_}: left_division (multiply ?37773 ?37774) (right_division ?37773 ?37775) =<= left_division (multiply (multiply ?37773 ?37775) ?37774) ?37773 [37775, 37774, 37773] by Demod 23825 with 3028 at 2 Id : 37265, {_}: left_division (multiply ?37844 ?37845) (right_division ?37844 (left_inverse ?37846)) =>= left_division (multiply (right_division ?37844 ?37846) ?37845) ?37844 [37846, 37845, 37844] by Super 37248 with 2936 at 1,1,3 Id : 37472, {_}: left_division (multiply ?37844 ?37845) (multiply ?37844 ?37846) =<= left_division (multiply (right_division ?37844 ?37846) ?37845) ?37844 [37846, 37845, 37844] by Demod 37265 with 2855 at 2,2 Id : 37473, {_}: left_division (multiply ?37844 ?37845) (multiply ?37844 ?37846) =<= left_division (left_division (right_division ?37846 ?37844) ?37845) ?37844 [37846, 37845, 37844] by Demod 37472 with 1414 at 1,3 Id : 8041, {_}: right_division (multiply ?9794 ?9795) (left_division ?9796 ?9795) =>= right_division ?9795 (left_division ?9796 (left_division ?9794 ?9795)) [9796, 9795, 9794] by Demod 8020 with 3191 at 3 Id : 8054, {_}: right_division (multiply ?9845 (left_inverse ?9846)) (left_inverse (multiply ?9846 ?9847)) =>= right_division (left_inverse ?9846) (left_division ?9847 (left_division ?9845 (left_inverse ?9846))) [9847, 9846, 9845] by Super 8041 with 3115 at 2,2 Id : 8126, {_}: multiply (multiply ?9845 (left_inverse ?9846)) (multiply ?9846 ?9847) =<= right_division (left_inverse ?9846) (left_division ?9847 (left_division ?9845 (left_inverse ?9846))) [9847, 9846, 9845] by Demod 8054 with 2855 at 2 Id : 8127, {_}: multiply (multiply ?9845 (left_inverse ?9846)) (multiply ?9846 ?9847) =<= left_inverse (multiply (left_division ?9847 (left_division ?9845 (left_inverse ?9846))) ?9846) [9847, 9846, 9845] by Demod 8126 with 2922 at 3 Id : 8128, {_}: multiply (right_division ?9845 ?9846) (multiply ?9846 ?9847) =<= left_inverse (multiply (left_division ?9847 (left_division ?9845 (left_inverse ?9846))) ?9846) [9847, 9846, 9845] by Demod 8127 with 2936 at 1,2 Id : 8129, {_}: multiply (right_division ?9845 ?9846) (multiply ?9846 ?9847) =<= left_inverse (left_division (left_division (left_division ?9845 (left_inverse ?9846)) ?9847) ?9846) [9847, 9846, 9845] by Demod 8128 with 3187 at 1,3 Id : 8130, {_}: left_division (right_division ?9846 ?9845) (multiply ?9846 ?9847) =<= left_inverse (left_division (left_division (left_division ?9845 (left_inverse ?9846)) ?9847) ?9846) [9847, 9845, 9846] by Demod 8129 with 1414 at 2 Id : 8131, {_}: left_division (right_division ?9846 ?9845) (multiply ?9846 ?9847) =<= left_division ?9846 (left_division (left_division ?9845 (left_inverse ?9846)) ?9847) [9847, 9845, 9846] by Demod 8130 with 3028 at 3 Id : 8132, {_}: left_division (right_division ?9846 ?9845) (multiply ?9846 ?9847) =<= left_division ?9846 (left_division (left_inverse (multiply ?9846 ?9845)) ?9847) [9847, 9845, 9846] by Demod 8131 with 3115 at 1,2,3 Id : 24031, {_}: left_division (right_division ?25824 ?25825) (multiply ?25824 ?25826) =>= left_division ?25824 (multiply (multiply ?25824 ?25825) ?25826) [25826, 25825, 25824] by Demod 8132 with 1177 at 2,3 Id : 24068, {_}: left_division (multiply ?25977 ?25978) (multiply ?25977 ?25979) =<= left_division ?25977 (multiply (multiply ?25977 (left_inverse ?25978)) ?25979) [25979, 25978, 25977] by Super 24031 with 2855 at 1,2 Id : 24287, {_}: left_division (multiply ?25977 ?25978) (multiply ?25977 ?25979) =>= left_division ?25977 (multiply (right_division ?25977 ?25978) ?25979) [25979, 25978, 25977] by Demod 24068 with 2936 at 1,2,3 Id : 24288, {_}: left_division (multiply ?25977 ?25978) (multiply ?25977 ?25979) =>= left_division ?25977 (left_division (right_division ?25978 ?25977) ?25979) [25979, 25978, 25977] by Demod 24287 with 1414 at 2,3 Id : 47819, {_}: left_division ?49234 (left_division (right_division ?49235 ?49234) ?49236) =<= left_division (left_division (right_division ?49236 ?49234) ?49235) ?49234 [49236, 49235, 49234] by Demod 37473 with 24288 at 2 Id : 1246, {_}: multiply (left_inverse ?1641) (multiply ?1642 (left_inverse ?1641)) =>= multiply (left_division ?1641 ?1642) (left_inverse ?1641) [1642, 1641] by Super 70 with 1164 at 1,3 Id : 1310, {_}: left_division ?1641 (multiply ?1642 (left_inverse ?1641)) =<= multiply (left_division ?1641 ?1642) (left_inverse ?1641) [1642, 1641] by Demod 1246 with 1164 at 2 Id : 3056, {_}: left_division ?1641 (right_division ?1642 ?1641) =<= multiply (left_division ?1641 ?1642) (left_inverse ?1641) [1642, 1641] by Demod 1310 with 2936 at 2,2 Id : 3057, {_}: left_division ?1641 (right_division ?1642 ?1641) =>= right_division (left_division ?1641 ?1642) ?1641 [1642, 1641] by Demod 3056 with 2936 at 3 Id : 47887, {_}: left_division ?49524 (left_division (right_division (right_division ?49525 (right_division ?49526 ?49524)) ?49524) ?49526) =<= left_division (right_division (left_division (right_division ?49526 ?49524) ?49525) (right_division ?49526 ?49524)) ?49524 [49526, 49525, 49524] by Super 47819 with 3057 at 1,3 Id : 59, {_}: multiply (multiply ?136 ?137) ?138 =<= multiply ?137 (multiply (left_division ?137 ?136) (multiply ?137 ?138)) [138, 137, 136] by Super 56 with 4 at 1,1,2 Id : 3632, {_}: left_division ?4830 (multiply (multiply ?4831 ?4830) ?4832) =<= multiply (left_division ?4830 ?4831) (multiply ?4830 ?4832) [4832, 4831, 4830] by Super 5 with 59 at 2,2 Id : 7833, {_}: left_division ?4830 (multiply (multiply ?4831 ?4830) ?4832) =<= left_division (left_division ?4831 ?4830) (multiply ?4830 ?4832) [4832, 4831, 4830] by Demod 3632 with 3187 at 3 Id : 7841, {_}: left_inverse (left_division ?9488 (multiply (multiply ?9489 ?9488) ?9490)) =>= left_division (multiply ?9488 ?9490) (left_division ?9489 ?9488) [9490, 9489, 9488] by Super 3028 with 7833 at 1,2 Id : 7910, {_}: left_division (multiply (multiply ?9489 ?9488) ?9490) ?9488 =>= left_division (multiply ?9488 ?9490) (left_division ?9489 ?9488) [9490, 9488, 9489] by Demod 7841 with 3028 at 2 Id : 22545, {_}: left_division (multiply (left_inverse ?23598) ?23599) (left_division ?23600 (left_inverse ?23598)) =>= left_inverse (multiply ?23598 (multiply (multiply ?23600 (left_inverse ?23598)) ?23599)) [23600, 23599, 23598] by Super 3115 with 7910 at 2 Id : 22628, {_}: left_division (left_division ?23598 ?23599) (left_division ?23600 (left_inverse ?23598)) =<= left_inverse (multiply ?23598 (multiply (multiply ?23600 (left_inverse ?23598)) ?23599)) [23600, 23599, 23598] by Demod 22545 with 1164 at 1,2 Id : 22629, {_}: left_division (left_division ?23598 ?23599) (left_inverse (multiply ?23598 ?23600)) =<= left_inverse (multiply ?23598 (multiply (multiply ?23600 (left_inverse ?23598)) ?23599)) [23600, 23599, 23598] by Demod 22628 with 3115 at 2,2 Id : 22630, {_}: left_division (left_division ?23598 ?23599) (left_inverse (multiply ?23598 ?23600)) =>= left_inverse (multiply ?23598 (multiply (right_division ?23600 ?23598) ?23599)) [23600, 23599, 23598] by Demod 22629 with 2936 at 1,2,1,3 Id : 22631, {_}: left_inverse (multiply (multiply ?23598 ?23600) (left_division ?23598 ?23599)) =>= left_inverse (multiply ?23598 (multiply (right_division ?23600 ?23598) ?23599)) [23599, 23600, 23598] by Demod 22630 with 3115 at 2 Id : 22632, {_}: left_inverse (multiply (multiply ?23598 ?23600) (left_division ?23598 ?23599)) =>= left_inverse (multiply ?23598 (left_division (right_division ?23598 ?23600) ?23599)) [23599, 23600, 23598] by Demod 22631 with 1414 at 2,1,3 Id : 22633, {_}: left_inverse (right_division (multiply ?23598 ?23600) (left_division ?23599 ?23598)) =<= left_inverse (multiply ?23598 (left_division (right_division ?23598 ?23600) ?23599)) [23599, 23600, 23598] by Demod 22632 with 3191 at 1,2 Id : 22634, {_}: left_inverse (right_division (multiply ?23598 ?23600) (left_division ?23599 ?23598)) =>= left_inverse (right_division ?23598 (left_division ?23599 (right_division ?23598 ?23600))) [23599, 23600, 23598] by Demod 22633 with 3191 at 1,3 Id : 22635, {_}: right_division (left_division ?23599 ?23598) (multiply ?23598 ?23600) =<= left_inverse (right_division ?23598 (left_division ?23599 (right_division ?23598 ?23600))) [23600, 23598, 23599] by Demod 22634 with 1384 at 2 Id : 33282, {_}: right_division (left_division ?33402 ?33403) (multiply ?33403 ?33404) =<= right_division (left_division ?33402 (right_division ?33403 ?33404)) ?33403 [33404, 33403, 33402] by Demod 22635 with 1384 at 3 Id : 33363, {_}: right_division (left_division (left_inverse ?33737) ?33738) (multiply ?33738 ?33739) =>= right_division (multiply ?33737 (right_division ?33738 ?33739)) ?33738 [33739, 33738, 33737] by Super 33282 with 1177 at 1,3 Id : 33649, {_}: right_division (multiply ?33737 ?33738) (multiply ?33738 ?33739) =<= right_division (multiply ?33737 (right_division ?33738 ?33739)) ?33738 [33739, 33738, 33737] by Demod 33363 with 1177 at 1,2 Id : 2939, {_}: right_division ?3957 (right_division ?3958 ?3959) =<= multiply ?3957 (right_division ?3959 ?3958) [3959, 3958, 3957] by Super 2932 with 1384 at 2,2 Id : 33650, {_}: right_division (multiply ?33737 ?33738) (multiply ?33738 ?33739) =<= right_division (right_division ?33737 (right_division ?33739 ?33738)) ?33738 [33739, 33738, 33737] by Demod 33649 with 2939 at 1,3 Id : 48257, {_}: left_division ?49524 (left_division (right_division (multiply ?49525 ?49524) (multiply ?49524 ?49526)) ?49526) =<= left_division (right_division (left_division (right_division ?49526 ?49524) ?49525) (right_division ?49526 ?49524)) ?49524 [49526, 49525, 49524] by Demod 47887 with 33650 at 1,2,2 Id : 640, {_}: multiply (multiply ?22 (multiply ?23 ?22)) ?24 =>= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by Demod 10 with 70 at 1,2 Id : 1251, {_}: multiply (multiply ?1655 (left_division ?1656 ?1655)) ?1657 =<= multiply ?1655 (multiply (left_inverse ?1656) (multiply ?1655 ?1657)) [1657, 1656, 1655] by Super 640 with 1164 at 2,1,2 Id : 1306, {_}: multiply (multiply ?1655 (left_division ?1656 ?1655)) ?1657 =>= multiply ?1655 (left_division ?1656 (multiply ?1655 ?1657)) [1657, 1656, 1655] by Demod 1251 with 1164 at 2,3 Id : 5008, {_}: multiply (right_division ?1655 (left_division ?1655 ?1656)) ?1657 =>= multiply ?1655 (left_division ?1656 (multiply ?1655 ?1657)) [1657, 1656, 1655] by Demod 1306 with 3191 at 1,2 Id : 5009, {_}: multiply (right_division ?1655 (left_division ?1655 ?1656)) ?1657 =>= right_division ?1655 (left_division (multiply ?1655 ?1657) ?1656) [1657, 1656, 1655] by Demod 5008 with 3191 at 3 Id : 5010, {_}: left_division (right_division (left_division ?1655 ?1656) ?1655) ?1657 =>= right_division ?1655 (left_division (multiply ?1655 ?1657) ?1656) [1657, 1656, 1655] by Demod 5009 with 1414 at 2 Id : 48258, {_}: left_division ?49524 (left_division (right_division (multiply ?49525 ?49524) (multiply ?49524 ?49526)) ?49526) =>= right_division (right_division ?49526 ?49524) (left_division (multiply (right_division ?49526 ?49524) ?49524) ?49525) [49526, 49525, 49524] by Demod 48257 with 5010 at 3 Id : 3070, {_}: multiply (multiply (left_inverse ?4103) (right_division ?4104 ?4103)) ?4105 =<= multiply (left_inverse ?4103) (multiply ?4104 (multiply (left_inverse ?4103) ?4105)) [4105, 4104, 4103] by Super 640 with 2936 at 2,1,2 Id : 3126, {_}: multiply (left_division ?4103 (right_division ?4104 ?4103)) ?4105 =<= multiply (left_inverse ?4103) (multiply ?4104 (multiply (left_inverse ?4103) ?4105)) [4105, 4104, 4103] by Demod 3070 with 1164 at 1,2 Id : 3127, {_}: multiply (left_division ?4103 (right_division ?4104 ?4103)) ?4105 =<= left_division ?4103 (multiply ?4104 (multiply (left_inverse ?4103) ?4105)) [4105, 4104, 4103] by Demod 3126 with 1164 at 3 Id : 3128, {_}: multiply (right_division (left_division ?4103 ?4104) ?4103) ?4105 =<= left_division ?4103 (multiply ?4104 (multiply (left_inverse ?4103) ?4105)) [4105, 4104, 4103] by Demod 3127 with 3057 at 1,2 Id : 3129, {_}: multiply (right_division (left_division ?4103 ?4104) ?4103) ?4105 =>= left_division ?4103 (multiply ?4104 (left_division ?4103 ?4105)) [4105, 4104, 4103] by Demod 3128 with 1164 at 2,2,3 Id : 3130, {_}: left_division (right_division ?4103 (left_division ?4103 ?4104)) ?4105 =>= left_division ?4103 (multiply ?4104 (left_division ?4103 ?4105)) [4105, 4104, 4103] by Demod 3129 with 1414 at 2 Id : 7047, {_}: left_division (right_division ?4103 (left_division ?4103 ?4104)) ?4105 =>= left_division ?4103 (right_division ?4104 (left_division ?4105 ?4103)) [4105, 4104, 4103] by Demod 3130 with 3191 at 2,3 Id : 7063, {_}: left_division ?8435 (right_division ?8436 (left_division (left_inverse ?8437) ?8435)) =>= left_inverse (multiply ?8437 (right_division ?8435 (left_division ?8435 ?8436))) [8437, 8436, 8435] by Super 3115 with 7047 at 2 Id : 7165, {_}: left_division ?8435 (right_division ?8436 (multiply ?8437 ?8435)) =<= left_inverse (multiply ?8437 (right_division ?8435 (left_division ?8435 ?8436))) [8437, 8436, 8435] by Demod 7063 with 1177 at 2,2,2 Id : 7166, {_}: left_division ?8435 (right_division ?8436 (multiply ?8437 ?8435)) =<= left_inverse (right_division ?8437 (right_division (left_division ?8435 ?8436) ?8435)) [8437, 8436, 8435] by Demod 7165 with 2939 at 1,3 Id : 7167, {_}: left_division ?8435 (right_division ?8436 (multiply ?8437 ?8435)) =>= right_division (right_division (left_division ?8435 ?8436) ?8435) ?8437 [8437, 8436, 8435] by Demod 7166 with 1384 at 3 Id : 21426, {_}: left_inverse (right_division (right_division (left_division ?22100 ?22101) ?22100) ?22102) =>= left_division (right_division ?22101 (multiply ?22102 ?22100)) ?22100 [22102, 22101, 22100] by Super 3028 with 7167 at 1,2 Id : 21547, {_}: right_division ?22102 (right_division (left_division ?22100 ?22101) ?22100) =<= left_division (right_division ?22101 (multiply ?22102 ?22100)) ?22100 [22101, 22100, 22102] by Demod 21426 with 1384 at 2 Id : 48259, {_}: left_division ?49524 (right_division ?49524 (right_division (left_division ?49526 (multiply ?49525 ?49524)) ?49526)) =>= right_division (right_division ?49526 ?49524) (left_division (multiply (right_division ?49526 ?49524) ?49524) ?49525) [49525, 49526, 49524] by Demod 48258 with 21547 at 2,2 Id : 48260, {_}: left_division ?49524 (right_division ?49524 (right_division (left_division ?49526 (multiply ?49525 ?49524)) ?49526)) =>= right_division (right_division ?49526 ?49524) (left_division (left_division (right_division ?49524 ?49526) ?49524) ?49525) [49525, 49526, 49524] by Demod 48259 with 1414 at 1,2,3 Id : 3073, {_}: left_division ?4114 (right_division ?4114 ?4115) =>= left_inverse ?4115 [4115, 4114] by Super 5 with 2936 at 2,2 Id : 48261, {_}: left_inverse (right_division (left_division ?49526 (multiply ?49525 ?49524)) ?49526) =<= right_division (right_division ?49526 ?49524) (left_division (left_division (right_division ?49524 ?49526) ?49524) ?49525) [49524, 49525, 49526] by Demod 48260 with 3073 at 2 Id : 48262, {_}: left_inverse (right_division (left_division ?49526 (multiply ?49525 ?49524)) ?49526) =>= right_division (right_division ?49526 ?49524) (left_division ?49526 ?49525) [49524, 49525, 49526] by Demod 48261 with 28 at 1,2,3 Id : 48263, {_}: right_division ?49526 (left_division ?49526 (multiply ?49525 ?49524)) =<= right_division (right_division ?49526 ?49524) (left_division ?49526 ?49525) [49524, 49525, 49526] by Demod 48262 with 1384 at 2 Id : 52424, {_}: right_division (left_division ?54688 ?54689) (right_division ?54688 ?54690) =<= left_inverse (right_division ?54688 (left_division ?54688 (multiply ?54689 ?54690))) [54690, 54689, 54688] by Super 1384 with 48263 at 1,3 Id : 52654, {_}: right_division (left_division ?54688 ?54689) (right_division ?54688 ?54690) =<= right_division (left_division ?54688 (multiply ?54689 ?54690)) ?54688 [54690, 54689, 54688] by Demod 52424 with 1384 at 3 Id : 54963, {_}: right_division (left_division (left_inverse ?57654) ?57655) (right_division (left_inverse ?57654) ?57656) =>= multiply (left_division (left_inverse ?57654) (multiply ?57655 ?57656)) ?57654 [57656, 57655, 57654] by Super 2855 with 52654 at 2 Id : 55156, {_}: right_division (multiply ?57654 ?57655) (right_division (left_inverse ?57654) ?57656) =<= multiply (left_division (left_inverse ?57654) (multiply ?57655 ?57656)) ?57654 [57656, 57655, 57654] by Demod 54963 with 1177 at 1,2 Id : 55157, {_}: right_division (multiply ?57654 ?57655) (left_inverse (multiply ?57656 ?57654)) =<= multiply (left_division (left_inverse ?57654) (multiply ?57655 ?57656)) ?57654 [57656, 57655, 57654] by Demod 55156 with 2922 at 2,2 Id : 55158, {_}: right_division (multiply ?57654 ?57655) (left_inverse (multiply ?57656 ?57654)) =<= left_division (left_division (multiply ?57655 ?57656) (left_inverse ?57654)) ?57654 [57656, 57655, 57654] by Demod 55157 with 3187 at 3 Id : 55159, {_}: multiply (multiply ?57654 ?57655) (multiply ?57656 ?57654) =<= left_division (left_division (multiply ?57655 ?57656) (left_inverse ?57654)) ?57654 [57656, 57655, 57654] by Demod 55158 with 2855 at 2 Id : 55160, {_}: multiply (multiply ?57654 ?57655) (multiply ?57656 ?57654) =<= left_division (left_inverse (multiply ?57654 (multiply ?57655 ?57656))) ?57654 [57656, 57655, 57654] by Demod 55159 with 3115 at 1,3 Id : 55161, {_}: multiply (multiply ?57654 ?57655) (multiply ?57656 ?57654) =<= multiply (multiply ?57654 (multiply ?57655 ?57656)) ?57654 [57656, 57655, 57654] by Demod 55160 with 1177 at 3 Id : 55162, {_}: multiply (multiply ?57654 ?57655) (multiply ?57656 ?57654) =>= multiply ?57654 (multiply (multiply ?57655 ?57656) ?57654) [57656, 57655, 57654] by Demod 55161 with 70 at 3 Id : 56911, {_}: multiply x (multiply (multiply y z) x) =?= multiply x (multiply (multiply y z) x) [] by Demod 1 with 55162 at 3 Id : 1, {_}: multiply x (multiply (multiply y z) x) =<= multiply (multiply x y) (multiply z x) [] by prove_moufang4 % SZS output end CNFRefutation for GRP205-1.p 12861: solved GRP205-1.p in 14.652915 using kbo 12861: status Unsatisfiable for GRP205-1.p NO CLASH, using fixed ground order 12867: Facts: 12867: Id : 2, {_}: multiply ?2 (inverse (multiply ?3 (multiply (multiply (multiply ?4 (inverse ?4)) (inverse (multiply ?2 ?3))) ?2))) =>= ?2 [4, 3, 2] by single_non_axiom ?2 ?3 ?4 12867: Goal: 12867: Id : 1, {_}: multiply x (inverse (multiply y (multiply (multiply (multiply z (inverse z)) (inverse (multiply u y))) x))) =>= u [] by try_prove_this_axiom 12867: Order: 12867: nrkbo 12867: Leaf order: 12867: u 2 0 2 1,1,2,1,2,1,2,2 12867: multiply 12 2 6 0,2 12867: inverse 6 1 3 0,2,2 12867: z 2 0 2 1,1,1,2,1,2,2 12867: y 2 0 2 1,1,2,2 12867: x 2 0 2 1,2 NO CLASH, using fixed ground order 12868: Facts: 12868: Id : 2, {_}: multiply ?2 (inverse (multiply ?3 (multiply (multiply (multiply ?4 (inverse ?4)) (inverse (multiply ?2 ?3))) ?2))) =>= ?2 [4, 3, 2] by single_non_axiom ?2 ?3 ?4 12868: Goal: 12868: Id : 1, {_}: multiply x (inverse (multiply y (multiply (multiply (multiply z (inverse z)) (inverse (multiply u y))) x))) =>= u [] by try_prove_this_axiom 12868: Order: 12868: kbo 12868: Leaf order: 12868: u 2 0 2 1,1,2,1,2,1,2,2 12868: multiply 12 2 6 0,2 12868: inverse 6 1 3 0,2,2 12868: z 2 0 2 1,1,1,2,1,2,2 12868: y 2 0 2 1,1,2,2 12868: x 2 0 2 1,2 NO CLASH, using fixed ground order 12869: Facts: 12869: Id : 2, {_}: multiply ?2 (inverse (multiply ?3 (multiply (multiply (multiply ?4 (inverse ?4)) (inverse (multiply ?2 ?3))) ?2))) =>= ?2 [4, 3, 2] by single_non_axiom ?2 ?3 ?4 12869: Goal: 12869: Id : 1, {_}: multiply x (inverse (multiply y (multiply (multiply (multiply z (inverse z)) (inverse (multiply u y))) x))) =>= u [] by try_prove_this_axiom 12869: Order: 12869: lpo 12869: Leaf order: 12869: u 2 0 2 1,1,2,1,2,1,2,2 12869: multiply 12 2 6 0,2 12869: inverse 6 1 3 0,2,2 12869: z 2 0 2 1,1,1,2,1,2,2 12869: y 2 0 2 1,1,2,2 12869: x 2 0 2 1,2 % SZS status Timeout for GRP207-1.p Fatal error: exception Assert_failure("matitaprover.ml", 265, 46) NO CLASH, using fixed ground order 12900: Facts: 12900: Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (inverse (multiply ?4 (inverse (multiply (inverse ?4) ?4)))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 12900: Goal: 12900: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 12900: Order: 12900: nrkbo 12900: Leaf order: 12900: inverse 7 1 0 12900: c3 2 0 2 2,2 12900: multiply 10 2 4 0,2 12900: b3 2 0 2 2,1,2 12900: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 12901: Facts: 12901: Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (inverse (multiply ?4 (inverse (multiply (inverse ?4) ?4)))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 12901: Goal: 12901: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 12901: Order: 12901: kbo 12901: Leaf order: 12901: inverse 7 1 0 12901: c3 2 0 2 2,2 12901: multiply 10 2 4 0,2 12901: b3 2 0 2 2,1,2 12901: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 12902: Facts: 12902: Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (inverse (multiply ?4 (inverse (multiply (inverse ?4) ?4)))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 12902: Goal: 12902: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 12902: Order: 12902: lpo 12902: Leaf order: 12902: inverse 7 1 0 12902: c3 2 0 2 2,2 12902: multiply 10 2 4 0,2 12902: b3 2 0 2 2,1,2 12902: a3 2 0 2 1,1,2 % SZS status Timeout for GRP420-1.p NO CLASH, using fixed ground order 12949: Facts: 12949: Id : 2, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 12949: Id : 3, {_}: multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8 12949: Id : 4, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11 12949: Goal: 12949: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 12949: Order: 12949: nrkbo 12949: Leaf order: 12949: inverse 1 1 0 12949: divide 13 2 0 12949: c3 2 0 2 2,2 12949: multiply 5 2 4 0,2 12949: b3 2 0 2 2,1,2 12949: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 12950: Facts: 12950: Id : 2, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 12950: Id : 3, {_}: multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8 12950: Id : 4, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11 12950: Goal: 12950: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 12950: Order: 12950: kbo 12950: Leaf order: 12950: inverse 1 1 0 12950: divide 13 2 0 12950: c3 2 0 2 2,2 12950: multiply 5 2 4 0,2 12950: b3 2 0 2 2,1,2 12950: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 12951: Facts: 12951: Id : 2, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 12951: Id : 3, {_}: multiply ?6 ?7 =?= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8 12951: Id : 4, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11 12951: Goal: 12951: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 12951: Order: 12951: lpo 12951: Leaf order: 12951: inverse 1 1 0 12951: divide 13 2 0 12951: c3 2 0 2 2,2 12951: multiply 5 2 4 0,2 12951: b3 2 0 2 2,1,2 12951: a3 2 0 2 1,1,2 Statistics : Max weight : 38 Found proof, 2.410071s % SZS status Unsatisfiable for GRP453-1.p % SZS output start CNFRefutation for GRP453-1.p Id : 35, {_}: inverse ?90 =<= divide (divide ?91 ?91) ?90 [91, 90] by inverse ?90 ?91 Id : 2, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 Id : 5, {_}: divide (divide (divide ?13 ?13) (divide ?13 (divide ?14 (divide (divide (divide ?13 ?13) ?13) ?15)))) ?15 =>= ?14 [15, 14, 13] by single_axiom ?13 ?14 ?15 Id : 4, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11 Id : 3, {_}: multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8 Id : 29, {_}: multiply ?6 ?7 =<= divide ?6 (inverse ?7) [7, 6] by Demod 3 with 4 at 2,3 Id : 6, {_}: divide (divide (divide ?17 ?17) (divide ?17 ?18)) ?19 =<= divide (divide ?20 ?20) (divide ?20 (divide ?18 (divide (divide (divide ?20 ?20) ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Super 5 with 2 at 2,2,1,2 Id : 142, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= divide (divide ?20 ?20) (divide ?20 (divide ?18 (divide (divide (divide ?20 ?20) ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Demod 6 with 4 at 1,2 Id : 143, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= inverse (divide ?20 (divide ?18 (divide (divide (divide ?20 ?20) ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Demod 142 with 4 at 3 Id : 144, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= inverse (divide ?20 (divide ?18 (divide (inverse ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Demod 143 with 4 at 1,2,2,1,3 Id : 145, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= inverse (divide ?20 (divide ?18 (divide (inverse ?20) (divide (inverse ?17) ?19)))) [20, 19, 18, 17] by Demod 144 with 4 at 1,2,2,2,1,3 Id : 36, {_}: inverse ?93 =<= divide (inverse (divide ?94 ?94)) ?93 [94, 93] by Super 35 with 4 at 1,3 Id : 226, {_}: divide (inverse (divide ?526 ?527)) ?528 =<= inverse (divide (divide ?529 ?529) (divide ?527 (inverse (divide (inverse ?526) ?528)))) [529, 528, 527, 526] by Super 145 with 36 at 2,2,1,3 Id : 249, {_}: divide (inverse (divide ?526 ?527)) ?528 =<= inverse (inverse (divide ?527 (inverse (divide (inverse ?526) ?528)))) [528, 527, 526] by Demod 226 with 4 at 1,3 Id : 250, {_}: divide (inverse (divide ?526 ?527)) ?528 =<= inverse (inverse (multiply ?527 (divide (inverse ?526) ?528))) [528, 527, 526] by Demod 249 with 29 at 1,1,3 Id : 13, {_}: divide (multiply (divide (divide ?48 ?48) (divide ?48 ?48)) (divide ?49 (divide (divide (divide (divide ?48 ?48) (divide ?48 ?48)) (divide ?48 ?48)) ?50))) ?50 =>= ?49 [50, 49, 48] by Super 2 with 3 at 1,2 Id : 32, {_}: multiply (divide ?79 ?79) ?80 =>= inverse (inverse ?80) [80, 79] by Super 29 with 4 at 3 Id : 479, {_}: divide (inverse (inverse (divide ?49 (divide (divide (divide (divide ?48 ?48) (divide ?48 ?48)) (divide ?48 ?48)) ?50)))) ?50 =>= ?49 [50, 48, 49] by Demod 13 with 32 at 1,2 Id : 480, {_}: divide (inverse (inverse (divide ?49 (divide (inverse (divide ?48 ?48)) ?50)))) ?50 =>= ?49 [50, 48, 49] by Demod 479 with 4 at 1,2,1,1,1,2 Id : 481, {_}: divide (inverse (inverse (divide ?49 (inverse ?50)))) ?50 =>= ?49 [50, 49] by Demod 480 with 36 at 2,1,1,1,2 Id : 482, {_}: divide (inverse (inverse (multiply ?49 ?50))) ?50 =>= ?49 [50, 49] by Demod 481 with 29 at 1,1,1,2 Id : 888, {_}: divide (inverse (divide ?1873 ?1874)) ?1875 =<= inverse (inverse (multiply ?1874 (divide (inverse ?1873) ?1875))) [1875, 1874, 1873] by Demod 249 with 29 at 1,1,3 Id : 903, {_}: divide (inverse (divide (divide ?1940 ?1940) ?1941)) ?1942 =>= inverse (inverse (multiply ?1941 (inverse ?1942))) [1942, 1941, 1940] by Super 888 with 36 at 2,1,1,3 Id : 936, {_}: divide (inverse (inverse ?1941)) ?1942 =<= inverse (inverse (multiply ?1941 (inverse ?1942))) [1942, 1941] by Demod 903 with 4 at 1,1,2 Id : 969, {_}: divide (inverse (inverse ?2088)) ?2089 =<= inverse (inverse (multiply ?2088 (inverse ?2089))) [2089, 2088] by Demod 903 with 4 at 1,1,2 Id : 980, {_}: divide (inverse (inverse (divide ?2127 ?2127))) ?2128 =>= inverse (inverse (inverse (inverse (inverse ?2128)))) [2128, 2127] by Super 969 with 32 at 1,1,3 Id : 223, {_}: inverse ?515 =<= divide (inverse (inverse (divide ?516 ?516))) ?515 [516, 515] by Super 4 with 36 at 1,3 Id : 1009, {_}: inverse ?2128 =<= inverse (inverse (inverse (inverse (inverse ?2128)))) [2128] by Demod 980 with 223 at 2 Id : 1026, {_}: multiply ?2199 (inverse (inverse (inverse (inverse ?2200)))) =>= divide ?2199 (inverse ?2200) [2200, 2199] by Super 29 with 1009 at 2,3 Id : 1064, {_}: multiply ?2199 (inverse (inverse (inverse (inverse ?2200)))) =>= multiply ?2199 ?2200 [2200, 2199] by Demod 1026 with 29 at 3 Id : 1096, {_}: divide (inverse (inverse ?2287)) (inverse (inverse (inverse ?2288))) =>= inverse (inverse (multiply ?2287 ?2288)) [2288, 2287] by Super 936 with 1064 at 1,1,3 Id : 1169, {_}: multiply (inverse (inverse ?2287)) (inverse (inverse ?2288)) =>= inverse (inverse (multiply ?2287 ?2288)) [2288, 2287] by Demod 1096 with 29 at 2 Id : 1211, {_}: divide (inverse (inverse (inverse (inverse ?2471)))) (inverse ?2472) =>= inverse (inverse (inverse (inverse (multiply ?2471 ?2472)))) [2472, 2471] by Super 936 with 1169 at 1,1,3 Id : 1253, {_}: multiply (inverse (inverse (inverse (inverse ?2471)))) ?2472 =>= inverse (inverse (inverse (inverse (multiply ?2471 ?2472)))) [2472, 2471] by Demod 1211 with 29 at 2 Id : 1506, {_}: divide (inverse (inverse (inverse (inverse (inverse (inverse (multiply ?3181 ?3182))))))) ?3182 =>= inverse (inverse (inverse (inverse ?3181))) [3182, 3181] by Super 482 with 1253 at 1,1,1,2 Id : 1558, {_}: divide (inverse (inverse (multiply ?3181 ?3182))) ?3182 =>= inverse (inverse (inverse (inverse ?3181))) [3182, 3181] by Demod 1506 with 1009 at 1,2 Id : 1559, {_}: ?3181 =<= inverse (inverse (inverse (inverse ?3181))) [3181] by Demod 1558 with 482 at 2 Id : 1611, {_}: multiply ?3343 (inverse (inverse (inverse ?3344))) =>= divide ?3343 ?3344 [3344, 3343] by Super 29 with 1559 at 2,3 Id : 1683, {_}: divide (inverse (inverse ?3483)) (inverse (inverse ?3484)) =>= inverse (inverse (divide ?3483 ?3484)) [3484, 3483] by Super 936 with 1611 at 1,1,3 Id : 1717, {_}: multiply (inverse (inverse ?3483)) (inverse ?3484) =>= inverse (inverse (divide ?3483 ?3484)) [3484, 3483] by Demod 1683 with 29 at 2 Id : 1782, {_}: divide (inverse (inverse (inverse (inverse (divide ?3605 ?3606))))) (inverse ?3606) =>= inverse (inverse ?3605) [3606, 3605] by Super 482 with 1717 at 1,1,1,2 Id : 1824, {_}: multiply (inverse (inverse (inverse (inverse (divide ?3605 ?3606))))) ?3606 =>= inverse (inverse ?3605) [3606, 3605] by Demod 1782 with 29 at 2 Id : 1825, {_}: multiply (divide ?3605 ?3606) ?3606 =>= inverse (inverse ?3605) [3606, 3605] by Demod 1824 with 1559 at 1,2 Id : 1854, {_}: inverse (inverse ?3731) =<= divide (divide ?3731 (inverse (inverse (inverse ?3732)))) ?3732 [3732, 3731] by Super 1611 with 1825 at 2 Id : 2653, {_}: inverse (inverse ?5844) =<= divide (multiply ?5844 (inverse (inverse ?5845))) ?5845 [5845, 5844] by Demod 1854 with 29 at 1,3 Id : 224, {_}: multiply (inverse (inverse (divide ?518 ?518))) ?519 =>= inverse (inverse ?519) [519, 518] by Super 32 with 36 at 1,2 Id : 2679, {_}: inverse (inverse (inverse (inverse (divide ?5935 ?5935)))) =?= divide (inverse (inverse (inverse (inverse ?5936)))) ?5936 [5936, 5935] by Super 2653 with 224 at 1,3 Id : 2732, {_}: divide ?5935 ?5935 =?= divide (inverse (inverse (inverse (inverse ?5936)))) ?5936 [5936, 5935] by Demod 2679 with 1559 at 2 Id : 2733, {_}: divide ?5935 ?5935 =?= divide ?5936 ?5936 [5936, 5935] by Demod 2732 with 1559 at 1,3 Id : 2794, {_}: divide (inverse (divide ?6115 (divide (inverse ?6116) (divide (inverse ?6115) ?6117)))) ?6117 =?= inverse (divide ?6116 (divide ?6118 ?6118)) [6118, 6117, 6116, 6115] by Super 145 with 2733 at 2,1,3 Id : 30, {_}: divide (inverse (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 2 with 4 at 1,2 Id : 31, {_}: divide (inverse (divide ?2 (divide ?3 (divide (inverse ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 30 with 4 at 1,2,2,1,1,2 Id : 2869, {_}: inverse ?6116 =<= inverse (divide ?6116 (divide ?6118 ?6118)) [6118, 6116] by Demod 2794 with 31 at 2 Id : 2925, {_}: divide ?6471 (divide ?6472 ?6472) =>= inverse (inverse (inverse (inverse ?6471))) [6472, 6471] by Super 1559 with 2869 at 1,1,1,3 Id : 2977, {_}: divide ?6471 (divide ?6472 ?6472) =>= ?6471 [6472, 6471] by Demod 2925 with 1559 at 3 Id : 3050, {_}: divide (inverse (divide ?6728 ?6729)) (divide ?6730 ?6730) =>= inverse (inverse (multiply ?6729 (inverse ?6728))) [6730, 6729, 6728] by Super 250 with 2977 at 2,1,1,3 Id : 3110, {_}: inverse (divide ?6728 ?6729) =<= inverse (inverse (multiply ?6729 (inverse ?6728))) [6729, 6728] by Demod 3050 with 2977 at 2 Id : 3383, {_}: inverse (divide ?7439 ?7440) =<= divide (inverse (inverse ?7440)) ?7439 [7440, 7439] by Demod 3110 with 936 at 3 Id : 1622, {_}: ?3381 =<= inverse (inverse (inverse (inverse ?3381))) [3381] by Demod 1558 with 482 at 2 Id : 1636, {_}: multiply ?3417 (inverse ?3418) =<= inverse (inverse (divide (inverse (inverse ?3417)) ?3418)) [3418, 3417] by Super 1622 with 936 at 1,1,3 Id : 3111, {_}: inverse (divide ?6728 ?6729) =<= divide (inverse (inverse ?6729)) ?6728 [6729, 6728] by Demod 3110 with 936 at 3 Id : 3340, {_}: multiply ?3417 (inverse ?3418) =<= inverse (inverse (inverse (divide ?3418 ?3417))) [3418, 3417] by Demod 1636 with 3111 at 1,1,3 Id : 3404, {_}: inverse (divide ?7516 (inverse (divide ?7517 ?7518))) =>= divide (multiply ?7518 (inverse ?7517)) ?7516 [7518, 7517, 7516] by Super 3383 with 3340 at 1,3 Id : 3497, {_}: inverse (multiply ?7516 (divide ?7517 ?7518)) =<= divide (multiply ?7518 (inverse ?7517)) ?7516 [7518, 7517, 7516] by Demod 3404 with 29 at 1,2 Id : 229, {_}: inverse ?541 =<= divide (inverse (divide ?542 ?542)) ?541 [542, 541] by Super 35 with 4 at 1,3 Id : 236, {_}: inverse ?562 =<= divide (inverse (inverse (inverse (divide ?563 ?563)))) ?562 [563, 562] by Super 229 with 36 at 1,1,3 Id : 3338, {_}: inverse ?562 =<= inverse (divide ?562 (inverse (divide ?563 ?563))) [563, 562] by Demod 236 with 3111 at 3 Id : 3343, {_}: inverse ?562 =<= inverse (multiply ?562 (divide ?563 ?563)) [563, 562] by Demod 3338 with 29 at 1,3 Id : 3051, {_}: multiply ?6732 (divide ?6733 ?6733) =>= inverse (inverse ?6732) [6733, 6732] by Super 1825 with 2977 at 1,2 Id : 3711, {_}: inverse ?562 =<= inverse (inverse (inverse ?562)) [562] by Demod 3343 with 3051 at 1,3 Id : 3714, {_}: multiply ?3343 (inverse ?3344) =>= divide ?3343 ?3344 [3344, 3343] by Demod 1611 with 3711 at 2,2 Id : 4200, {_}: inverse (multiply ?8647 (divide ?8648 ?8649)) =>= divide (divide ?8649 ?8648) ?8647 [8649, 8648, 8647] by Demod 3497 with 3714 at 1,3 Id : 3401, {_}: inverse (divide ?7505 (inverse (inverse ?7506))) =>= divide ?7506 ?7505 [7506, 7505] by Super 3383 with 1559 at 1,3 Id : 3496, {_}: inverse (multiply ?7505 (inverse ?7506)) =>= divide ?7506 ?7505 [7506, 7505] by Demod 3401 with 29 at 1,2 Id : 3715, {_}: inverse (divide ?7505 ?7506) =>= divide ?7506 ?7505 [7506, 7505] by Demod 3496 with 3714 at 1,2 Id : 3725, {_}: divide (divide ?527 ?526) ?528 =<= inverse (inverse (multiply ?527 (divide (inverse ?526) ?528))) [528, 526, 527] by Demod 250 with 3715 at 1,2 Id : 3337, {_}: inverse (divide ?50 (multiply ?49 ?50)) =>= ?49 [49, 50] by Demod 482 with 3111 at 2 Id : 3721, {_}: divide (multiply ?49 ?50) ?50 =>= ?49 [50, 49] by Demod 3337 with 3715 at 2 Id : 1860, {_}: multiply (divide ?3752 ?3753) ?3753 =>= inverse (inverse ?3752) [3753, 3752] by Demod 1824 with 1559 at 1,2 Id : 1869, {_}: multiply (multiply ?3781 ?3782) (inverse ?3782) =>= inverse (inverse ?3781) [3782, 3781] by Super 1860 with 29 at 1,2 Id : 3717, {_}: divide (multiply ?3781 ?3782) ?3782 =>= inverse (inverse ?3781) [3782, 3781] by Demod 1869 with 3714 at 2 Id : 3737, {_}: inverse (inverse ?49) =>= ?49 [49] by Demod 3721 with 3717 at 2 Id : 3738, {_}: divide (divide ?527 ?526) ?528 =<= multiply ?527 (divide (inverse ?526) ?528) [528, 526, 527] by Demod 3725 with 3737 at 3 Id : 4230, {_}: inverse (divide (divide ?8777 ?8778) ?8779) =<= divide (divide ?8779 (inverse ?8778)) ?8777 [8779, 8778, 8777] by Super 4200 with 3738 at 1,2 Id : 4280, {_}: divide ?8779 (divide ?8777 ?8778) =<= divide (divide ?8779 (inverse ?8778)) ?8777 [8778, 8777, 8779] by Demod 4230 with 3715 at 2 Id : 4281, {_}: divide ?8779 (divide ?8777 ?8778) =<= divide (multiply ?8779 ?8778) ?8777 [8778, 8777, 8779] by Demod 4280 with 29 at 1,3 Id : 4962, {_}: multiply (multiply ?10173 ?10174) ?10175 =<= divide ?10173 (divide (inverse ?10175) ?10174) [10175, 10174, 10173] by Super 29 with 4281 at 3 Id : 4205, {_}: inverse (multiply ?8667 ?8668) =<= divide (divide (divide ?8669 ?8669) ?8668) ?8667 [8669, 8668, 8667] by Super 4200 with 2977 at 2,1,2 Id : 4245, {_}: inverse (multiply ?8667 ?8668) =<= divide (inverse ?8668) ?8667 [8668, 8667] by Demod 4205 with 4 at 1,3 Id : 5005, {_}: multiply (multiply ?10173 ?10174) ?10175 =<= divide ?10173 (inverse (multiply ?10174 ?10175)) [10175, 10174, 10173] by Demod 4962 with 4245 at 2,3 Id : 5006, {_}: multiply (multiply ?10173 ?10174) ?10175 =>= multiply ?10173 (multiply ?10174 ?10175) [10175, 10174, 10173] by Demod 5005 with 29 at 3 Id : 5130, {_}: multiply a3 (multiply b3 c3) =?= multiply a3 (multiply b3 c3) [] by Demod 1 with 5006 at 2 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 % SZS output end CNFRefutation for GRP453-1.p 12950: solved GRP453-1.p in 1.216075 using kbo 12950: status Unsatisfiable for GRP453-1.p Fatal error: exception Assert_failure("matitaprover.ml", 265, 46) NO CLASH, using fixed ground order 12960: Facts: 12960: Id : 2, {_}: meet ?2 (join ?2 ?3) =>= ?2 [3, 2] by absorption ?2 ?3 12960: Id : 3, {_}: meet ?5 (join ?6 ?7) =<= join (meet ?7 ?5) (meet ?6 ?5) [7, 6, 5] by distribution ?5 ?6 ?7 12960: Goal: 12960: Id : 1, {_}: join (join a b) c =>= join a (join b c) [] by prove_associativity_of_join 12960: Order: 12960: nrkbo 12960: Leaf order: 12960: meet 4 2 0 12960: c 2 0 2 2,2 12960: join 7 2 4 0,2 12960: b 2 0 2 2,1,2 12960: a 2 0 2 1,1,2 NO CLASH, using fixed ground order NO CLASH, using fixed ground order 12962: Facts: 12962: Id : 2, {_}: meet ?2 (join ?2 ?3) =>= ?2 [3, 2] by absorption ?2 ?3 12962: Id : 3, {_}: meet ?5 (join ?6 ?7) =?= join (meet ?7 ?5) (meet ?6 ?5) [7, 6, 5] by distribution ?5 ?6 ?7 12962: Goal: 12962: Id : 1, {_}: join (join a b) c =>= join a (join b c) [] by prove_associativity_of_join 12962: Order: 12962: lpo 12962: Leaf order: 12962: meet 4 2 0 12962: c 2 0 2 2,2 12962: join 7 2 4 0,2 12962: b 2 0 2 2,1,2 12962: a 2 0 2 1,1,2 12961: Facts: 12961: Id : 2, {_}: meet ?2 (join ?2 ?3) =>= ?2 [3, 2] by absorption ?2 ?3 12961: Id : 3, {_}: meet ?5 (join ?6 ?7) =<= join (meet ?7 ?5) (meet ?6 ?5) [7, 6, 5] by distribution ?5 ?6 ?7 12961: Goal: 12961: Id : 1, {_}: join (join a b) c =>= join a (join b c) [] by prove_associativity_of_join 12961: Order: 12961: kbo 12961: Leaf order: 12961: meet 4 2 0 12961: c 2 0 2 2,2 12961: join 7 2 4 0,2 12961: b 2 0 2 2,1,2 12961: a 2 0 2 1,1,2 Statistics : Max weight : 22 Found proof, 37.088774s % SZS status Unsatisfiable for LAT007-1.p % SZS output start CNFRefutation for LAT007-1.p Id : 3, {_}: meet ?5 (join ?6 ?7) =<= join (meet ?7 ?5) (meet ?6 ?5) [7, 6, 5] by distribution ?5 ?6 ?7 Id : 2, {_}: meet ?2 (join ?2 ?3) =>= ?2 [3, 2] by absorption ?2 ?3 Id : 7, {_}: meet ?18 (join ?19 ?20) =<= join (meet ?20 ?18) (meet ?19 ?18) [20, 19, 18] by distribution ?18 ?19 ?20 Id : 8, {_}: meet (join ?22 ?23) (join ?22 ?24) =<= join (meet ?24 (join ?22 ?23)) ?22 [24, 23, 22] by Super 7 with 2 at 2,3 Id : 122, {_}: meet (meet ?274 ?275) (meet ?275 (join ?276 ?274)) =>= meet ?274 ?275 [276, 275, 274] by Super 2 with 3 at 2,2 Id : 132, {_}: meet (meet ?317 ?318) ?318 =>= meet ?317 ?318 [318, 317] by Super 122 with 2 at 2,2 Id : 166, {_}: meet ?380 (join ?381 (meet ?382 ?380)) =<= join (meet ?382 ?380) (meet ?381 ?380) [382, 381, 380] by Super 3 with 132 at 1,3 Id : 405, {_}: meet ?915 (join ?916 (meet ?917 ?915)) =>= meet ?915 (join ?916 ?917) [917, 916, 915] by Demod 166 with 3 at 3 Id : 419, {_}: meet ?974 (meet ?974 (join ?975 ?976)) =?= meet ?974 (join (meet ?976 ?974) ?975) [976, 975, 974] by Super 405 with 3 at 2,2 Id : 165, {_}: meet ?376 (join (meet ?377 ?376) ?378) =<= join (meet ?378 ?376) (meet ?377 ?376) [378, 377, 376] by Super 3 with 132 at 2,3 Id : 187, {_}: meet ?376 (join (meet ?377 ?376) ?378) =>= meet ?376 (join ?377 ?378) [378, 377, 376] by Demod 165 with 3 at 3 Id : 473, {_}: meet ?1062 (meet ?1062 (join ?1063 ?1064)) =>= meet ?1062 (join ?1064 ?1063) [1064, 1063, 1062] by Demod 419 with 187 at 3 Id : 484, {_}: meet ?1111 ?1111 =<= meet ?1111 (join ?1112 ?1111) [1112, 1111] by Super 473 with 2 at 2,2 Id : 590, {_}: meet (join ?1333 ?1334) (join ?1333 ?1334) =>= join (meet ?1334 ?1334) ?1333 [1334, 1333] by Super 8 with 484 at 1,3 Id : 593, {_}: meet ?1344 ?1344 =>= ?1344 [1344] by Super 2 with 484 at 2 Id : 2478, {_}: join ?1333 ?1334 =<= join (meet ?1334 ?1334) ?1333 [1334, 1333] by Demod 590 with 593 at 2 Id : 2479, {_}: join ?1333 ?1334 =?= join ?1334 ?1333 [1334, 1333] by Demod 2478 with 593 at 1,3 Id : 639, {_}: meet ?1436 (join ?1437 ?1436) =<= join ?1436 (meet ?1437 ?1436) [1437, 1436] by Super 3 with 593 at 1,3 Id : 631, {_}: ?1111 =<= meet ?1111 (join ?1112 ?1111) [1112, 1111] by Demod 484 with 593 at 2 Id : 669, {_}: ?1436 =<= join ?1436 (meet ?1437 ?1436) [1437, 1436] by Demod 639 with 631 at 2 Id : 53, {_}: meet (join ?112 ?113) (join ?112 ?114) =<= join (meet ?114 (join ?112 ?113)) ?112 [114, 113, 112] by Super 7 with 2 at 2,3 Id : 62, {_}: meet (join ?150 ?151) (join ?150 ?150) =>= join ?150 ?150 [151, 150] by Super 53 with 2 at 1,3 Id : 57, {_}: meet (join (meet ?128 ?129) (meet ?130 ?129)) (join (meet ?128 ?129) ?131) =>= join (meet ?131 (meet ?129 (join ?130 ?128))) (meet ?128 ?129) [131, 130, 129, 128] by Super 53 with 3 at 2,1,3 Id : 73, {_}: meet (meet ?129 (join ?130 ?128)) (join (meet ?128 ?129) ?131) =<= join (meet ?131 (meet ?129 (join ?130 ?128))) (meet ?128 ?129) [131, 128, 130, 129] by Demod 57 with 3 at 1,2 Id : 642, {_}: meet (meet ?1444 (join ?1445 ?1444)) (join (meet ?1444 ?1444) ?1446) =>= join (meet ?1446 (meet ?1444 (join ?1445 ?1444))) ?1444 [1446, 1445, 1444] by Super 73 with 593 at 2,3 Id : 657, {_}: meet ?1444 (join (meet ?1444 ?1444) ?1446) =<= join (meet ?1446 (meet ?1444 (join ?1445 ?1444))) ?1444 [1445, 1446, 1444] by Demod 642 with 631 at 1,2 Id : 658, {_}: meet ?1444 (join ?1444 ?1446) =<= join (meet ?1446 (meet ?1444 (join ?1445 ?1444))) ?1444 [1445, 1446, 1444] by Demod 657 with 593 at 1,2,2 Id : 659, {_}: meet ?1444 (join ?1444 ?1446) =<= join (meet ?1446 ?1444) ?1444 [1446, 1444] by Demod 658 with 631 at 2,1,3 Id : 699, {_}: ?1517 =<= join (meet ?1518 ?1517) ?1517 [1518, 1517] by Demod 659 with 2 at 2 Id : 711, {_}: ?1557 =<= join ?1557 ?1557 [1557] by Super 699 with 593 at 1,3 Id : 744, {_}: meet (join ?150 ?151) ?150 =>= join ?150 ?150 [151, 150] by Demod 62 with 711 at 2,2 Id : 745, {_}: meet (join ?150 ?151) ?150 =>= ?150 [151, 150] by Demod 744 with 711 at 3 Id : 713, {_}: join ?1562 ?1563 =<= join ?1563 (join ?1562 ?1563) [1563, 1562] by Super 699 with 631 at 1,3 Id : 1157, {_}: meet (join ?2329 ?2330) ?2330 =>= ?2330 [2330, 2329] by Super 745 with 713 at 1,2 Id : 1688, {_}: meet ?3262 (join (join ?3263 ?3262) ?3264) =>= join (meet ?3264 ?3262) ?3262 [3264, 3263, 3262] by Super 3 with 1157 at 2,3 Id : 660, {_}: ?1444 =<= join (meet ?1446 ?1444) ?1444 [1446, 1444] by Demod 659 with 2 at 2 Id : 1738, {_}: meet ?3262 (join (join ?3263 ?3262) ?3264) =>= ?3262 [3264, 3263, 3262] by Demod 1688 with 660 at 3 Id : 4104, {_}: join (join ?7363 ?7364) ?7365 =<= join (join (join ?7363 ?7364) ?7365) ?7364 [7365, 7364, 7363] by Super 669 with 1738 at 2,3 Id : 9885, {_}: join (join ?18104 ?18105) ?18106 =<= join ?18105 (join (join ?18104 ?18105) ?18106) [18106, 18105, 18104] by Demod 4104 with 2479 at 3 Id : 9889, {_}: join (join ?18120 ?18121) ?18122 =<= join ?18121 (join (join ?18121 ?18120) ?18122) [18122, 18121, 18120] by Super 9885 with 2479 at 1,2,3 Id : 4118, {_}: meet ?7422 (join (join ?7423 ?7422) ?7424) =>= ?7422 [7424, 7423, 7422] by Demod 1688 with 660 at 3 Id : 4122, {_}: meet ?7438 (join (join ?7438 ?7439) ?7440) =>= ?7438 [7440, 7439, 7438] by Super 4118 with 2479 at 1,2,2 Id : 9604, {_}: join (join ?17475 ?17476) ?17477 =<= join (join (join ?17475 ?17476) ?17477) ?17475 [17477, 17476, 17475] by Super 669 with 4122 at 2,3 Id : 9740, {_}: join (join ?17475 ?17476) ?17477 =<= join ?17475 (join (join ?17475 ?17476) ?17477) [17477, 17476, 17475] by Demod 9604 with 2479 at 3 Id : 16688, {_}: join (join ?18120 ?18121) ?18122 =?= join (join ?18121 ?18120) ?18122 [18122, 18121, 18120] by Demod 9889 with 9740 at 3 Id : 9, {_}: meet (join ?26 ?27) (join ?28 ?26) =<= join ?26 (meet ?28 (join ?26 ?27)) [28, 27, 26] by Super 7 with 2 at 1,3 Id : 753, {_}: meet ?1599 (join ?1600 ?1600) =>= meet ?1600 ?1599 [1600, 1599] by Super 3 with 711 at 3 Id : 773, {_}: meet ?1599 ?1600 =?= meet ?1600 ?1599 [1600, 1599] by Demod 753 with 711 at 2,2 Id : 2380, {_}: meet (join ?4513 ?4514) (join ?4515 ?4513) =<= join ?4513 (meet (join ?4513 ?4514) ?4515) [4515, 4514, 4513] by Super 9 with 773 at 2,3 Id : 2506, {_}: meet (join ?4784 ?4785) (join ?4786 ?4784) =<= join ?4784 (meet ?4786 (join ?4785 ?4784)) [4786, 4785, 4784] by Super 9 with 2479 at 2,2,3 Id : 1153, {_}: meet (join ?2312 (join ?2313 ?2312)) (join ?2314 ?2312) =>= join ?2312 (meet ?2314 (join ?2313 ?2312)) [2314, 2313, 2312] by Super 9 with 713 at 2,2,3 Id : 1191, {_}: meet (join ?2313 ?2312) (join ?2314 ?2312) =<= join ?2312 (meet ?2314 (join ?2313 ?2312)) [2314, 2312, 2313] by Demod 1153 with 713 at 1,2 Id : 5434, {_}: meet (join ?4784 ?4785) (join ?4786 ?4784) =?= meet (join ?4785 ?4784) (join ?4786 ?4784) [4786, 4785, 4784] by Demod 2506 with 1191 at 3 Id : 455, {_}: meet ?974 (meet ?974 (join ?975 ?976)) =>= meet ?974 (join ?976 ?975) [976, 975, 974] by Demod 419 with 187 at 3 Id : 757, {_}: meet ?1611 (meet ?1611 ?1612) =?= meet ?1611 (join ?1612 ?1612) [1612, 1611] by Super 455 with 711 at 2,2,2 Id : 767, {_}: meet ?1611 (meet ?1611 ?1612) =>= meet ?1611 ?1612 [1612, 1611] by Demod 757 with 711 at 2,3 Id : 1239, {_}: meet (meet ?2426 ?2427) (join ?2426 ?2428) =<= join (meet ?2428 (meet ?2426 ?2427)) (meet ?2426 ?2427) [2428, 2427, 2426] by Super 3 with 767 at 2,3 Id : 1275, {_}: meet (meet ?2426 ?2427) (join ?2426 ?2428) =>= meet ?2426 ?2427 [2428, 2427, 2426] by Demod 1239 with 660 at 3 Id : 30976, {_}: meet (join ?55510 ?55511) (join (meet ?55510 ?55512) ?55511) =>= join ?55511 (meet ?55510 ?55512) [55512, 55511, 55510] by Super 1191 with 1275 at 2,3 Id : 30986, {_}: meet (join ?55551 ?55552) (join (meet ?55553 ?55551) ?55552) =>= join ?55552 (meet ?55551 ?55553) [55553, 55552, 55551] by Super 30976 with 773 at 1,2,2 Id : 3010, {_}: meet (join ?5441 ?5442) (join ?5443 ?5442) =<= join ?5442 (meet ?5443 (join ?5441 ?5442)) [5443, 5442, 5441] by Demod 1153 with 713 at 1,2 Id : 3031, {_}: meet (join (meet ?5530 ?5531) ?5532) (join ?5531 ?5532) =>= join ?5532 (meet ?5531 (join ?5530 ?5532)) [5532, 5531, 5530] by Super 3010 with 187 at 2,3 Id : 3109, {_}: meet (join ?5531 ?5532) (join (meet ?5530 ?5531) ?5532) =>= join ?5532 (meet ?5531 (join ?5530 ?5532)) [5530, 5532, 5531] by Demod 3031 with 773 at 2 Id : 3110, {_}: meet (join ?5531 ?5532) (join (meet ?5530 ?5531) ?5532) =>= meet (join ?5530 ?5532) (join ?5531 ?5532) [5530, 5532, 5531] by Demod 3109 with 1191 at 3 Id : 31246, {_}: meet (join ?55553 ?55552) (join ?55551 ?55552) =>= join ?55552 (meet ?55551 ?55553) [55551, 55552, 55553] by Demod 30986 with 3110 at 2 Id : 31561, {_}: meet (join ?4784 ?4785) (join ?4786 ?4784) =>= join ?4784 (meet ?4786 ?4785) [4786, 4785, 4784] by Demod 5434 with 31246 at 3 Id : 31569, {_}: join ?4513 (meet ?4515 ?4514) =<= join ?4513 (meet (join ?4513 ?4514) ?4515) [4514, 4515, 4513] by Demod 2380 with 31561 at 2 Id : 31659, {_}: join ?56550 (meet (join ?56551 ?56552) ?56552) =?= join ?56550 (join ?56552 (meet ?56551 ?56550)) [56552, 56551, 56550] by Super 31569 with 31246 at 2,3 Id : 31781, {_}: join ?56550 (meet ?56552 (join ?56551 ?56552)) =?= join ?56550 (join ?56552 (meet ?56551 ?56550)) [56551, 56552, 56550] by Demod 31659 with 773 at 2,2 Id : 32533, {_}: join ?58368 ?58369 =<= join ?58368 (join ?58369 (meet ?58370 ?58368)) [58370, 58369, 58368] by Demod 31781 with 631 at 2,2 Id : 32536, {_}: join (join ?58380 ?58381) ?58382 =<= join (join ?58380 ?58381) (join ?58382 ?58380) [58382, 58381, 58380] by Super 32533 with 2 at 2,2,3 Id : 35660, {_}: join (join ?62824 ?62825) (join ?62825 ?62826) =>= join (join ?62825 ?62826) ?62824 [62826, 62825, 62824] by Super 2479 with 32536 at 3 Id : 188, {_}: meet ?380 (join ?381 (meet ?382 ?380)) =>= meet ?380 (join ?381 ?382) [382, 381, 380] by Demod 166 with 3 at 3 Id : 1695, {_}: meet ?3292 (join ?3293 ?3292) =<= meet ?3292 (join ?3293 (join ?3294 ?3292)) [3294, 3293, 3292] by Super 188 with 1157 at 2,2,2 Id : 1732, {_}: ?3292 =<= meet ?3292 (join ?3293 (join ?3294 ?3292)) [3294, 3293, 3292] by Demod 1695 with 631 at 2 Id : 3955, {_}: join ?7063 (join ?7064 ?7065) =<= join (join ?7063 (join ?7064 ?7065)) ?7065 [7065, 7064, 7063] by Super 669 with 1732 at 2,3 Id : 9413, {_}: join ?17183 (join ?17184 ?17185) =<= join ?17185 (join ?17183 (join ?17184 ?17185)) [17185, 17184, 17183] by Demod 3955 with 2479 at 3 Id : 9417, {_}: join ?17199 (join ?17200 ?17201) =<= join ?17201 (join ?17199 (join ?17201 ?17200)) [17201, 17200, 17199] by Super 9413 with 2479 at 2,2,3 Id : 3974, {_}: ?7142 =<= meet ?7142 (join ?7143 (join ?7144 ?7142)) [7144, 7143, 7142] by Demod 1695 with 631 at 2 Id : 3978, {_}: ?7158 =<= meet ?7158 (join ?7159 (join ?7158 ?7160)) [7160, 7159, 7158] by Super 3974 with 2479 at 2,2,3 Id : 8662, {_}: join ?15620 (join ?15621 ?15622) =<= join (join ?15620 (join ?15621 ?15622)) ?15621 [15622, 15621, 15620] by Super 669 with 3978 at 2,3 Id : 8767, {_}: join ?15620 (join ?15621 ?15622) =<= join ?15621 (join ?15620 (join ?15621 ?15622)) [15622, 15621, 15620] by Demod 8662 with 2479 at 3 Id : 15553, {_}: join ?17199 (join ?17200 ?17201) =?= join ?17199 (join ?17201 ?17200) [17201, 17200, 17199] by Demod 9417 with 8767 at 3 Id : 31782, {_}: join ?56550 ?56552 =<= join ?56550 (join ?56552 (meet ?56551 ?56550)) [56551, 56552, 56550] by Demod 31781 with 631 at 2,2 Id : 35263, {_}: join ?62192 (join (meet ?62193 ?62192) ?62194) =>= join ?62192 ?62194 [62194, 62193, 62192] by Super 15553 with 31782 at 3 Id : 35296, {_}: join (join ?62350 ?62351) (join ?62351 ?62352) =>= join (join ?62350 ?62351) ?62352 [62352, 62351, 62350] by Super 35263 with 631 at 1,2,2 Id : 38052, {_}: join (join ?62824 ?62825) ?62826 =?= join (join ?62825 ?62826) ?62824 [62826, 62825, 62824] by Demod 35660 with 35296 at 2 Id : 38125, {_}: join ?67897 (join ?67898 ?67899) =<= join (join ?67899 ?67897) ?67898 [67899, 67898, 67897] by Super 2479 with 38052 at 3 Id : 38567, {_}: join ?18121 (join ?18122 ?18120) =<= join (join ?18121 ?18120) ?18122 [18120, 18122, 18121] by Demod 16688 with 38125 at 2 Id : 38568, {_}: join ?18121 (join ?18122 ?18120) =?= join ?18120 (join ?18122 ?18121) [18120, 18122, 18121] by Demod 38567 with 38125 at 3 Id : 39014, {_}: join c (join b a) =?= join c (join b a) [] by Demod 39013 with 2479 at 2,2 Id : 39013, {_}: join c (join a b) =?= join c (join b a) [] by Demod 39012 with 38568 at 3 Id : 39012, {_}: join c (join a b) =<= join a (join b c) [] by Demod 1 with 2479 at 2 Id : 1, {_}: join (join a b) c =>= join a (join b c) [] by prove_associativity_of_join % SZS output end CNFRefutation for LAT007-1.p 12961: solved LAT007-1.p in 17.645102 using kbo 12961: status Unsatisfiable for LAT007-1.p NO CLASH, using fixed ground order 12978: Facts: 12978: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2 12978: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4 12978: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7 12978: Id : 5, {_}: meet ?9 ?10 =?= meet ?10 ?9 [10, 9] by commutativity_of_meet ?9 ?10 12978: Id : 6, {_}: join ?12 ?13 =?= join ?13 ?12 [13, 12] by commutativity_of_join ?12 ?13 12978: Id : 7, {_}: meet (meet ?15 ?16) ?17 =?= meet ?15 (meet ?16 ?17) [17, 16, 15] by associativity_of_meet ?15 ?16 ?17 12978: Id : 8, {_}: join (join ?19 ?20) ?21 =?= join ?19 (join ?20 ?21) [21, 20, 19] by associativity_of_join ?19 ?20 ?21 12978: Id : 9, {_}: complement (complement ?23) =>= ?23 [23] by complement_involution ?23 12978: Id : 10, {_}: join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26) [26, 25] by join_complement ?25 ?26 12978: Id : 11, {_}: meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29)) [29, 28] by meet_complement ?28 ?29 12978: Goal: 12978: Id : 1, {_}: join (complement (join (meet a (complement b)) (complement a))) (join (meet a (complement b)) (join (meet (complement a) (meet (join a (complement b)) (join a b))) (meet (complement a) (complement (meet (join a (complement b)) (join a b)))))) =>= n1 [] by prove_e1 12978: Order: 12978: nrkbo 12978: Leaf order: 12978: n0 1 0 0 12978: n1 2 0 1 3 12978: join 20 2 8 0,2 12978: meet 15 2 6 0,1,1,1,2 12978: complement 18 1 9 0,1,2 12978: b 6 0 6 1,2,1,1,1,2 12978: a 9 0 9 1,1,1,1,2 NO CLASH, using fixed ground order 12979: Facts: 12979: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2 12979: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4 12979: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7 12979: Id : 5, {_}: meet ?9 ?10 =?= meet ?10 ?9 [10, 9] by commutativity_of_meet ?9 ?10 12979: Id : 6, {_}: join ?12 ?13 =?= join ?13 ?12 [13, 12] by commutativity_of_join ?12 ?13 12979: Id : 7, {_}: meet (meet ?15 ?16) ?17 =>= meet ?15 (meet ?16 ?17) [17, 16, 15] by associativity_of_meet ?15 ?16 ?17 12979: Id : 8, {_}: join (join ?19 ?20) ?21 =>= join ?19 (join ?20 ?21) [21, 20, 19] by associativity_of_join ?19 ?20 ?21 12979: Id : 9, {_}: complement (complement ?23) =>= ?23 [23] by complement_involution ?23 12979: Id : 10, {_}: join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26) [26, 25] by join_complement ?25 ?26 12979: Id : 11, {_}: meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29)) [29, 28] by meet_complement ?28 ?29 12979: Goal: 12979: Id : 1, {_}: join (complement (join (meet a (complement b)) (complement a))) (join (meet a (complement b)) (join (meet (complement a) (meet (join a (complement b)) (join a b))) (meet (complement a) (complement (meet (join a (complement b)) (join a b)))))) =>= n1 [] by prove_e1 12979: Order: 12979: kbo 12979: Leaf order: 12979: n0 1 0 0 12979: n1 2 0 1 3 12979: join 20 2 8 0,2 12979: meet 15 2 6 0,1,1,1,2 12979: complement 18 1 9 0,1,2 12979: b 6 0 6 1,2,1,1,1,2 12979: a 9 0 9 1,1,1,1,2 NO CLASH, using fixed ground order 12980: Facts: 12980: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2 12980: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4 12980: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7 12980: Id : 5, {_}: meet ?9 ?10 =?= meet ?10 ?9 [10, 9] by commutativity_of_meet ?9 ?10 12980: Id : 6, {_}: join ?12 ?13 =?= join ?13 ?12 [13, 12] by commutativity_of_join ?12 ?13 12980: Id : 7, {_}: meet (meet ?15 ?16) ?17 =>= meet ?15 (meet ?16 ?17) [17, 16, 15] by associativity_of_meet ?15 ?16 ?17 12980: Id : 8, {_}: join (join ?19 ?20) ?21 =>= join ?19 (join ?20 ?21) [21, 20, 19] by associativity_of_join ?19 ?20 ?21 12980: Id : 9, {_}: complement (complement ?23) =>= ?23 [23] by complement_involution ?23 12980: Id : 10, {_}: join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26) [26, 25] by join_complement ?25 ?26 12980: Id : 11, {_}: meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29)) [29, 28] by meet_complement ?28 ?29 12980: Goal: 12980: Id : 1, {_}: join (complement (join (meet a (complement b)) (complement a))) (join (meet a (complement b)) (join (meet (complement a) (meet (join a (complement b)) (join a b))) (meet (complement a) (complement (meet (join a (complement b)) (join a b)))))) =>= n1 [] by prove_e1 12980: Order: 12980: lpo 12980: Leaf order: 12980: n0 1 0 0 12980: n1 2 0 1 3 12980: join 20 2 8 0,2 12980: meet 15 2 6 0,1,1,1,2 12980: complement 18 1 9 0,1,2 12980: b 6 0 6 1,2,1,1,1,2 12980: a 9 0 9 1,1,1,1,2 % SZS status Timeout for LAT016-1.p NO CLASH, using fixed ground order 12998: Facts: 12998: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 12998: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 NO CLASH, using fixed ground order 12999: Facts: 12999: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 12999: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 12999: Id : 4, {_}: meet ?6 ?7 =?= meet ?7 ?6 [7, 6] by commutativity_of_meet ?6 ?7 12999: Id : 5, {_}: join ?9 ?10 =?= join ?10 ?9 [10, 9] by commutativity_of_join ?9 ?10 12999: Id : 6, {_}: meet (meet ?12 ?13) ?14 =>= meet ?12 (meet ?13 ?14) [14, 13, 12] by associativity_of_meet ?12 ?13 ?14 12999: Id : 7, {_}: join (join ?16 ?17) ?18 =>= join ?16 (join ?17 ?18) [18, 17, 16] by associativity_of_join ?16 ?17 ?18 12999: Id : 8, {_}: join (meet ?20 (join ?21 ?22)) (meet ?20 ?21) =>= meet ?20 (join ?21 ?22) [22, 21, 20] by quasi_lattice1 ?20 ?21 ?22 NO CLASH, using fixed ground order 13000: Facts: 13000: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13000: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13000: Id : 4, {_}: meet ?6 ?7 =?= meet ?7 ?6 [7, 6] by commutativity_of_meet ?6 ?7 13000: Id : 5, {_}: join ?9 ?10 =?= join ?10 ?9 [10, 9] by commutativity_of_join ?9 ?10 13000: Id : 6, {_}: meet (meet ?12 ?13) ?14 =>= meet ?12 (meet ?13 ?14) [14, 13, 12] by associativity_of_meet ?12 ?13 ?14 13000: Id : 7, {_}: join (join ?16 ?17) ?18 =>= join ?16 (join ?17 ?18) [18, 17, 16] by associativity_of_join ?16 ?17 ?18 13000: Id : 8, {_}: join (meet ?20 (join ?21 ?22)) (meet ?20 ?21) =>= meet ?20 (join ?21 ?22) [22, 21, 20] by quasi_lattice1 ?20 ?21 ?22 13000: Id : 9, {_}: meet (join ?24 (meet ?25 ?26)) (join ?24 ?25) =>= join ?24 (meet ?25 ?26) [26, 25, 24] by quasi_lattice2 ?24 ?25 ?26 13000: Id : 10, {_}: meet2 ?28 ?28 =>= ?28 [28] by idempotence_of_meet2 ?28 13000: Id : 11, {_}: meet2 ?30 ?31 =?= meet2 ?31 ?30 [31, 30] by commutativity_of_meet2 ?30 ?31 13000: Id : 12, {_}: meet2 (meet2 ?33 ?34) ?35 =>= meet2 ?33 (meet2 ?34 ?35) [35, 34, 33] by associativity_of_meet2 ?33 ?34 ?35 12998: Id : 4, {_}: meet ?6 ?7 =?= meet ?7 ?6 [7, 6] by commutativity_of_meet ?6 ?7 12999: Id : 9, {_}: meet (join ?24 (meet ?25 ?26)) (join ?24 ?25) =>= join ?24 (meet ?25 ?26) [26, 25, 24] by quasi_lattice2 ?24 ?25 ?26 12998: Id : 5, {_}: join ?9 ?10 =?= join ?10 ?9 [10, 9] by commutativity_of_join ?9 ?10 13000: Id : 13, {_}: join (meet2 ?37 (join ?38 ?39)) (meet2 ?37 ?38) =>= meet2 ?37 (join ?38 ?39) [39, 38, 37] by quasi_lattice1_2 ?37 ?38 ?39 13000: Id : 14, {_}: meet2 (join ?41 (meet2 ?42 ?43)) (join ?41 ?42) =>= join ?41 (meet2 ?42 ?43) [43, 42, 41] by quasi_lattice2_2 ?41 ?42 ?43 13000: Goal: 13000: Id : 1, {_}: meet a b =>= meet2 a b [] by prove_meets_equal 13000: Order: 13000: lpo 13000: Leaf order: 13000: join 19 2 0 13000: meet2 14 2 1 0,3 13000: meet 14 2 1 0,2 13000: b 2 0 2 2,2 13000: a 2 0 2 1,2 12998: Id : 6, {_}: meet (meet ?12 ?13) ?14 =?= meet ?12 (meet ?13 ?14) [14, 13, 12] by associativity_of_meet ?12 ?13 ?14 12998: Id : 7, {_}: join (join ?16 ?17) ?18 =?= join ?16 (join ?17 ?18) [18, 17, 16] by associativity_of_join ?16 ?17 ?18 12998: Id : 8, {_}: join (meet ?20 (join ?21 ?22)) (meet ?20 ?21) =>= meet ?20 (join ?21 ?22) [22, 21, 20] by quasi_lattice1 ?20 ?21 ?22 12998: Id : 9, {_}: meet (join ?24 (meet ?25 ?26)) (join ?24 ?25) =>= join ?24 (meet ?25 ?26) [26, 25, 24] by quasi_lattice2 ?24 ?25 ?26 12998: Id : 10, {_}: meet2 ?28 ?28 =>= ?28 [28] by idempotence_of_meet2 ?28 12998: Id : 11, {_}: meet2 ?30 ?31 =?= meet2 ?31 ?30 [31, 30] by commutativity_of_meet2 ?30 ?31 12998: Id : 12, {_}: meet2 (meet2 ?33 ?34) ?35 =?= meet2 ?33 (meet2 ?34 ?35) [35, 34, 33] by associativity_of_meet2 ?33 ?34 ?35 12998: Id : 13, {_}: join (meet2 ?37 (join ?38 ?39)) (meet2 ?37 ?38) =>= meet2 ?37 (join ?38 ?39) [39, 38, 37] by quasi_lattice1_2 ?37 ?38 ?39 12998: Id : 14, {_}: meet2 (join ?41 (meet2 ?42 ?43)) (join ?41 ?42) =>= join ?41 (meet2 ?42 ?43) [43, 42, 41] by quasi_lattice2_2 ?41 ?42 ?43 12998: Goal: 12998: Id : 1, {_}: meet a b =>= meet2 a b [] by prove_meets_equal 12998: Order: 12998: nrkbo 12998: Leaf order: 12998: join 19 2 0 12998: meet2 14 2 1 0,3 12998: meet 14 2 1 0,2 12998: b 2 0 2 2,2 12998: a 2 0 2 1,2 12999: Id : 10, {_}: meet2 ?28 ?28 =>= ?28 [28] by idempotence_of_meet2 ?28 12999: Id : 11, {_}: meet2 ?30 ?31 =?= meet2 ?31 ?30 [31, 30] by commutativity_of_meet2 ?30 ?31 12999: Id : 12, {_}: meet2 (meet2 ?33 ?34) ?35 =>= meet2 ?33 (meet2 ?34 ?35) [35, 34, 33] by associativity_of_meet2 ?33 ?34 ?35 12999: Id : 13, {_}: join (meet2 ?37 (join ?38 ?39)) (meet2 ?37 ?38) =>= meet2 ?37 (join ?38 ?39) [39, 38, 37] by quasi_lattice1_2 ?37 ?38 ?39 12999: Id : 14, {_}: meet2 (join ?41 (meet2 ?42 ?43)) (join ?41 ?42) =>= join ?41 (meet2 ?42 ?43) [43, 42, 41] by quasi_lattice2_2 ?41 ?42 ?43 12999: Goal: 12999: Id : 1, {_}: meet a b =>= meet2 a b [] by prove_meets_equal 12999: Order: 12999: kbo 12999: Leaf order: 12999: join 19 2 0 12999: meet2 14 2 1 0,3 12999: meet 14 2 1 0,2 12999: b 2 0 2 2,2 12999: a 2 0 2 1,2 % SZS status Timeout for LAT024-1.p NO CLASH, using fixed ground order 13029: Facts: 13029: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13029: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13029: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13029: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13029: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13029: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13029: Id : 8, {_}: join ?18 (meet ?19 (meet ?18 ?20)) =>= ?18 [20, 19, 18] by tnl_1 ?18 ?19 ?20 13029: Id : 9, {_}: meet ?22 (join ?23 (join ?22 ?24)) =>= ?22 [24, 23, 22] by tnl_2 ?22 ?23 ?24 13029: Id : 10, {_}: meet2 ?26 ?26 =>= ?26 [26] by idempotence_of_meet2 ?26 13029: Id : 11, {_}: meet2 ?28 (join ?28 ?29) =>= ?28 [29, 28] by absorption1_2 ?28 ?29 13029: Id : 12, {_}: join ?31 (meet2 ?31 ?32) =>= ?31 [32, 31] by absorption2_2 ?31 ?32 13029: Id : 13, {_}: meet2 ?34 ?35 =?= meet2 ?35 ?34 [35, 34] by commutativity_of_meet2 ?34 ?35 13029: Id : 14, {_}: join ?37 (meet2 ?38 (meet2 ?37 ?39)) =>= ?37 [39, 38, 37] by tnl_1_2 ?37 ?38 ?39 13029: Id : 15, {_}: meet2 ?41 (join ?42 (join ?41 ?43)) =>= ?41 [43, 42, 41] by tnl_2_2 ?41 ?42 ?43 13029: Goal: 13029: Id : 1, {_}: meet a b =>= meet2 a b [] by prove_meets_equal 13029: Order: 13029: nrkbo 13029: Leaf order: 13029: join 13 2 0 13029: meet2 9 2 1 0,3 13029: meet 9 2 1 0,2 13029: b 2 0 2 2,2 13029: a 2 0 2 1,2 NO CLASH, using fixed ground order 13030: Facts: 13030: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13030: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13030: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13030: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13030: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13030: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13030: Id : 8, {_}: join ?18 (meet ?19 (meet ?18 ?20)) =>= ?18 [20, 19, 18] by tnl_1 ?18 ?19 ?20 13030: Id : 9, {_}: meet ?22 (join ?23 (join ?22 ?24)) =>= ?22 [24, 23, 22] by tnl_2 ?22 ?23 ?24 13030: Id : 10, {_}: meet2 ?26 ?26 =>= ?26 [26] by idempotence_of_meet2 ?26 13030: Id : 11, {_}: meet2 ?28 (join ?28 ?29) =>= ?28 [29, 28] by absorption1_2 ?28 ?29 13030: Id : 12, {_}: join ?31 (meet2 ?31 ?32) =>= ?31 [32, 31] by absorption2_2 ?31 ?32 13030: Id : 13, {_}: meet2 ?34 ?35 =?= meet2 ?35 ?34 [35, 34] by commutativity_of_meet2 ?34 ?35 13030: Id : 14, {_}: join ?37 (meet2 ?38 (meet2 ?37 ?39)) =>= ?37 [39, 38, 37] by tnl_1_2 ?37 ?38 ?39 13030: Id : 15, {_}: meet2 ?41 (join ?42 (join ?41 ?43)) =>= ?41 [43, 42, 41] by tnl_2_2 ?41 ?42 ?43 13030: Goal: 13030: Id : 1, {_}: meet a b =>= meet2 a b [] by prove_meets_equal 13030: Order: 13030: kbo 13030: Leaf order: 13030: join 13 2 0 13030: meet2 9 2 1 0,3 13030: meet 9 2 1 0,2 13030: b 2 0 2 2,2 13030: a 2 0 2 1,2 NO CLASH, using fixed ground order 13031: Facts: 13031: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13031: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13031: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13031: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13031: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13031: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13031: Id : 8, {_}: join ?18 (meet ?19 (meet ?18 ?20)) =>= ?18 [20, 19, 18] by tnl_1 ?18 ?19 ?20 13031: Id : 9, {_}: meet ?22 (join ?23 (join ?22 ?24)) =>= ?22 [24, 23, 22] by tnl_2 ?22 ?23 ?24 13031: Id : 10, {_}: meet2 ?26 ?26 =>= ?26 [26] by idempotence_of_meet2 ?26 13031: Id : 11, {_}: meet2 ?28 (join ?28 ?29) =>= ?28 [29, 28] by absorption1_2 ?28 ?29 13031: Id : 12, {_}: join ?31 (meet2 ?31 ?32) =>= ?31 [32, 31] by absorption2_2 ?31 ?32 13031: Id : 13, {_}: meet2 ?34 ?35 =?= meet2 ?35 ?34 [35, 34] by commutativity_of_meet2 ?34 ?35 13031: Id : 14, {_}: join ?37 (meet2 ?38 (meet2 ?37 ?39)) =>= ?37 [39, 38, 37] by tnl_1_2 ?37 ?38 ?39 13031: Id : 15, {_}: meet2 ?41 (join ?42 (join ?41 ?43)) =>= ?41 [43, 42, 41] by tnl_2_2 ?41 ?42 ?43 13031: Goal: 13031: Id : 1, {_}: meet a b =>= meet2 a b [] by prove_meets_equal 13031: Order: 13031: lpo 13031: Leaf order: 13031: join 13 2 0 13031: meet2 9 2 1 0,3 13031: meet 9 2 1 0,2 13031: b 2 0 2 2,2 13031: a 2 0 2 1,2 % SZS status Timeout for LAT025-1.p CLASH, statistics insufficient 13057: Facts: 13057: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13057: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13057: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13057: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13057: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13057: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13057: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13057: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13057: Id : 10, {_}: complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 13057: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 13057: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 13057: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 13057: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 13057: Id : 15, {_}: join ?38 (meet ?39 (join ?38 ?40)) =>= meet (join ?38 ?39) (join ?38 ?40) [40, 39, 38] by modular_law ?38 ?39 ?40 13057: Goal: 13057: Id : 1, {_}: meet a (join b c) =<= join (meet a b) (meet a c) [] by prove_distributivity 13057: Order: 13057: nrkbo 13057: Leaf order: 13057: n0 1 0 0 13057: n1 1 0 0 13057: complement 10 1 0 13057: meet 17 2 3 0,2 13057: join 18 2 2 0,2,2 13057: c 2 0 2 2,2,2 13057: b 2 0 2 1,2,2 13057: a 3 0 3 1,2 CLASH, statistics insufficient 13058: Facts: 13058: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13058: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13058: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13058: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13058: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13058: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13058: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13058: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13058: Id : 10, {_}: complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 13058: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 13058: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 13058: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 13058: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 13058: Id : 15, {_}: join ?38 (meet ?39 (join ?38 ?40)) =>= meet (join ?38 ?39) (join ?38 ?40) [40, 39, 38] by modular_law ?38 ?39 ?40 13058: Goal: 13058: Id : 1, {_}: meet a (join b c) =<= join (meet a b) (meet a c) [] by prove_distributivity 13058: Order: 13058: kbo 13058: Leaf order: 13058: n0 1 0 0 13058: n1 1 0 0 13058: complement 10 1 0 13058: meet 17 2 3 0,2 13058: join 18 2 2 0,2,2 13058: c 2 0 2 2,2,2 13058: b 2 0 2 1,2,2 13058: a 3 0 3 1,2 CLASH, statistics insufficient 13059: Facts: 13059: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13059: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13059: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13059: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13059: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13059: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13059: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13059: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13059: Id : 10, {_}: complement (join ?26 ?27) =>= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 13059: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 13059: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 13059: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 13059: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 13059: Id : 15, {_}: join ?38 (meet ?39 (join ?38 ?40)) =>= meet (join ?38 ?39) (join ?38 ?40) [40, 39, 38] by modular_law ?38 ?39 ?40 13059: Goal: 13059: Id : 1, {_}: meet a (join b c) =<= join (meet a b) (meet a c) [] by prove_distributivity 13059: Order: 13059: lpo 13059: Leaf order: 13059: n0 1 0 0 13059: n1 1 0 0 13059: complement 10 1 0 13059: meet 17 2 3 0,2 13059: join 18 2 2 0,2,2 13059: c 2 0 2 2,2,2 13059: b 2 0 2 1,2,2 13059: a 3 0 3 1,2 % SZS status Timeout for LAT046-1.p NO CLASH, using fixed ground order 13087: Facts: NO CLASH, using fixed ground order 13088: Facts: 13088: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13088: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13088: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13088: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13088: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13088: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13088: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13088: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13088: Goal: 13088: Id : 1, {_}: join a (meet b (join a c)) =>= meet (join a b) (join a c) [] by prove_modularity 13088: Order: 13088: kbo 13088: Leaf order: 13088: meet 11 2 2 0,2,2 13088: join 13 2 4 0,2 13088: c 2 0 2 2,2,2,2 13088: b 2 0 2 1,2,2 13088: a 4 0 4 1,2 13087: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13087: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13087: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13087: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13087: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13087: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13087: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13087: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13087: Goal: 13087: Id : 1, {_}: join a (meet b (join a c)) =>= meet (join a b) (join a c) [] by prove_modularity 13087: Order: 13087: nrkbo 13087: Leaf order: 13087: meet 11 2 2 0,2,2 13087: join 13 2 4 0,2 13087: c 2 0 2 2,2,2,2 13087: b 2 0 2 1,2,2 13087: a 4 0 4 1,2 NO CLASH, using fixed ground order 13089: Facts: 13089: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13089: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13089: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13089: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13089: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13089: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13089: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13089: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13089: Goal: 13089: Id : 1, {_}: join a (meet b (join a c)) =>= meet (join a b) (join a c) [] by prove_modularity 13089: Order: 13089: lpo 13089: Leaf order: 13089: meet 11 2 2 0,2,2 13089: join 13 2 4 0,2 13089: c 2 0 2 2,2,2,2 13089: b 2 0 2 1,2,2 13089: a 4 0 4 1,2 % SZS status Timeout for LAT047-1.p NO CLASH, using fixed ground order 13105: Facts: 13105: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13105: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13105: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13105: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13105: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13105: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13105: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13105: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13105: Id : 10, {_}: complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 13105: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 13105: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 13105: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 13105: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 13105: Id : 15, {_}: join (meet (complement ?38) (join ?38 ?39)) (join (complement ?39) (meet ?38 ?39)) =>= n1 [39, 38] by weak_orthomodular_law ?38 ?39 13105: Goal: 13105: Id : 1, {_}: join a (meet (complement a) (join a b)) =>= join a b [] by prove_orthomodular_law 13105: Order: 13105: nrkbo 13105: Leaf order: 13105: n0 1 0 0 13105: n1 2 0 0 13105: meet 15 2 1 0,2,2 13105: join 18 2 3 0,2 13105: b 2 0 2 2,2,2,2 13105: complement 13 1 1 0,1,2,2 13105: a 4 0 4 1,2 NO CLASH, using fixed ground order 13106: Facts: 13106: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13106: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13106: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13106: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13106: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13106: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13106: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13106: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13106: Id : 10, {_}: complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 13106: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 13106: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 13106: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 13106: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 13106: Id : 15, {_}: join (meet (complement ?38) (join ?38 ?39)) (join (complement ?39) (meet ?38 ?39)) =>= n1 [39, 38] by weak_orthomodular_law ?38 ?39 13106: Goal: 13106: Id : 1, {_}: join a (meet (complement a) (join a b)) =>= join a b [] by prove_orthomodular_law 13106: Order: 13106: kbo 13106: Leaf order: 13106: n0 1 0 0 13106: n1 2 0 0 13106: meet 15 2 1 0,2,2 13106: join 18 2 3 0,2 13106: b 2 0 2 2,2,2,2 13106: complement 13 1 1 0,1,2,2 13106: a 4 0 4 1,2 NO CLASH, using fixed ground order 13107: Facts: 13107: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13107: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13107: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13107: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13107: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13107: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13107: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13107: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13107: Id : 10, {_}: complement (join ?26 ?27) =>= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 13107: Id : 11, {_}: complement (meet ?29 ?30) =>= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 13107: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 13107: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 13107: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 13107: Id : 15, {_}: join (meet (complement ?38) (join ?38 ?39)) (join (complement ?39) (meet ?38 ?39)) =>= n1 [39, 38] by weak_orthomodular_law ?38 ?39 13107: Goal: 13107: Id : 1, {_}: join a (meet (complement a) (join a b)) =>= join a b [] by prove_orthomodular_law 13107: Order: 13107: lpo 13107: Leaf order: 13107: n0 1 0 0 13107: n1 2 0 0 13107: meet 15 2 1 0,2,2 13107: join 18 2 3 0,2 13107: b 2 0 2 2,2,2,2 13107: complement 13 1 1 0,1,2,2 13107: a 4 0 4 1,2 % SZS status Timeout for LAT048-1.p NO CLASH, using fixed ground order 13228: Facts: 13228: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13228: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13228: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13228: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13228: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13228: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13228: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13228: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13228: Id : 10, {_}: complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 13228: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 13228: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 13228: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 13228: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 13228: Goal: 13228: Id : 1, {_}: join (meet (complement a) (join a b)) (join (complement b) (meet a b)) =>= n1 [] by prove_weak_orthomodular_law 13228: Order: 13228: nrkbo 13228: Leaf order: 13228: n0 1 0 0 13228: n1 2 0 1 3 13228: meet 14 2 2 0,1,2 13228: join 15 2 3 0,2 13228: b 3 0 3 2,2,1,2 13228: complement 12 1 2 0,1,1,2 13228: a 3 0 3 1,1,1,2 NO CLASH, using fixed ground order 13229: Facts: 13229: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13229: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13229: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13229: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13229: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13229: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13229: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13229: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13229: Id : 10, {_}: complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 13229: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 13229: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 13229: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 13229: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 13229: Goal: 13229: Id : 1, {_}: join (meet (complement a) (join a b)) (join (complement b) (meet a b)) =>= n1 [] by prove_weak_orthomodular_law 13229: Order: 13229: kbo 13229: Leaf order: 13229: n0 1 0 0 13229: n1 2 0 1 3 13229: meet 14 2 2 0,1,2 13229: join 15 2 3 0,2 13229: b 3 0 3 2,2,1,2 13229: complement 12 1 2 0,1,1,2 13229: a 3 0 3 1,1,1,2 NO CLASH, using fixed ground order 13230: Facts: 13230: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13230: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13230: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13230: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13230: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13230: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13230: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13230: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13230: Id : 10, {_}: complement (join ?26 ?27) =>= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 13230: Id : 11, {_}: complement (meet ?29 ?30) =>= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 13230: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 13230: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 13230: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 13230: Goal: 13230: Id : 1, {_}: join (meet (complement a) (join a b)) (join (complement b) (meet a b)) =>= n1 [] by prove_weak_orthomodular_law 13230: Order: 13230: lpo 13230: Leaf order: 13230: n0 1 0 0 13230: n1 2 0 1 3 13230: meet 14 2 2 0,1,2 13230: join 15 2 3 0,2 13230: b 3 0 3 2,2,1,2 13230: complement 12 1 2 0,1,1,2 13230: a 3 0 3 1,1,1,2 % SZS status Timeout for LAT049-1.p CLASH, statistics insufficient 13579: Facts: 13579: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13579: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13579: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13579: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13579: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13579: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13579: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13579: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13579: Id : 10, {_}: complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 13579: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 13579: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 13579: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 13579: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 13579: Id : 15, {_}: join ?38 (meet (complement ?38) (join ?38 ?39)) =>= join ?38 ?39 [39, 38] by orthomodular_law ?38 ?39 13579: Goal: 13579: Id : 1, {_}: join a (meet b (join a c)) =>= meet (join a b) (join a c) [] by prove_modular_law 13579: Order: 13579: nrkbo 13579: Leaf order: 13579: n0 1 0 0 13579: n1 1 0 0 13579: complement 11 1 0 13579: meet 15 2 2 0,2,2 13579: join 19 2 4 0,2 13579: c 2 0 2 2,2,2,2 13579: b 2 0 2 1,2,2 13579: a 4 0 4 1,2 CLASH, statistics insufficient 13580: Facts: 13580: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13580: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13580: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13580: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13580: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13580: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13580: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13580: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13580: Id : 10, {_}: complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 13580: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 13580: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 13580: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 13580: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 13580: Id : 15, {_}: join ?38 (meet (complement ?38) (join ?38 ?39)) =>= join ?38 ?39 [39, 38] by orthomodular_law ?38 ?39 13580: Goal: 13580: Id : 1, {_}: join a (meet b (join a c)) =>= meet (join a b) (join a c) [] by prove_modular_law 13580: Order: 13580: kbo 13580: Leaf order: 13580: n0 1 0 0 13580: n1 1 0 0 13580: complement 11 1 0 13580: meet 15 2 2 0,2,2 13580: join 19 2 4 0,2 13580: c 2 0 2 2,2,2,2 13580: b 2 0 2 1,2,2 13580: a 4 0 4 1,2 CLASH, statistics insufficient 13582: Facts: 13582: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13582: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13582: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13582: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13582: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13582: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13582: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13582: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13582: Id : 10, {_}: complement (join ?26 ?27) =>= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 13582: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 13582: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 13582: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 13582: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 13582: Id : 15, {_}: join ?38 (meet (complement ?38) (join ?38 ?39)) =>= join ?38 ?39 [39, 38] by orthomodular_law ?38 ?39 13582: Goal: 13582: Id : 1, {_}: join a (meet b (join a c)) =>= meet (join a b) (join a c) [] by prove_modular_law 13582: Order: 13582: lpo 13582: Leaf order: 13582: n0 1 0 0 13582: n1 1 0 0 13582: complement 11 1 0 13582: meet 15 2 2 0,2,2 13582: join 19 2 4 0,2 13582: c 2 0 2 2,2,2,2 13582: b 2 0 2 1,2,2 13582: a 4 0 4 1,2 % SZS status Timeout for LAT050-1.p CLASH, statistics insufficient 13811: Facts: 13811: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13811: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13811: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13811: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13811: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13811: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13811: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13811: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13811: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by invertability1 ?26 13811: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by invertability2 ?28 13811: Id : 12, {_}: complement (complement ?30) =>= ?30 [30] by invertability3 ?30 13811: Goal: 13811: Id : 1, {_}: complement (join a b) =<= meet (complement a) (complement b) [] by prove_compatibility_law 13811: Order: 13811: nrkbo 13811: Leaf order: 13811: n0 1 0 0 13811: n1 1 0 0 13811: meet 11 2 1 0,3 13811: complement 7 1 3 0,2 13811: join 11 2 1 0,1,2 13811: b 2 0 2 2,1,2 13811: a 2 0 2 1,1,2 CLASH, statistics insufficient 13812: Facts: 13812: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13812: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13812: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13812: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13812: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13812: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13812: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13812: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13812: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by invertability1 ?26 13812: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by invertability2 ?28 13812: Id : 12, {_}: complement (complement ?30) =>= ?30 [30] by invertability3 ?30 13812: Goal: 13812: Id : 1, {_}: complement (join a b) =<= meet (complement a) (complement b) [] by prove_compatibility_law 13812: Order: 13812: kbo 13812: Leaf order: 13812: n0 1 0 0 13812: n1 1 0 0 13812: meet 11 2 1 0,3 13812: complement 7 1 3 0,2 13812: join 11 2 1 0,1,2 13812: b 2 0 2 2,1,2 13812: a 2 0 2 1,1,2 CLASH, statistics insufficient 13813: Facts: 13813: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13813: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13813: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13813: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13813: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13813: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13813: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13813: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13813: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by invertability1 ?26 13813: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by invertability2 ?28 13813: Id : 12, {_}: complement (complement ?30) =>= ?30 [30] by invertability3 ?30 13813: Goal: 13813: Id : 1, {_}: complement (join a b) =>= meet (complement a) (complement b) [] by prove_compatibility_law 13813: Order: 13813: lpo 13813: Leaf order: 13813: n0 1 0 0 13813: n1 1 0 0 13813: meet 11 2 1 0,3 13813: complement 7 1 3 0,2 13813: join 11 2 1 0,1,2 13813: b 2 0 2 2,1,2 13813: a 2 0 2 1,1,2 % SZS status Timeout for LAT051-1.p CLASH, statistics insufficient 13839: Facts: 13839: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13839: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13839: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13839: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13839: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13839: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13839: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13839: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13839: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by invertability1 ?26 13839: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by invertability2 ?28 13839: Id : 12, {_}: complement (complement ?30) =>= ?30 [30] by invertability3 ?30 13839: Id : 13, {_}: join ?32 (meet ?33 (join ?32 ?34)) =>= meet (join ?32 ?33) (join ?32 ?34) [34, 33, 32] by modular_law ?32 ?33 ?34 13839: Goal: 13839: Id : 1, {_}: complement (join a b) =<= meet (complement a) (complement b) [] by prove_compatibility_law 13839: Order: 13839: nrkbo 13839: Leaf order: 13839: n0 1 0 0 13839: n1 1 0 0 13839: meet 13 2 1 0,3 13839: complement 7 1 3 0,2 13839: join 15 2 1 0,1,2 13839: b 2 0 2 2,1,2 13839: a 2 0 2 1,1,2 CLASH, statistics insufficient 13840: Facts: 13840: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13840: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13840: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13840: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13840: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13840: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13840: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13840: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13840: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by invertability1 ?26 13840: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by invertability2 ?28 13840: Id : 12, {_}: complement (complement ?30) =>= ?30 [30] by invertability3 ?30 13840: Id : 13, {_}: join ?32 (meet ?33 (join ?32 ?34)) =>= meet (join ?32 ?33) (join ?32 ?34) [34, 33, 32] by modular_law ?32 ?33 ?34 13840: Goal: 13840: Id : 1, {_}: complement (join a b) =<= meet (complement a) (complement b) [] by prove_compatibility_law 13840: Order: 13840: kbo 13840: Leaf order: 13840: n0 1 0 0 13840: n1 1 0 0 13840: meet 13 2 1 0,3 13840: complement 7 1 3 0,2 13840: join 15 2 1 0,1,2 13840: b 2 0 2 2,1,2 13840: a 2 0 2 1,1,2 CLASH, statistics insufficient 13841: Facts: 13841: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13841: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13841: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13841: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13841: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13841: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13841: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13841: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13841: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by invertability1 ?26 13841: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by invertability2 ?28 13841: Id : 12, {_}: complement (complement ?30) =>= ?30 [30] by invertability3 ?30 13841: Id : 13, {_}: join ?32 (meet ?33 (join ?32 ?34)) =>= meet (join ?32 ?33) (join ?32 ?34) [34, 33, 32] by modular_law ?32 ?33 ?34 13841: Goal: 13841: Id : 1, {_}: complement (join a b) =>= meet (complement a) (complement b) [] by prove_compatibility_law 13841: Order: 13841: lpo 13841: Leaf order: 13841: n0 1 0 0 13841: n1 1 0 0 13841: meet 13 2 1 0,3 13841: complement 7 1 3 0,2 13841: join 15 2 1 0,1,2 13841: b 2 0 2 2,1,2 13841: a 2 0 2 1,1,2 % SZS status Timeout for LAT052-1.p CLASH, statistics insufficient 13871: Facts: 13871: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13871: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13871: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13871: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13871: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13871: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13871: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13871: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13871: Id : 10, {_}: complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 13871: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 13871: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 13871: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 13871: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 13871: Goal: 13871: Id : 1, {_}: join a (meet (complement b) (join (complement a) (meet (complement b) (join a (meet (complement b) (complement a)))))) =<= join a (meet (complement b) (join (complement a) (meet (complement b) (join a (meet (complement b) (join (complement a) (meet (complement b) a))))))) [] by prove_this 13871: Order: 13871: nrkbo 13871: Leaf order: 13871: n0 1 0 0 13871: n1 1 0 0 13871: join 19 2 7 0,2 13871: meet 19 2 7 0,2,2 13871: complement 21 1 11 0,1,2,2 13871: b 7 0 7 1,1,2,2 13871: a 9 0 9 1,2 CLASH, statistics insufficient 13872: Facts: 13872: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13872: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13872: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13872: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13872: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13872: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13872: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13872: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13872: Id : 10, {_}: complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 13872: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 13872: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 13872: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 13872: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 13872: Goal: 13872: Id : 1, {_}: join a (meet (complement b) (join (complement a) (meet (complement b) (join a (meet (complement b) (complement a)))))) =<= join a (meet (complement b) (join (complement a) (meet (complement b) (join a (meet (complement b) (join (complement a) (meet (complement b) a))))))) [] by prove_this 13872: Order: 13872: kbo 13872: Leaf order: 13872: n0 1 0 0 13872: n1 1 0 0 13872: join 19 2 7 0,2 13872: meet 19 2 7 0,2,2 13872: complement 21 1 11 0,1,2,2 13872: b 7 0 7 1,1,2,2 13872: a 9 0 9 1,2 CLASH, statistics insufficient 13873: Facts: 13873: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13873: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13873: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13873: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13873: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13873: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13873: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13873: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13873: Id : 10, {_}: complement (join ?26 ?27) =>= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 13873: Id : 11, {_}: complement (meet ?29 ?30) =>= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 13873: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 13873: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 13873: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 13873: Goal: 13873: Id : 1, {_}: join a (meet (complement b) (join (complement a) (meet (complement b) (join a (meet (complement b) (complement a)))))) =<= join a (meet (complement b) (join (complement a) (meet (complement b) (join a (meet (complement b) (join (complement a) (meet (complement b) a))))))) [] by prove_this 13873: Order: 13873: lpo 13873: Leaf order: 13873: n0 1 0 0 13873: n1 1 0 0 13873: join 19 2 7 0,2 13873: meet 19 2 7 0,2,2 13873: complement 21 1 11 0,1,2,2 13873: b 7 0 7 1,1,2,2 13873: a 9 0 9 1,2 % SZS status Timeout for LAT054-1.p CLASH, statistics insufficient 13890: Facts: 13890: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13890: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13890: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13890: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13890: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13890: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13890: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13890: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13890: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by top ?26 13890: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by bottom ?28 13890: Id : 12, {_}: meet ?30 ?31 =<= complement (join (complement ?30) (complement ?31)) [31, 30] by compatibility ?30 ?31 13890: Goal: 13890: Id : 1, {_}: meet (join a (complement b)) (join (join (meet a b) (meet (complement a) b)) (meet (complement a) (complement b))) =>= join (meet a b) (meet (complement a) (complement b)) [] by prove_e51 13890: Order: 13890: nrkbo 13890: Leaf order: 13890: n0 1 0 0 13890: n1 1 0 0 13890: meet 17 2 6 0,2 13890: join 15 2 4 0,1,2 13890: complement 11 1 6 0,2,1,2 13890: b 6 0 6 1,2,1,2 13890: a 6 0 6 1,1,2 CLASH, statistics insufficient 13891: Facts: 13891: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13891: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13891: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13891: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13891: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13891: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13891: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13891: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13891: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by top ?26 13891: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by bottom ?28 13891: Id : 12, {_}: meet ?30 ?31 =<= complement (join (complement ?30) (complement ?31)) [31, 30] by compatibility ?30 ?31 13891: Goal: 13891: Id : 1, {_}: meet (join a (complement b)) (join (join (meet a b) (meet (complement a) b)) (meet (complement a) (complement b))) =>= join (meet a b) (meet (complement a) (complement b)) [] by prove_e51 13891: Order: 13891: kbo 13891: Leaf order: 13891: n0 1 0 0 13891: n1 1 0 0 13891: meet 17 2 6 0,2 13891: join 15 2 4 0,1,2 13891: complement 11 1 6 0,2,1,2 13891: b 6 0 6 1,2,1,2 13891: a 6 0 6 1,1,2 CLASH, statistics insufficient 13892: Facts: 13892: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13892: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13892: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13892: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13892: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13892: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13892: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13892: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13892: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by top ?26 13892: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by bottom ?28 13892: Id : 12, {_}: meet ?30 ?31 =<= complement (join (complement ?30) (complement ?31)) [31, 30] by compatibility ?30 ?31 13892: Goal: 13892: Id : 1, {_}: meet (join a (complement b)) (join (join (meet a b) (meet (complement a) b)) (meet (complement a) (complement b))) =>= join (meet a b) (meet (complement a) (complement b)) [] by prove_e51 13892: Order: 13892: lpo 13892: Leaf order: 13892: n0 1 0 0 13892: n1 1 0 0 13892: meet 17 2 6 0,2 13892: join 15 2 4 0,1,2 13892: complement 11 1 6 0,2,1,2 13892: b 6 0 6 1,2,1,2 13892: a 6 0 6 1,1,2 % SZS status Timeout for LAT062-1.p CLASH, statistics insufficient 13921: Facts: 13921: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13921: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13921: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13921: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13921: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13921: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13921: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13921: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13921: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by top ?26 13921: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by bottom ?28 13921: Id : 12, {_}: meet ?30 ?31 =<= complement (join (complement ?30) (complement ?31)) [31, 30] by compatibility ?30 ?31 13921: Goal: CLASH, statistics insufficient CLASH, statistics insufficient 13921: Id : 1, {_}: meet a (join b (meet a (join (complement a) (meet a b)))) =>= meet a (join (complement a) (meet a b)) [] by prove_e62 13921: Order: 13921: nrkbo 13921: Leaf order: 13921: n0 1 0 0 13921: n1 1 0 0 13921: join 14 2 3 0,2,2 13921: meet 16 2 5 0,2 13921: complement 7 1 2 0,1,2,2,2,2 13921: b 3 0 3 1,2,2 13921: a 7 0 7 1,2 13923: Facts: 13923: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13923: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13923: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13923: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13923: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13923: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13923: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13923: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13923: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by top ?26 13923: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by bottom ?28 13923: Id : 12, {_}: meet ?30 ?31 =<= complement (join (complement ?30) (complement ?31)) [31, 30] by compatibility ?30 ?31 13923: Goal: 13923: Id : 1, {_}: meet a (join b (meet a (join (complement a) (meet a b)))) =>= meet a (join (complement a) (meet a b)) [] by prove_e62 13923: Order: 13923: lpo 13923: Leaf order: 13923: n0 1 0 0 13923: n1 1 0 0 13923: join 14 2 3 0,2,2 13923: meet 16 2 5 0,2 13923: complement 7 1 2 0,1,2,2,2,2 13923: b 3 0 3 1,2,2 13923: a 7 0 7 1,2 13922: Facts: 13922: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13922: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13922: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13922: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13922: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13922: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13922: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13922: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13922: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by top ?26 13922: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by bottom ?28 13922: Id : 12, {_}: meet ?30 ?31 =<= complement (join (complement ?30) (complement ?31)) [31, 30] by compatibility ?30 ?31 13922: Goal: 13922: Id : 1, {_}: meet a (join b (meet a (join (complement a) (meet a b)))) =>= meet a (join (complement a) (meet a b)) [] by prove_e62 13922: Order: 13922: kbo 13922: Leaf order: 13922: n0 1 0 0 13922: n1 1 0 0 13922: join 14 2 3 0,2,2 13922: meet 16 2 5 0,2 13922: complement 7 1 2 0,1,2,2,2,2 13922: b 3 0 3 1,2,2 13922: a 7 0 7 1,2 % SZS status Timeout for LAT063-1.p NO CLASH, using fixed ground order 13955: Facts: 13955: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13955: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13955: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13955: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13955: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13955: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13955: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13955: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13955: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?28 (join (meet ?26 (join ?27 ?28)) (meet ?27 ?28)))) [28, 27, 26] by equation_H2 ?26 ?27 ?28 13955: Goal: 13955: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 13955: Order: 13955: nrkbo 13955: Leaf order: 13955: join 17 2 4 0,2,2 13955: meet 21 2 6 0,2 13955: c 3 0 3 2,2,2,2 13955: b 4 0 4 1,2,2 13955: a 5 0 5 1,2 NO CLASH, using fixed ground order 13956: Facts: 13956: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13956: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13956: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13956: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13956: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13956: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13956: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13956: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13956: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?28 (join (meet ?26 (join ?27 ?28)) (meet ?27 ?28)))) [28, 27, 26] by equation_H2 ?26 ?27 ?28 13956: Goal: 13956: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 13956: Order: 13956: kbo 13956: Leaf order: 13956: join 17 2 4 0,2,2 13956: meet 21 2 6 0,2 13956: c 3 0 3 2,2,2,2 13956: b 4 0 4 1,2,2 13956: a 5 0 5 1,2 NO CLASH, using fixed ground order 13957: Facts: 13957: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13957: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13957: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13957: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13957: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13957: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13957: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13957: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13957: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?28 (join (meet ?26 (join ?27 ?28)) (meet ?27 ?28)))) [28, 27, 26] by equation_H2 ?26 ?27 ?28 13957: Goal: 13957: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 13957: Order: 13957: lpo 13957: Leaf order: 13957: join 17 2 4 0,2,2 13957: meet 21 2 6 0,2 13957: c 3 0 3 2,2,2,2 13957: b 4 0 4 1,2,2 13957: a 5 0 5 1,2 % SZS status Timeout for LAT098-1.p NO CLASH, using fixed ground order 13999: Facts: 13999: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 13999: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 13999: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 13999: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 13999: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 13999: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 13999: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 13999: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 13999: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join (meet ?26 (join ?27 (meet ?26 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H6 ?26 ?27 ?28 13999: Goal: 13999: Id : 1, {_}: meet a (join b (meet a (join c d))) =<= meet a (join b (meet (join a (meet b d)) (join c d))) [] by prove_H4 13999: Order: 13999: nrkbo 13999: Leaf order: 13999: meet 20 2 5 0,2 13999: join 18 2 5 0,2,2 13999: d 3 0 3 2,2,2,2,2 13999: c 2 0 2 1,2,2,2,2 13999: b 3 0 3 1,2,2 13999: a 4 0 4 1,2 NO CLASH, using fixed ground order 14000: Facts: 14000: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14000: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14000: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14000: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14000: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14000: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14000: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14000: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14000: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join (meet ?26 (join ?27 (meet ?26 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H6 ?26 ?27 ?28 14000: Goal: 14000: Id : 1, {_}: meet a (join b (meet a (join c d))) =<= meet a (join b (meet (join a (meet b d)) (join c d))) [] by prove_H4 14000: Order: 14000: kbo 14000: Leaf order: 14000: meet 20 2 5 0,2 14000: join 18 2 5 0,2,2 14000: d 3 0 3 2,2,2,2,2 14000: c 2 0 2 1,2,2,2,2 14000: b 3 0 3 1,2,2 14000: a 4 0 4 1,2 NO CLASH, using fixed ground order 14001: Facts: 14001: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14001: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14001: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14001: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14001: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14001: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14001: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14001: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14001: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join (meet ?26 (join ?27 (meet ?26 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H6 ?26 ?27 ?28 14001: Goal: 14001: Id : 1, {_}: meet a (join b (meet a (join c d))) =<= meet a (join b (meet (join a (meet b d)) (join c d))) [] by prove_H4 14001: Order: 14001: lpo 14001: Leaf order: 14001: meet 20 2 5 0,2 14001: join 18 2 5 0,2,2 14001: d 3 0 3 2,2,2,2,2 14001: c 2 0 2 1,2,2,2,2 14001: b 3 0 3 1,2,2 14001: a 4 0 4 1,2 % SZS status Timeout for LAT100-1.p NO CLASH, using fixed ground order 14017: Facts: 14017: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14017: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14017: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14017: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14017: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14017: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14017: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14017: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14017: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join (meet ?26 (join ?27 (meet ?26 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H6 ?26 ?27 ?28 14017: Goal: 14017: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join a (meet b c)))) [] by prove_H10 14017: Order: 14017: nrkbo 14017: Leaf order: 14017: join 16 2 3 0,2,2 14017: meet 20 2 5 0,2 14017: c 3 0 3 2,2,2,2 14017: b 3 0 3 1,2,2 14017: a 4 0 4 1,2 NO CLASH, using fixed ground order 14018: Facts: 14018: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14018: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14018: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14018: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14018: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14018: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14018: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14018: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14018: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join (meet ?26 (join ?27 (meet ?26 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H6 ?26 ?27 ?28 14018: Goal: 14018: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join a (meet b c)))) [] by prove_H10 14018: Order: 14018: kbo 14018: Leaf order: 14018: join 16 2 3 0,2,2 14018: meet 20 2 5 0,2 14018: c 3 0 3 2,2,2,2 14018: b 3 0 3 1,2,2 14018: a 4 0 4 1,2 NO CLASH, using fixed ground order 14019: Facts: 14019: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14019: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14019: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14019: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14019: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14019: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14019: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14019: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14019: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join (meet ?26 (join ?27 (meet ?26 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H6 ?26 ?27 ?28 14019: Goal: 14019: Id : 1, {_}: meet a (join b (meet a c)) =>= meet a (join b (meet c (join a (meet b c)))) [] by prove_H10 14019: Order: 14019: lpo 14019: Leaf order: 14019: join 16 2 3 0,2,2 14019: meet 20 2 5 0,2 14019: c 3 0 3 2,2,2,2 14019: b 3 0 3 1,2,2 14019: a 4 0 4 1,2 % SZS status Timeout for LAT101-1.p NO CLASH, using fixed ground order 14050: Facts: 14050: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14050: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14050: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14050: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14050: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14050: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14050: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14050: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14050: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?26 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27))))) [28, 27, 26] by equation_H7 ?26 ?27 ?28 14050: Goal: 14050: Id : 1, {_}: meet a (join b (meet a (join c d))) =<= meet a (join b (meet (join a (meet b d)) (join c d))) [] by prove_H4 14050: Order: 14050: nrkbo 14050: Leaf order: 14050: meet 20 2 5 0,2 14050: join 18 2 5 0,2,2 14050: d 3 0 3 2,2,2,2,2 14050: c 2 0 2 1,2,2,2,2 14050: b 3 0 3 1,2,2 14050: a 4 0 4 1,2 NO CLASH, using fixed ground order 14051: Facts: 14051: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14051: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14051: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14051: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14051: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14051: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14051: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14051: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14051: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?26 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27))))) [28, 27, 26] by equation_H7 ?26 ?27 ?28 14051: Goal: 14051: Id : 1, {_}: meet a (join b (meet a (join c d))) =<= meet a (join b (meet (join a (meet b d)) (join c d))) [] by prove_H4 14051: Order: 14051: kbo 14051: Leaf order: 14051: meet 20 2 5 0,2 14051: join 18 2 5 0,2,2 14051: d 3 0 3 2,2,2,2,2 14051: c 2 0 2 1,2,2,2,2 14051: b 3 0 3 1,2,2 14051: a 4 0 4 1,2 NO CLASH, using fixed ground order 14052: Facts: 14052: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14052: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14052: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14052: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14052: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14052: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14052: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14052: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14052: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?26 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27))))) [28, 27, 26] by equation_H7 ?26 ?27 ?28 14052: Goal: 14052: Id : 1, {_}: meet a (join b (meet a (join c d))) =<= meet a (join b (meet (join a (meet b d)) (join c d))) [] by prove_H4 14052: Order: 14052: lpo 14052: Leaf order: 14052: meet 20 2 5 0,2 14052: join 18 2 5 0,2,2 14052: d 3 0 3 2,2,2,2,2 14052: c 2 0 2 1,2,2,2,2 14052: b 3 0 3 1,2,2 14052: a 4 0 4 1,2 % SZS status Timeout for LAT102-1.p NO CLASH, using fixed ground order 14140: Facts: 14140: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14140: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14140: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14140: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14140: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14140: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14140: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14140: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14140: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?27 ?28)))) [28, 27, 26] by equation_H10 ?26 ?27 ?28 14140: Goal: 14140: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 14140: Order: 14140: nrkbo 14140: Leaf order: 14140: join 16 2 4 0,2,2 14140: meet 20 2 6 0,2 14140: c 3 0 3 2,2,2,2 14140: b 3 0 3 1,2,2 14140: a 6 0 6 1,2 NO CLASH, using fixed ground order 14141: Facts: 14141: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14141: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14141: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14141: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14141: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14141: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14141: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14141: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14141: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?27 ?28)))) [28, 27, 26] by equation_H10 ?26 ?27 ?28 14141: Goal: 14141: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 14141: Order: 14141: kbo 14141: Leaf order: 14141: join 16 2 4 0,2,2 14141: meet 20 2 6 0,2 14141: c 3 0 3 2,2,2,2 14141: b 3 0 3 1,2,2 14141: a 6 0 6 1,2 NO CLASH, using fixed ground order 14142: Facts: 14142: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14142: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14142: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14142: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14142: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14142: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14142: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14142: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14142: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =?= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?27 ?28)))) [28, 27, 26] by equation_H10 ?26 ?27 ?28 14142: Goal: 14142: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 14142: Order: 14142: lpo 14142: Leaf order: 14142: join 16 2 4 0,2,2 14142: meet 20 2 6 0,2 14142: c 3 0 3 2,2,2,2 14142: b 3 0 3 1,2,2 14142: a 6 0 6 1,2 % SZS status Timeout for LAT103-1.p NO CLASH, using fixed ground order 14175: Facts: 14175: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14175: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14175: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14175: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14175: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14175: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14175: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14175: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14175: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?26 (meet ?27 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H21 ?26 ?27 ?28 14175: Goal: 14175: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 14175: Order: 14175: kbo 14175: Leaf order: 14175: join 17 2 4 0,2,2 14175: meet 21 2 6 0,2 14175: c 3 0 3 2,2,2,2 14175: b 4 0 4 1,2,2 14175: a 5 0 5 1,2 NO CLASH, using fixed ground order 14176: Facts: 14176: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14176: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14176: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14176: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14176: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14176: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14176: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14176: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14176: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?26 (meet ?27 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H21 ?26 ?27 ?28 14176: Goal: 14176: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 14176: Order: 14176: lpo 14176: Leaf order: 14176: join 17 2 4 0,2,2 14176: meet 21 2 6 0,2 14176: c 3 0 3 2,2,2,2 14176: b 4 0 4 1,2,2 14176: a 5 0 5 1,2 NO CLASH, using fixed ground order 14174: Facts: 14174: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14174: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14174: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14174: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14174: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14174: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14174: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14174: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14174: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?26 (meet ?27 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H21 ?26 ?27 ?28 14174: Goal: 14174: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 14174: Order: 14174: nrkbo 14174: Leaf order: 14174: join 17 2 4 0,2,2 14174: meet 21 2 6 0,2 14174: c 3 0 3 2,2,2,2 14174: b 4 0 4 1,2,2 14174: a 5 0 5 1,2 % SZS status Timeout for LAT104-1.p NO CLASH, using fixed ground order 14193: Facts: 14193: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14193: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14193: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14193: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14193: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14193: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14193: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14193: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14193: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?26 (meet ?27 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H21 ?26 ?27 ?28 14193: Goal: 14193: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join a (meet b c)))) [] by prove_H10 14193: Order: 14193: nrkbo 14193: Leaf order: 14193: join 16 2 3 0,2,2 14193: meet 20 2 5 0,2 14193: c 3 0 3 2,2,2,2 14193: b 3 0 3 1,2,2 14193: a 4 0 4 1,2 NO CLASH, using fixed ground order 14194: Facts: 14194: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14194: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14194: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14194: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14194: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14194: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14194: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14194: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14194: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?26 (meet ?27 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H21 ?26 ?27 ?28 14194: Goal: 14194: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join a (meet b c)))) [] by prove_H10 14194: Order: 14194: kbo 14194: Leaf order: 14194: join 16 2 3 0,2,2 14194: meet 20 2 5 0,2 14194: c 3 0 3 2,2,2,2 14194: b 3 0 3 1,2,2 14194: a 4 0 4 1,2 NO CLASH, using fixed ground order 14195: Facts: 14195: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14195: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14195: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14195: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14195: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14195: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14195: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14195: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14195: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?26 (meet ?27 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H21 ?26 ?27 ?28 14195: Goal: 14195: Id : 1, {_}: meet a (join b (meet a c)) =>= meet a (join b (meet c (join a (meet b c)))) [] by prove_H10 14195: Order: 14195: lpo 14195: Leaf order: 14195: join 16 2 3 0,2,2 14195: meet 20 2 5 0,2 14195: c 3 0 3 2,2,2,2 14195: b 3 0 3 1,2,2 14195: a 4 0 4 1,2 % SZS status Timeout for LAT105-1.p NO CLASH, using fixed ground order 14223: Facts: 14223: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14223: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14223: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14223: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14223: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14223: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14223: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14223: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14223: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?28 (meet ?26 ?27))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H22 ?26 ?27 ?28 14223: Goal: 14223: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 14223: Order: 14223: nrkbo 14223: Leaf order: 14223: join 17 2 4 0,2,2 14223: meet 21 2 6 0,2 14223: c 3 0 3 2,2,2,2 14223: b 4 0 4 1,2,2 14223: a 5 0 5 1,2 NO CLASH, using fixed ground order 14224: Facts: 14224: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14224: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14224: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14224: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14224: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14224: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14224: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14224: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14224: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?28 (meet ?26 ?27))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H22 ?26 ?27 ?28 14224: Goal: 14224: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 14224: Order: 14224: kbo 14224: Leaf order: NO CLASH, using fixed ground order 14225: Facts: 14225: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14225: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14225: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14225: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14225: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14225: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14225: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14225: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14225: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?28 (meet ?26 ?27))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H22 ?26 ?27 ?28 14225: Goal: 14225: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 14225: Order: 14225: lpo 14225: Leaf order: 14225: join 17 2 4 0,2,2 14225: meet 21 2 6 0,2 14225: c 3 0 3 2,2,2,2 14225: b 4 0 4 1,2,2 14225: a 5 0 5 1,2 14224: join 17 2 4 0,2,2 14224: meet 21 2 6 0,2 14224: c 3 0 3 2,2,2,2 14224: b 4 0 4 1,2,2 14224: a 5 0 5 1,2 % SZS status Timeout for LAT106-1.p NO CLASH, using fixed ground order 14371: Facts: 14371: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14371: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14371: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14371: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14371: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14371: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14371: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14371: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14371: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?28 (meet ?26 ?27))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H22 ?26 ?27 ?28 14371: Goal: 14371: Id : 1, {_}: meet a (join (meet a b) (meet a c)) =<= meet a (join (meet b (join a (meet b c))) (meet c (join a b))) [] by prove_H17 14371: Order: 14371: nrkbo 14371: Leaf order: 14371: join 17 2 4 0,2,2 14371: c 3 0 3 2,2,2,2 14371: meet 22 2 7 0,2 14371: b 4 0 4 2,1,2,2 14371: a 6 0 6 1,2 NO CLASH, using fixed ground order 14372: Facts: 14372: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14372: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14372: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14372: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14372: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14372: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14372: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14372: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14372: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?28 (meet ?26 ?27))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H22 ?26 ?27 ?28 14372: Goal: 14372: Id : 1, {_}: meet a (join (meet a b) (meet a c)) =<= meet a (join (meet b (join a (meet b c))) (meet c (join a b))) [] by prove_H17 14372: Order: 14372: kbo 14372: Leaf order: 14372: join 17 2 4 0,2,2 14372: c 3 0 3 2,2,2,2 14372: meet 22 2 7 0,2 14372: b 4 0 4 2,1,2,2 14372: a 6 0 6 1,2 NO CLASH, using fixed ground order 14373: Facts: 14373: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 14373: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 14373: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 14373: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 14373: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 14373: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 14373: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 14373: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 14373: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?28 (meet ?26 ?27))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H22 ?26 ?27 ?28 14373: Goal: 14373: Id : 1, {_}: meet a (join (meet a b) (meet a c)) =>= meet a (join (meet b (join a (meet b c))) (meet c (join a b))) [] by prove_H17 14373: Order: 14373: lpo 14373: Leaf order: 14373: join 17 2 4 0,2,2 14373: c 3 0 3 2,2,2,2 14373: meet 22 2 7 0,2 14373: b 4 0 4 2,1,2,2 14373: a 6 0 6 1,2 % SZS status Timeout for LAT107-1.p NO CLASH, using fixed ground order 15801: Facts: 15801: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 15801: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 15801: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 15801: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 15801: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 15801: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 15801: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 15801: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 15801: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 (meet ?28 ?29))) =<= meet ?26 (join ?27 (meet ?28 (meet ?29 (join ?27 (meet ?26 ?28))))) [29, 28, 27, 26] by equation_H31 ?26 ?27 ?28 ?29 15801: Goal: 15801: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 15801: Order: 15801: nrkbo 15801: Leaf order: 15801: meet 21 2 5 0,2 15801: join 17 2 5 0,2,2 15801: d 2 0 2 2,2,2,2,2 15801: c 3 0 3 1,2,2,2 15801: b 3 0 3 1,2,2 15801: a 4 0 4 1,2 NO CLASH, using fixed ground order 15804: Facts: 15804: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 15804: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 15804: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 15804: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 15804: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 15804: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 15804: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 15804: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 15804: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 (meet ?28 ?29))) =<= meet ?26 (join ?27 (meet ?28 (meet ?29 (join ?27 (meet ?26 ?28))))) [29, 28, 27, 26] by equation_H31 ?26 ?27 ?28 ?29 15804: Goal: 15804: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 15804: Order: 15804: kbo 15804: Leaf order: 15804: meet 21 2 5 0,2 15804: join 17 2 5 0,2,2 15804: d 2 0 2 2,2,2,2,2 15804: c 3 0 3 1,2,2,2 15804: b 3 0 3 1,2,2 15804: a 4 0 4 1,2 NO CLASH, using fixed ground order 15805: Facts: 15805: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 15805: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 15805: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 15805: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 15805: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 15805: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 15805: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 15805: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 15805: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 (meet ?28 ?29))) =?= meet ?26 (join ?27 (meet ?28 (meet ?29 (join ?27 (meet ?26 ?28))))) [29, 28, 27, 26] by equation_H31 ?26 ?27 ?28 ?29 15805: Goal: 15805: Id : 1, {_}: meet a (join b (meet c (join a d))) =>= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 15805: Order: 15805: lpo 15805: Leaf order: 15805: meet 21 2 5 0,2 15805: join 17 2 5 0,2,2 15805: d 2 0 2 2,2,2,2,2 15805: c 3 0 3 1,2,2,2 15805: b 3 0 3 1,2,2 15805: a 4 0 4 1,2 % SZS status Timeout for LAT108-1.p NO CLASH, using fixed ground order 17324: Facts: 17324: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 17324: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 17324: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 17324: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 17324: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 17324: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 17324: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 17324: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 17324: Id : 10, {_}: meet ?26 (join ?27 (join ?28 (meet ?26 ?29))) =?= meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29 17324: Goal: 17324: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 17324: Order: 17324: lpo 17324: Leaf order: 17324: meet 19 2 5 0,2 17324: join 19 2 5 0,2,2 17324: d 2 0 2 2,2,2,2,2 17324: c 3 0 3 1,2,2,2 17324: b 3 0 3 1,2,2 17324: a 4 0 4 1,2 NO CLASH, using fixed ground order 17322: Facts: 17322: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 17322: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 17322: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 17322: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 17322: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 17322: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 17322: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 17322: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 17322: Id : 10, {_}: meet ?26 (join ?27 (join ?28 (meet ?26 ?29))) =<= meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29 17322: Goal: 17322: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 17322: Order: 17322: nrkbo 17322: Leaf order: 17322: meet 19 2 5 0,2 17322: join 19 2 5 0,2,2 17322: d 2 0 2 2,2,2,2,2 17322: c 3 0 3 1,2,2,2 17322: b 3 0 3 1,2,2 17322: a 4 0 4 1,2 NO CLASH, using fixed ground order 17323: Facts: 17323: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 17323: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 17323: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 17323: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 17323: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 17323: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 17323: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 17323: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 17323: Id : 10, {_}: meet ?26 (join ?27 (join ?28 (meet ?26 ?29))) =<= meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29 17323: Goal: 17323: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 17323: Order: 17323: kbo 17323: Leaf order: 17323: meet 19 2 5 0,2 17323: join 19 2 5 0,2,2 17323: d 2 0 2 2,2,2,2,2 17323: c 3 0 3 1,2,2,2 17323: b 3 0 3 1,2,2 17323: a 4 0 4 1,2 % SZS status Timeout for LAT109-1.p NO CLASH, using fixed ground order 19002: Facts: 19002: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19002: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19002: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19002: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19002: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19002: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19002: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19002: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19002: Id : 10, {_}: meet ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= meet ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H45 ?26 ?27 ?28 ?29 19002: Goal: 19002: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 19002: Order: 19002: nrkbo 19002: Leaf order: 19002: meet 21 2 5 0,2 19002: join 17 2 5 0,2,2 19002: d 2 0 2 2,2,2,2,2 19002: c 3 0 3 1,2,2,2 19002: b 3 0 3 1,2,2 19002: a 4 0 4 1,2 NO CLASH, using fixed ground order 19008: Facts: 19008: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19008: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19008: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19008: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19008: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19008: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19008: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19008: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19008: Id : 10, {_}: meet ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= meet ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H45 ?26 ?27 ?28 ?29 19008: Goal: 19008: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 19008: Order: 19008: kbo 19008: Leaf order: 19008: meet 21 2 5 0,2 19008: join 17 2 5 0,2,2 19008: d 2 0 2 2,2,2,2,2 19008: c 3 0 3 1,2,2,2 19008: b 3 0 3 1,2,2 19008: a 4 0 4 1,2 NO CLASH, using fixed ground order 19009: Facts: 19009: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19009: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19009: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19009: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19009: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19009: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19009: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19009: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19009: Id : 10, {_}: meet ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =?= meet ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H45 ?26 ?27 ?28 ?29 19009: Goal: 19009: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 19009: Order: 19009: lpo 19009: Leaf order: 19009: meet 21 2 5 0,2 19009: join 17 2 5 0,2,2 19009: d 2 0 2 2,2,2,2,2 19009: c 3 0 3 1,2,2,2 19009: b 3 0 3 1,2,2 19009: a 4 0 4 1,2 % SZS status Timeout for LAT111-1.p NO CLASH, using fixed ground order 19496: Facts: 19496: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19496: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19496: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19496: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19496: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19496: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19496: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19496: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19496: Id : 10, {_}: meet ?26 (meet ?27 (join ?28 (meet ?27 ?29))) =<= meet ?26 (meet ?27 (join ?28 (meet ?29 (join ?27 (meet ?26 ?28))))) [29, 28, 27, 26] by equation_H47 ?26 ?27 ?28 ?29 19496: Goal: 19496: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 19496: Order: 19496: nrkbo 19496: Leaf order: 19496: meet 21 2 5 0,2 19496: join 17 2 5 0,2,2 19496: d 2 0 2 2,2,2,2,2 19496: c 3 0 3 1,2,2,2 19496: b 3 0 3 1,2,2 19496: a 4 0 4 1,2 NO CLASH, using fixed ground order 19497: Facts: 19497: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19497: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19497: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19497: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19497: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19497: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19497: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19497: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19497: Id : 10, {_}: meet ?26 (meet ?27 (join ?28 (meet ?27 ?29))) =<= meet ?26 (meet ?27 (join ?28 (meet ?29 (join ?27 (meet ?26 ?28))))) [29, 28, 27, 26] by equation_H47 ?26 ?27 ?28 ?29 19497: Goal: 19497: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 19497: Order: 19497: kbo 19497: Leaf order: 19497: meet 21 2 5 0,2 19497: join 17 2 5 0,2,2 19497: d 2 0 2 2,2,2,2,2 19497: c 3 0 3 1,2,2,2 19497: b 3 0 3 1,2,2 19497: a 4 0 4 1,2 NO CLASH, using fixed ground order 19498: Facts: 19498: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19498: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19498: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19498: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19498: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19498: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19498: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19498: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19498: Id : 10, {_}: meet ?26 (meet ?27 (join ?28 (meet ?27 ?29))) =?= meet ?26 (meet ?27 (join ?28 (meet ?29 (join ?27 (meet ?26 ?28))))) [29, 28, 27, 26] by equation_H47 ?26 ?27 ?28 ?29 19498: Goal: 19498: Id : 1, {_}: meet a (join b (meet c (join a d))) =>= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 19498: Order: 19498: lpo 19498: Leaf order: 19498: meet 21 2 5 0,2 19498: join 17 2 5 0,2,2 19498: d 2 0 2 2,2,2,2,2 19498: c 3 0 3 1,2,2,2 19498: b 3 0 3 1,2,2 19498: a 4 0 4 1,2 % SZS status Timeout for LAT112-1.p NO CLASH, using fixed ground order 19529: Facts: 19529: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19529: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19529: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19529: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19529: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19529: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19529: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19529: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19529: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 19529: Goal: 19529: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 19529: Order: 19529: nrkbo 19529: Leaf order: 19529: meet 19 2 5 0,2 19529: join 19 2 5 0,2,2 19529: d 2 0 2 2,2,2,2,2 19529: c 3 0 3 1,2,2,2 19529: b 3 0 3 1,2,2 19529: a 4 0 4 1,2 NO CLASH, using fixed ground order 19530: Facts: 19530: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19530: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19530: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19530: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19530: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19530: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19530: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19530: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19530: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 19530: Goal: 19530: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 19530: Order: 19530: kbo 19530: Leaf order: 19530: meet 19 2 5 0,2 19530: join 19 2 5 0,2,2 19530: d 2 0 2 2,2,2,2,2 19530: c 3 0 3 1,2,2,2 19530: b 3 0 3 1,2,2 19530: a 4 0 4 1,2 NO CLASH, using fixed ground order 19531: Facts: 19531: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19531: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19531: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19531: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19531: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19531: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19531: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19531: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19531: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 19531: Goal: 19531: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 19531: Order: 19531: lpo 19531: Leaf order: 19531: meet 19 2 5 0,2 19531: join 19 2 5 0,2,2 19531: d 2 0 2 2,2,2,2,2 19531: c 3 0 3 1,2,2,2 19531: b 3 0 3 1,2,2 19531: a 4 0 4 1,2 % SZS status Timeout for LAT113-1.p NO CLASH, using fixed ground order 19568: Facts: 19568: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19568: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19568: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19568: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19568: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19568: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19568: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19568: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19568: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =<= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27)))) [28, 27, 26] by equation_H55 ?26 ?27 ?28 19568: Goal: 19568: Id : 1, {_}: join (meet a b) (meet a (join b c)) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H56 19568: Order: 19568: kbo 19568: Leaf order: 19568: join 19 2 5 0,2 19568: c 2 0 2 2,2,2,2 19568: meet 17 2 5 0,1,2 19568: b 5 0 5 2,1,2 19568: a 5 0 5 1,1,2 NO CLASH, using fixed ground order 19567: Facts: 19567: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19567: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19567: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19567: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19567: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19567: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19567: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19567: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19567: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =<= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27)))) [28, 27, 26] by equation_H55 ?26 ?27 ?28 19567: Goal: 19567: Id : 1, {_}: join (meet a b) (meet a (join b c)) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H56 19567: Order: 19567: nrkbo 19567: Leaf order: 19567: join 19 2 5 0,2 19567: c 2 0 2 2,2,2,2 19567: meet 17 2 5 0,1,2 19567: b 5 0 5 2,1,2 19567: a 5 0 5 1,1,2 NO CLASH, using fixed ground order 19569: Facts: 19569: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19569: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19569: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19569: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19569: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19569: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19569: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19569: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19569: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =<= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27)))) [28, 27, 26] by equation_H55 ?26 ?27 ?28 19569: Goal: 19569: Id : 1, {_}: join (meet a b) (meet a (join b c)) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H56 19569: Order: 19569: lpo 19569: Leaf order: 19569: join 19 2 5 0,2 19569: c 2 0 2 2,2,2,2 19569: meet 17 2 5 0,1,2 19569: b 5 0 5 2,1,2 19569: a 5 0 5 1,1,2 % SZS status Timeout for LAT114-1.p NO CLASH, using fixed ground order 19631: Facts: 19631: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19631: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19631: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19631: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19631: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19631: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19631: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19631: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19631: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =<= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27)))) [28, 27, 26] by equation_H55 ?26 ?27 ?28 19631: Goal: 19631: Id : 1, {_}: meet a (meet (join b c) (join b d)) =<= meet a (join b (meet (join b d) (join c (meet a b)))) [] by prove_H59 19631: Order: 19631: nrkbo 19631: Leaf order: 19631: meet 17 2 5 0,2 19631: d 2 0 2 2,2,2,2 19631: join 19 2 5 0,1,2,2 19631: c 2 0 2 2,1,2,2 19631: b 5 0 5 1,1,2,2 19631: a 3 0 3 1,2 NO CLASH, using fixed ground order 19632: Facts: 19632: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19632: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19632: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19632: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19632: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19632: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19632: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19632: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19632: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =<= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27)))) [28, 27, 26] by equation_H55 ?26 ?27 ?28 19632: Goal: 19632: Id : 1, {_}: meet a (meet (join b c) (join b d)) =<= meet a (join b (meet (join b d) (join c (meet a b)))) [] by prove_H59 19632: Order: 19632: kbo 19632: Leaf order: 19632: meet 17 2 5 0,2 19632: d 2 0 2 2,2,2,2 19632: join 19 2 5 0,1,2,2 19632: c 2 0 2 2,1,2,2 19632: b 5 0 5 1,1,2,2 19632: a 3 0 3 1,2 NO CLASH, using fixed ground order 19633: Facts: 19633: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19633: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19633: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19633: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19633: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19633: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19633: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19633: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19633: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =?= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27)))) [28, 27, 26] by equation_H55 ?26 ?27 ?28 19633: Goal: 19633: Id : 1, {_}: meet a (meet (join b c) (join b d)) =<= meet a (join b (meet (join b d) (join c (meet a b)))) [] by prove_H59 19633: Order: 19633: lpo 19633: Leaf order: 19633: meet 17 2 5 0,2 19633: d 2 0 2 2,2,2,2 19633: join 19 2 5 0,1,2,2 19633: c 2 0 2 2,1,2,2 19633: b 5 0 5 1,1,2,2 19633: a 3 0 3 1,2 % SZS status Timeout for LAT115-1.p NO CLASH, using fixed ground order 19650: Facts: 19650: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19650: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19650: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19650: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19650: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19650: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 NO CLASH, using fixed ground order 19651: Facts: 19651: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19651: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19651: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19651: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19651: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19651: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19651: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19651: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19651: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =<= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27)))) [28, 27, 26] by equation_H55 ?26 ?27 ?28 19651: Goal: 19651: Id : 1, {_}: meet a (meet (join b c) (join b d)) =<= meet a (join b (meet (join b c) (join d (meet a b)))) [] by prove_H60 19651: Order: 19651: kbo 19651: Leaf order: 19651: meet 17 2 5 0,2 19651: d 2 0 2 2,2,2,2 19651: join 19 2 5 0,1,2,2 19651: c 2 0 2 2,1,2,2 19651: b 5 0 5 1,1,2,2 19651: a 3 0 3 1,2 19650: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19650: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19650: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =<= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27)))) [28, 27, 26] by equation_H55 ?26 ?27 ?28 19650: Goal: 19650: Id : 1, {_}: meet a (meet (join b c) (join b d)) =<= meet a (join b (meet (join b c) (join d (meet a b)))) [] by prove_H60 19650: Order: 19650: nrkbo 19650: Leaf order: 19650: meet 17 2 5 0,2 19650: d 2 0 2 2,2,2,2 19650: join 19 2 5 0,1,2,2 19650: c 2 0 2 2,1,2,2 19650: b 5 0 5 1,1,2,2 19650: a 3 0 3 1,2 NO CLASH, using fixed ground order 19652: Facts: 19652: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19652: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19652: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19652: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19652: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19652: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19652: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19652: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19652: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =?= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27)))) [28, 27, 26] by equation_H55 ?26 ?27 ?28 19652: Goal: 19652: Id : 1, {_}: meet a (meet (join b c) (join b d)) =<= meet a (join b (meet (join b c) (join d (meet a b)))) [] by prove_H60 19652: Order: 19652: lpo 19652: Leaf order: 19652: meet 17 2 5 0,2 19652: d 2 0 2 2,2,2,2 19652: join 19 2 5 0,1,2,2 19652: c 2 0 2 2,1,2,2 19652: b 5 0 5 1,1,2,2 19652: a 3 0 3 1,2 % SZS status Timeout for LAT116-1.p NO CLASH, using fixed ground order 19680: Facts: 19680: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19680: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19680: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19680: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19680: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19680: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19680: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19680: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19680: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 ?29)) =<= meet ?26 (join ?27 (meet ?26 (join (meet ?26 ?27) (meet ?28 ?29)))) [29, 28, 27, 26] by equation_H65 ?26 ?27 ?28 ?29 19680: Goal: 19680: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 19680: Order: 19680: nrkbo 19680: Leaf order: 19680: meet 20 2 5 0,2 19680: join 16 2 4 0,2,2 19680: c 3 0 3 2,2,2 19680: b 3 0 3 1,2,2 19680: a 5 0 5 1,2 NO CLASH, using fixed ground order 19681: Facts: 19681: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19681: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19681: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19681: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19681: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19681: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19681: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19681: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19681: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 ?29)) =<= meet ?26 (join ?27 (meet ?26 (join (meet ?26 ?27) (meet ?28 ?29)))) [29, 28, 27, 26] by equation_H65 ?26 ?27 ?28 ?29 19681: Goal: 19681: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 19681: Order: 19681: kbo 19681: Leaf order: 19681: meet 20 2 5 0,2 19681: join 16 2 4 0,2,2 19681: c 3 0 3 2,2,2 19681: b 3 0 3 1,2,2 19681: a 5 0 5 1,2 NO CLASH, using fixed ground order 19682: Facts: 19682: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19682: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19682: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19682: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19682: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19682: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19682: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19682: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19682: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 ?29)) =<= meet ?26 (join ?27 (meet ?26 (join (meet ?26 ?27) (meet ?28 ?29)))) [29, 28, 27, 26] by equation_H65 ?26 ?27 ?28 ?29 19682: Goal: 19682: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 19682: Order: 19682: lpo 19682: Leaf order: 19682: meet 20 2 5 0,2 19682: join 16 2 4 0,2,2 19682: c 3 0 3 2,2,2 19682: b 3 0 3 1,2,2 19682: a 5 0 5 1,2 % SZS status Timeout for LAT117-1.p NO CLASH, using fixed ground order 19698: Facts: 19698: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19698: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19698: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19698: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19698: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19698: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19698: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19698: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19698: Id : 10, {_}: meet ?26 (join (meet ?27 (join ?26 ?28)) (meet ?28 (join ?26 ?27))) =>= join (meet ?26 ?27) (meet ?26 ?28) [28, 27, 26] by equation_H82 ?26 ?27 ?28 19698: Goal: 19698: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 19698: Order: 19698: nrkbo 19698: Leaf order: 19698: join 17 2 4 0,2,2 19698: meet 20 2 6 0,2 19698: c 3 0 3 2,2,2,2 19698: b 4 0 4 1,2,2 19698: a 5 0 5 1,2 NO CLASH, using fixed ground order 19699: Facts: 19699: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19699: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19699: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19699: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19699: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19699: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19699: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19699: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19699: Id : 10, {_}: meet ?26 (join (meet ?27 (join ?26 ?28)) (meet ?28 (join ?26 ?27))) =>= join (meet ?26 ?27) (meet ?26 ?28) [28, 27, 26] by equation_H82 ?26 ?27 ?28 19699: Goal: 19699: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 19699: Order: 19699: kbo 19699: Leaf order: 19699: join 17 2 4 0,2,2 19699: meet 20 2 6 0,2 19699: c 3 0 3 2,2,2,2 19699: b 4 0 4 1,2,2 19699: a 5 0 5 1,2 NO CLASH, using fixed ground order 19700: Facts: 19700: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19700: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19700: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19700: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19700: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19700: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19700: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19700: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19700: Id : 10, {_}: meet ?26 (join (meet ?27 (join ?26 ?28)) (meet ?28 (join ?26 ?27))) =>= join (meet ?26 ?27) (meet ?26 ?28) [28, 27, 26] by equation_H82 ?26 ?27 ?28 19700: Goal: 19700: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 19700: Order: 19700: lpo 19700: Leaf order: 19700: join 17 2 4 0,2,2 19700: meet 20 2 6 0,2 19700: c 3 0 3 2,2,2,2 19700: b 4 0 4 1,2,2 19700: a 5 0 5 1,2 % SZS status Timeout for LAT119-1.p NO CLASH, using fixed ground order 19732: Facts: 19732: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19732: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19732: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19732: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19732: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19732: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19732: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19732: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19732: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =<= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?27 ?28)))) [28, 27, 26] by equation_H10_dual ?26 ?27 ?28 19732: Goal: 19732: Id : 1, {_}: meet a (join b c) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H58 19732: Order: 19732: nrkbo 19732: Leaf order: 19732: meet 16 2 4 0,2 19732: join 18 2 4 0,2,2 19732: c 2 0 2 2,2,2 19732: b 4 0 4 1,2,2 19732: a 4 0 4 1,2 NO CLASH, using fixed ground order 19733: Facts: 19733: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19733: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19733: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19733: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19733: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19733: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19733: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19733: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19733: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =<= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?27 ?28)))) [28, 27, 26] by equation_H10_dual ?26 ?27 ?28 19733: Goal: 19733: Id : 1, {_}: meet a (join b c) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H58 19733: Order: 19733: kbo 19733: Leaf order: 19733: meet 16 2 4 0,2 19733: join 18 2 4 0,2,2 19733: c 2 0 2 2,2,2 19733: b 4 0 4 1,2,2 19733: a 4 0 4 1,2 NO CLASH, using fixed ground order 19734: Facts: 19734: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19734: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19734: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19734: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19734: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19734: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19734: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19734: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19734: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =?= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?27 ?28)))) [28, 27, 26] by equation_H10_dual ?26 ?27 ?28 19734: Goal: 19734: Id : 1, {_}: meet a (join b c) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H58 19734: Order: 19734: lpo 19734: Leaf order: 19734: meet 16 2 4 0,2 19734: join 18 2 4 0,2,2 19734: c 2 0 2 2,2,2 19734: b 4 0 4 1,2,2 19734: a 4 0 4 1,2 % SZS status Timeout for LAT120-1.p NO CLASH, using fixed ground order 19750: Facts: 19750: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19750: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19750: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19750: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19750: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19750: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19750: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19750: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19750: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?26 ?27) (meet (join ?26 ?28) (join ?27 (meet ?26 ?28)))) [28, 27, 26] by equation_H18_dual ?26 ?27 ?28 19750: Goal: 19750: Id : 1, {_}: join a (meet b (join a c)) =<= join a (meet b (join c (meet a (join c b)))) [] by prove_H55 19750: Order: 19750: nrkbo 19750: Leaf order: 19750: meet 16 2 3 0,2,2 19750: join 20 2 5 0,2 19750: c 3 0 3 2,2,2,2 19750: b 3 0 3 1,2,2 19750: a 4 0 4 1,2 NO CLASH, using fixed ground order 19751: Facts: 19751: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19751: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19751: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19751: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19751: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19751: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19751: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19751: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19751: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?26 ?27) (meet (join ?26 ?28) (join ?27 (meet ?26 ?28)))) [28, 27, 26] by equation_H18_dual ?26 ?27 ?28 19751: Goal: 19751: Id : 1, {_}: join a (meet b (join a c)) =<= join a (meet b (join c (meet a (join c b)))) [] by prove_H55 19751: Order: 19751: kbo 19751: Leaf order: 19751: meet 16 2 3 0,2,2 19751: join 20 2 5 0,2 19751: c 3 0 3 2,2,2,2 19751: b 3 0 3 1,2,2 19751: a 4 0 4 1,2 NO CLASH, using fixed ground order 19752: Facts: 19752: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19752: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19752: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19752: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19752: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19752: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19752: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19752: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19752: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?26 ?27) (meet (join ?26 ?28) (join ?27 (meet ?26 ?28)))) [28, 27, 26] by equation_H18_dual ?26 ?27 ?28 19752: Goal: 19752: Id : 1, {_}: join a (meet b (join a c)) =>= join a (meet b (join c (meet a (join c b)))) [] by prove_H55 19752: Order: 19752: lpo 19752: Leaf order: 19752: meet 16 2 3 0,2,2 19752: join 20 2 5 0,2 19752: c 3 0 3 2,2,2,2 19752: b 3 0 3 1,2,2 19752: a 4 0 4 1,2 % SZS status Timeout for LAT121-1.p NO CLASH, using fixed ground order 19779: Facts: 19779: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19779: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19779: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19779: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19779: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19779: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19779: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19779: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19779: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?27 (meet ?26 (join ?27 ?28))) (join ?28 (meet ?26 ?27))) [28, 27, 26] by equation_H21_dual ?26 ?27 ?28 19779: Goal: 19779: Id : 1, {_}: join a (meet b (join a c)) =<= join a (meet b (join c (meet a (join c b)))) [] by prove_H55 19779: Order: 19779: nrkbo 19779: Leaf order: 19779: meet 16 2 3 0,2,2 19779: join 20 2 5 0,2 19779: c 3 0 3 2,2,2,2 19779: b 3 0 3 1,2,2 19779: a 4 0 4 1,2 NO CLASH, using fixed ground order 19780: Facts: 19780: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19780: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19780: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19780: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19780: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19780: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19780: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19780: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19780: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?27 (meet ?26 (join ?27 ?28))) (join ?28 (meet ?26 ?27))) [28, 27, 26] by equation_H21_dual ?26 ?27 ?28 19780: Goal: 19780: Id : 1, {_}: join a (meet b (join a c)) =<= join a (meet b (join c (meet a (join c b)))) [] by prove_H55 19780: Order: 19780: kbo 19780: Leaf order: 19780: meet 16 2 3 0,2,2 19780: join 20 2 5 0,2 19780: c 3 0 3 2,2,2,2 19780: b 3 0 3 1,2,2 19780: a 4 0 4 1,2 NO CLASH, using fixed ground order 19781: Facts: 19781: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19781: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19781: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19781: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19781: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19781: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19781: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19781: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19781: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?27 (meet ?26 (join ?27 ?28))) (join ?28 (meet ?26 ?27))) [28, 27, 26] by equation_H21_dual ?26 ?27 ?28 19781: Goal: 19781: Id : 1, {_}: join a (meet b (join a c)) =>= join a (meet b (join c (meet a (join c b)))) [] by prove_H55 19781: Order: 19781: lpo 19781: Leaf order: 19781: meet 16 2 3 0,2,2 19781: join 20 2 5 0,2 19781: c 3 0 3 2,2,2,2 19781: b 3 0 3 1,2,2 19781: a 4 0 4 1,2 % SZS status Timeout for LAT122-1.p NO CLASH, using fixed ground order 19798: Facts: 19798: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19798: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19798: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19798: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19798: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19798: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19798: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19798: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19798: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?27 (meet ?28 (join ?26 ?27))) (join ?28 (meet ?26 ?27))) [28, 27, 26] by equation_H22_dual ?26 ?27 ?28 19798: Goal: 19798: Id : 1, {_}: join a (meet b (join a c)) =<= join a (meet b (join c (meet a (join c b)))) [] by prove_H55 19798: Order: 19798: nrkbo 19798: Leaf order: 19798: meet 16 2 3 0,2,2 19798: join 20 2 5 0,2 19798: c 3 0 3 2,2,2,2 19798: b 3 0 3 1,2,2 19798: a 4 0 4 1,2 NO CLASH, using fixed ground order 19799: Facts: 19799: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19799: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19799: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19799: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19799: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19799: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19799: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19799: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19799: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?27 (meet ?28 (join ?26 ?27))) (join ?28 (meet ?26 ?27))) [28, 27, 26] by equation_H22_dual ?26 ?27 ?28 19799: Goal: 19799: Id : 1, {_}: join a (meet b (join a c)) =<= join a (meet b (join c (meet a (join c b)))) [] by prove_H55 19799: Order: 19799: kbo 19799: Leaf order: 19799: meet 16 2 3 0,2,2 19799: join 20 2 5 0,2 19799: c 3 0 3 2,2,2,2 19799: b 3 0 3 1,2,2 19799: a 4 0 4 1,2 NO CLASH, using fixed ground order 19800: Facts: 19800: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19800: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19800: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19800: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19800: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19800: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19800: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19800: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19800: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?27 (meet ?28 (join ?26 ?27))) (join ?28 (meet ?26 ?27))) [28, 27, 26] by equation_H22_dual ?26 ?27 ?28 19800: Goal: 19800: Id : 1, {_}: join a (meet b (join a c)) =>= join a (meet b (join c (meet a (join c b)))) [] by prove_H55 19800: Order: 19800: lpo 19800: Leaf order: 19800: meet 16 2 3 0,2,2 19800: join 20 2 5 0,2 19800: c 3 0 3 2,2,2,2 19800: b 3 0 3 1,2,2 19800: a 4 0 4 1,2 % SZS status Timeout for LAT123-1.p NO CLASH, using fixed ground order 19842: Facts: 19842: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19842: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19842: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19842: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19842: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19842: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19842: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19842: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19842: Id : 10, {_}: join ?26 (meet ?27 (join ?26 (join ?28 ?29))) =<= join ?26 (meet ?27 (join ?28 (meet (join ?26 ?29) (join ?27 ?29)))) [29, 28, 27, 26] by equation_H32_dual ?26 ?27 ?28 ?29 19842: Goal: 19842: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 19842: Order: 19842: nrkbo 19842: Leaf order: 19842: meet 17 2 5 0,2 19842: join 20 2 4 0,2,2 19842: c 3 0 3 2,2,2 19842: b 3 0 3 1,2,2 19842: a 5 0 5 1,2 NO CLASH, using fixed ground order 19843: Facts: 19843: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19843: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19843: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19843: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19843: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19843: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19843: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19843: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19843: Id : 10, {_}: join ?26 (meet ?27 (join ?26 (join ?28 ?29))) =<= join ?26 (meet ?27 (join ?28 (meet (join ?26 ?29) (join ?27 ?29)))) [29, 28, 27, 26] by equation_H32_dual ?26 ?27 ?28 ?29 19843: Goal: 19843: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 19843: Order: 19843: kbo 19843: Leaf order: 19843: meet 17 2 5 0,2 19843: join 20 2 4 0,2,2 19843: c 3 0 3 2,2,2 19843: b 3 0 3 1,2,2 19843: a 5 0 5 1,2 NO CLASH, using fixed ground order 19844: Facts: 19844: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19844: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19844: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19844: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19844: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19844: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19844: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19844: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19844: Id : 10, {_}: join ?26 (meet ?27 (join ?26 (join ?28 ?29))) =?= join ?26 (meet ?27 (join ?28 (meet (join ?26 ?29) (join ?27 ?29)))) [29, 28, 27, 26] by equation_H32_dual ?26 ?27 ?28 ?29 19844: Goal: 19844: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 19844: Order: 19844: lpo 19844: Leaf order: 19844: meet 17 2 5 0,2 19844: join 20 2 4 0,2,2 19844: c 3 0 3 2,2,2 19844: b 3 0 3 1,2,2 19844: a 5 0 5 1,2 % SZS status Timeout for LAT124-1.p NO CLASH, using fixed ground order 19863: Facts: 19863: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19863: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19863: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19863: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19863: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19863: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19863: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19863: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19863: Id : 10, {_}: join ?26 (meet ?27 (join ?28 ?29)) =<= join ?26 (meet ?27 (join ?28 (meet ?27 (join ?29 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H34_dual ?26 ?27 ?28 ?29 19863: Goal: 19863: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 19863: Order: 19863: nrkbo 19863: Leaf order: 19863: meet 18 2 5 0,2 19863: join 18 2 4 0,2,2 19863: c 3 0 3 2,2,2 19863: b 3 0 3 1,2,2 19863: a 5 0 5 1,2 NO CLASH, using fixed ground order 19864: Facts: 19864: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19864: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19864: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19864: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19864: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19864: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19864: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19864: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19864: Id : 10, {_}: join ?26 (meet ?27 (join ?28 ?29)) =<= join ?26 (meet ?27 (join ?28 (meet ?27 (join ?29 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H34_dual ?26 ?27 ?28 ?29 19864: Goal: 19864: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 19864: Order: 19864: kbo 19864: Leaf order: 19864: meet 18 2 5 0,2 19864: join 18 2 4 0,2,2 19864: c 3 0 3 2,2,2 19864: b 3 0 3 1,2,2 19864: a 5 0 5 1,2 NO CLASH, using fixed ground order 19865: Facts: 19865: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19865: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19865: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19865: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19865: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19865: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19865: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19865: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19865: Id : 10, {_}: join ?26 (meet ?27 (join ?28 ?29)) =<= join ?26 (meet ?27 (join ?28 (meet ?27 (join ?29 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H34_dual ?26 ?27 ?28 ?29 19865: Goal: 19865: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 19865: Order: 19865: lpo 19865: Leaf order: 19865: meet 18 2 5 0,2 19865: join 18 2 4 0,2,2 19865: c 3 0 3 2,2,2 19865: b 3 0 3 1,2,2 19865: a 5 0 5 1,2 % SZS status Timeout for LAT125-1.p NO CLASH, using fixed ground order 19895: Facts: 19895: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19895: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19895: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19895: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19895: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19895: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19895: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19895: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19895: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?28)))) [29, 28, 27, 26] by equation_H39_dual ?26 ?27 ?28 ?29 19895: Goal: 19895: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 19895: Order: 19895: kbo 19895: Leaf order: 19895: meet 18 2 5 0,2 19895: join 18 2 4 0,2,2 19895: c 3 0 3 2,2,2 19895: b 3 0 3 1,2,2 19895: a 5 0 5 1,2 NO CLASH, using fixed ground order 19894: Facts: 19894: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19894: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19894: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19894: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19894: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19894: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19894: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19894: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19894: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?28)))) [29, 28, 27, 26] by equation_H39_dual ?26 ?27 ?28 ?29 19894: Goal: 19894: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 19894: Order: 19894: nrkbo 19894: Leaf order: 19894: meet 18 2 5 0,2 19894: join 18 2 4 0,2,2 19894: c 3 0 3 2,2,2 19894: b 3 0 3 1,2,2 19894: a 5 0 5 1,2 NO CLASH, using fixed ground order 19896: Facts: 19896: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19896: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19896: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19896: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19896: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19896: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19896: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19896: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19896: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =?= join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?28)))) [29, 28, 27, 26] by equation_H39_dual ?26 ?27 ?28 ?29 19896: Goal: 19896: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 19896: Order: 19896: lpo 19896: Leaf order: 19896: meet 18 2 5 0,2 19896: join 18 2 4 0,2,2 19896: c 3 0 3 2,2,2 19896: b 3 0 3 1,2,2 19896: a 5 0 5 1,2 % SZS status Timeout for LAT126-1.p NO CLASH, using fixed ground order 19924: Facts: 19924: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19924: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19924: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19924: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19924: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19924: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19924: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19924: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19924: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 ?27)))) [28, 27, 26] by equation_H55_dual ?26 ?27 ?28 19924: Goal: 19924: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 19924: Order: 19924: nrkbo 19924: Leaf order: 19924: join 16 2 4 0,2,2 19924: meet 20 2 6 0,2 19924: c 3 0 3 2,2,2,2 19924: b 3 0 3 1,2,2 19924: a 6 0 6 1,2 NO CLASH, using fixed ground order 19925: Facts: 19925: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19925: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19925: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19925: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19925: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19925: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19925: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19925: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19925: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 ?27)))) [28, 27, 26] by equation_H55_dual ?26 ?27 ?28 19925: Goal: 19925: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 19925: Order: 19925: kbo 19925: Leaf order: 19925: join 16 2 4 0,2,2 19925: meet 20 2 6 0,2 19925: c 3 0 3 2,2,2,2 19925: b 3 0 3 1,2,2 19925: a 6 0 6 1,2 NO CLASH, using fixed ground order 19926: Facts: 19926: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 19926: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 19926: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 19926: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 19926: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 19926: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 19926: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 19926: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 19926: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =?= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 ?27)))) [28, 27, 26] by equation_H55_dual ?26 ?27 ?28 19926: Goal: 19926: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 19926: Order: 19926: lpo 19926: Leaf order: 19926: join 16 2 4 0,2,2 19926: meet 20 2 6 0,2 19926: c 3 0 3 2,2,2,2 19926: b 3 0 3 1,2,2 19926: a 6 0 6 1,2 % SZS status Timeout for LAT127-1.p NO CLASH, using fixed ground order 20053: Facts: 20053: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20053: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20053: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20053: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20053: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20053: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20053: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20053: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20053: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= join ?26 (meet ?27 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27)))) [28, 27, 26] by equation_H58_dual ?26 ?27 ?28 20053: Goal: 20053: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 20053: Order: 20053: nrkbo 20053: Leaf order: 20053: join 17 2 4 0,2,2 20053: meet 19 2 6 0,2 20053: c 3 0 3 2,2,2,2 20053: b 4 0 4 1,2,2 20053: a 5 0 5 1,2 NO CLASH, using fixed ground order 20054: Facts: 20054: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20054: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20054: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20054: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20054: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20054: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20054: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20054: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20054: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= join ?26 (meet ?27 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27)))) [28, 27, 26] by equation_H58_dual ?26 ?27 ?28 20054: Goal: 20054: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 20054: Order: 20054: kbo 20054: Leaf order: 20054: join 17 2 4 0,2,2 20054: meet 19 2 6 0,2 20054: c 3 0 3 2,2,2,2 20054: b 4 0 4 1,2,2 20054: a 5 0 5 1,2 NO CLASH, using fixed ground order 20055: Facts: 20055: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20055: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20055: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20055: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20055: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20055: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20055: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20055: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20055: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= join ?26 (meet ?27 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27)))) [28, 27, 26] by equation_H58_dual ?26 ?27 ?28 20055: Goal: 20055: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 20055: Order: 20055: lpo 20055: Leaf order: 20055: join 17 2 4 0,2,2 20055: meet 19 2 6 0,2 20055: c 3 0 3 2,2,2,2 20055: b 4 0 4 1,2,2 20055: a 5 0 5 1,2 % SZS status Timeout for LAT128-1.p NO CLASH, using fixed ground order 20071: Facts: 20071: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20071: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20071: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20071: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20071: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20071: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20071: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20071: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20071: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= join ?26 (meet ?27 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27)))) [28, 27, 26] by equation_H58_dual ?26 ?27 ?28 20071: Goal: 20071: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join a (meet b c)))) [] by prove_H10 20071: Order: 20071: nrkbo 20071: Leaf order: 20071: join 16 2 3 0,2,2 20071: meet 18 2 5 0,2 20071: c 3 0 3 2,2,2,2 20071: b 3 0 3 1,2,2 20071: a 4 0 4 1,2 NO CLASH, using fixed ground order 20072: Facts: 20072: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20072: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20072: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20072: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20072: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20072: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20072: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20072: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20072: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= join ?26 (meet ?27 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27)))) [28, 27, 26] by equation_H58_dual ?26 ?27 ?28 20072: Goal: 20072: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join a (meet b c)))) [] by prove_H10 20072: Order: 20072: kbo 20072: Leaf order: 20072: join 16 2 3 0,2,2 20072: meet 18 2 5 0,2 20072: c 3 0 3 2,2,2,2 20072: b 3 0 3 1,2,2 20072: a 4 0 4 1,2 NO CLASH, using fixed ground order 20073: Facts: 20073: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20073: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20073: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20073: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20073: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20073: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20073: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20073: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20073: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= join ?26 (meet ?27 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27)))) [28, 27, 26] by equation_H58_dual ?26 ?27 ?28 20073: Goal: 20073: Id : 1, {_}: meet a (join b (meet a c)) =>= meet a (join b (meet c (join a (meet b c)))) [] by prove_H10 20073: Order: 20073: lpo 20073: Leaf order: 20073: join 16 2 3 0,2,2 20073: meet 18 2 5 0,2 20073: c 3 0 3 2,2,2,2 20073: b 3 0 3 1,2,2 20073: a 4 0 4 1,2 % SZS status Timeout for LAT129-1.p NO CLASH, using fixed ground order 20105: Facts: 20105: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20105: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20105: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20105: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20105: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20105: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20105: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20105: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20105: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= join ?26 (meet ?27 (join ?26 (meet ?28 (join ?26 ?27)))) [28, 27, 26] by equation_H68_dual ?26 ?27 ?28 20105: Goal: 20105: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet a c)))) [] by prove_H39 20105: Order: 20105: nrkbo 20105: Leaf order: 20105: meet 17 2 5 0,2 20105: join 17 2 4 0,2,2 20105: d 2 0 2 2,2,2,2,2 20105: c 3 0 3 1,2,2,2 20105: b 2 0 2 1,2,2 20105: a 4 0 4 1,2 NO CLASH, using fixed ground order 20106: Facts: 20106: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20106: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20106: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20106: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20106: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20106: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20106: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20106: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20106: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= join ?26 (meet ?27 (join ?26 (meet ?28 (join ?26 ?27)))) [28, 27, 26] by equation_H68_dual ?26 ?27 ?28 20106: Goal: 20106: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet a c)))) [] by prove_H39 20106: Order: 20106: kbo 20106: Leaf order: 20106: meet 17 2 5 0,2 20106: join 17 2 4 0,2,2 20106: d 2 0 2 2,2,2,2,2 20106: c 3 0 3 1,2,2,2 20106: b 2 0 2 1,2,2 20106: a 4 0 4 1,2 NO CLASH, using fixed ground order 20107: Facts: 20107: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20107: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20107: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20107: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20107: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20107: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20107: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20107: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20107: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= join ?26 (meet ?27 (join ?26 (meet ?28 (join ?26 ?27)))) [28, 27, 26] by equation_H68_dual ?26 ?27 ?28 20107: Goal: 20107: Id : 1, {_}: meet a (join b (meet c (join a d))) =>= meet a (join b (meet c (join d (meet a c)))) [] by prove_H39 20107: Order: 20107: lpo 20107: Leaf order: 20107: meet 17 2 5 0,2 20107: join 17 2 4 0,2,2 20107: d 2 0 2 2,2,2,2,2 20107: c 3 0 3 1,2,2,2 20107: b 2 0 2 1,2,2 20107: a 4 0 4 1,2 % SZS status Timeout for LAT130-1.p NO CLASH, using fixed ground order 20123: Facts: 20123: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20123: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20123: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20123: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20123: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20123: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20123: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20123: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20123: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= join ?26 (meet ?27 (join ?26 (meet ?28 (join ?26 ?27)))) [28, 27, 26] by equation_H68_dual ?26 ?27 ?28 20123: Goal: 20123: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 20123: Order: 20123: nrkbo 20123: Leaf order: 20123: meet 17 2 5 0,2 20123: join 18 2 5 0,2,2 20123: d 2 0 2 2,2,2,2,2 20123: c 3 0 3 1,2,2,2 20123: b 3 0 3 1,2,2 20123: a 4 0 4 1,2 NO CLASH, using fixed ground order 20124: Facts: 20124: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20124: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20124: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20124: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20124: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20124: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20124: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20124: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20124: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= join ?26 (meet ?27 (join ?26 (meet ?28 (join ?26 ?27)))) [28, 27, 26] by equation_H68_dual ?26 ?27 ?28 20124: Goal: 20124: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 20124: Order: 20124: kbo 20124: Leaf order: 20124: meet 17 2 5 0,2 20124: join 18 2 5 0,2,2 20124: d 2 0 2 2,2,2,2,2 20124: c 3 0 3 1,2,2,2 20124: b 3 0 3 1,2,2 20124: a 4 0 4 1,2 NO CLASH, using fixed ground order 20125: Facts: 20125: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20125: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20125: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20125: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20125: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20125: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20125: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20125: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20125: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= join ?26 (meet ?27 (join ?26 (meet ?28 (join ?26 ?27)))) [28, 27, 26] by equation_H68_dual ?26 ?27 ?28 20125: Goal: 20125: Id : 1, {_}: meet a (join b (meet c (join a d))) =>= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 20125: Order: 20125: lpo 20125: Leaf order: 20125: meet 17 2 5 0,2 20125: join 18 2 5 0,2,2 20125: d 2 0 2 2,2,2,2,2 20125: c 3 0 3 1,2,2,2 20125: b 3 0 3 1,2,2 20125: a 4 0 4 1,2 % SZS status Timeout for LAT131-1.p NO CLASH, using fixed ground order 20152: Facts: 20152: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20152: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20152: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20152: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20152: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20152: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20152: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20152: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20152: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= meet (join ?26 (meet ?28 (join ?26 ?27))) (join ?26 (meet ?27 (join ?26 ?28))) [28, 27, 26] by equation_H69_dual ?26 ?27 ?28 20152: Goal: 20152: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 20152: Order: 20152: nrkbo 20152: Leaf order: 20152: meet 18 2 5 0,2 20152: join 19 2 5 0,2,2 20152: d 2 0 2 2,2,2,2,2 20152: c 3 0 3 1,2,2,2 20152: b 3 0 3 1,2,2 20152: a 4 0 4 1,2 NO CLASH, using fixed ground order 20153: Facts: 20153: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20153: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20153: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20153: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20153: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20153: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20153: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20153: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20153: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= meet (join ?26 (meet ?28 (join ?26 ?27))) (join ?26 (meet ?27 (join ?26 ?28))) [28, 27, 26] by equation_H69_dual ?26 ?27 ?28 20153: Goal: 20153: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 20153: Order: 20153: kbo 20153: Leaf order: 20153: meet 18 2 5 0,2 20153: join 19 2 5 0,2,2 20153: d 2 0 2 2,2,2,2,2 20153: c 3 0 3 1,2,2,2 20153: b 3 0 3 1,2,2 20153: a 4 0 4 1,2 NO CLASH, using fixed ground order 20154: Facts: 20154: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20154: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20154: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20154: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20154: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20154: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20154: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20154: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20154: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= meet (join ?26 (meet ?28 (join ?26 ?27))) (join ?26 (meet ?27 (join ?26 ?28))) [28, 27, 26] by equation_H69_dual ?26 ?27 ?28 20154: Goal: 20154: Id : 1, {_}: meet a (join b (meet c (join a d))) =>= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 20154: Order: 20154: lpo 20154: Leaf order: 20154: meet 18 2 5 0,2 20154: join 19 2 5 0,2,2 20154: d 2 0 2 2,2,2,2,2 20154: c 3 0 3 1,2,2,2 20154: b 3 0 3 1,2,2 20154: a 4 0 4 1,2 % SZS status Timeout for LAT132-1.p NO CLASH, using fixed ground order 20170: Facts: 20170: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20170: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20170: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20170: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20170: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20170: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20170: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20170: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20170: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =<= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27)))) [28, 27, 26] by equation_H55 ?26 ?27 ?28 20170: Goal: 20170: Id : 1, {_}: join a (meet b (join a c)) =<= join a (meet (join a (meet b (join a c))) (join c (meet a b))) [] by prove_H6_dual 20170: Order: 20170: nrkbo 20170: Leaf order: 20170: meet 16 2 4 0,2,2 20170: join 20 2 6 0,2 20170: c 3 0 3 2,2,2,2 20170: b 3 0 3 1,2,2 20170: a 6 0 6 1,2 NO CLASH, using fixed ground order 20171: Facts: 20171: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20171: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20171: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20171: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20171: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20171: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20171: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20171: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20171: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =<= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27)))) [28, 27, 26] by equation_H55 ?26 ?27 ?28 20171: Goal: 20171: Id : 1, {_}: join a (meet b (join a c)) =<= join a (meet (join a (meet b (join a c))) (join c (meet a b))) [] by prove_H6_dual 20171: Order: 20171: kbo 20171: Leaf order: 20171: meet 16 2 4 0,2,2 20171: join 20 2 6 0,2 20171: c 3 0 3 2,2,2,2 20171: b 3 0 3 1,2,2 20171: a 6 0 6 1,2 NO CLASH, using fixed ground order 20172: Facts: 20172: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20172: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20172: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20172: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20172: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20172: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20172: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20172: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20172: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =?= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27)))) [28, 27, 26] by equation_H55 ?26 ?27 ?28 20172: Goal: 20172: Id : 1, {_}: join a (meet b (join a c)) =<= join a (meet (join a (meet b (join a c))) (join c (meet a b))) [] by prove_H6_dual 20172: Order: 20172: lpo 20172: Leaf order: 20172: meet 16 2 4 0,2,2 20172: join 20 2 6 0,2 20172: c 3 0 3 2,2,2,2 20172: b 3 0 3 1,2,2 20172: a 6 0 6 1,2 % SZS status Timeout for LAT133-1.p NO CLASH, using fixed ground order 20205: Facts: 20205: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20205: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20205: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20205: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20205: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20205: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20205: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20205: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20205: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?26 ?27) (join (meet ?26 ?27) ?28)) [28, 27, 26] by equation_H61 ?26 ?27 ?28 20205: Goal: 20205: Id : 1, {_}: meet (join a b) (join a c) =<= join a (meet (join b (meet c (join a b))) (join c (meet a b))) [] by prove_H22_dual 20205: Order: 20205: kbo 20205: Leaf order: 20205: meet 16 2 4 0,2 20205: c 3 0 3 2,2,2 20205: join 20 2 6 0,1,2 20205: b 4 0 4 2,1,2 20205: a 5 0 5 1,1,2 NO CLASH, using fixed ground order 20204: Facts: 20204: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20204: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20204: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20204: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20204: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20204: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20204: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20204: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20204: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?26 ?27) (join (meet ?26 ?27) ?28)) [28, 27, 26] by equation_H61 ?26 ?27 ?28 20204: Goal: 20204: Id : 1, {_}: meet (join a b) (join a c) =<= join a (meet (join b (meet c (join a b))) (join c (meet a b))) [] by prove_H22_dual 20204: Order: 20204: nrkbo 20204: Leaf order: 20204: meet 16 2 4 0,2 20204: c 3 0 3 2,2,2 20204: join 20 2 6 0,1,2 20204: b 4 0 4 2,1,2 20204: a 5 0 5 1,1,2 NO CLASH, using fixed ground order 20206: Facts: 20206: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20206: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20206: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20206: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20206: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20206: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20206: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20206: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20206: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?26 ?27) (join (meet ?26 ?27) ?28)) [28, 27, 26] by equation_H61 ?26 ?27 ?28 20206: Goal: 20206: Id : 1, {_}: meet (join a b) (join a c) =<= join a (meet (join b (meet c (join a b))) (join c (meet a b))) [] by prove_H22_dual 20206: Order: 20206: lpo 20206: Leaf order: 20206: meet 16 2 4 0,2 20206: c 3 0 3 2,2,2 20206: join 20 2 6 0,1,2 20206: b 4 0 4 2,1,2 20206: a 5 0 5 1,1,2 % SZS status Timeout for LAT134-1.p NO CLASH, using fixed ground order 20243: Facts: 20243: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20243: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20243: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20243: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20243: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20243: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20243: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20243: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20243: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= meet ?26 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27)))) [28, 27, 26] by equation_H68 ?26 ?27 ?28 20243: Goal: 20243: Id : 1, {_}: join a (meet b (join c (meet a d))) =<= join a (meet b (join c (meet d (join a c)))) [] by prove_H39_dual 20243: Order: 20243: nrkbo 20243: Leaf order: 20243: join 17 2 5 0,2 20243: meet 17 2 4 0,2,2 20243: d 2 0 2 2,2,2,2,2 20243: c 3 0 3 1,2,2,2 20243: b 2 0 2 1,2,2 20243: a 4 0 4 1,2 NO CLASH, using fixed ground order 20244: Facts: 20244: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20244: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20244: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20244: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20244: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20244: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20244: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20244: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20244: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= meet ?26 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27)))) [28, 27, 26] by equation_H68 ?26 ?27 ?28 20244: Goal: 20244: Id : 1, {_}: join a (meet b (join c (meet a d))) =<= join a (meet b (join c (meet d (join a c)))) [] by prove_H39_dual 20244: Order: 20244: kbo 20244: Leaf order: 20244: join 17 2 5 0,2 20244: meet 17 2 4 0,2,2 20244: d 2 0 2 2,2,2,2,2 20244: c 3 0 3 1,2,2,2 20244: b 2 0 2 1,2,2 20244: a 4 0 4 1,2 NO CLASH, using fixed ground order 20245: Facts: 20245: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20245: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20245: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20245: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20245: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20245: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20245: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20245: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20245: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= meet ?26 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27)))) [28, 27, 26] by equation_H68 ?26 ?27 ?28 20245: Goal: 20245: Id : 1, {_}: join a (meet b (join c (meet a d))) =>= join a (meet b (join c (meet d (join a c)))) [] by prove_H39_dual 20245: Order: 20245: lpo 20245: Leaf order: 20245: join 17 2 5 0,2 20245: meet 17 2 4 0,2,2 20245: d 2 0 2 2,2,2,2,2 20245: c 3 0 3 1,2,2,2 20245: b 2 0 2 1,2,2 20245: a 4 0 4 1,2 % SZS status Timeout for LAT135-1.p NO CLASH, using fixed ground order 20272: Facts: 20272: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20272: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20272: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20272: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20272: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20272: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20272: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20272: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20272: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= join (meet ?26 (join ?28 (meet ?26 ?27))) (meet ?26 (join ?27 (meet ?26 ?28))) [28, 27, 26] by equation_H69 ?26 ?27 ?28 20272: Goal: 20272: Id : 1, {_}: join a (meet b (join c (meet a d))) =<= join a (meet b (join c (meet d (join a c)))) [] by prove_H39_dual 20272: Order: 20272: nrkbo 20272: Leaf order: 20272: join 18 2 5 0,2 20272: meet 18 2 4 0,2,2 20272: d 2 0 2 2,2,2,2,2 20272: c 3 0 3 1,2,2,2 20272: b 2 0 2 1,2,2 20272: a 4 0 4 1,2 NO CLASH, using fixed ground order 20273: Facts: 20273: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20273: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20273: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20273: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20273: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20273: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20273: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20273: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20273: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= join (meet ?26 (join ?28 (meet ?26 ?27))) (meet ?26 (join ?27 (meet ?26 ?28))) [28, 27, 26] by equation_H69 ?26 ?27 ?28 20273: Goal: 20273: Id : 1, {_}: join a (meet b (join c (meet a d))) =<= join a (meet b (join c (meet d (join a c)))) [] by prove_H39_dual 20273: Order: 20273: kbo 20273: Leaf order: 20273: join 18 2 5 0,2 20273: meet 18 2 4 0,2,2 20273: d 2 0 2 2,2,2,2,2 20273: c 3 0 3 1,2,2,2 20273: b 2 0 2 1,2,2 20273: a 4 0 4 1,2 NO CLASH, using fixed ground order 20274: Facts: 20274: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20274: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20274: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20274: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20274: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20274: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20274: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20274: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20274: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= join (meet ?26 (join ?28 (meet ?26 ?27))) (meet ?26 (join ?27 (meet ?26 ?28))) [28, 27, 26] by equation_H69 ?26 ?27 ?28 20274: Goal: 20274: Id : 1, {_}: join a (meet b (join c (meet a d))) =>= join a (meet b (join c (meet d (join a c)))) [] by prove_H39_dual 20274: Order: 20274: lpo 20274: Leaf order: 20274: join 18 2 5 0,2 20274: meet 18 2 4 0,2,2 20274: d 2 0 2 2,2,2,2,2 20274: c 3 0 3 1,2,2,2 20274: b 2 0 2 1,2,2 20274: a 4 0 4 1,2 % SZS status Timeout for LAT136-1.p NO CLASH, using fixed ground order 20301: Facts: 20301: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20301: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20301: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20301: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20301: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20301: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20301: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20301: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20301: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= join (meet ?26 (join ?28 (meet ?26 ?27))) (meet ?26 (join ?27 (meet ?26 ?28))) [28, 27, 26] by equation_H69 ?26 ?27 ?28 20301: Goal: 20301: Id : 1, {_}: join a (meet b (join c (meet a d))) =<= join a (meet b (join c (meet d (join c (meet a b))))) [] by prove_H40_dual 20301: Order: 20301: nrkbo 20301: Leaf order: 20301: join 18 2 5 0,2 20301: meet 19 2 5 0,2,2 20301: d 2 0 2 2,2,2,2,2 20301: c 3 0 3 1,2,2,2 20301: b 3 0 3 1,2,2 20301: a 4 0 4 1,2 NO CLASH, using fixed ground order 20302: Facts: 20302: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20302: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20302: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20302: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20302: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20302: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20302: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20302: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20302: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= join (meet ?26 (join ?28 (meet ?26 ?27))) (meet ?26 (join ?27 (meet ?26 ?28))) [28, 27, 26] by equation_H69 ?26 ?27 ?28 20302: Goal: 20302: Id : 1, {_}: join a (meet b (join c (meet a d))) =<= join a (meet b (join c (meet d (join c (meet a b))))) [] by prove_H40_dual 20302: Order: 20302: kbo 20302: Leaf order: 20302: join 18 2 5 0,2 20302: meet 19 2 5 0,2,2 20302: d 2 0 2 2,2,2,2,2 20302: c 3 0 3 1,2,2,2 20302: b 3 0 3 1,2,2 20302: a 4 0 4 1,2 NO CLASH, using fixed ground order 20303: Facts: 20303: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20303: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20303: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20303: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20303: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20303: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20303: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20303: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20303: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= join (meet ?26 (join ?28 (meet ?26 ?27))) (meet ?26 (join ?27 (meet ?26 ?28))) [28, 27, 26] by equation_H69 ?26 ?27 ?28 20303: Goal: 20303: Id : 1, {_}: join a (meet b (join c (meet a d))) =<= join a (meet b (join c (meet d (join c (meet a b))))) [] by prove_H40_dual 20303: Order: 20303: lpo 20303: Leaf order: 20303: join 18 2 5 0,2 20303: meet 19 2 5 0,2,2 20303: d 2 0 2 2,2,2,2,2 20303: c 3 0 3 1,2,2,2 20303: b 3 0 3 1,2,2 20303: a 4 0 4 1,2 % SZS status Timeout for LAT137-1.p NO CLASH, using fixed ground order 20331: Facts: 20331: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20331: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20331: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20331: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20331: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20331: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20331: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20331: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20331: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?26 ?27) (meet (join ?26 ?27) ?28)) [28, 27, 26] by equation_H61_dual ?26 ?27 ?28 20331: Goal: 20331: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 20331: Order: 20331: nrkbo 20331: Leaf order: 20331: join 16 2 4 0,2,2 20331: meet 20 2 6 0,2 20331: c 3 0 3 2,2,2,2 20331: b 3 0 3 1,2,2 20331: a 6 0 6 1,2 NO CLASH, using fixed ground order 20332: Facts: 20332: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20332: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20332: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20332: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20332: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20332: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20332: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20332: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20332: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?26 ?27) (meet (join ?26 ?27) ?28)) [28, 27, 26] by equation_H61_dual ?26 ?27 ?28 20332: Goal: 20332: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 20332: Order: 20332: kbo 20332: Leaf order: 20332: join 16 2 4 0,2,2 20332: meet 20 2 6 0,2 20332: c 3 0 3 2,2,2,2 20332: b 3 0 3 1,2,2 20332: a 6 0 6 1,2 NO CLASH, using fixed ground order 20333: Facts: 20333: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20333: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20333: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20333: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20333: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20333: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20333: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 20333: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 20333: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?26 ?27) (meet (join ?26 ?27) ?28)) [28, 27, 26] by equation_H61_dual ?26 ?27 ?28 20333: Goal: 20333: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 20333: Order: 20333: lpo 20333: Leaf order: 20333: join 16 2 4 0,2,2 20333: meet 20 2 6 0,2 20333: c 3 0 3 2,2,2,2 20333: b 3 0 3 1,2,2 20333: a 6 0 6 1,2 % SZS status Timeout for LAT171-1.p NO CLASH, using fixed ground order 20686: Facts: 20686: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 20686: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 20686: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 20686: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 20686: Id : 6, {_}: implies x y =>= implies y z [] by lemma_antecedent 20686: Goal: 20686: Id : 1, {_}: implies x z =>= truth [] by prove_wajsberg_lemma 20686: Order: 20686: nrkbo 20686: Leaf order: 20686: y 2 0 0 20686: not 2 1 0 20686: truth 4 0 1 3 20686: implies 16 2 1 0,2 20686: z 2 0 1 2,2 20686: x 2 0 1 1,2 NO CLASH, using fixed ground order 20687: Facts: 20687: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 20687: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 20687: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 20687: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 20687: Id : 6, {_}: implies x y =>= implies y z [] by lemma_antecedent 20687: Goal: 20687: Id : 1, {_}: implies x z =>= truth [] by prove_wajsberg_lemma 20687: Order: 20687: kbo 20687: Leaf order: 20687: y 2 0 0 20687: not 2 1 0 20687: truth 4 0 1 3 20687: implies 16 2 1 0,2 20687: z 2 0 1 2,2 20687: x 2 0 1 1,2 NO CLASH, using fixed ground order 20688: Facts: 20688: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 20688: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 20688: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 20688: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 20688: Id : 6, {_}: implies x y =>= implies y z [] by lemma_antecedent 20688: Goal: 20688: Id : 1, {_}: implies x z =>= truth [] by prove_wajsberg_lemma 20688: Order: 20688: lpo 20688: Leaf order: 20688: y 2 0 0 20688: not 2 1 0 20688: truth 4 0 1 3 20688: implies 16 2 1 0,2 20688: z 2 0 1 2,2 20688: x 2 0 1 1,2 % SZS status Timeout for LCL136-1.p NO CLASH, using fixed ground order 20715: Facts: 20715: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 20715: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 20715: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 20715: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 20715: Goal: 20715: Id : 1, {_}: implies (implies (implies x y) y) (implies (implies y z) (implies x z)) =>= truth [] by prove_wajsberg_lemma 20715: Order: 20715: nrkbo 20715: Leaf order: 20715: not 2 1 0 20715: truth 4 0 1 3 20715: z 2 0 2 2,1,2,2 20715: implies 19 2 6 0,2 20715: y 3 0 3 2,1,1,2 20715: x 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 20716: Facts: 20716: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 20716: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 20716: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 20716: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 20716: Goal: 20716: Id : 1, {_}: implies (implies (implies x y) y) (implies (implies y z) (implies x z)) =>= truth [] by prove_wajsberg_lemma 20716: Order: 20716: kbo 20716: Leaf order: 20716: not 2 1 0 20716: truth 4 0 1 3 20716: z 2 0 2 2,1,2,2 20716: implies 19 2 6 0,2 20716: y 3 0 3 2,1,1,2 20716: x 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 20717: Facts: 20717: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 20717: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 20717: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 20717: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 20717: Goal: 20717: Id : 1, {_}: implies (implies (implies x y) y) (implies (implies y z) (implies x z)) =>= truth [] by prove_wajsberg_lemma 20717: Order: 20717: lpo 20717: Leaf order: 20717: not 2 1 0 20717: truth 4 0 1 3 20717: z 2 0 2 2,1,2,2 20717: implies 19 2 6 0,2 20717: y 3 0 3 2,1,1,2 20717: x 2 0 2 1,1,1,2 % SZS status Timeout for LCL137-1.p NO CLASH, using fixed ground order 20733: Facts: 20733: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 20733: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 20733: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 20733: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 20733: Id : 6, {_}: or ?14 ?15 =<= implies (not ?14) ?15 [15, 14] by or_definition ?14 ?15 20733: Id : 7, {_}: or (or ?17 ?18) ?19 =?= or ?17 (or ?18 ?19) [19, 18, 17] by or_associativity ?17 ?18 ?19 20733: Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22 20733: Id : 9, {_}: and ?24 ?25 =<= not (or (not ?24) (not ?25)) [25, 24] by and_definition ?24 ?25 20733: Id : 10, {_}: and (and ?27 ?28) ?29 =?= and ?27 (and ?28 ?29) [29, 28, 27] by and_associativity ?27 ?28 ?29 20733: Id : 11, {_}: and ?31 ?32 =?= and ?32 ?31 [32, 31] by and_commutativity ?31 ?32 20733: Goal: 20733: Id : 1, {_}: not (or (and x (or x x)) (and x x)) =<= and (not x) (or (or (not x) (not x)) (and (not x) (not x))) [] by prove_wajsberg_theorem 20733: Order: 20733: nrkbo 20733: Leaf order: 20733: implies 14 2 0 20733: truth 3 0 0 20733: not 12 1 6 0,2 20733: and 11 2 4 0,1,1,2 20733: or 12 2 4 0,1,2 20733: x 10 0 10 1,1,1,2 NO CLASH, using fixed ground order 20734: Facts: 20734: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 20734: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 20734: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 20734: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 20734: Id : 6, {_}: or ?14 ?15 =<= implies (not ?14) ?15 [15, 14] by or_definition ?14 ?15 20734: Id : 7, {_}: or (or ?17 ?18) ?19 =>= or ?17 (or ?18 ?19) [19, 18, 17] by or_associativity ?17 ?18 ?19 20734: Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22 20734: Id : 9, {_}: and ?24 ?25 =<= not (or (not ?24) (not ?25)) [25, 24] by and_definition ?24 ?25 20734: Id : 10, {_}: and (and ?27 ?28) ?29 =>= and ?27 (and ?28 ?29) [29, 28, 27] by and_associativity ?27 ?28 ?29 20734: Id : 11, {_}: and ?31 ?32 =?= and ?32 ?31 [32, 31] by and_commutativity ?31 ?32 20734: Goal: NO CLASH, using fixed ground order 20735: Facts: 20735: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 20735: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 20735: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 20735: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 20735: Id : 6, {_}: or ?14 ?15 =>= implies (not ?14) ?15 [15, 14] by or_definition ?14 ?15 20735: Id : 7, {_}: or (or ?17 ?18) ?19 =>= or ?17 (or ?18 ?19) [19, 18, 17] by or_associativity ?17 ?18 ?19 20735: Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22 20735: Id : 9, {_}: and ?24 ?25 =<= not (or (not ?24) (not ?25)) [25, 24] by and_definition ?24 ?25 20735: Id : 10, {_}: and (and ?27 ?28) ?29 =>= and ?27 (and ?28 ?29) [29, 28, 27] by and_associativity ?27 ?28 ?29 20735: Id : 11, {_}: and ?31 ?32 =?= and ?32 ?31 [32, 31] by and_commutativity ?31 ?32 20735: Goal: 20735: Id : 1, {_}: not (or (and x (or x x)) (and x x)) =<= and (not x) (or (or (not x) (not x)) (and (not x) (not x))) [] by prove_wajsberg_theorem 20735: Order: 20735: lpo 20735: Leaf order: 20735: implies 14 2 0 20735: truth 3 0 0 20735: not 12 1 6 0,2 20735: and 11 2 4 0,1,1,2 20735: or 12 2 4 0,1,2 20735: x 10 0 10 1,1,1,2 20734: Id : 1, {_}: not (or (and x (or x x)) (and x x)) =<= and (not x) (or (or (not x) (not x)) (and (not x) (not x))) [] by prove_wajsberg_theorem 20734: Order: 20734: kbo 20734: Leaf order: 20734: implies 14 2 0 20734: truth 3 0 0 20734: not 12 1 6 0,2 20734: and 11 2 4 0,1,1,2 20734: or 12 2 4 0,1,2 20734: x 10 0 10 1,1,1,2 % SZS status Timeout for LCL165-1.p NO CLASH, using fixed ground order 20763: Facts: 20763: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 20763: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 20763: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 20763: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 20763: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 20763: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 20763: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 20763: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 20763: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 20763: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 20763: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 20763: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 20763: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 20763: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 20763: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 20763: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 20763: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 20763: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 20763: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 20763: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 20763: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 20763: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 20763: Goal: 20763: Id : 1, {_}: associator x y (add u v) =<= add (associator x y u) (associator x y v) [] by prove_linearised_form1 20763: Order: 20763: kbo 20763: Leaf order: 20763: commutator 1 2 0 20763: additive_inverse 22 1 0 20763: multiply 40 2 0 20763: additive_identity 8 0 0 20763: associator 4 3 3 0,2 20763: add 26 2 2 0,3,2 20763: v 2 0 2 2,3,2 20763: u 2 0 2 1,3,2 20763: y 3 0 3 2,2 20763: x 3 0 3 1,2 NO CLASH, using fixed ground order 20762: Facts: 20762: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 20762: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 20762: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 20762: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 20762: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 20762: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 20762: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 20762: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 20762: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 20762: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 20762: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 20762: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 20762: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 20762: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 20762: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 20762: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 20762: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 20762: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 20762: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 20762: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 20762: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 20762: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 20762: Goal: 20762: Id : 1, {_}: associator x y (add u v) =<= add (associator x y u) (associator x y v) [] by prove_linearised_form1 20762: Order: 20762: nrkbo 20762: Leaf order: 20762: commutator 1 2 0 20762: additive_inverse 22 1 0 20762: multiply 40 2 0 20762: additive_identity 8 0 0 20762: associator 4 3 3 0,2 20762: add 26 2 2 0,3,2 20762: v 2 0 2 2,3,2 20762: u 2 0 2 1,3,2 20762: y 3 0 3 2,2 20762: x 3 0 3 1,2 NO CLASH, using fixed ground order 20764: Facts: 20764: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 20764: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 20764: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 20764: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 20764: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 20764: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 20764: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 20764: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 20764: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 20764: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 20764: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 20764: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 20764: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 20764: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 20764: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 20764: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 20764: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 20764: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 20764: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 20764: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 20764: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 20764: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 20764: Goal: 20764: Id : 1, {_}: associator x y (add u v) =<= add (associator x y u) (associator x y v) [] by prove_linearised_form1 20764: Order: 20764: lpo 20764: Leaf order: 20764: commutator 1 2 0 20764: additive_inverse 22 1 0 20764: multiply 40 2 0 20764: additive_identity 8 0 0 20764: associator 4 3 3 0,2 20764: add 26 2 2 0,3,2 20764: v 2 0 2 2,3,2 20764: u 2 0 2 1,3,2 20764: y 3 0 3 2,2 20764: x 3 0 3 1,2 % SZS status Timeout for RNG019-7.p NO CLASH, using fixed ground order 20780: Facts: 20780: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 20780: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 20780: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 20780: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 20780: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 20780: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 20780: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 20780: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 20780: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 20780: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 20780: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 20780: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 20780: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 20780: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 20780: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 20780: Goal: 20780: Id : 1, {_}: associator x (add u v) y =<= add (associator x u y) (associator x v y) [] by prove_linearised_form2 20780: Order: 20780: nrkbo 20780: Leaf order: 20780: commutator 1 2 0 20780: additive_inverse 6 1 0 20780: multiply 22 2 0 20780: additive_identity 8 0 0 20780: associator 4 3 3 0,2 20780: y 3 0 3 3,2 20780: add 18 2 2 0,2,2 20780: v 2 0 2 2,2,2 20780: u 2 0 2 1,2,2 20780: x 3 0 3 1,2 NO CLASH, using fixed ground order 20781: Facts: 20781: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 20781: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 20781: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 20781: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 20781: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 20781: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 20781: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 20781: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 20781: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 20781: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 20781: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 20781: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 20781: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 20781: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 20781: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 20781: Goal: 20781: Id : 1, {_}: associator x (add u v) y =<= add (associator x u y) (associator x v y) [] by prove_linearised_form2 20781: Order: 20781: kbo 20781: Leaf order: 20781: commutator 1 2 0 20781: additive_inverse 6 1 0 20781: multiply 22 2 0 20781: additive_identity 8 0 0 20781: associator 4 3 3 0,2 20781: y 3 0 3 3,2 20781: add 18 2 2 0,2,2 20781: v 2 0 2 2,2,2 20781: u 2 0 2 1,2,2 20781: x 3 0 3 1,2 NO CLASH, using fixed ground order 20782: Facts: 20782: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 20782: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 20782: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 20782: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 20782: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 20782: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 20782: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 20782: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 20782: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 20782: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 20782: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 20782: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 20782: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 20782: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 20782: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 20782: Goal: 20782: Id : 1, {_}: associator x (add u v) y =<= add (associator x u y) (associator x v y) [] by prove_linearised_form2 20782: Order: 20782: lpo 20782: Leaf order: 20782: commutator 1 2 0 20782: additive_inverse 6 1 0 20782: multiply 22 2 0 20782: additive_identity 8 0 0 20782: associator 4 3 3 0,2 20782: y 3 0 3 3,2 20782: add 18 2 2 0,2,2 20782: v 2 0 2 2,2,2 20782: u 2 0 2 1,2,2 20782: x 3 0 3 1,2 % SZS status Timeout for RNG020-6.p NO CLASH, using fixed ground order 20815: Facts: 20815: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 20815: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 20815: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 20815: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 20815: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 20815: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 20815: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 20815: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 20815: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 20815: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 20815: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 20815: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 20815: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 NO CLASH, using fixed ground order 20816: Facts: 20816: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 20816: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 20816: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 20816: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 NO CLASH, using fixed ground order 20817: Facts: 20817: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 20817: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 20816: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 20817: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 20816: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 20817: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 20817: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 20816: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 20817: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 20817: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 20816: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 20817: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 20816: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 20815: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 20816: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 20815: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 20816: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 20816: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 20815: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 20816: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 20815: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 20816: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 20815: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 20816: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 20815: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 20816: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 20815: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 20815: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 20815: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 20815: Goal: 20815: Id : 1, {_}: associator x (add u v) y =<= add (associator x u y) (associator x v y) [] by prove_linearised_form2 20815: Order: 20815: nrkbo 20815: Leaf order: 20815: commutator 1 2 0 20815: additive_inverse 22 1 0 20815: multiply 40 2 0 20815: additive_identity 8 0 0 20815: associator 4 3 3 0,2 20815: y 3 0 3 3,2 20815: add 26 2 2 0,2,2 20815: v 2 0 2 2,2,2 20815: u 2 0 2 1,2,2 20815: x 3 0 3 1,2 20817: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 20816: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 20816: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 20816: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 20816: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 20816: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 20816: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 20816: Goal: 20816: Id : 1, {_}: associator x (add u v) y =<= add (associator x u y) (associator x v y) [] by prove_linearised_form2 20816: Order: 20816: kbo 20816: Leaf order: 20816: commutator 1 2 0 20816: additive_inverse 22 1 0 20816: multiply 40 2 0 20816: additive_identity 8 0 0 20816: associator 4 3 3 0,2 20816: y 3 0 3 3,2 20816: add 26 2 2 0,2,2 20816: v 2 0 2 2,2,2 20816: u 2 0 2 1,2,2 20816: x 3 0 3 1,2 20817: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 20817: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 20817: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 20817: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 20817: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 20817: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 20817: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 20817: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 20817: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 20817: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 20817: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 20817: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 20817: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 20817: Goal: 20817: Id : 1, {_}: associator x (add u v) y =<= add (associator x u y) (associator x v y) [] by prove_linearised_form2 20817: Order: 20817: lpo 20817: Leaf order: 20817: commutator 1 2 0 20817: additive_inverse 22 1 0 20817: multiply 40 2 0 20817: additive_identity 8 0 0 20817: associator 4 3 3 0,2 20817: y 3 0 3 3,2 20817: add 26 2 2 0,2,2 20817: v 2 0 2 2,2,2 20817: u 2 0 2 1,2,2 20817: x 3 0 3 1,2 % SZS status Timeout for RNG020-7.p NO CLASH, using fixed ground order 20843: Facts: 20843: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 20843: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 20843: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 20843: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 20843: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 20843: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 20843: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 20843: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 20843: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 20843: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 20843: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 20843: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 20843: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 20843: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 20843: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 20843: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 20843: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 20843: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 20843: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 20843: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 20843: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 20843: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 20843: Goal: 20843: Id : 1, {_}: associator (add u v) x y =<= add (associator u x y) (associator v x y) [] by prove_linearised_form3 20843: Order: 20843: kbo 20843: Leaf order: 20843: commutator 1 2 0 20843: additive_inverse 22 1 0 20843: multiply 40 2 0 20843: additive_identity 8 0 0 20843: associator 4 3 3 0,2 20843: y 3 0 3 3,2 20843: x 3 0 3 2,2 20843: add 26 2 2 0,1,2 20843: v 2 0 2 2,1,2 20843: u 2 0 2 1,1,2 NO CLASH, using fixed ground order 20842: Facts: 20842: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 20842: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 20842: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 20842: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 20842: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 20842: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 20842: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 20842: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 20842: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 20842: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 20842: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 20842: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 20842: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 20842: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 20842: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 20842: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 20842: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 20842: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 20842: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 20842: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 20842: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 20842: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 20842: Goal: 20842: Id : 1, {_}: associator (add u v) x y =<= add (associator u x y) (associator v x y) [] by prove_linearised_form3 20842: Order: 20842: nrkbo 20842: Leaf order: 20842: commutator 1 2 0 20842: additive_inverse 22 1 0 20842: multiply 40 2 0 20842: additive_identity 8 0 0 20842: associator 4 3 3 0,2 20842: y 3 0 3 3,2 20842: x 3 0 3 2,2 20842: add 26 2 2 0,1,2 20842: v 2 0 2 2,1,2 20842: u 2 0 2 1,1,2 NO CLASH, using fixed ground order 20844: Facts: 20844: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 20844: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 20844: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 20844: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 20844: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 20844: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 20844: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 20844: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 20844: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 20844: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 20844: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 20844: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 20844: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 20844: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 20844: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 20844: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 20844: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 20844: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 20844: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 20844: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 20844: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 20844: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 20844: Goal: 20844: Id : 1, {_}: associator (add u v) x y =<= add (associator u x y) (associator v x y) [] by prove_linearised_form3 20844: Order: 20844: lpo 20844: Leaf order: 20844: commutator 1 2 0 20844: additive_inverse 22 1 0 20844: multiply 40 2 0 20844: additive_identity 8 0 0 20844: associator 4 3 3 0,2 20844: y 3 0 3 3,2 20844: x 3 0 3 2,2 20844: add 26 2 2 0,1,2 20844: v 2 0 2 2,1,2 20844: u 2 0 2 1,1,2 % SZS status Timeout for RNG021-7.p NO CLASH, using fixed ground order 20871: Facts: 20871: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 20871: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 20871: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 20871: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 20871: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 20871: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 20871: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 20871: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 20871: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 20871: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 20871: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 20871: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 20871: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 20871: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 20871: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 20871: Goal: 20871: Id : 1, {_}: add (associator x y z) (associator x z y) =>= additive_identity [] by prove_equation 20871: Order: 20871: nrkbo 20871: Leaf order: 20871: commutator 1 2 0 20871: additive_inverse 6 1 0 20871: multiply 22 2 0 20871: additive_identity 9 0 1 3 20871: add 17 2 1 0,2 20871: associator 3 3 2 0,1,2 20871: z 2 0 2 3,1,2 20871: y 2 0 2 2,1,2 20871: x 2 0 2 1,1,2 NO CLASH, using fixed ground order 20872: Facts: 20872: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 20872: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 20872: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 20872: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 20872: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 20872: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 20872: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 20872: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 20872: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 20872: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 20872: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 20872: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 20872: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 20872: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 20872: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 20872: Goal: 20872: Id : 1, {_}: add (associator x y z) (associator x z y) =>= additive_identity [] by prove_equation 20872: Order: 20872: kbo 20872: Leaf order: 20872: commutator 1 2 0 20872: additive_inverse 6 1 0 20872: multiply 22 2 0 20872: additive_identity 9 0 1 3 20872: add 17 2 1 0,2 20872: associator 3 3 2 0,1,2 20872: z 2 0 2 3,1,2 20872: y 2 0 2 2,1,2 20872: x 2 0 2 1,1,2 NO CLASH, using fixed ground order 20873: Facts: 20873: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 20873: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 20873: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 20873: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 20873: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 20873: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 20873: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 20873: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 20873: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 20873: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 20873: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 20873: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 20873: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 20873: Id : 15, {_}: associator ?37 ?38 ?39 =>= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 20873: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 20873: Goal: 20873: Id : 1, {_}: add (associator x y z) (associator x z y) =>= additive_identity [] by prove_equation 20873: Order: 20873: lpo 20873: Leaf order: 20873: commutator 1 2 0 20873: additive_inverse 6 1 0 20873: multiply 22 2 0 20873: additive_identity 9 0 1 3 20873: add 17 2 1 0,2 20873: associator 3 3 2 0,1,2 20873: z 2 0 2 3,1,2 20873: y 2 0 2 2,1,2 20873: x 2 0 2 1,1,2 % SZS status Timeout for RNG025-4.p NO CLASH, using fixed ground order 20890: Facts: 20890: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_for_addition ?2 ?3 20890: Id : 3, {_}: add ?5 (add ?6 ?7) =?= add (add ?5 ?6) ?7 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7 20890: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9 20890: Id : 5, {_}: add ?11 additive_identity =>= ?11 [11] by right_additive_identity ?11 20890: Id : 6, {_}: multiply additive_identity ?13 =>= additive_identity [13] by left_multiplicative_zero ?13 20890: Id : 7, {_}: multiply ?15 additive_identity =>= additive_identity [15] by right_multiplicative_zero ?15 20890: Id : 8, {_}: add (additive_inverse ?17) ?17 =>= additive_identity [17] by left_additive_inverse ?17 20890: Id : 9, {_}: add ?19 (additive_inverse ?19) =>= additive_identity [19] by right_additive_inverse ?19 20890: Id : 10, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 20890: Id : 11, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 20890: Id : 12, {_}: additive_inverse (additive_inverse ?29) =>= ?29 [29] by additive_inverse_additive_inverse ?29 20890: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 20890: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 20890: Id : 15, {_}: associator ?37 ?38 (add ?39 ?40) =<= add (associator ?37 ?38 ?39) (associator ?37 ?38 ?40) [40, 39, 38, 37] by linearised_associator1 ?37 ?38 ?39 ?40 20890: Id : 16, {_}: associator ?42 (add ?43 ?44) ?45 =<= add (associator ?42 ?43 ?45) (associator ?42 ?44 ?45) [45, 44, 43, 42] by linearised_associator2 ?42 ?43 ?44 ?45 20890: Id : 17, {_}: associator (add ?47 ?48) ?49 ?50 =<= add (associator ?47 ?49 ?50) (associator ?48 ?49 ?50) [50, 49, 48, 47] by linearised_associator3 ?47 ?48 ?49 ?50 NO CLASH, using fixed ground order 20891: Facts: 20891: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_for_addition ?2 ?3 20891: Id : 3, {_}: add ?5 (add ?6 ?7) =<= add (add ?5 ?6) ?7 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7 20891: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9 20891: Id : 5, {_}: add ?11 additive_identity =>= ?11 [11] by right_additive_identity ?11 20891: Id : 6, {_}: multiply additive_identity ?13 =>= additive_identity [13] by left_multiplicative_zero ?13 20891: Id : 7, {_}: multiply ?15 additive_identity =>= additive_identity [15] by right_multiplicative_zero ?15 20891: Id : 8, {_}: add (additive_inverse ?17) ?17 =>= additive_identity [17] by left_additive_inverse ?17 20891: Id : 9, {_}: add ?19 (additive_inverse ?19) =>= additive_identity [19] by right_additive_inverse ?19 NO CLASH, using fixed ground order 20892: Facts: 20892: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_for_addition ?2 ?3 20892: Id : 3, {_}: add ?5 (add ?6 ?7) =<= add (add ?5 ?6) ?7 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7 20892: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9 20892: Id : 5, {_}: add ?11 additive_identity =>= ?11 [11] by right_additive_identity ?11 20892: Id : 6, {_}: multiply additive_identity ?13 =>= additive_identity [13] by left_multiplicative_zero ?13 20892: Id : 7, {_}: multiply ?15 additive_identity =>= additive_identity [15] by right_multiplicative_zero ?15 20892: Id : 8, {_}: add (additive_inverse ?17) ?17 =>= additive_identity [17] by left_additive_inverse ?17 20892: Id : 9, {_}: add ?19 (additive_inverse ?19) =>= additive_identity [19] by right_additive_inverse ?19 20892: Id : 10, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 20891: Id : 10, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 20890: Id : 18, {_}: commutator ?52 ?53 =<= add (multiply ?53 ?52) (additive_inverse (multiply ?52 ?53)) [53, 52] by commutator ?52 ?53 20890: Goal: 20892: Id : 11, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 20890: Id : 1, {_}: add (associator a b c) (associator a c b) =>= additive_identity [] by prove_flexible_law 20890: Order: 20890: nrkbo 20890: Leaf order: 20892: Id : 12, {_}: additive_inverse (additive_inverse ?29) =>= ?29 [29] by additive_inverse_additive_inverse ?29 20892: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 20892: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 20892: Id : 15, {_}: associator ?37 ?38 (add ?39 ?40) =>= add (associator ?37 ?38 ?39) (associator ?37 ?38 ?40) [40, 39, 38, 37] by linearised_associator1 ?37 ?38 ?39 ?40 20892: Id : 16, {_}: associator ?42 (add ?43 ?44) ?45 =>= add (associator ?42 ?43 ?45) (associator ?42 ?44 ?45) [45, 44, 43, 42] by linearised_associator2 ?42 ?43 ?44 ?45 20892: Id : 17, {_}: associator (add ?47 ?48) ?49 ?50 =>= add (associator ?47 ?49 ?50) (associator ?48 ?49 ?50) [50, 49, 48, 47] by linearised_associator3 ?47 ?48 ?49 ?50 20892: Id : 18, {_}: commutator ?52 ?53 =<= add (multiply ?53 ?52) (additive_inverse (multiply ?52 ?53)) [53, 52] by commutator ?52 ?53 20892: Goal: 20892: Id : 1, {_}: add (associator a b c) (associator a c b) =>= additive_identity [] by prove_flexible_law 20892: Order: 20892: lpo 20892: Leaf order: 20892: commutator 1 2 0 20892: additive_inverse 5 1 0 20892: multiply 18 2 0 20892: additive_identity 9 0 1 3 20892: add 22 2 1 0,2 20892: associator 11 3 2 0,1,2 20892: c 2 0 2 3,1,2 20892: b 2 0 2 2,1,2 20892: a 2 0 2 1,1,2 20891: Id : 11, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 20890: commutator 1 2 0 20890: additive_inverse 5 1 0 20890: multiply 18 2 0 20890: additive_identity 9 0 1 3 20890: add 22 2 1 0,2 20890: associator 11 3 2 0,1,2 20890: c 2 0 2 3,1,2 20890: b 2 0 2 2,1,2 20890: a 2 0 2 1,1,2 20891: Id : 12, {_}: additive_inverse (additive_inverse ?29) =>= ?29 [29] by additive_inverse_additive_inverse ?29 20891: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 20891: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 20891: Id : 15, {_}: associator ?37 ?38 (add ?39 ?40) =<= add (associator ?37 ?38 ?39) (associator ?37 ?38 ?40) [40, 39, 38, 37] by linearised_associator1 ?37 ?38 ?39 ?40 20891: Id : 16, {_}: associator ?42 (add ?43 ?44) ?45 =<= add (associator ?42 ?43 ?45) (associator ?42 ?44 ?45) [45, 44, 43, 42] by linearised_associator2 ?42 ?43 ?44 ?45 20891: Id : 17, {_}: associator (add ?47 ?48) ?49 ?50 =<= add (associator ?47 ?49 ?50) (associator ?48 ?49 ?50) [50, 49, 48, 47] by linearised_associator3 ?47 ?48 ?49 ?50 20891: Id : 18, {_}: commutator ?52 ?53 =<= add (multiply ?53 ?52) (additive_inverse (multiply ?52 ?53)) [53, 52] by commutator ?52 ?53 20891: Goal: 20891: Id : 1, {_}: add (associator a b c) (associator a c b) =>= additive_identity [] by prove_flexible_law 20891: Order: 20891: kbo 20891: Leaf order: 20891: commutator 1 2 0 20891: additive_inverse 5 1 0 20891: multiply 18 2 0 20891: additive_identity 9 0 1 3 20891: add 22 2 1 0,2 20891: associator 11 3 2 0,1,2 20891: c 2 0 2 3,1,2 20891: b 2 0 2 2,1,2 20891: a 2 0 2 1,1,2 % SZS status Timeout for RNG025-8.p NO CLASH, using fixed ground order 20920: Facts: 20920: Id : 2, {_}: multiply (additive_inverse ?2) (additive_inverse ?3) =>= multiply ?2 ?3 [3, 2] by product_of_inverses ?2 ?3 20920: Id : 3, {_}: multiply (additive_inverse ?5) ?6 =<= additive_inverse (multiply ?5 ?6) [6, 5] by inverse_product1 ?5 ?6 20920: Id : 4, {_}: multiply ?8 (additive_inverse ?9) =<= additive_inverse (multiply ?8 ?9) [9, 8] by inverse_product2 ?8 ?9 20920: Id : 5, {_}: multiply ?11 (add ?12 (additive_inverse ?13)) =<= add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13)) [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13 20920: Id : 6, {_}: multiply (add ?15 (additive_inverse ?16)) ?17 =<= add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17)) [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17 20920: Id : 7, {_}: multiply (additive_inverse ?19) (add ?20 ?21) =<= add (additive_inverse (multiply ?19 ?20)) (additive_inverse (multiply ?19 ?21)) [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21 20920: Id : 8, {_}: multiply (add ?23 ?24) (additive_inverse ?25) =<= add (additive_inverse (multiply ?23 ?25)) (additive_inverse (multiply ?24 ?25)) [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25 20920: Id : 9, {_}: add ?27 ?28 =?= add ?28 ?27 [28, 27] by commutativity_for_addition ?27 ?28 20920: Id : 10, {_}: add ?30 (add ?31 ?32) =?= add (add ?30 ?31) ?32 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32 20920: Id : 11, {_}: add additive_identity ?34 =>= ?34 [34] by left_additive_identity ?34 20920: Id : 12, {_}: add ?36 additive_identity =>= ?36 [36] by right_additive_identity ?36 20920: Id : 13, {_}: multiply additive_identity ?38 =>= additive_identity [38] by left_multiplicative_zero ?38 20920: Id : 14, {_}: multiply ?40 additive_identity =>= additive_identity [40] by right_multiplicative_zero ?40 20920: Id : 15, {_}: add (additive_inverse ?42) ?42 =>= additive_identity [42] by left_additive_inverse ?42 20920: Id : 16, {_}: add ?44 (additive_inverse ?44) =>= additive_identity [44] by right_additive_inverse ?44 20920: Id : 17, {_}: multiply ?46 (add ?47 ?48) =<= add (multiply ?46 ?47) (multiply ?46 ?48) [48, 47, 46] by distribute1 ?46 ?47 ?48 20920: Id : 18, {_}: multiply (add ?50 ?51) ?52 =<= add (multiply ?50 ?52) (multiply ?51 ?52) [52, 51, 50] by distribute2 ?50 ?51 ?52 20920: Id : 19, {_}: additive_inverse (additive_inverse ?54) =>= ?54 [54] by additive_inverse_additive_inverse ?54 20920: Id : 20, {_}: multiply (multiply ?56 ?57) ?57 =?= multiply ?56 (multiply ?57 ?57) [57, 56] by right_alternative ?56 ?57 20920: Id : 21, {_}: multiply (multiply ?59 ?59) ?60 =?= multiply ?59 (multiply ?59 ?60) [60, 59] by left_alternative ?59 ?60 20920: Id : 22, {_}: associator ?62 ?63 (add ?64 ?65) =<= add (associator ?62 ?63 ?64) (associator ?62 ?63 ?65) [65, 64, 63, 62] by linearised_associator1 ?62 ?63 ?64 ?65 20920: Id : 23, {_}: associator ?67 (add ?68 ?69) ?70 =<= add (associator ?67 ?68 ?70) (associator ?67 ?69 ?70) [70, 69, 68, 67] by linearised_associator2 ?67 ?68 ?69 ?70 20920: Id : 24, {_}: associator (add ?72 ?73) ?74 ?75 =<= add (associator ?72 ?74 ?75) (associator ?73 ?74 ?75) [75, 74, 73, 72] by linearised_associator3 ?72 ?73 ?74 ?75 20920: Id : 25, {_}: commutator ?77 ?78 =<= add (multiply ?78 ?77) (additive_inverse (multiply ?77 ?78)) [78, 77] by commutator ?77 ?78 20920: Goal: 20920: Id : 1, {_}: add (associator a b c) (associator a c b) =>= additive_identity [] by prove_flexible_law 20920: Order: 20920: nrkbo 20920: Leaf order: 20920: commutator 1 2 0 20920: multiply 36 2 0 add 20920: additive_inverse 21 1 0 20920: additive_identity 9 0 1 3 20920: add 30 2 1 0,2 20920: associator 11 3 2 0,1,2 20920: c 2 0 2 3,1,2 20920: b 2 0 2 2,1,2 20920: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 20921: Facts: 20921: Id : 2, {_}: multiply (additive_inverse ?2) (additive_inverse ?3) =>= multiply ?2 ?3 [3, 2] by product_of_inverses ?2 ?3 20921: Id : 3, {_}: multiply (additive_inverse ?5) ?6 =<= additive_inverse (multiply ?5 ?6) [6, 5] by inverse_product1 ?5 ?6 20921: Id : 4, {_}: multiply ?8 (additive_inverse ?9) =<= additive_inverse (multiply ?8 ?9) [9, 8] by inverse_product2 ?8 ?9 20921: Id : 5, {_}: multiply ?11 (add ?12 (additive_inverse ?13)) =<= add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13)) [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13 20921: Id : 6, {_}: multiply (add ?15 (additive_inverse ?16)) ?17 =<= add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17)) [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17 20921: Id : 7, {_}: multiply (additive_inverse ?19) (add ?20 ?21) =<= add (additive_inverse (multiply ?19 ?20)) (additive_inverse (multiply ?19 ?21)) [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21 20921: Id : 8, {_}: multiply (add ?23 ?24) (additive_inverse ?25) =<= add (additive_inverse (multiply ?23 ?25)) (additive_inverse (multiply ?24 ?25)) [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25 20921: Id : 9, {_}: add ?27 ?28 =?= add ?28 ?27 [28, 27] by commutativity_for_addition ?27 ?28 20921: Id : 10, {_}: add ?30 (add ?31 ?32) =<= add (add ?30 ?31) ?32 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32 20921: Id : 11, {_}: add additive_identity ?34 =>= ?34 [34] by left_additive_identity ?34 20921: Id : 12, {_}: add ?36 additive_identity =>= ?36 [36] by right_additive_identity ?36 20921: Id : 13, {_}: multiply additive_identity ?38 =>= additive_identity [38] by left_multiplicative_zero ?38 20921: Id : 14, {_}: multiply ?40 additive_identity =>= additive_identity [40] by right_multiplicative_zero ?40 20921: Id : 15, {_}: add (additive_inverse ?42) ?42 =>= additive_identity [42] by left_additive_inverse ?42 20921: Id : 16, {_}: add ?44 (additive_inverse ?44) =>= additive_identity [44] by right_additive_inverse ?44 20921: Id : 17, {_}: multiply ?46 (add ?47 ?48) =<= add (multiply ?46 ?47) (multiply ?46 ?48) [48, 47, 46] by distribute1 ?46 ?47 ?48 20921: Id : 18, {_}: multiply (add ?50 ?51) ?52 =<= add (multiply ?50 ?52) (multiply ?51 ?52) [52, 51, 50] by distribute2 ?50 ?51 ?52 20921: Id : 19, {_}: additive_inverse (additive_inverse ?54) =>= ?54 [54] by additive_inverse_additive_inverse ?54 20921: Id : 20, {_}: multiply (multiply ?56 ?57) ?57 =>= multiply ?56 (multiply ?57 ?57) [57, 56] by right_alternative ?56 ?57 20921: Id : 21, {_}: multiply (multiply ?59 ?59) ?60 =>= multiply ?59 (multiply ?59 ?60) [60, 59] by left_alternative ?59 ?60 20921: Id : 22, {_}: associator ?62 ?63 (add ?64 ?65) =<= add (associator ?62 ?63 ?64) (associator ?62 ?63 ?65) [65, 64, 63, 62] by linearised_associator1 ?62 ?63 ?64 ?65 20921: Id : 23, {_}: associator ?67 (add ?68 ?69) ?70 =<= add (associator ?67 ?68 ?70) (associator ?67 ?69 ?70) [70, 69, 68, 67] by linearised_associator2 ?67 ?68 ?69 ?70 20921: Id : 24, {_}: associator (add ?72 ?73) ?74 ?75 =<= add (associator ?72 ?74 ?75) (associator ?73 ?74 ?75) [75, 74, 73, 72] by linearised_associator3 ?72 ?73 ?74 ?75 20921: Id : 25, {_}: commutator ?77 ?78 =<= add (multiply ?78 ?77) (additive_inverse (multiply ?77 ?78)) [78, 77] by commutator ?77 ?78 20921: Goal: 20921: Id : 1, {_}: add (associator a b c) (associator a c b) =>= additive_identity [] by prove_flexible_law 20921: Order: 20921: kbo 20921: Leaf order: 20921: commutator 1 2 0 20921: multiply 36 2 0 add 20921: additive_inverse 21 1 0 20921: additive_identity 9 0 1 3 20921: add 30 2 1 0,2 20921: associator 11 3 2 0,1,2 20921: c 2 0 2 3,1,2 20921: b 2 0 2 2,1,2 20921: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 20922: Facts: 20922: Id : 2, {_}: multiply (additive_inverse ?2) (additive_inverse ?3) =>= multiply ?2 ?3 [3, 2] by product_of_inverses ?2 ?3 20922: Id : 3, {_}: multiply (additive_inverse ?5) ?6 =<= additive_inverse (multiply ?5 ?6) [6, 5] by inverse_product1 ?5 ?6 20922: Id : 4, {_}: multiply ?8 (additive_inverse ?9) =<= additive_inverse (multiply ?8 ?9) [9, 8] by inverse_product2 ?8 ?9 20922: Id : 5, {_}: multiply ?11 (add ?12 (additive_inverse ?13)) =<= add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13)) [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13 20922: Id : 6, {_}: multiply (add ?15 (additive_inverse ?16)) ?17 =<= add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17)) [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17 20922: Id : 7, {_}: multiply (additive_inverse ?19) (add ?20 ?21) =<= add (additive_inverse (multiply ?19 ?20)) (additive_inverse (multiply ?19 ?21)) [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21 20922: Id : 8, {_}: multiply (add ?23 ?24) (additive_inverse ?25) =<= add (additive_inverse (multiply ?23 ?25)) (additive_inverse (multiply ?24 ?25)) [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25 20922: Id : 9, {_}: add ?27 ?28 =?= add ?28 ?27 [28, 27] by commutativity_for_addition ?27 ?28 20922: Id : 10, {_}: add ?30 (add ?31 ?32) =<= add (add ?30 ?31) ?32 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32 20922: Id : 11, {_}: add additive_identity ?34 =>= ?34 [34] by left_additive_identity ?34 20922: Id : 12, {_}: add ?36 additive_identity =>= ?36 [36] by right_additive_identity ?36 20922: Id : 13, {_}: multiply additive_identity ?38 =>= additive_identity [38] by left_multiplicative_zero ?38 20922: Id : 14, {_}: multiply ?40 additive_identity =>= additive_identity [40] by right_multiplicative_zero ?40 20922: Id : 15, {_}: add (additive_inverse ?42) ?42 =>= additive_identity [42] by left_additive_inverse ?42 20922: Id : 16, {_}: add ?44 (additive_inverse ?44) =>= additive_identity [44] by right_additive_inverse ?44 20922: Id : 17, {_}: multiply ?46 (add ?47 ?48) =<= add (multiply ?46 ?47) (multiply ?46 ?48) [48, 47, 46] by distribute1 ?46 ?47 ?48 20922: Id : 18, {_}: multiply (add ?50 ?51) ?52 =<= add (multiply ?50 ?52) (multiply ?51 ?52) [52, 51, 50] by distribute2 ?50 ?51 ?52 20922: Id : 19, {_}: additive_inverse (additive_inverse ?54) =>= ?54 [54] by additive_inverse_additive_inverse ?54 20922: Id : 20, {_}: multiply (multiply ?56 ?57) ?57 =>= multiply ?56 (multiply ?57 ?57) [57, 56] by right_alternative ?56 ?57 20922: Id : 21, {_}: multiply (multiply ?59 ?59) ?60 =>= multiply ?59 (multiply ?59 ?60) [60, 59] by left_alternative ?59 ?60 20922: Id : 22, {_}: associator ?62 ?63 (add ?64 ?65) =>= add (associator ?62 ?63 ?64) (associator ?62 ?63 ?65) [65, 64, 63, 62] by linearised_associator1 ?62 ?63 ?64 ?65 20922: Id : 23, {_}: associator ?67 (add ?68 ?69) ?70 =>= add (associator ?67 ?68 ?70) (associator ?67 ?69 ?70) [70, 69, 68, 67] by linearised_associator2 ?67 ?68 ?69 ?70 20922: Id : 24, {_}: associator (add ?72 ?73) ?74 ?75 =>= add (associator ?72 ?74 ?75) (associator ?73 ?74 ?75) [75, 74, 73, 72] by linearised_associator3 ?72 ?73 ?74 ?75 20922: Id : 25, {_}: commutator ?77 ?78 =<= add (multiply ?78 ?77) (additive_inverse (multiply ?77 ?78)) [78, 77] by commutator ?77 ?78 20922: Goal: 20922: Id : 1, {_}: add (associator a b c) (associator a c b) =>= additive_identity [] by prove_flexible_law 20922: Order: 20922: lpo 20922: Leaf order: 20922: commutator 1 2 0 20922: multiply 36 2 0 add 20922: additive_inverse 21 1 0 20922: additive_identity 9 0 1 3 20922: add 30 2 1 0,2 20922: associator 11 3 2 0,1,2 20922: c 2 0 2 3,1,2 20922: b 2 0 2 2,1,2 20922: a 2 0 2 1,1,2 % SZS status Timeout for RNG025-9.p NO CLASH, using fixed ground order 20954: Facts: 20954: Id : 2, {_}: multiply (add ?2 ?3) ?3 =>= ?3 [3, 2] by multiply_add ?2 ?3 20954: Id : 3, {_}: multiply ?5 (add ?6 ?7) =<= add (multiply ?6 ?5) (multiply ?7 ?5) [7, 6, 5] by multiply_add_property ?5 ?6 ?7 20954: Id : 4, {_}: add ?9 (inverse ?9) =>= n1 [9] by additive_inverse ?9 20954: Id : 5, {_}: pixley ?11 ?12 ?13 =<= add (multiply ?11 (inverse ?12)) (add (multiply ?11 ?13) (multiply (inverse ?12) ?13)) [13, 12, 11] by pixley_defn ?11 ?12 ?13 20954: Id : 6, {_}: pixley ?15 ?15 ?16 =>= ?16 [16, 15] by pixley1 ?15 ?16 20954: Id : 7, {_}: pixley ?18 ?19 ?19 =>= ?18 [19, 18] by pixley2 ?18 ?19 20954: Id : 8, {_}: pixley ?21 ?22 ?21 =>= ?21 [22, 21] by pixley3 ?21 ?22 20954: Goal: 20954: Id : 1, {_}: add a (multiply b c) =<= multiply (add a b) (add a c) [] by prove_add_multiply_property 20954: Order: 20954: nrkbo 20954: Leaf order: 20954: pixley 4 3 0 20954: n1 1 0 0 20954: inverse 3 1 0 20954: add 9 2 3 0,2 20954: multiply 9 2 2 0,2,2 20954: c 2 0 2 2,2,2 20954: b 2 0 2 1,2,2 20954: a 3 0 3 1,2 NO CLASH, using fixed ground order 20955: Facts: 20955: Id : 2, {_}: multiply (add ?2 ?3) ?3 =>= ?3 [3, 2] by multiply_add ?2 ?3 20955: Id : 3, {_}: multiply ?5 (add ?6 ?7) =<= add (multiply ?6 ?5) (multiply ?7 ?5) [7, 6, 5] by multiply_add_property ?5 ?6 ?7 20955: Id : 4, {_}: add ?9 (inverse ?9) =>= n1 [9] by additive_inverse ?9 20955: Id : 5, {_}: pixley ?11 ?12 ?13 =<= add (multiply ?11 (inverse ?12)) (add (multiply ?11 ?13) (multiply (inverse ?12) ?13)) [13, 12, 11] by pixley_defn ?11 ?12 ?13 20955: Id : 6, {_}: pixley ?15 ?15 ?16 =>= ?16 [16, 15] by pixley1 ?15 ?16 20955: Id : 7, {_}: pixley ?18 ?19 ?19 =>= ?18 [19, 18] by pixley2 ?18 ?19 20955: Id : 8, {_}: pixley ?21 ?22 ?21 =>= ?21 [22, 21] by pixley3 ?21 ?22 20955: Goal: 20955: Id : 1, {_}: add a (multiply b c) =<= multiply (add a b) (add a c) [] by prove_add_multiply_property 20955: Order: 20955: kbo 20955: Leaf order: 20955: pixley 4 3 0 20955: n1 1 0 0 20955: inverse 3 1 0 20955: add 9 2 3 0,2 20955: multiply 9 2 2 0,2,2 20955: c 2 0 2 2,2,2 20955: b 2 0 2 1,2,2 20955: a 3 0 3 1,2 NO CLASH, using fixed ground order 20956: Facts: 20956: Id : 2, {_}: multiply (add ?2 ?3) ?3 =>= ?3 [3, 2] by multiply_add ?2 ?3 20956: Id : 3, {_}: multiply ?5 (add ?6 ?7) =?= add (multiply ?6 ?5) (multiply ?7 ?5) [7, 6, 5] by multiply_add_property ?5 ?6 ?7 20956: Id : 4, {_}: add ?9 (inverse ?9) =>= n1 [9] by additive_inverse ?9 20956: Id : 5, {_}: pixley ?11 ?12 ?13 =<= add (multiply ?11 (inverse ?12)) (add (multiply ?11 ?13) (multiply (inverse ?12) ?13)) [13, 12, 11] by pixley_defn ?11 ?12 ?13 20956: Id : 6, {_}: pixley ?15 ?15 ?16 =>= ?16 [16, 15] by pixley1 ?15 ?16 20956: Id : 7, {_}: pixley ?18 ?19 ?19 =>= ?18 [19, 18] by pixley2 ?18 ?19 20956: Id : 8, {_}: pixley ?21 ?22 ?21 =>= ?21 [22, 21] by pixley3 ?21 ?22 20956: Goal: 20956: Id : 1, {_}: add a (multiply b c) =<= multiply (add a b) (add a c) [] by prove_add_multiply_property 20956: Order: 20956: lpo 20956: Leaf order: 20956: pixley 4 3 0 20956: n1 1 0 0 20956: inverse 3 1 0 20956: add 9 2 3 0,2 20956: multiply 9 2 2 0,2,2 20956: c 2 0 2 2,2,2 20956: b 2 0 2 1,2,2 20956: a 3 0 3 1,2 Statistics : Max weight : 22 Found proof, 38.942991s % SZS status Unsatisfiable for BOO023-1.p % SZS output start CNFRefutation for BOO023-1.p Id : 8, {_}: pixley ?21 ?22 ?21 =>= ?21 [22, 21] by pixley3 ?21 ?22 Id : 12, {_}: multiply ?33 (add ?34 ?35) =<= add (multiply ?34 ?33) (multiply ?35 ?33) [35, 34, 33] by multiply_add_property ?33 ?34 ?35 Id : 6, {_}: pixley ?15 ?15 ?16 =>= ?16 [16, 15] by pixley1 ?15 ?16 Id : 4, {_}: add ?9 (inverse ?9) =>= n1 [9] by additive_inverse ?9 Id : 7, {_}: pixley ?18 ?19 ?19 =>= ?18 [19, 18] by pixley2 ?18 ?19 Id : 5, {_}: pixley ?11 ?12 ?13 =<= add (multiply ?11 (inverse ?12)) (add (multiply ?11 ?13) (multiply (inverse ?12) ?13)) [13, 12, 11] by pixley_defn ?11 ?12 ?13 Id : 2, {_}: multiply (add ?2 ?3) ?3 =>= ?3 [3, 2] by multiply_add ?2 ?3 Id : 3, {_}: multiply ?5 (add ?6 ?7) =<= add (multiply ?6 ?5) (multiply ?7 ?5) [7, 6, 5] by multiply_add_property ?5 ?6 ?7 Id : 19, {_}: pixley ?11 ?12 ?13 =<= add (multiply ?11 (inverse ?12)) (multiply ?13 (add ?11 (inverse ?12))) [13, 12, 11] by Demod 5 with 3 at 2,3 Id : 485, {_}: multiply (pixley ?939 ?940 ?941) (multiply ?941 (add ?939 (inverse ?940))) =>= multiply ?941 (add ?939 (inverse ?940)) [941, 940, 939] by Super 2 with 19 at 1,2 Id : 505, {_}: multiply ?1017 (multiply ?1018 (add ?1017 (inverse ?1018))) =>= multiply ?1018 (add ?1017 (inverse ?1018)) [1018, 1017] by Super 485 with 7 at 1,2 Id : 21, {_}: pixley ?58 ?59 ?60 =<= add (multiply ?58 (inverse ?59)) (multiply ?60 (add ?58 (inverse ?59))) [60, 59, 58] by Demod 5 with 3 at 2,3 Id : 22, {_}: pixley ?62 ?62 ?63 =<= add (multiply ?62 (inverse ?62)) (multiply ?63 n1) [63, 62] by Super 21 with 4 at 2,2,3 Id : 413, {_}: ?825 =<= add (multiply ?826 (inverse ?826)) (multiply ?825 n1) [826, 825] by Demod 22 with 6 at 2 Id : 16, {_}: multiply n1 (inverse ?49) =>= inverse ?49 [49] by Super 2 with 4 at 1,2 Id : 428, {_}: ?870 =<= add (inverse n1) (multiply ?870 n1) [870] by Super 413 with 16 at 1,3 Id : 14, {_}: multiply ?41 (add (add ?42 ?41) ?43) =>= add ?41 (multiply ?43 ?41) [43, 42, 41] by Super 12 with 2 at 1,3 Id : 548, {_}: ?1062 =<= add (inverse n1) (multiply ?1062 n1) [1062] by Super 413 with 16 at 1,3 Id : 593, {_}: add ?1120 n1 =?= add (inverse n1) n1 [1120] by Super 548 with 2 at 2,3 Id : 553, {_}: add ?1072 n1 =?= add (inverse n1) n1 [1072] by Super 548 with 2 at 2,3 Id : 607, {_}: add ?1148 n1 =?= add ?1149 n1 [1149, 1148] by Super 593 with 553 at 3 Id : 13, {_}: multiply ?37 (add ?38 (add ?39 ?37)) =>= add (multiply ?38 ?37) ?37 [39, 38, 37] by Super 12 with 2 at 2,3 Id : 408, {_}: ?63 =<= add (multiply ?62 (inverse ?62)) (multiply ?63 n1) [62, 63] by Demod 22 with 6 at 2 Id : 412, {_}: multiply (multiply ?822 n1) (add ?823 ?822) =<= add (multiply ?823 (multiply ?822 n1)) (multiply ?822 n1) [823, 822] by Super 13 with 408 at 2,2,2 Id : 274, {_}: multiply (multiply ?502 (add ?503 ?504)) (multiply ?504 ?502) =>= multiply ?504 ?502 [504, 503, 502] by Super 2 with 3 at 1,2 Id : 284, {_}: multiply (multiply ?542 n1) (multiply (inverse ?543) ?542) =>= multiply (inverse ?543) ?542 [543, 542] by Super 274 with 4 at 2,1,2 Id : 173, {_}: multiply (inverse ?334) (add ?335 n1) =<= add (multiply ?335 (inverse ?334)) (inverse ?334) [335, 334] by Super 3 with 16 at 2,3 Id : 1514, {_}: multiply ?2669 (multiply ?2670 (add ?2669 (inverse ?2670))) =>= multiply ?2670 (add ?2669 (inverse ?2670)) [2670, 2669] by Super 485 with 7 at 1,2 Id : 672, {_}: multiply (multiply ?1271 n1) (multiply (inverse ?1272) ?1271) =>= multiply (inverse ?1272) ?1271 [1272, 1271] by Super 274 with 4 at 2,1,2 Id : 688, {_}: multiply n1 (multiply (inverse ?1320) (add ?1321 n1)) =>= multiply (inverse ?1320) (add ?1321 n1) [1321, 1320] by Super 672 with 2 at 1,2 Id : 199, {_}: multiply (inverse ?371) (add ?372 n1) =<= add (multiply ?372 (inverse ?371)) (inverse ?371) [372, 371] by Super 3 with 16 at 2,3 Id : 210, {_}: multiply (inverse ?404) (add (add ?405 (inverse ?404)) n1) =>= add (inverse ?404) (inverse ?404) [405, 404] by Super 199 with 2 at 1,3 Id : 966, {_}: add (inverse ?404) (multiply n1 (inverse ?404)) =>= add (inverse ?404) (inverse ?404) [404] by Demod 210 with 14 at 2 Id : 174, {_}: multiply (inverse ?337) (add n1 ?338) =<= add (inverse ?337) (multiply ?338 (inverse ?337)) [338, 337] by Super 3 with 16 at 1,3 Id : 967, {_}: multiply (inverse ?404) (add n1 n1) =?= add (inverse ?404) (inverse ?404) [404] by Demod 966 with 174 at 2 Id : 982, {_}: multiply n1 (add (inverse ?1904) (inverse ?1904)) =>= multiply (inverse ?1904) (add n1 n1) [1904] by Super 688 with 967 at 2,2 Id : 1530, {_}: multiply (inverse n1) (multiply (inverse n1) (add n1 n1)) =>= multiply n1 (add (inverse n1) (inverse n1)) [] by Super 1514 with 982 at 2,2 Id : 1554, {_}: multiply (inverse n1) (add (inverse n1) (inverse n1)) =>= multiply n1 (add (inverse n1) (inverse n1)) [] by Demod 1530 with 967 at 2,2 Id : 1555, {_}: multiply (inverse n1) (add (inverse n1) (inverse n1)) =>= multiply (inverse n1) (add n1 n1) [] by Demod 1554 with 982 at 3 Id : 1556, {_}: multiply (inverse n1) (add (inverse n1) (inverse n1)) =>= add (inverse n1) (inverse n1) [] by Demod 1555 with 967 at 3 Id : 1568, {_}: pixley (inverse n1) n1 (inverse n1) =<= add (multiply (inverse n1) (inverse n1)) (add (inverse n1) (inverse n1)) [] by Super 19 with 1556 at 2,3 Id : 1597, {_}: inverse n1 =<= add (multiply (inverse n1) (inverse n1)) (add (inverse n1) (inverse n1)) [] by Demod 1568 with 8 at 2 Id : 1814, {_}: multiply (inverse n1) (inverse n1) =<= add (multiply (multiply (inverse n1) (inverse n1)) (inverse n1)) (inverse n1) [] by Super 13 with 1597 at 2,2 Id : 1906, {_}: multiply (inverse n1) (inverse n1) =<= multiply (inverse n1) (add (multiply (inverse n1) (inverse n1)) n1) [] by Demod 1814 with 173 at 3 Id : 1990, {_}: multiply (inverse n1) (inverse n1) =<= multiply (inverse n1) (add ?3163 n1) [3163] by Super 1906 with 607 at 2,3 Id : 2009, {_}: multiply (inverse n1) (inverse n1) =>= add (inverse n1) (inverse n1) [] by Super 1990 with 967 at 3 Id : 2048, {_}: multiply (inverse n1) (add (inverse n1) n1) =<= add (add (inverse n1) (inverse n1)) (inverse n1) [] by Super 173 with 2009 at 1,3 Id : 1928, {_}: multiply (inverse n1) (inverse n1) =<= multiply (inverse n1) (add ?3128 n1) [3128] by Super 1906 with 607 at 2,3 Id : 2040, {_}: add (inverse n1) (inverse n1) =<= multiply (inverse n1) (add ?3128 n1) [3128] by Demod 1928 with 2009 at 2 Id : 2082, {_}: add (inverse n1) (inverse n1) =<= add (add (inverse n1) (inverse n1)) (inverse n1) [] by Demod 2048 with 2040 at 2 Id : 2135, {_}: multiply (inverse n1) (add (inverse n1) (inverse n1)) =>= add (inverse n1) (multiply (inverse n1) (inverse n1)) [] by Super 14 with 2082 at 2,2 Id : 2186, {_}: add (inverse n1) (inverse n1) =<= add (inverse n1) (multiply (inverse n1) (inverse n1)) [] by Demod 2135 with 1556 at 2 Id : 2187, {_}: add (inverse n1) (inverse n1) =<= multiply (inverse n1) (add n1 (inverse n1)) [] by Demod 2186 with 174 at 3 Id : 2188, {_}: add (inverse n1) (inverse n1) =>= multiply (inverse n1) n1 [] by Demod 2187 with 4 at 2,3 Id : 2041, {_}: inverse n1 =<= add (add (inverse n1) (inverse n1)) (add (inverse n1) (inverse n1)) [] by Demod 1597 with 2009 at 1,3 Id : 2225, {_}: inverse n1 =<= add (multiply (inverse n1) n1) (add (inverse n1) (inverse n1)) [] by Demod 2041 with 2188 at 1,3 Id : 2226, {_}: inverse n1 =<= add (multiply (inverse n1) n1) (multiply (inverse n1) n1) [] by Demod 2225 with 2188 at 2,3 Id : 2235, {_}: inverse n1 =<= multiply n1 (add (inverse n1) (inverse n1)) [] by Demod 2226 with 3 at 3 Id : 2236, {_}: inverse n1 =<= multiply (inverse n1) (add n1 n1) [] by Demod 2235 with 982 at 3 Id : 2237, {_}: inverse n1 =<= add (inverse n1) (inverse n1) [] by Demod 2236 with 967 at 3 Id : 2238, {_}: inverse n1 =<= multiply (inverse n1) n1 [] by Demod 2237 with 2188 at 3 Id : 2244, {_}: add (inverse n1) (inverse n1) =>= inverse n1 [] by Demod 2188 with 2238 at 3 Id : 2259, {_}: multiply (inverse n1) (add ?3306 (inverse n1)) =>= add (multiply ?3306 (inverse n1)) (inverse n1) [3306] by Super 13 with 2244 at 2,2,2 Id : 2294, {_}: multiply (inverse n1) (add ?3306 (inverse n1)) =>= multiply (inverse n1) (add ?3306 n1) [3306] by Demod 2259 with 173 at 3 Id : 2232, {_}: multiply (inverse n1) n1 =<= multiply (inverse n1) (add ?3128 n1) [3128] by Demod 2040 with 2188 at 2 Id : 2243, {_}: inverse n1 =<= multiply (inverse n1) (add ?3128 n1) [3128] by Demod 2232 with 2238 at 2 Id : 2295, {_}: multiply (inverse n1) (add ?3306 (inverse n1)) =>= inverse n1 [3306] by Demod 2294 with 2243 at 3 Id : 2419, {_}: multiply (multiply (add ?3405 (inverse n1)) n1) (inverse n1) =>= multiply (inverse n1) (add ?3405 (inverse n1)) [3405] by Super 284 with 2295 at 2,2 Id : 3205, {_}: multiply (multiply (add ?4259 (inverse n1)) n1) (inverse n1) =>= inverse n1 [4259] by Demod 2419 with 2295 at 3 Id : 3222, {_}: multiply (multiply n1 n1) (inverse n1) =>= inverse n1 [] by Super 3205 with 4 at 1,1,2 Id : 3294, {_}: multiply (inverse n1) (add (multiply n1 n1) ?4332) =>= add (inverse n1) (multiply ?4332 (inverse n1)) [4332] by Super 3 with 3222 at 1,3 Id : 3323, {_}: multiply (inverse n1) (add (multiply n1 n1) ?4332) =>= multiply (inverse n1) (add n1 ?4332) [4332] by Demod 3294 with 174 at 3 Id : 24, {_}: pixley (add ?69 (inverse ?70)) ?70 ?71 =<= add (inverse ?70) (multiply ?71 (add (add ?69 (inverse ?70)) (inverse ?70))) [71, 70, 69] by Super 21 with 2 at 1,3 Id : 2249, {_}: pixley (add (inverse n1) (inverse n1)) n1 ?3289 =<= add (inverse n1) (multiply ?3289 (add (inverse n1) (inverse n1))) [3289] by Super 24 with 2244 at 1,2,2,3 Id : 2310, {_}: pixley (inverse n1) n1 ?3289 =<= add (inverse n1) (multiply ?3289 (add (inverse n1) (inverse n1))) [3289] by Demod 2249 with 2244 at 1,2 Id : 2311, {_}: pixley (inverse n1) n1 ?3289 =<= add (inverse n1) (multiply ?3289 (inverse n1)) [3289] by Demod 2310 with 2244 at 2,2,3 Id : 2312, {_}: pixley (inverse n1) n1 ?3289 =<= multiply (inverse n1) (add n1 ?3289) [3289] by Demod 2311 with 174 at 3 Id : 3528, {_}: multiply (inverse n1) (add (multiply n1 n1) ?4508) =>= pixley (inverse n1) n1 ?4508 [4508] by Demod 3323 with 2312 at 3 Id : 3542, {_}: multiply (inverse n1) (multiply n1 (add n1 ?4535)) =>= pixley (inverse n1) n1 (multiply ?4535 n1) [4535] by Super 3528 with 3 at 2,2 Id : 2258, {_}: pixley (inverse n1) n1 ?3304 =<= add (multiply (inverse n1) (inverse n1)) (multiply ?3304 (inverse n1)) [3304] by Super 19 with 2244 at 2,2,3 Id : 2766, {_}: pixley (inverse n1) n1 ?3924 =<= multiply (inverse n1) (add (inverse n1) ?3924) [3924] by Demod 2258 with 3 at 3 Id : 2784, {_}: pixley (inverse n1) n1 (multiply ?3959 n1) =>= multiply (inverse n1) ?3959 [3959] by Super 2766 with 428 at 2,3 Id : 4047, {_}: multiply (inverse n1) (multiply n1 (add n1 ?5164)) =>= multiply (inverse n1) ?5164 [5164] by Demod 3542 with 2784 at 3 Id : 4052, {_}: multiply (inverse n1) (multiply n1 n1) =>= multiply (inverse n1) (inverse n1) [] by Super 4047 with 4 at 2,2,2 Id : 2233, {_}: multiply (inverse n1) (inverse n1) =>= multiply (inverse n1) n1 [] by Demod 2009 with 2188 at 3 Id : 2242, {_}: multiply (inverse n1) (inverse n1) =>= inverse n1 [] by Demod 2233 with 2238 at 3 Id : 4088, {_}: multiply (inverse n1) (multiply n1 n1) =>= inverse n1 [] by Demod 4052 with 2242 at 3 Id : 4118, {_}: multiply (multiply n1 n1) (add (inverse n1) n1) =>= add (inverse n1) (multiply n1 n1) [] by Super 412 with 4088 at 1,3 Id : 1137, {_}: multiply (multiply ?2152 n1) (add ?2152 ?2153) =<= add (multiply ?2152 n1) (multiply ?2153 (multiply ?2152 n1)) [2153, 2152] by Super 14 with 408 at 1,2,2 Id : 411, {_}: multiply ?820 (multiply ?820 n1) =>= multiply ?820 n1 [820] by Super 2 with 408 at 1,2 Id : 1151, {_}: multiply (multiply ?2193 n1) (add ?2193 ?2193) =>= add (multiply ?2193 n1) (multiply ?2193 n1) [2193] by Super 1137 with 411 at 2,3 Id : 1282, {_}: multiply (multiply ?2412 n1) (add ?2412 ?2412) =>= multiply n1 (add ?2412 ?2412) [2412] by Demod 1151 with 3 at 3 Id : 1286, {_}: multiply (multiply n1 n1) (add ?2420 n1) =>= multiply n1 (add n1 n1) [2420] by Super 1282 with 607 at 2,2 Id : 4147, {_}: multiply n1 (add n1 n1) =<= add (inverse n1) (multiply n1 n1) [] by Demod 4118 with 1286 at 2 Id : 4148, {_}: multiply n1 (add n1 n1) =>= n1 [] by Demod 4147 with 428 at 3 Id : 4590, {_}: multiply (add n1 n1) (add n1 ?5598) =>= add n1 (multiply ?5598 (add n1 n1)) [5598] by Super 3 with 4148 at 1,3 Id : 4186, {_}: multiply n1 (add n1 n1) =>= n1 [] by Demod 4147 with 428 at 3 Id : 4194, {_}: multiply n1 (add ?5284 n1) =>= n1 [5284] by Super 4186 with 607 at 2,2 Id : 4313, {_}: n1 =<= add n1 (multiply n1 n1) [] by Super 14 with 4194 at 2 Id : 4601, {_}: multiply (add n1 n1) n1 =<= add n1 (multiply (multiply n1 n1) (add n1 n1)) [] by Super 4590 with 4313 at 2,2 Id : 4648, {_}: n1 =<= add n1 (multiply (multiply n1 n1) (add n1 n1)) [] by Demod 4601 with 2 at 2 Id : 1187, {_}: multiply (multiply ?2193 n1) (add ?2193 ?2193) =>= multiply n1 (add ?2193 ?2193) [2193] by Demod 1151 with 3 at 3 Id : 4649, {_}: n1 =<= add n1 (multiply n1 (add n1 n1)) [] by Demod 4648 with 1187 at 2,3 Id : 4650, {_}: n1 =<= add n1 n1 [] by Demod 4649 with 4194 at 2,3 Id : 4692, {_}: add ?5677 n1 =>= n1 [5677] by Super 607 with 4650 at 3 Id : 5124, {_}: multiply ?6342 n1 =<= add ?6342 (multiply n1 ?6342) [6342] by Super 14 with 4692 at 2,2 Id : 4670, {_}: multiply n1 (add (inverse ?1904) (inverse ?1904)) =>= multiply (inverse ?1904) n1 [1904] by Demod 982 with 4650 at 2,3 Id : 4669, {_}: multiply (inverse ?404) n1 =<= add (inverse ?404) (inverse ?404) [404] by Demod 967 with 4650 at 2,2 Id : 4674, {_}: multiply n1 (multiply (inverse ?1904) n1) =>= multiply (inverse ?1904) n1 [1904] by Demod 4670 with 4669 at 2,2 Id : 5136, {_}: multiply (multiply (inverse ?6367) n1) n1 =<= add (multiply (inverse ?6367) n1) (multiply (inverse ?6367) n1) [6367] by Super 5124 with 4674 at 2,3 Id : 5182, {_}: multiply (multiply (inverse ?6367) n1) n1 =<= multiply n1 (add (inverse ?6367) (inverse ?6367)) [6367] by Demod 5136 with 3 at 3 Id : 5183, {_}: multiply (multiply (inverse ?6367) n1) n1 =>= multiply n1 (multiply (inverse ?6367) n1) [6367] by Demod 5182 with 4669 at 2,3 Id : 5184, {_}: multiply (multiply (inverse ?6367) n1) n1 =>= multiply (inverse ?6367) n1 [6367] by Demod 5183 with 4674 at 3 Id : 5206, {_}: multiply (inverse ?6424) n1 =<= add (inverse n1) (multiply (inverse ?6424) n1) [6424] by Super 428 with 5184 at 2,3 Id : 5244, {_}: multiply (inverse ?6424) n1 =>= inverse ?6424 [6424] by Demod 5206 with 428 at 3 Id : 5308, {_}: inverse ?6512 =<= add (inverse n1) (inverse ?6512) [6512] by Super 428 with 5244 at 2,3 Id : 5370, {_}: pixley (inverse n1) ?6557 ?6558 =<= add (multiply (inverse n1) (inverse ?6557)) (multiply ?6558 (inverse ?6557)) [6558, 6557] by Super 19 with 5308 at 2,2,3 Id : 7459, {_}: pixley (inverse n1) ?8766 ?8767 =<= multiply (inverse ?8766) (add (inverse n1) ?8767) [8767, 8766] by Demod 5370 with 3 at 3 Id : 5371, {_}: inverse (inverse n1) =>= n1 [] by Super 4 with 5308 at 2 Id : 7482, {_}: pixley (inverse n1) (inverse n1) ?8832 =<= multiply n1 (add (inverse n1) ?8832) [8832] by Super 7459 with 5371 at 1,3 Id : 7542, {_}: ?8832 =<= multiply n1 (add (inverse n1) ?8832) [8832] by Demod 7482 with 6 at 2 Id : 5466, {_}: pixley ?6672 (inverse n1) ?6673 =<= add (multiply ?6672 (inverse (inverse n1))) (multiply ?6673 (add ?6672 n1)) [6673, 6672] by Super 19 with 5371 at 2,2,2,3 Id : 5516, {_}: pixley ?6672 (inverse n1) ?6673 =<= add (multiply ?6672 n1) (multiply ?6673 (add ?6672 n1)) [6673, 6672] by Demod 5466 with 5371 at 2,1,3 Id : 5517, {_}: pixley ?6672 (inverse n1) ?6673 =<= add (multiply ?6672 n1) (multiply ?6673 n1) [6673, 6672] by Demod 5516 with 4692 at 2,2,3 Id : 5854, {_}: pixley ?6987 (inverse n1) ?6988 =<= multiply n1 (add ?6987 ?6988) [6988, 6987] by Demod 5517 with 3 at 3 Id : 5871, {_}: pixley (inverse n1) (inverse n1) (multiply ?7040 n1) =>= multiply n1 ?7040 [7040] by Super 5854 with 428 at 2,3 Id : 5916, {_}: multiply ?7040 n1 =?= multiply n1 ?7040 [7040] by Demod 5871 with 6 at 2 Id : 5518, {_}: pixley ?6672 (inverse n1) ?6673 =<= multiply n1 (add ?6672 ?6673) [6673, 6672] by Demod 5517 with 3 at 3 Id : 5837, {_}: multiply ?6926 (pixley ?6926 (inverse n1) (inverse n1)) =>= multiply n1 (add ?6926 (inverse n1)) [6926] by Super 505 with 5518 at 2,2 Id : 5906, {_}: multiply ?6926 ?6926 =?= multiply n1 (add ?6926 (inverse n1)) [6926] by Demod 5837 with 7 at 2,2 Id : 5907, {_}: multiply ?6926 ?6926 =?= pixley ?6926 (inverse n1) (inverse n1) [6926] by Demod 5906 with 5518 at 3 Id : 5908, {_}: multiply ?6926 ?6926 =>= ?6926 [6926] by Demod 5907 with 7 at 3 Id : 7131, {_}: multiply ?8481 (add ?8482 ?8481) =>= add (multiply ?8482 ?8481) ?8481 [8482, 8481] by Super 3 with 5908 at 2,3 Id : 5066, {_}: multiply ?6275 n1 =<= add ?6275 (multiply n1 ?6275) [6275] by Super 14 with 4692 at 2,2 Id : 6609, {_}: multiply ?7988 n1 =<= add ?7988 (multiply ?7988 n1) [7988] by Super 5066 with 5916 at 2,3 Id : 7156, {_}: multiply (multiply ?8553 n1) (multiply ?8553 n1) =<= add (multiply ?8553 (multiply ?8553 n1)) (multiply ?8553 n1) [8553] by Super 7131 with 6609 at 2,2 Id : 7254, {_}: multiply ?8553 n1 =<= add (multiply ?8553 (multiply ?8553 n1)) (multiply ?8553 n1) [8553] by Demod 7156 with 5908 at 2 Id : 7255, {_}: multiply ?8553 n1 =<= multiply (multiply ?8553 n1) (add ?8553 ?8553) [8553] by Demod 7254 with 412 at 3 Id : 5833, {_}: multiply (multiply ?2193 n1) (add ?2193 ?2193) =>= pixley ?2193 (inverse n1) ?2193 [2193] by Demod 1187 with 5518 at 3 Id : 5835, {_}: multiply (multiply ?2193 n1) (add ?2193 ?2193) =>= ?2193 [2193] by Demod 5833 with 8 at 3 Id : 7256, {_}: multiply ?8553 n1 =>= ?8553 [8553] by Demod 7255 with 5835 at 3 Id : 7273, {_}: ?7040 =<= multiply n1 ?7040 [7040] by Demod 5916 with 7256 at 2 Id : 7543, {_}: ?8832 =<= add (inverse n1) ?8832 [8832] by Demod 7542 with 7273 at 3 Id : 7582, {_}: multiply (inverse n1) (multiply ?8919 (inverse ?8919)) =?= multiply ?8919 (add (inverse n1) (inverse ?8919)) [8919] by Super 505 with 7543 at 2,2,2 Id : 5473, {_}: multiply ?6687 (multiply (inverse n1) (add ?6687 n1)) =?= multiply (inverse n1) (add ?6687 (inverse (inverse n1))) [6687] by Super 505 with 5371 at 2,2,2,2 Id : 5499, {_}: multiply ?6687 (multiply (inverse n1) n1) =<= multiply (inverse n1) (add ?6687 (inverse (inverse n1))) [6687] by Demod 5473 with 4692 at 2,2,2 Id : 5500, {_}: multiply ?6687 (multiply (inverse n1) n1) =?= multiply (inverse n1) (add ?6687 n1) [6687] by Demod 5499 with 5371 at 2,2,3 Id : 5501, {_}: multiply ?6687 (inverse n1) =<= multiply (inverse n1) (add ?6687 n1) [6687] by Demod 5500 with 5244 at 2,2 Id : 5502, {_}: multiply ?6687 (inverse n1) =?= multiply (inverse n1) n1 [6687] by Demod 5501 with 4692 at 2,3 Id : 5503, {_}: multiply ?6687 (inverse n1) =>= inverse n1 [6687] by Demod 5502 with 5244 at 3 Id : 5615, {_}: multiply (inverse n1) (add n1 ?6752) =>= add (inverse n1) (inverse n1) [6752] by Super 174 with 5503 at 2,3 Id : 5636, {_}: pixley (inverse n1) n1 ?6752 =?= add (inverse n1) (inverse n1) [6752] by Demod 5615 with 2312 at 2 Id : 5285, {_}: inverse ?404 =<= add (inverse ?404) (inverse ?404) [404] by Demod 4669 with 5244 at 2 Id : 5637, {_}: pixley (inverse n1) n1 ?6752 =>= inverse n1 [6752] by Demod 5636 with 5285 at 3 Id : 5782, {_}: inverse n1 =<= multiply (inverse n1) ?3959 [3959] by Demod 2784 with 5637 at 2 Id : 7613, {_}: inverse n1 =<= multiply ?8919 (add (inverse n1) (inverse ?8919)) [8919] by Demod 7582 with 5782 at 2 Id : 7614, {_}: inverse n1 =<= multiply ?8919 (inverse ?8919) [8919] by Demod 7613 with 7543 at 2,3 Id : 7674, {_}: multiply (inverse ?8984) (add ?8984 ?8985) =?= add (inverse n1) (multiply ?8985 (inverse ?8984)) [8985, 8984] by Super 3 with 7614 at 1,3 Id : 7731, {_}: multiply (inverse ?8984) (add ?8984 ?8985) =>= multiply ?8985 (inverse ?8984) [8985, 8984] by Demod 7674 with 7543 at 3 Id : 289, {_}: multiply (multiply ?563 (multiply (inverse ?564) (add ?565 n1))) (multiply (inverse ?564) ?563) =>= multiply (inverse ?564) ?563 [565, 564, 563] by Super 274 with 173 at 2,1,2 Id : 8394, {_}: multiply (multiply ?563 (multiply (inverse ?564) n1)) (multiply (inverse ?564) ?563) =>= multiply (inverse ?564) ?563 [564, 563] by Demod 289 with 4692 at 2,2,1,2 Id : 8406, {_}: multiply (multiply ?9773 (inverse ?9774)) (multiply (inverse ?9774) ?9773) =>= multiply (inverse ?9774) ?9773 [9774, 9773] by Demod 8394 with 7256 at 2,1,2 Id : 8444, {_}: multiply (inverse n1) (multiply (inverse ?9877) ?9877) =>= multiply (inverse ?9877) ?9877 [9877] by Super 8406 with 7614 at 1,2 Id : 8534, {_}: inverse n1 =<= multiply (inverse ?9877) ?9877 [9877] by Demod 8444 with 5782 at 2 Id : 8551, {_}: multiply ?9925 (add ?9926 (inverse ?9925)) =>= add (multiply ?9926 ?9925) (inverse n1) [9926, 9925] by Super 3 with 8534 at 2,3 Id : 367, {_}: multiply ?731 (add (add ?732 ?731) ?733) =>= add ?731 (multiply ?733 ?731) [733, 732, 731] by Super 12 with 2 at 1,3 Id : 379, {_}: multiply ?780 n1 =<= add ?780 (multiply (inverse (add ?781 ?780)) ?780) [781, 780] by Super 367 with 4 at 2,2 Id : 7285, {_}: ?780 =<= add ?780 (multiply (inverse (add ?781 ?780)) ?780) [781, 780] by Demod 379 with 7256 at 2 Id : 7585, {_}: ?8927 =<= add ?8927 (multiply (inverse ?8927) ?8927) [8927] by Super 7285 with 7543 at 1,1,2,3 Id : 8670, {_}: ?8927 =<= add ?8927 (inverse n1) [8927] by Demod 7585 with 8534 at 2,3 Id : 9041, {_}: multiply ?9925 (add ?9926 (inverse ?9925)) =>= multiply ?9926 ?9925 [9926, 9925] by Demod 8551 with 8670 at 3 Id : 172, {_}: pixley n1 ?331 ?332 =<= add (inverse ?331) (multiply ?332 (add n1 (inverse ?331))) [332, 331] by Super 19 with 16 at 1,3 Id : 9053, {_}: pixley n1 ?10412 ?10412 =<= add (inverse ?10412) (multiply n1 ?10412) [10412] by Super 172 with 9041 at 2,3 Id : 9135, {_}: n1 =<= add (inverse ?10412) (multiply n1 ?10412) [10412] by Demod 9053 with 7 at 2 Id : 9136, {_}: n1 =<= add (inverse ?10412) ?10412 [10412] by Demod 9135 with 7273 at 2,3 Id : 9201, {_}: pixley (inverse (inverse ?10589)) ?10589 ?10590 =<= add (multiply (inverse (inverse ?10589)) (inverse ?10589)) (multiply ?10590 n1) [10590, 10589] by Super 19 with 9136 at 2,2,3 Id : 9238, {_}: pixley (inverse (inverse ?10589)) ?10589 ?10590 =?= add (inverse n1) (multiply ?10590 n1) [10590, 10589] by Demod 9201 with 8534 at 1,3 Id : 9239, {_}: pixley (inverse (inverse ?10589)) ?10589 ?10590 =>= add (inverse n1) ?10590 [10590, 10589] by Demod 9238 with 7256 at 2,3 Id : 9240, {_}: pixley (inverse (inverse ?10589)) ?10589 ?10590 =>= ?10590 [10590, 10589] by Demod 9239 with 7543 at 3 Id : 10446, {_}: ?12102 =<= inverse (inverse ?12102) [12102] by Super 7 with 9240 at 2 Id : 10555, {_}: multiply (inverse ?12273) (add ?12274 ?12273) =>= multiply ?12274 (inverse ?12273) [12274, 12273] by Super 9041 with 10446 at 2,2,2 Id : 11456, {_}: pixley (add ?13531 (inverse ?13532)) ?13532 (inverse (inverse ?13532)) =<= add (inverse ?13532) (multiply (add ?13531 (inverse ?13532)) (inverse (inverse ?13532))) [13532, 13531] by Super 24 with 10555 at 2,3 Id : 11548, {_}: pixley (add ?13531 (inverse ?13532)) ?13532 ?13532 =<= add (inverse ?13532) (multiply (add ?13531 (inverse ?13532)) (inverse (inverse ?13532))) [13532, 13531] by Demod 11456 with 10446 at 3,2 Id : 8892, {_}: multiply (inverse ?10244) (add ?10244 ?10245) =>= multiply ?10245 (inverse ?10244) [10245, 10244] by Demod 7674 with 7543 at 3 Id : 7580, {_}: multiply ?8914 (add ?8915 ?8914) =?= add (multiply (inverse n1) ?8914) ?8914 [8915, 8914] by Super 13 with 7543 at 2,2 Id : 5958, {_}: multiply ?7147 (add ?7148 ?7147) =>= add (multiply ?7148 ?7147) ?7147 [7148, 7147] by Super 3 with 5908 at 2,3 Id : 7619, {_}: add (multiply ?8915 ?8914) ?8914 =?= add (multiply (inverse n1) ?8914) ?8914 [8914, 8915] by Demod 7580 with 5958 at 2 Id : 7620, {_}: add (multiply ?8915 ?8914) ?8914 =>= add (inverse n1) ?8914 [8914, 8915] by Demod 7619 with 5782 at 1,3 Id : 7775, {_}: add (multiply ?9114 ?9115) ?9115 =>= ?9115 [9115, 9114] by Demod 7620 with 7543 at 3 Id : 7621, {_}: add (multiply ?8915 ?8914) ?8914 =>= ?8914 [8914, 8915] by Demod 7620 with 7543 at 3 Id : 7749, {_}: multiply ?7147 (add ?7148 ?7147) =>= ?7147 [7148, 7147] by Demod 5958 with 7621 at 3 Id : 7792, {_}: add ?9167 (add ?9168 ?9167) =>= add ?9168 ?9167 [9168, 9167] by Super 7775 with 7749 at 1,2 Id : 8900, {_}: multiply (inverse ?10265) (add ?10266 ?10265) =<= multiply (add ?10266 ?10265) (inverse ?10265) [10266, 10265] by Super 8892 with 7792 at 2,2 Id : 11444, {_}: multiply ?10266 (inverse ?10265) =<= multiply (add ?10266 ?10265) (inverse ?10265) [10265, 10266] by Demod 8900 with 10555 at 2 Id : 11549, {_}: pixley (add ?13531 (inverse ?13532)) ?13532 ?13532 =?= add (inverse ?13532) (multiply ?13531 (inverse (inverse ?13532))) [13532, 13531] by Demod 11548 with 11444 at 2,3 Id : 11550, {_}: add ?13531 (inverse ?13532) =<= add (inverse ?13532) (multiply ?13531 (inverse (inverse ?13532))) [13532, 13531] by Demod 11549 with 7 at 2 Id : 11551, {_}: add ?13531 (inverse ?13532) =<= add (inverse ?13532) (multiply ?13531 ?13532) [13532, 13531] by Demod 11550 with 10446 at 2,2,3 Id : 11841, {_}: multiply (inverse (inverse ?13951)) (add ?13952 (inverse ?13951)) =>= multiply (multiply ?13952 ?13951) (inverse (inverse ?13951)) [13952, 13951] by Super 7731 with 11551 at 2,2 Id : 11918, {_}: multiply ?13952 (inverse (inverse ?13951)) =<= multiply (multiply ?13952 ?13951) (inverse (inverse ?13951)) [13951, 13952] by Demod 11841 with 10555 at 2 Id : 11919, {_}: multiply ?13952 (inverse (inverse ?13951)) =<= multiply (multiply ?13952 ?13951) ?13951 [13951, 13952] by Demod 11918 with 10446 at 2,3 Id : 11920, {_}: multiply ?13952 ?13951 =<= multiply (multiply ?13952 ?13951) ?13951 [13951, 13952] by Demod 11919 with 10446 at 2,2 Id : 12244, {_}: multiply ?14434 (add ?14435 (multiply ?14436 ?14434)) =>= add (multiply ?14435 ?14434) (multiply ?14436 ?14434) [14436, 14435, 14434] by Super 3 with 11920 at 2,3 Id : 29011, {_}: multiply ?35505 (add ?35506 (multiply ?35507 ?35505)) =>= multiply ?35505 (add ?35506 ?35507) [35507, 35506, 35505] by Demod 12244 with 3 at 3 Id : 29060, {_}: multiply ?35715 (add ?35716 (inverse n1)) =?= multiply ?35715 (add ?35716 (inverse ?35715)) [35716, 35715] by Super 29011 with 8534 at 2,2,2 Id : 11860, {_}: add ?14021 (inverse ?14022) =<= add (inverse ?14022) (multiply ?14021 ?14022) [14022, 14021] by Demod 11550 with 10446 at 2,2,3 Id : 11890, {_}: add n1 (inverse ?14122) =<= add (inverse ?14122) ?14122 [14122] by Super 11860 with 7273 at 2,3 Id : 11943, {_}: add n1 (inverse ?14122) =>= n1 [14122] by Demod 11890 with 9136 at 3 Id : 11977, {_}: pixley n1 ?331 ?332 =<= add (inverse ?331) (multiply ?332 n1) [332, 331] by Demod 172 with 11943 at 2,2,3 Id : 11984, {_}: pixley n1 ?331 ?332 =<= add (inverse ?331) ?332 [332, 331] by Demod 11977 with 7256 at 2,3 Id : 11991, {_}: add ?13531 (inverse ?13532) =<= pixley n1 ?13532 (multiply ?13531 ?13532) [13532, 13531] by Demod 11551 with 11984 at 3 Id : 12023, {_}: add n1 (inverse ?14257) =>= n1 [14257] by Demod 11890 with 9136 at 3 Id : 12028, {_}: add n1 ?14267 =>= n1 [14267] by Super 12023 with 10446 at 2,2 Id : 12137, {_}: multiply ?14331 (add n1 ?14332) =?= add ?14331 (multiply ?14332 ?14331) [14332, 14331] by Super 14 with 12028 at 1,2,2 Id : 12188, {_}: multiply ?14331 n1 =<= add ?14331 (multiply ?14332 ?14331) [14332, 14331] by Demod 12137 with 12028 at 2,2 Id : 12598, {_}: ?14940 =<= add ?14940 (multiply ?14941 ?14940) [14941, 14940] by Demod 12188 with 7256 at 2 Id : 409, {_}: multiply (multiply ?814 n1) (add ?814 ?815) =<= add (multiply ?814 n1) (multiply ?815 (multiply ?814 n1)) [815, 814] by Super 14 with 408 at 1,2,2 Id : 7278, {_}: multiply ?814 (add ?814 ?815) =<= add (multiply ?814 n1) (multiply ?815 (multiply ?814 n1)) [815, 814] by Demod 409 with 7256 at 1,2 Id : 7279, {_}: multiply ?814 (add ?814 ?815) =<= add ?814 (multiply ?815 (multiply ?814 n1)) [815, 814] by Demod 7278 with 7256 at 1,3 Id : 7280, {_}: multiply ?814 (add ?814 ?815) =>= add ?814 (multiply ?815 ?814) [815, 814] by Demod 7279 with 7256 at 2,2,3 Id : 12189, {_}: ?14331 =<= add ?14331 (multiply ?14332 ?14331) [14332, 14331] by Demod 12188 with 7256 at 2 Id : 12573, {_}: multiply ?814 (add ?814 ?815) =>= ?814 [815, 814] by Demod 7280 with 12189 at 3 Id : 12624, {_}: add ?15025 ?15026 =<= add (add ?15025 ?15026) ?15025 [15026, 15025] by Super 12598 with 12573 at 2,3 Id : 12720, {_}: multiply ?15175 (add (inverse ?15175) ?15176) =<= multiply (add (inverse ?15175) ?15176) ?15175 [15176, 15175] by Super 9041 with 12624 at 2,2 Id : 12767, {_}: multiply ?15175 (pixley n1 ?15175 ?15176) =<= multiply (add (inverse ?15175) ?15176) ?15175 [15176, 15175] by Demod 12720 with 11984 at 2,2 Id : 12768, {_}: multiply ?15175 (pixley n1 ?15175 ?15176) =<= multiply (pixley n1 ?15175 ?15176) ?15175 [15176, 15175] by Demod 12767 with 11984 at 1,3 Id : 8552, {_}: multiply ?9928 (add (inverse ?9928) ?9929) =>= add (inverse n1) (multiply ?9929 ?9928) [9929, 9928] by Super 3 with 8534 at 1,3 Id : 8614, {_}: multiply ?9928 (add (inverse ?9928) ?9929) =>= multiply ?9929 ?9928 [9929, 9928] by Demod 8552 with 7543 at 3 Id : 11985, {_}: multiply ?9928 (pixley n1 ?9928 ?9929) =>= multiply ?9929 ?9928 [9929, 9928] by Demod 8614 with 11984 at 2,2 Id : 12769, {_}: multiply ?15176 ?15175 =<= multiply (pixley n1 ?15175 ?15176) ?15175 [15175, 15176] by Demod 12768 with 11985 at 2 Id : 15132, {_}: add (pixley n1 ?18424 ?18425) (inverse ?18424) =>= pixley n1 ?18424 (multiply ?18425 ?18424) [18425, 18424] by Super 11991 with 12769 at 3,3 Id : 15170, {_}: add (pixley n1 ?18424 ?18425) (inverse ?18424) =>= add ?18425 (inverse ?18424) [18425, 18424] by Demod 15132 with 11991 at 3 Id : 12729, {_}: add ?15203 ?15204 =<= add (add ?15203 ?15204) ?15203 [15204, 15203] by Super 12598 with 12573 at 2,3 Id : 12745, {_}: add (inverse ?15249) ?15250 =<= add (pixley n1 ?15249 ?15250) (inverse ?15249) [15250, 15249] by Super 12729 with 11984 at 1,3 Id : 12826, {_}: pixley n1 ?15249 ?15250 =<= add (pixley n1 ?15249 ?15250) (inverse ?15249) [15250, 15249] by Demod 12745 with 11984 at 2 Id : 23185, {_}: pixley n1 ?18424 ?18425 =<= add ?18425 (inverse ?18424) [18425, 18424] by Demod 15170 with 12826 at 2 Id : 29209, {_}: multiply ?35715 (pixley n1 n1 ?35716) =?= multiply ?35715 (add ?35716 (inverse ?35715)) [35716, 35715] by Demod 29060 with 23185 at 2,2 Id : 29210, {_}: multiply ?35715 (pixley n1 n1 ?35716) =?= multiply ?35715 (pixley n1 ?35715 ?35716) [35716, 35715] by Demod 29209 with 23185 at 2,3 Id : 29211, {_}: multiply ?35715 ?35716 =<= multiply ?35715 (pixley n1 ?35715 ?35716) [35716, 35715] by Demod 29210 with 6 at 2,2 Id : 29212, {_}: multiply ?35715 ?35716 =?= multiply ?35716 ?35715 [35716, 35715] by Demod 29211 with 11985 at 3 Id : 11904, {_}: add ?14161 (inverse (inverse ?14162)) =<= add ?14162 (multiply ?14161 (inverse ?14162)) [14162, 14161] by Super 11860 with 10446 at 1,3 Id : 11970, {_}: add ?14161 ?14162 =<= add ?14162 (multiply ?14161 (inverse ?14162)) [14162, 14161] by Demod 11904 with 10446 at 2,2 Id : 15099, {_}: add (pixley n1 (inverse ?18302) ?18303) ?18302 =>= add ?18302 (multiply ?18303 (inverse ?18302)) [18303, 18302] by Super 11970 with 12769 at 2,3 Id : 15201, {_}: add (pixley n1 (inverse ?18302) ?18303) ?18302 =>= add ?18303 ?18302 [18303, 18302] by Demod 15099 with 11970 at 3 Id : 10547, {_}: pixley n1 (inverse ?12250) ?12251 =<= add (inverse (inverse ?12250)) (multiply ?12251 (add n1 ?12250)) [12251, 12250] by Super 172 with 10446 at 2,2,2,3 Id : 10574, {_}: pixley n1 (inverse ?12250) ?12251 =<= add ?12250 (multiply ?12251 (add n1 ?12250)) [12251, 12250] by Demod 10547 with 10446 at 1,3 Id : 17614, {_}: pixley n1 (inverse ?12250) ?12251 =<= add ?12250 (multiply ?12251 n1) [12251, 12250] by Demod 10574 with 12028 at 2,2,3 Id : 17615, {_}: pixley n1 (inverse ?12250) ?12251 =>= add ?12250 ?12251 [12251, 12250] by Demod 17614 with 7256 at 2,3 Id : 23377, {_}: add (add ?18302 ?18303) ?18302 =>= add ?18303 ?18302 [18303, 18302] by Demod 15201 with 17615 at 1,2 Id : 23378, {_}: add ?18302 ?18303 =?= add ?18303 ?18302 [18303, 18302] by Demod 23377 with 12624 at 2 Id : 363, {_}: multiply (add (add ?713 ?714) ?715) (add ?716 ?714) =<= add (multiply ?716 (add (add ?713 ?714) ?715)) (add ?714 (multiply ?715 ?714)) [716, 715, 714, 713] by Super 3 with 14 at 2,3 Id : 33202, {_}: multiply (add (add ?713 ?714) ?715) (add ?716 ?714) =>= add (multiply ?716 (add (add ?713 ?714) ?715)) ?714 [716, 715, 714, 713] by Demod 363 with 12189 at 2,3 Id : 33249, {_}: multiply (add (add ?41120 ?41121) ?41122) (add ?41123 ?41121) =>= add ?41121 (multiply ?41123 (add (add ?41120 ?41121) ?41122)) [41123, 41122, 41121, 41120] by Demod 33202 with 23378 at 3 Id : 7276, {_}: multiply ?2193 (add ?2193 ?2193) =>= ?2193 [2193] by Demod 5835 with 7256 at 1,2 Id : 7300, {_}: add (multiply ?2193 ?2193) ?2193 =>= ?2193 [2193] by Demod 7276 with 5958 at 2 Id : 7301, {_}: add ?2193 ?2193 =>= ?2193 [2193] by Demod 7300 with 5908 at 1,2 Id : 33300, {_}: multiply (add ?41374 ?41375) (add ?41376 ?41375) =<= add ?41375 (multiply ?41376 (add (add ?41374 ?41375) (add ?41374 ?41375))) [41376, 41375, 41374] by Super 33249 with 7301 at 1,2 Id : 33433, {_}: multiply (add ?41374 ?41375) (add ?41376 ?41375) =>= add ?41375 (multiply ?41376 (add ?41374 ?41375)) [41376, 41375, 41374] by Demod 33300 with 7301 at 2,2,3 Id : 42671, {_}: multiply ?52830 (add ?52831 ?52832) =<= add (multiply ?52830 ?52831) (multiply ?52832 ?52830) [52832, 52831, 52830] by Super 3 with 29212 at 1,3 Id : 42679, {_}: multiply (add ?52859 ?52860) (add ?52861 ?52860) =>= add (multiply (add ?52859 ?52860) ?52861) ?52860 [52861, 52860, 52859] by Super 42671 with 7749 at 2,3 Id : 42859, {_}: multiply (add ?52859 ?52860) (add ?52861 ?52860) =>= add ?52860 (multiply (add ?52859 ?52860) ?52861) [52861, 52860, 52859] by Demod 42679 with 23378 at 3 Id : 58778, {_}: add ?52860 (multiply ?52861 (add ?52859 ?52860)) =?= add ?52860 (multiply (add ?52859 ?52860) ?52861) [52859, 52861, 52860] by Demod 42859 with 33433 at 2 Id : 42225, {_}: multiply ?51978 (add ?51979 ?51980) =<= add (multiply ?51979 ?51978) (multiply ?51978 ?51980) [51980, 51979, 51978] by Super 3 with 29212 at 2,3 Id : 56980, {_}: multiply (add ?78761 ?78762) (add ?78762 ?78763) =>= add ?78762 (multiply (add ?78761 ?78762) ?78763) [78763, 78762, 78761] by Super 42225 with 7749 at 1,3 Id : 57032, {_}: multiply (add ?78985 ?78986) (add ?78985 ?78987) =>= add ?78985 (multiply (add ?78986 ?78985) ?78987) [78987, 78986, 78985] by Super 56980 with 23378 at 1,2 Id : 42307, {_}: multiply (add ?52335 ?52336) (add ?52335 ?52337) =>= add ?52335 (multiply (add ?52335 ?52336) ?52337) [52337, 52336, 52335] by Super 42225 with 12573 at 1,3 Id : 69246, {_}: add ?78985 (multiply (add ?78985 ?78986) ?78987) =?= add ?78985 (multiply (add ?78986 ?78985) ?78987) [78987, 78986, 78985] by Demod 57032 with 42307 at 2 Id : 42691, {_}: multiply (add ?52915 ?52916) (add ?52917 ?52915) =>= add (multiply (add ?52915 ?52916) ?52917) ?52915 [52917, 52916, 52915] by Super 42671 with 12573 at 2,3 Id : 42878, {_}: multiply (add ?52915 ?52916) (add ?52917 ?52915) =>= add ?52915 (multiply (add ?52915 ?52916) ?52917) [52917, 52916, 52915] by Demod 42691 with 23378 at 3 Id : 33277, {_}: multiply (add ?41259 ?41260) (add ?41261 ?41259) =<= add ?41259 (multiply ?41261 (add (add ?41259 ?41259) ?41260)) [41261, 41260, 41259] by Super 33249 with 7301 at 1,1,2 Id : 33397, {_}: multiply (add ?41259 ?41260) (add ?41261 ?41259) =>= add ?41259 (multiply ?41261 (add ?41259 ?41260)) [41261, 41260, 41259] by Demod 33277 with 7301 at 1,2,2,3 Id : 59822, {_}: add ?52915 (multiply ?52917 (add ?52915 ?52916)) =?= add ?52915 (multiply (add ?52915 ?52916) ?52917) [52916, 52917, 52915] by Demod 42878 with 33397 at 2 Id : 49363, {_}: multiply (add ?63432 ?63433) (add ?63433 ?63434) =>= add ?63433 (multiply ?63432 (add ?63433 ?63434)) [63434, 63433, 63432] by Super 29212 with 33397 at 3 Id : 42295, {_}: multiply (add ?52279 ?52280) (add ?52280 ?52281) =>= add ?52280 (multiply (add ?52279 ?52280) ?52281) [52281, 52280, 52279] by Super 42225 with 7749 at 1,3 Id : 65944, {_}: add ?95703 (multiply (add ?95704 ?95703) ?95705) =?= add ?95703 (multiply ?95704 (add ?95703 ?95705)) [95705, 95704, 95703] by Demod 49363 with 42295 at 2 Id : 12345, {_}: multiply ?14434 (add ?14435 (multiply ?14436 ?14434)) =>= multiply ?14434 (add ?14435 ?14436) [14436, 14435, 14434] by Demod 12244 with 3 at 3 Id : 66007, {_}: add ?95981 (multiply (add ?95982 ?95981) (multiply ?95983 ?95982)) =>= add ?95981 (multiply ?95982 (add ?95981 ?95983)) [95983, 95982, 95981] by Super 65944 with 12345 at 2,3 Id : 12571, {_}: multiply ?41 (add (add ?42 ?41) ?43) =>= ?41 [43, 42, 41] by Demod 14 with 12189 at 3 Id : 12574, {_}: multiply (multiply ?14855 ?14856) (add ?14856 ?14857) =>= multiply ?14855 ?14856 [14857, 14856, 14855] by Super 12571 with 12189 at 1,2,2 Id : 32599, {_}: multiply (add ?39770 ?39771) (multiply ?39772 ?39770) =>= multiply ?39772 ?39770 [39772, 39771, 39770] by Super 29212 with 12574 at 3 Id : 66421, {_}: add ?95981 (multiply ?95983 ?95982) =<= add ?95981 (multiply ?95982 (add ?95981 ?95983)) [95982, 95983, 95981] by Demod 66007 with 32599 at 2,2 Id : 74546, {_}: add ?52915 (multiply ?52916 ?52917) =<= add ?52915 (multiply (add ?52915 ?52916) ?52917) [52917, 52916, 52915] by Demod 59822 with 66421 at 2 Id : 74547, {_}: add ?78985 (multiply ?78986 ?78987) =<= add ?78985 (multiply (add ?78986 ?78985) ?78987) [78987, 78986, 78985] by Demod 69246 with 74546 at 2 Id : 74549, {_}: add ?52860 (multiply ?52861 (add ?52859 ?52860)) =>= add ?52860 (multiply ?52859 ?52861) [52859, 52861, 52860] by Demod 58778 with 74547 at 3 Id : 75087, {_}: add a (multiply c b) =?= add a (multiply c b) [] by Demod 57307 with 74549 at 3 Id : 57307, {_}: add a (multiply c b) =<= add a (multiply b (add c a)) [] by Demod 57306 with 33433 at 3 Id : 57306, {_}: add a (multiply c b) =<= multiply (add c a) (add b a) [] by Demod 57305 with 29212 at 3 Id : 57305, {_}: add a (multiply c b) =<= multiply (add b a) (add c a) [] by Demod 57304 with 23378 at 2,3 Id : 57304, {_}: add a (multiply c b) =<= multiply (add b a) (add a c) [] by Demod 57303 with 23378 at 1,3 Id : 57303, {_}: add a (multiply c b) =<= multiply (add a b) (add a c) [] by Demod 1 with 29212 at 2,2 Id : 1, {_}: add a (multiply b c) =<= multiply (add a b) (add a c) [] by prove_add_multiply_property % SZS output end CNFRefutation for BOO023-1.p 20955: solved BOO023-1.p in 19.273203 using kbo 20955: status Unsatisfiable for BOO023-1.p NO CLASH, using fixed ground order 21165: Facts: NO CLASH, using fixed ground order 21166: Facts: 21166: Id : 2, {_}: multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6) =>= multiply ?2 ?3 (multiply ?4 ?5 ?6) [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6 21166: Id : 3, {_}: multiply ?8 ?9 ?9 =>= ?9 [9, 8] by ternary_multiply_1 ?8 ?9 21166: Id : 4, {_}: multiply ?11 ?11 ?12 =>= ?11 [12, 11] by ternary_multiply_2 ?11 ?12 21166: Id : 5, {_}: multiply (inverse ?14) ?14 ?15 =>= ?15 [15, 14] by left_inverse ?14 ?15 21166: Id : 6, {_}: multiply ?17 ?18 (inverse ?18) =>= ?17 [18, 17] by right_inverse ?17 ?18 21166: Goal: 21166: Id : 1, {_}: multiply (multiply a (inverse a) b) (inverse (multiply (multiply c d e) f (multiply c d g))) (multiply d (multiply g f e) c) =>= b [] by prove_single_axiom 21166: Order: 21166: kbo 21166: Leaf order: 21166: g 2 0 2 3,3,1,2,2 21166: f 2 0 2 2,1,2,2 21166: e 2 0 2 3,1,1,2,2 21166: d 3 0 3 2,1,1,2,2 21166: c 3 0 3 1,1,1,2,2 21166: multiply 16 3 7 0,2 21166: b 2 0 2 3,1,2 21166: inverse 4 1 2 0,2,1,2 21166: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 21167: Facts: 21167: Id : 2, {_}: multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6) =>= multiply ?2 ?3 (multiply ?4 ?5 ?6) [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6 21167: Id : 3, {_}: multiply ?8 ?9 ?9 =>= ?9 [9, 8] by ternary_multiply_1 ?8 ?9 21167: Id : 4, {_}: multiply ?11 ?11 ?12 =>= ?11 [12, 11] by ternary_multiply_2 ?11 ?12 21167: Id : 5, {_}: multiply (inverse ?14) ?14 ?15 =>= ?15 [15, 14] by left_inverse ?14 ?15 21167: Id : 6, {_}: multiply ?17 ?18 (inverse ?18) =>= ?17 [18, 17] by right_inverse ?17 ?18 21167: Goal: 21167: Id : 1, {_}: multiply (multiply a (inverse a) b) (inverse (multiply (multiply c d e) f (multiply c d g))) (multiply d (multiply g f e) c) =>= b [] by prove_single_axiom 21167: Order: 21167: lpo 21167: Leaf order: 21167: g 2 0 2 3,3,1,2,2 21167: f 2 0 2 2,1,2,2 21167: e 2 0 2 3,1,1,2,2 21167: d 3 0 3 2,1,1,2,2 21167: c 3 0 3 1,1,1,2,2 21167: multiply 16 3 7 0,2 21167: b 2 0 2 3,1,2 21167: inverse 4 1 2 0,2,1,2 21167: a 2 0 2 1,1,2 21165: Id : 2, {_}: multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6) =>= multiply ?2 ?3 (multiply ?4 ?5 ?6) [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6 21165: Id : 3, {_}: multiply ?8 ?9 ?9 =>= ?9 [9, 8] by ternary_multiply_1 ?8 ?9 21165: Id : 4, {_}: multiply ?11 ?11 ?12 =>= ?11 [12, 11] by ternary_multiply_2 ?11 ?12 21165: Id : 5, {_}: multiply (inverse ?14) ?14 ?15 =>= ?15 [15, 14] by left_inverse ?14 ?15 21165: Id : 6, {_}: multiply ?17 ?18 (inverse ?18) =>= ?17 [18, 17] by right_inverse ?17 ?18 21165: Goal: 21165: Id : 1, {_}: multiply (multiply a (inverse a) b) (inverse (multiply (multiply c d e) f (multiply c d g))) (multiply d (multiply g f e) c) =>= b [] by prove_single_axiom 21165: Order: 21165: nrkbo 21165: Leaf order: 21165: g 2 0 2 3,3,1,2,2 21165: f 2 0 2 2,1,2,2 21165: e 2 0 2 3,1,1,2,2 21165: d 3 0 3 2,1,1,2,2 21165: c 3 0 3 1,1,1,2,2 21165: multiply 16 3 7 0,2 21165: b 2 0 2 3,1,2 21165: inverse 4 1 2 0,2,1,2 21165: a 2 0 2 1,1,2 Statistics : Max weight : 24 Found proof, 10.936664s % SZS status Unsatisfiable for BOO034-1.p % SZS output start CNFRefutation for BOO034-1.p Id : 5, {_}: multiply (inverse ?14) ?14 ?15 =>= ?15 [15, 14] by left_inverse ?14 ?15 Id : 4, {_}: multiply ?11 ?11 ?12 =>= ?11 [12, 11] by ternary_multiply_2 ?11 ?12 Id : 6, {_}: multiply ?17 ?18 (inverse ?18) =>= ?17 [18, 17] by right_inverse ?17 ?18 Id : 3, {_}: multiply ?8 ?9 ?9 =>= ?9 [9, 8] by ternary_multiply_1 ?8 ?9 Id : 2, {_}: multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6) =>= multiply ?2 ?3 (multiply ?4 ?5 ?6) [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6 Id : 12, {_}: multiply (multiply ?48 ?49 ?50) ?51 ?49 =?= multiply ?48 ?49 (multiply ?50 ?51 ?49) [51, 50, 49, 48] by Super 2 with 3 at 3,2 Id : 13, {_}: multiply ?53 ?54 (multiply ?55 ?53 ?56) =?= multiply ?55 ?53 (multiply ?53 ?54 ?56) [56, 55, 54, 53] by Super 2 with 3 at 1,2 Id : 920, {_}: multiply (multiply ?2937 ?2938 ?2939) ?2937 ?2938 =?= multiply ?2939 ?2937 (multiply ?2937 ?2938 ?2938) [2939, 2938, 2937] by Super 12 with 13 at 3 Id : 1359, {_}: multiply (multiply ?4051 ?4052 ?4053) ?4051 ?4052 =>= multiply ?4053 ?4051 ?4052 [4053, 4052, 4051] by Demod 920 with 3 at 3,3 Id : 1364, {_}: multiply ?4070 ?4070 ?4071 =?= multiply (inverse ?4071) ?4070 ?4071 [4071, 4070] by Super 1359 with 6 at 1,2 Id : 1413, {_}: ?4070 =<= multiply (inverse ?4071) ?4070 ?4071 [4071, 4070] by Demod 1364 with 4 at 2 Id : 1453, {_}: multiply (multiply ?4288 ?4289 (inverse ?4289)) ?4290 ?4289 =>= multiply ?4288 ?4289 ?4290 [4290, 4289, 4288] by Super 12 with 1413 at 3,3 Id : 1476, {_}: multiply ?4288 ?4290 ?4289 =?= multiply ?4288 ?4289 ?4290 [4289, 4290, 4288] by Demod 1453 with 6 at 1,2 Id : 519, {_}: multiply (multiply ?1786 ?1787 ?1788) ?1789 ?1787 =?= multiply ?1786 ?1787 (multiply ?1788 ?1789 ?1787) [1789, 1788, 1787, 1786] by Super 2 with 3 at 3,2 Id : 659, {_}: multiply (multiply ?2172 ?2173 ?2174) ?2174 ?2173 =>= multiply ?2172 ?2173 ?2174 [2174, 2173, 2172] by Super 519 with 4 at 3,3 Id : 664, {_}: multiply ?2191 (inverse ?2192) ?2192 =?= multiply ?2191 ?2192 (inverse ?2192) [2192, 2191] by Super 659 with 6 at 1,2 Id : 701, {_}: multiply ?2191 (inverse ?2192) ?2192 =>= ?2191 [2192, 2191] by Demod 664 with 6 at 3 Id : 1371, {_}: multiply ?4106 ?4106 (inverse ?4107) =?= multiply ?4107 ?4106 (inverse ?4107) [4107, 4106] by Super 1359 with 701 at 1,2 Id : 1415, {_}: ?4106 =<= multiply ?4107 ?4106 (inverse ?4107) [4107, 4106] by Demod 1371 with 4 at 2 Id : 1522, {_}: multiply ?4441 ?4442 (multiply ?4443 ?4441 (inverse ?4441)) =>= multiply ?4443 ?4441 ?4442 [4443, 4442, 4441] by Super 13 with 1415 at 3,3 Id : 1536, {_}: multiply ?4441 ?4442 ?4443 =?= multiply ?4443 ?4441 ?4442 [4443, 4442, 4441] by Demod 1522 with 6 at 3,2 Id : 727, {_}: inverse (inverse ?2329) =>= ?2329 [2329] by Super 5 with 701 at 2 Id : 761, {_}: multiply ?2420 (inverse ?2420) ?2421 =>= ?2421 [2421, 2420] by Super 5 with 727 at 1,2 Id : 40424, {_}: b === b [] by Demod 40423 with 6 at 2 Id : 40423, {_}: multiply b (multiply d c (multiply g f e)) (inverse (multiply d c (multiply g f e))) =>= b [] by Demod 40422 with 1476 at 3,1,3,2 Id : 40422, {_}: multiply b (multiply d c (multiply g f e)) (inverse (multiply d c (multiply g e f))) =>= b [] by Demod 40421 with 1536 at 3,1,3,2 Id : 40421, {_}: multiply b (multiply d c (multiply g f e)) (inverse (multiply d c (multiply f g e))) =>= b [] by Demod 40420 with 1476 at 3,1,3,2 Id : 40420, {_}: multiply b (multiply d c (multiply g f e)) (inverse (multiply d c (multiply f e g))) =>= b [] by Demod 40419 with 1536 at 3,1,3,2 Id : 40419, {_}: multiply b (multiply d c (multiply g f e)) (inverse (multiply d c (multiply e g f))) =>= b [] by Demod 40418 with 1476 at 3,1,3,2 Id : 40418, {_}: multiply b (multiply d c (multiply g f e)) (inverse (multiply d c (multiply e f g))) =>= b [] by Demod 40417 with 1476 at 1,3,2 Id : 40417, {_}: multiply b (multiply d c (multiply g f e)) (inverse (multiply d (multiply e f g) c)) =>= b [] by Demod 40416 with 1476 at 2 Id : 40416, {_}: multiply b (inverse (multiply d (multiply e f g) c)) (multiply d c (multiply g f e)) =>= b [] by Demod 40415 with 1536 at 2 Id : 40415, {_}: multiply (multiply d c (multiply g f e)) b (inverse (multiply d (multiply e f g) c)) =>= b [] by Demod 40414 with 1536 at 1,3,2 Id : 40414, {_}: multiply (multiply d c (multiply g f e)) b (inverse (multiply c d (multiply e f g))) =>= b [] by Demod 40413 with 761 at 2,2 Id : 40413, {_}: multiply (multiply d c (multiply g f e)) (multiply a (inverse a) b) (inverse (multiply c d (multiply e f g))) =>= b [] by Demod 40412 with 1476 at 1,2 Id : 40412, {_}: multiply (multiply d (multiply g f e) c) (multiply a (inverse a) b) (inverse (multiply c d (multiply e f g))) =>= b [] by Demod 40411 with 1476 at 2 Id : 40411, {_}: multiply (multiply d (multiply g f e) c) (inverse (multiply c d (multiply e f g))) (multiply a (inverse a) b) =>= b [] by Demod 40410 with 1536 at 2 Id : 40410, {_}: multiply (multiply a (inverse a) b) (multiply d (multiply g f e) c) (inverse (multiply c d (multiply e f g))) =>= b [] by Demod 11 with 1476 at 2 Id : 11, {_}: multiply (multiply a (inverse a) b) (inverse (multiply c d (multiply e f g))) (multiply d (multiply g f e) c) =>= b [] by Demod 1 with 2 at 1,2,2 Id : 1, {_}: multiply (multiply a (inverse a) b) (inverse (multiply (multiply c d e) f (multiply c d g))) (multiply d (multiply g f e) c) =>= b [] by prove_single_axiom % SZS output end CNFRefutation for BOO034-1.p 21165: solved BOO034-1.p in 10.220638 using nrkbo 21165: status Unsatisfiable for BOO034-1.p CLASH, statistics insufficient 21378: Facts: 21378: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 21378: Id : 3, {_}: apply (apply k ?7) ?8 =>= ?7 [8, 7] by k_definition ?7 ?8 21378: Goal: 21378: Id : 1, {_}: apply (apply ?1 (f ?1)) (g ?1) =<= apply (g ?1) (apply (apply (f ?1) (f ?1)) (g ?1)) [1] by prove_u_combinator ?1 21378: Order: 21378: nrkbo 21378: Leaf order: 21378: k 1 0 0 21378: s 1 0 0 21378: g 3 1 3 0,2,2 21378: apply 13 2 5 0,2 21378: f 3 1 3 0,2,1,2 CLASH, statistics insufficient 21379: Facts: 21379: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 21379: Id : 3, {_}: apply (apply k ?7) ?8 =>= ?7 [8, 7] by k_definition ?7 ?8 21379: Goal: 21379: Id : 1, {_}: apply (apply ?1 (f ?1)) (g ?1) =<= apply (g ?1) (apply (apply (f ?1) (f ?1)) (g ?1)) [1] by prove_u_combinator ?1 21379: Order: 21379: kbo 21379: Leaf order: 21379: k 1 0 0 21379: s 1 0 0 21379: g 3 1 3 0,2,2 21379: apply 13 2 5 0,2 21379: f 3 1 3 0,2,1,2 CLASH, statistics insufficient 21380: Facts: 21380: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 21380: Id : 3, {_}: apply (apply k ?7) ?8 =>= ?7 [8, 7] by k_definition ?7 ?8 21380: Goal: 21380: Id : 1, {_}: apply (apply ?1 (f ?1)) (g ?1) =<= apply (g ?1) (apply (apply (f ?1) (f ?1)) (g ?1)) [1] by prove_u_combinator ?1 21380: Order: 21380: lpo 21380: Leaf order: 21380: k 1 0 0 21380: s 1 0 0 21380: g 3 1 3 0,2,2 21380: apply 13 2 5 0,2 21380: f 3 1 3 0,2,1,2 % SZS status Timeout for COL004-1.p NO CLASH, using fixed ground order 21607: Facts: 21607: Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4 21607: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 21607: Id : 4, {_}: strong_fixed_point =<= apply (apply s (apply k (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) (apply (apply s (apply (apply s (apply k s)) k)) (apply k (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) [] by strong_fixed_point 21607: Goal: 21607: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 21607: Order: 21607: nrkbo 21607: Leaf order: 21607: k 13 0 0 21607: s 11 0 0 21607: apply 32 2 3 0,2 21607: fixed_pt 3 0 3 2,2 21607: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 21608: Facts: 21608: Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4 21608: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 21608: Id : 4, {_}: strong_fixed_point =<= apply (apply s (apply k (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) (apply (apply s (apply (apply s (apply k s)) k)) (apply k (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) [] by strong_fixed_point 21608: Goal: 21608: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 21608: Order: 21608: kbo 21608: Leaf order: 21608: k 13 0 0 21608: s 11 0 0 21608: apply 32 2 3 0,2 21608: fixed_pt 3 0 3 2,2 21608: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 21609: Facts: 21609: Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4 21609: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 21609: Id : 4, {_}: strong_fixed_point =<= apply (apply s (apply k (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) (apply (apply s (apply (apply s (apply k s)) k)) (apply k (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) [] by strong_fixed_point 21609: Goal: 21609: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 21609: Order: 21609: lpo 21609: Leaf order: 21609: k 13 0 0 21609: s 11 0 0 21609: apply 32 2 3 0,2 21609: fixed_pt 3 0 3 2,2 21609: strong_fixed_point 3 0 2 1,2 % SZS status Timeout for COL006-6.p CLASH, statistics insufficient 21625: Facts: 21625: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 21625: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 21625: Id : 4, {_}: apply (apply t ?11) ?12 =>= apply ?12 ?11 [12, 11] by t_definition ?11 ?12 21625: Goal: 21625: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 21625: Order: 21625: nrkbo 21625: Leaf order: 21625: t 1 0 0 21625: b 1 0 0 21625: s 1 0 0 21625: apply 17 2 3 0,2 21625: f 3 1 3 0,2,2 CLASH, statistics insufficient 21626: Facts: 21626: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 21626: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 21626: Id : 4, {_}: apply (apply t ?11) ?12 =>= apply ?12 ?11 [12, 11] by t_definition ?11 ?12 21626: Goal: 21626: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 21626: Order: 21626: kbo 21626: Leaf order: 21626: t 1 0 0 21626: b 1 0 0 21626: s 1 0 0 21626: apply 17 2 3 0,2 21626: f 3 1 3 0,2,2 CLASH, statistics insufficient 21627: Facts: 21627: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 21627: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 21627: Id : 4, {_}: apply (apply t ?11) ?12 =?= apply ?12 ?11 [12, 11] by t_definition ?11 ?12 21627: Goal: 21627: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 21627: Order: 21627: lpo 21627: Leaf order: 21627: t 1 0 0 21627: b 1 0 0 21627: s 1 0 0 21627: apply 17 2 3 0,2 21627: f 3 1 3 0,2,2 % SZS status Timeout for COL036-1.p CLASH, statistics insufficient 21654: Facts: 21654: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 CLASH, statistics insufficient 21655: Facts: 21655: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 21655: Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 21655: Goal: 21655: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (g ?1)) (f ?1) [1] by prove_f_combinator ?1 21655: Order: 21655: kbo 21655: Leaf order: 21655: t 1 0 0 21655: b 1 0 0 21655: h 2 1 2 0,2,2 21655: g 2 1 2 0,2,1,2 21655: apply 13 2 5 0,2 21655: f 2 1 2 0,2,1,1,2 21654: Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 21654: Goal: 21654: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (g ?1)) (f ?1) [1] by prove_f_combinator ?1 21654: Order: 21654: nrkbo 21654: Leaf order: 21654: t 1 0 0 21654: b 1 0 0 21654: h 2 1 2 0,2,2 21654: g 2 1 2 0,2,1,2 21654: apply 13 2 5 0,2 21654: f 2 1 2 0,2,1,1,2 CLASH, statistics insufficient 21656: Facts: 21656: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 21656: Id : 3, {_}: apply (apply t ?7) ?8 =?= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 21656: Goal: 21656: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (g ?1)) (f ?1) [1] by prove_f_combinator ?1 21656: Order: 21656: lpo 21656: Leaf order: 21656: t 1 0 0 21656: b 1 0 0 21656: h 2 1 2 0,2,2 21656: g 2 1 2 0,2,1,2 21656: apply 13 2 5 0,2 21656: f 2 1 2 0,2,1,1,2 Goal subsumed Statistics : Max weight : 100 Found proof, 5.123186s % SZS status Unsatisfiable for COL063-1.p % SZS output start CNFRefutation for COL063-1.p Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 Id : 3189, {_}: apply (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) === apply (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) [] by Super 3184 with 3 at 2 Id : 3184, {_}: apply (apply ?10590 (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?10590))))) (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?10590)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?10590))))) =>= apply (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?10590)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?10590))))) (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?10590)))) [10590] by Super 3164 with 3 at 2,2 Id : 3164, {_}: apply (apply ?10539 (f (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) (apply (apply ?10540 (g (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) (h (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) =>= apply (apply (h (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539)))) (g (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) (f (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539)))) [10540, 10539] by Super 442 with 2 at 2 Id : 442, {_}: apply (apply (apply ?1394 (apply ?1395 (f (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))))) (apply ?1396 (g (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))))) (h (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))) =>= apply (apply (h (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))) (g (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395))))) (f (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))) [1396, 1395, 1394] by Super 277 with 2 at 1,1,2 Id : 277, {_}: apply (apply (apply ?900 (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (apply ?901 (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))))) (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) =>= apply (apply (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) [901, 900] by Super 29 with 2 at 1,2 Id : 29, {_}: apply (apply (apply (apply ?85 (apply ?86 (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))))) ?87) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) =>= apply (apply (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) [87, 86, 85] by Super 13 with 3 at 1,1,2 Id : 13, {_}: apply (apply (apply ?33 (apply ?34 (apply ?35 (f (apply (apply b ?33) (apply (apply b ?34) ?35)))))) (g (apply (apply b ?33) (apply (apply b ?34) ?35)))) (h (apply (apply b ?33) (apply (apply b ?34) ?35))) =>= apply (apply (h (apply (apply b ?33) (apply (apply b ?34) ?35))) (g (apply (apply b ?33) (apply (apply b ?34) ?35)))) (f (apply (apply b ?33) (apply (apply b ?34) ?35))) [35, 34, 33] by Super 6 with 2 at 2,1,1,2 Id : 6, {_}: apply (apply (apply ?18 (apply ?19 (f (apply (apply b ?18) ?19)))) (g (apply (apply b ?18) ?19))) (h (apply (apply b ?18) ?19)) =>= apply (apply (h (apply (apply b ?18) ?19)) (g (apply (apply b ?18) ?19))) (f (apply (apply b ?18) ?19)) [19, 18] by Super 1 with 2 at 1,1,2 Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (g ?1)) (f ?1) [1] by prove_f_combinator ?1 % SZS output end CNFRefutation for COL063-1.p 21654: solved COL063-1.p in 5.12832 using nrkbo 21654: status Unsatisfiable for COL063-1.p NO CLASH, using fixed ground order 21661: Facts: 21661: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 21661: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 21661: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 21661: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 21661: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 21661: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 21661: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 21661: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 21661: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 21661: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 21661: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 21661: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 21661: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 21661: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 21661: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 21661: Goal: 21661: Id : 1, {_}: a =<= multiply (least_upper_bound a identity) (greatest_lower_bound a identity) [] by prove_p19 21661: Order: 21661: nrkbo 21661: Leaf order: 21661: inverse 1 1 0 21661: multiply 19 2 1 0,3 21661: greatest_lower_bound 14 2 1 0,2,3 21661: least_upper_bound 14 2 1 0,1,3 21661: identity 4 0 2 2,1,3 21661: a 3 0 3 2 NO CLASH, using fixed ground order 21662: Facts: 21662: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 21662: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 21662: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 21662: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 21662: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 21662: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 21662: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 21662: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 21662: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 21662: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 21662: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 21662: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 21662: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 21662: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 21662: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 21662: Goal: 21662: Id : 1, {_}: a =<= multiply (least_upper_bound a identity) (greatest_lower_bound a identity) [] by prove_p19 21662: Order: 21662: kbo 21662: Leaf order: 21662: inverse 1 1 0 21662: multiply 19 2 1 0,3 21662: greatest_lower_bound 14 2 1 0,2,3 21662: least_upper_bound 14 2 1 0,1,3 21662: identity 4 0 2 2,1,3 21662: a 3 0 3 2 NO CLASH, using fixed ground order 21663: Facts: 21663: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 21663: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 21663: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 21663: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 21663: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 21663: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 21663: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 21663: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 21663: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 21663: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 21663: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 21663: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 21663: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 21663: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 21663: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 21663: Goal: 21663: Id : 1, {_}: a =<= multiply (least_upper_bound a identity) (greatest_lower_bound a identity) [] by prove_p19 21663: Order: 21663: lpo 21663: Leaf order: 21663: inverse 1 1 0 21663: multiply 19 2 1 0,3 21663: greatest_lower_bound 14 2 1 0,2,3 21663: least_upper_bound 14 2 1 0,1,3 21663: identity 4 0 2 2,1,3 21663: a 3 0 3 2 % SZS status Timeout for GRP167-3.p NO CLASH, using fixed ground order 21683: Facts: 21683: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 21683: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 21683: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 21683: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 21683: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 21683: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 21683: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 21683: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 21683: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 21683: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 21683: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 21683: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 21683: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 21683: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 21683: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 21683: Goal: 21683: Id : 1, {_}: inverse (least_upper_bound a b) =<= greatest_lower_bound (inverse a) (inverse b) [] by prove_p10 21683: Order: 21683: nrkbo 21683: Leaf order: 21683: multiply 18 2 0 21683: identity 2 0 0 21683: greatest_lower_bound 14 2 1 0,3 21683: inverse 4 1 3 0,2 21683: least_upper_bound 14 2 1 0,1,2 21683: b 2 0 2 2,1,2 21683: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 21684: Facts: 21684: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 21684: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 21684: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 21684: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 21684: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 21684: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 21684: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 21684: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 21684: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 21684: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 21684: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 21684: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 NO CLASH, using fixed ground order 21685: Facts: 21685: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 21685: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 21685: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 21685: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 21685: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 21685: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 21685: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 21685: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 21685: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 21685: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 21685: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 21685: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 21685: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 21685: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 21685: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 21685: Goal: 21685: Id : 1, {_}: inverse (least_upper_bound a b) =>= greatest_lower_bound (inverse a) (inverse b) [] by prove_p10 21685: Order: 21685: lpo 21685: Leaf order: 21685: multiply 18 2 0 21685: identity 2 0 0 21685: greatest_lower_bound 14 2 1 0,3 21685: inverse 4 1 3 0,2 21685: least_upper_bound 14 2 1 0,1,2 21685: b 2 0 2 2,1,2 21685: a 2 0 2 1,1,2 21684: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 21684: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 21684: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 21684: Goal: 21684: Id : 1, {_}: inverse (least_upper_bound a b) =<= greatest_lower_bound (inverse a) (inverse b) [] by prove_p10 21684: Order: 21684: kbo 21684: Leaf order: 21684: multiply 18 2 0 21684: identity 2 0 0 21684: greatest_lower_bound 14 2 1 0,3 21684: inverse 4 1 3 0,2 21684: least_upper_bound 14 2 1 0,1,2 21684: b 2 0 2 2,1,2 21684: a 2 0 2 1,1,2 % SZS status Timeout for GRP179-1.p NO CLASH, using fixed ground order 21733: Facts: 21733: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 21733: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 21733: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 21733: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 21733: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 21733: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 21733: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 21733: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 21733: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 21733: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 21733: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 21733: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 21733: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 21733: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 21733: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 21733: Goal: 21733: Id : 1, {_}: least_upper_bound (inverse a) identity =<= inverse (greatest_lower_bound a identity) [] by prove_p18 21733: Order: 21733: kbo 21733: Leaf order: 21733: multiply 18 2 0 21733: greatest_lower_bound 14 2 1 0,1,3 21733: least_upper_bound 14 2 1 0,2 21733: identity 4 0 2 2,2 21733: inverse 3 1 2 0,1,2 21733: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 21732: Facts: 21732: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 21732: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 21732: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 21732: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 21732: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 21732: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 21732: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 21732: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 21732: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 21732: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 21732: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 21732: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 21732: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 21732: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 21732: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 21732: Goal: 21732: Id : 1, {_}: least_upper_bound (inverse a) identity =<= inverse (greatest_lower_bound a identity) [] by prove_p18 21732: Order: 21732: nrkbo 21732: Leaf order: 21732: multiply 18 2 0 21732: greatest_lower_bound 14 2 1 0,1,3 21732: least_upper_bound 14 2 1 0,2 21732: identity 4 0 2 2,2 21732: inverse 3 1 2 0,1,2 21732: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 21734: Facts: 21734: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 21734: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 21734: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 21734: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 21734: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 21734: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 21734: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 21734: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 21734: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 21734: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 21734: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 21734: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 21734: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 21734: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 21734: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 21734: Goal: 21734: Id : 1, {_}: least_upper_bound (inverse a) identity =<= inverse (greatest_lower_bound a identity) [] by prove_p18 21734: Order: 21734: lpo 21734: Leaf order: 21734: multiply 18 2 0 21734: greatest_lower_bound 14 2 1 0,1,3 21734: least_upper_bound 14 2 1 0,2 21734: identity 4 0 2 2,2 21734: inverse 3 1 2 0,1,2 21734: a 2 0 2 1,1,2 % SZS status Timeout for GRP179-2.p NO CLASH, using fixed ground order 21751: Facts: 21751: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 21751: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 21751: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 21751: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 21751: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 21751: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 21751: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 21751: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 21751: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 21751: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 21751: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 21751: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 21751: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 21751: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 21751: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 21751: Goal: 21751: Id : 1, {_}: multiply a (multiply (inverse (greatest_lower_bound a b)) b) =>= least_upper_bound a b [] by prove_p11 21751: Order: 21751: nrkbo 21751: Leaf order: 21751: identity 2 0 0 21751: least_upper_bound 14 2 1 0,3 21751: multiply 20 2 2 0,2 21751: inverse 2 1 1 0,1,2,2 21751: greatest_lower_bound 14 2 1 0,1,1,2,2 21751: b 3 0 3 2,1,1,2,2 21751: a 3 0 3 1,2 NO CLASH, using fixed ground order 21752: Facts: 21752: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 21752: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 21752: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 21752: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 21752: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 21752: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 21752: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 21752: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 21752: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 21752: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 21752: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 21752: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 21752: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 21752: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 21752: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 21752: Goal: 21752: Id : 1, {_}: multiply a (multiply (inverse (greatest_lower_bound a b)) b) =>= least_upper_bound a b [] by prove_p11 21752: Order: 21752: kbo 21752: Leaf order: 21752: identity 2 0 0 21752: least_upper_bound 14 2 1 0,3 21752: multiply 20 2 2 0,2 21752: inverse 2 1 1 0,1,2,2 21752: greatest_lower_bound 14 2 1 0,1,1,2,2 21752: b 3 0 3 2,1,1,2,2 21752: a 3 0 3 1,2 NO CLASH, using fixed ground order 21753: Facts: 21753: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 21753: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 21753: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 21753: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 21753: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 21753: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 21753: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 21753: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 21753: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 21753: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 21753: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 21753: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 21753: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 21753: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 21753: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 21753: Goal: 21753: Id : 1, {_}: multiply a (multiply (inverse (greatest_lower_bound a b)) b) =>= least_upper_bound a b [] by prove_p11 21753: Order: 21753: lpo 21753: Leaf order: 21753: identity 2 0 0 21753: least_upper_bound 14 2 1 0,3 21753: multiply 20 2 2 0,2 21753: inverse 2 1 1 0,1,2,2 21753: greatest_lower_bound 14 2 1 0,1,1,2,2 21753: b 3 0 3 2,1,1,2,2 21753: a 3 0 3 1,2 % SZS status Timeout for GRP180-1.p NO CLASH, using fixed ground order 21783: Facts: 21783: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 21783: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 21783: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 21783: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 21783: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 21783: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 21783: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 21783: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 21783: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 21783: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 21783: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 21783: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 21783: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 21783: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 21783: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 21783: Id : 17, {_}: inverse identity =>= identity [] by p20_1 21783: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p20_2 ?51 21783: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p20_3 ?53 ?54 21783: Goal: 21783: Id : 1, {_}: greatest_lower_bound (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= identity [] by prove_p20 21783: Order: 21783: nrkbo 21783: Leaf order: 21783: multiply 20 2 0 21783: inverse 8 1 1 0,2,2 21783: greatest_lower_bound 15 2 2 0,2 21783: least_upper_bound 14 2 1 0,1,2 21783: identity 7 0 3 2,1,2 21783: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 21785: Facts: 21785: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 21785: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 21785: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 21785: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 21785: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 21785: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 21785: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 21785: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 21785: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 21785: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 21785: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 21785: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 21785: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 21785: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 21785: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 21785: Id : 17, {_}: inverse identity =>= identity [] by p20_1 21785: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p20_2 ?51 21785: Id : 19, {_}: inverse (multiply ?53 ?54) =>= multiply (inverse ?54) (inverse ?53) [54, 53] by p20_3 ?53 ?54 21785: Goal: 21785: Id : 1, {_}: greatest_lower_bound (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= identity [] by prove_p20 21785: Order: 21785: lpo 21785: Leaf order: 21785: multiply 20 2 0 21785: inverse 8 1 1 0,2,2 21785: greatest_lower_bound 15 2 2 0,2 21785: least_upper_bound 14 2 1 0,1,2 21785: identity 7 0 3 2,1,2 21785: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 21784: Facts: 21784: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 21784: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 21784: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 21784: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 21784: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 21784: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 21784: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 21784: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 21784: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 21784: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 21784: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 21784: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 21784: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 21784: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 21784: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 21784: Id : 17, {_}: inverse identity =>= identity [] by p20_1 21784: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p20_2 ?51 21784: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p20_3 ?53 ?54 21784: Goal: 21784: Id : 1, {_}: greatest_lower_bound (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= identity [] by prove_p20 21784: Order: 21784: kbo 21784: Leaf order: 21784: multiply 20 2 0 21784: inverse 8 1 1 0,2,2 21784: greatest_lower_bound 15 2 2 0,2 21784: least_upper_bound 14 2 1 0,1,2 21784: identity 7 0 3 2,1,2 21784: a 2 0 2 1,1,2 % SZS status Timeout for GRP183-2.p NO CLASH, using fixed ground order 21802: Facts: 21802: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 21802: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 21802: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 21802: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 21802: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 21802: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 21802: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 21802: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 21802: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 21802: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 21802: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 21802: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 21802: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 21802: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 21802: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 21802: Goal: 21802: Id : 1, {_}: least_upper_bound (multiply a b) identity =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by prove_p23 21802: Order: 21802: nrkbo 21802: Leaf order: 21802: greatest_lower_bound 14 2 1 0,1,2,3 21802: inverse 3 1 2 0,2,3 21802: least_upper_bound 14 2 1 0,2 21802: identity 3 0 1 2,2 21802: multiply 20 2 2 0,1,2 21802: b 2 0 2 2,1,2 21802: a 3 0 3 1,1,2 NO CLASH, using fixed ground order 21803: Facts: 21803: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 21803: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 21803: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 21803: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 21803: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 21803: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 21803: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 21803: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 21803: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 21803: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 21803: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 21803: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 21803: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 21803: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 21803: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 21803: Goal: 21803: Id : 1, {_}: least_upper_bound (multiply a b) identity =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by prove_p23 21803: Order: 21803: kbo 21803: Leaf order: 21803: greatest_lower_bound 14 2 1 0,1,2,3 21803: inverse 3 1 2 0,2,3 21803: least_upper_bound 14 2 1 0,2 21803: identity 3 0 1 2,2 21803: multiply 20 2 2 0,1,2 21803: b 2 0 2 2,1,2 21803: a 3 0 3 1,1,2 NO CLASH, using fixed ground order 21804: Facts: 21804: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 21804: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 21804: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 21804: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 21804: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 21804: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 21804: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 21804: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 21804: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 21804: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 21804: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 21804: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 21804: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =>= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 21804: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 21804: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =>= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 21804: Goal: 21804: Id : 1, {_}: least_upper_bound (multiply a b) identity =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by prove_p23 21804: Order: 21804: lpo 21804: Leaf order: 21804: greatest_lower_bound 14 2 1 0,1,2,3 21804: inverse 3 1 2 0,2,3 21804: least_upper_bound 14 2 1 0,2 21804: identity 3 0 1 2,2 21804: multiply 20 2 2 0,1,2 21804: b 2 0 2 2,1,2 21804: a 3 0 3 1,1,2 % SZS status Timeout for GRP186-1.p NO CLASH, using fixed ground order 21831: Facts: 21831: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2 21831: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4 21831: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7 21831: Id : 5, {_}: meet ?9 ?10 =?= meet ?10 ?9 [10, 9] by commutativity_of_meet ?9 ?10 21831: Id : 6, {_}: join ?12 ?13 =?= join ?13 ?12 [13, 12] by commutativity_of_join ?12 ?13 21831: Id : 7, {_}: meet (meet ?15 ?16) ?17 =?= meet ?15 (meet ?16 ?17) [17, 16, 15] by associativity_of_meet ?15 ?16 ?17 21831: Id : 8, {_}: join (join ?19 ?20) ?21 =?= join ?19 (join ?20 ?21) [21, 20, 19] by associativity_of_join ?19 ?20 ?21 21831: Id : 9, {_}: complement (complement ?23) =>= ?23 [23] by complement_involution ?23 21831: Id : 10, {_}: join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26) [26, 25] by join_complement ?25 ?26 21831: Id : 11, {_}: meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29)) [29, 28] by meet_complement ?28 ?29 21831: Goal: 21831: Id : 1, {_}: join a (join (meet (complement a) (meet (join a (complement b)) (join a b))) (meet (complement a) (join (meet (complement a) b) (meet (complement a) (complement b))))) =>= n1 [] by prove_e2 21831: Order: 21831: nrkbo 21831: Leaf order: 21831: n0 1 0 0 21831: n1 2 0 1 3 21831: meet 14 2 5 0,1,2,2 21831: join 17 2 5 0,2 21831: b 4 0 4 1,2,1,2,1,2,2 21831: complement 15 1 6 0,1,1,2,2 21831: a 7 0 7 1,2 NO CLASH, using fixed ground order 21832: Facts: 21832: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2 21832: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4 21832: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7 21832: Id : 5, {_}: meet ?9 ?10 =?= meet ?10 ?9 [10, 9] by commutativity_of_meet ?9 ?10 21832: Id : 6, {_}: join ?12 ?13 =?= join ?13 ?12 [13, 12] by commutativity_of_join ?12 ?13 21832: Id : 7, {_}: meet (meet ?15 ?16) ?17 =>= meet ?15 (meet ?16 ?17) [17, 16, 15] by associativity_of_meet ?15 ?16 ?17 21832: Id : 8, {_}: join (join ?19 ?20) ?21 =>= join ?19 (join ?20 ?21) [21, 20, 19] by associativity_of_join ?19 ?20 ?21 21832: Id : 9, {_}: complement (complement ?23) =>= ?23 [23] by complement_involution ?23 21832: Id : 10, {_}: join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26) [26, 25] by join_complement ?25 ?26 21832: Id : 11, {_}: meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29)) [29, 28] by meet_complement ?28 ?29 21832: Goal: 21832: Id : 1, {_}: join a (join (meet (complement a) (meet (join a (complement b)) (join a b))) (meet (complement a) (join (meet (complement a) b) (meet (complement a) (complement b))))) =>= n1 [] by prove_e2 21832: Order: 21832: kbo 21832: Leaf order: 21832: n0 1 0 0 21832: n1 2 0 1 3 21832: meet 14 2 5 0,1,2,2 21832: join 17 2 5 0,2 21832: b 4 0 4 1,2,1,2,1,2,2 21832: complement 15 1 6 0,1,1,2,2 21832: a 7 0 7 1,2 NO CLASH, using fixed ground order 21833: Facts: 21833: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2 21833: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4 21833: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7 21833: Id : 5, {_}: meet ?9 ?10 =?= meet ?10 ?9 [10, 9] by commutativity_of_meet ?9 ?10 21833: Id : 6, {_}: join ?12 ?13 =?= join ?13 ?12 [13, 12] by commutativity_of_join ?12 ?13 21833: Id : 7, {_}: meet (meet ?15 ?16) ?17 =>= meet ?15 (meet ?16 ?17) [17, 16, 15] by associativity_of_meet ?15 ?16 ?17 21833: Id : 8, {_}: join (join ?19 ?20) ?21 =>= join ?19 (join ?20 ?21) [21, 20, 19] by associativity_of_join ?19 ?20 ?21 21833: Id : 9, {_}: complement (complement ?23) =>= ?23 [23] by complement_involution ?23 21833: Id : 10, {_}: join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26) [26, 25] by join_complement ?25 ?26 21833: Id : 11, {_}: meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29)) [29, 28] by meet_complement ?28 ?29 21833: Goal: 21833: Id : 1, {_}: join a (join (meet (complement a) (meet (join a (complement b)) (join a b))) (meet (complement a) (join (meet (complement a) b) (meet (complement a) (complement b))))) =>= n1 [] by prove_e2 21833: Order: 21833: lpo 21833: Leaf order: 21833: n0 1 0 0 21833: n1 2 0 1 3 21833: meet 14 2 5 0,1,2,2 21833: join 17 2 5 0,2 21833: b 4 0 4 1,2,1,2,1,2,2 21833: complement 15 1 6 0,1,1,2,2 21833: a 7 0 7 1,2 % SZS status Timeout for LAT017-1.p NO CLASH, using fixed ground order 21853: Facts: 21853: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 21853: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 21853: Id : 4, {_}: meet ?6 ?7 =?= meet ?7 ?6 [7, 6] by commutativity_of_meet ?6 ?7 21853: Id : 5, {_}: join ?9 ?10 =?= join ?10 ?9 [10, 9] by commutativity_of_join ?9 ?10 21853: Id : 6, {_}: meet (meet ?12 ?13) ?14 =?= meet ?12 (meet ?13 ?14) [14, 13, 12] by associativity_of_meet ?12 ?13 ?14 21853: Id : 7, {_}: join (join ?16 ?17) ?18 =?= join ?16 (join ?17 ?18) [18, 17, 16] by associativity_of_join ?16 ?17 ?18 21853: Id : 8, {_}: join (meet ?20 (join ?21 ?22)) (meet ?20 ?21) =>= meet ?20 (join ?21 ?22) [22, 21, 20] by quasi_lattice1 ?20 ?21 ?22 21853: Id : 9, {_}: meet (join ?24 (meet ?25 ?26)) (join ?24 ?25) =>= join ?24 (meet ?25 ?26) [26, 25, 24] by quasi_lattice2 ?24 ?25 ?26 21853: Id : 10, {_}: join (meet (join (meet ?28 ?29) ?30) ?29) (meet ?30 ?28) =>= meet (join (meet (join ?28 ?29) ?30) ?29) (join ?30 ?28) [30, 29, 28] by self_dual_distributivity ?28 ?29 ?30 21853: Goal: 21853: Id : 1, {_}: meet a (join b c) =<= join (meet a b) (meet a c) [] by prove_distributivity 21853: Order: 21853: nrkbo 21853: Leaf order: 21853: meet 21 2 3 0,2 21853: join 20 2 2 0,2,2 21853: c 2 0 2 2,2,2 21853: b 2 0 2 1,2,2 21853: a 3 0 3 1,2 NO CLASH, using fixed ground order 21854: Facts: 21854: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 21854: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 21854: Id : 4, {_}: meet ?6 ?7 =?= meet ?7 ?6 [7, 6] by commutativity_of_meet ?6 ?7 21854: Id : 5, {_}: join ?9 ?10 =?= join ?10 ?9 [10, 9] by commutativity_of_join ?9 ?10 21854: Id : 6, {_}: meet (meet ?12 ?13) ?14 =>= meet ?12 (meet ?13 ?14) [14, 13, 12] by associativity_of_meet ?12 ?13 ?14 21854: Id : 7, {_}: join (join ?16 ?17) ?18 =>= join ?16 (join ?17 ?18) [18, 17, 16] by associativity_of_join ?16 ?17 ?18 21854: Id : 8, {_}: join (meet ?20 (join ?21 ?22)) (meet ?20 ?21) =>= meet ?20 (join ?21 ?22) [22, 21, 20] by quasi_lattice1 ?20 ?21 ?22 21854: Id : 9, {_}: meet (join ?24 (meet ?25 ?26)) (join ?24 ?25) =>= join ?24 (meet ?25 ?26) [26, 25, 24] by quasi_lattice2 ?24 ?25 ?26 21854: Id : 10, {_}: join (meet (join (meet ?28 ?29) ?30) ?29) (meet ?30 ?28) =>= meet (join (meet (join ?28 ?29) ?30) ?29) (join ?30 ?28) [30, 29, 28] by self_dual_distributivity ?28 ?29 ?30 21854: Goal: 21854: Id : 1, {_}: meet a (join b c) =<= join (meet a b) (meet a c) [] by prove_distributivity 21854: Order: 21854: kbo 21854: Leaf order: 21854: meet 21 2 3 0,2 21854: join 20 2 2 0,2,2 21854: c 2 0 2 2,2,2 21854: b 2 0 2 1,2,2 21854: a 3 0 3 1,2 NO CLASH, using fixed ground order 21855: Facts: 21855: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 21855: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 21855: Id : 4, {_}: meet ?6 ?7 =?= meet ?7 ?6 [7, 6] by commutativity_of_meet ?6 ?7 21855: Id : 5, {_}: join ?9 ?10 =?= join ?10 ?9 [10, 9] by commutativity_of_join ?9 ?10 21855: Id : 6, {_}: meet (meet ?12 ?13) ?14 =>= meet ?12 (meet ?13 ?14) [14, 13, 12] by associativity_of_meet ?12 ?13 ?14 21855: Id : 7, {_}: join (join ?16 ?17) ?18 =>= join ?16 (join ?17 ?18) [18, 17, 16] by associativity_of_join ?16 ?17 ?18 21855: Id : 8, {_}: join (meet ?20 (join ?21 ?22)) (meet ?20 ?21) =>= meet ?20 (join ?21 ?22) [22, 21, 20] by quasi_lattice1 ?20 ?21 ?22 21855: Id : 9, {_}: meet (join ?24 (meet ?25 ?26)) (join ?24 ?25) =>= join ?24 (meet ?25 ?26) [26, 25, 24] by quasi_lattice2 ?24 ?25 ?26 21855: Id : 10, {_}: join (meet (join (meet ?28 ?29) ?30) ?29) (meet ?30 ?28) =>= meet (join (meet (join ?28 ?29) ?30) ?29) (join ?30 ?28) [30, 29, 28] by self_dual_distributivity ?28 ?29 ?30 21855: Goal: 21855: Id : 1, {_}: meet a (join b c) =<= join (meet a b) (meet a c) [] by prove_distributivity 21855: Order: 21855: lpo 21855: Leaf order: 21855: meet 21 2 3 0,2 21855: join 20 2 2 0,2,2 21855: c 2 0 2 2,2,2 21855: b 2 0 2 1,2,2 21855: a 3 0 3 1,2 % SZS status Timeout for LAT020-1.p NO CLASH, using fixed ground order 21955: Facts: 21955: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 21955: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 21955: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 21955: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 21955: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 21955: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 21955: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 21955: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 21955: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 21955: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 21955: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 21955: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 21955: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 21955: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 21955: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 21955: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 21955: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 21955: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 21955: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 21955: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 21955: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 21955: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 21955: Goal: 21955: Id : 1, {_}: add (associator x y z) (associator x z y) =>= additive_identity [] by prove_equation 21955: Order: 21955: nrkbo 21955: Leaf order: 21955: commutator 1 2 0 21955: additive_inverse 22 1 0 21955: multiply 40 2 0 21955: additive_identity 9 0 1 3 21955: add 25 2 1 0,2 21955: associator 3 3 2 0,1,2 21955: z 2 0 2 3,1,2 21955: y 2 0 2 2,1,2 21955: x 2 0 2 1,1,2 NO CLASH, using fixed ground order 21956: Facts: 21956: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 21956: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 21956: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 21956: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 21956: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 21956: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 21956: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 21956: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 21956: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 21956: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 21956: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 21956: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 21956: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 21956: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 21956: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 21956: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 21956: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 21956: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 21956: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 21956: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 21956: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 21956: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 21956: Goal: 21956: Id : 1, {_}: add (associator x y z) (associator x z y) =>= additive_identity [] by prove_equation 21956: Order: 21956: kbo 21956: Leaf order: 21956: commutator 1 2 0 21956: additive_inverse 22 1 0 21956: multiply 40 2 0 21956: additive_identity 9 0 1 3 21956: add 25 2 1 0,2 21956: associator 3 3 2 0,1,2 21956: z 2 0 2 3,1,2 21956: y 2 0 2 2,1,2 21956: x 2 0 2 1,1,2 NO CLASH, using fixed ground order 21957: Facts: 21957: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 21957: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 21957: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 21957: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 21957: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 21957: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 21957: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 21957: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 21957: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 21957: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 21957: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 21957: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 21957: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 21957: Id : 15, {_}: associator ?37 ?38 ?39 =>= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 21957: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 21957: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 21957: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 21957: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 21957: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 21957: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 21957: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 21957: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 21957: Goal: 21957: Id : 1, {_}: add (associator x y z) (associator x z y) =>= additive_identity [] by prove_equation 21957: Order: 21957: lpo 21957: Leaf order: 21957: commutator 1 2 0 21957: additive_inverse 22 1 0 21957: multiply 40 2 0 21957: additive_identity 9 0 1 3 21957: add 25 2 1 0,2 21957: associator 3 3 2 0,1,2 21957: z 2 0 2 3,1,2 21957: y 2 0 2 2,1,2 21957: x 2 0 2 1,1,2 % SZS status Timeout for RNG025-5.p NO CLASH, using fixed ground order 21975: Facts: 21975: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 21975: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 21975: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 21975: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 21975: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 21975: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 21975: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 21975: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 21975: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 21975: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 21975: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 21975: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 21975: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 21975: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 21975: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 21975: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 21975: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 21975: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 21975: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 21975: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 21975: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 21975: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 21975: Goal: 21975: Id : 1, {_}: associator x y x =>= additive_identity [] by prove_flexible_law 21975: Order: 21975: nrkbo 21975: Leaf order: 21975: commutator 1 2 0 21975: additive_inverse 22 1 0 21975: multiply 40 2 0 21975: add 24 2 0 21975: additive_identity 9 0 1 3 21975: associator 2 3 1 0,2 21975: y 1 0 1 2,2 21975: x 2 0 2 1,2 NO CLASH, using fixed ground order 21976: Facts: 21976: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 21976: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 21976: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 21976: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 21976: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 21976: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 21976: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 21976: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 21976: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 21976: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 21976: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 21976: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 21976: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 21976: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 21976: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 21976: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 21976: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 21976: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 21976: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 21976: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 21976: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 21976: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 21976: Goal: 21976: Id : 1, {_}: associator x y x =>= additive_identity [] by prove_flexible_law 21976: Order: 21976: kbo 21976: Leaf order: 21976: commutator 1 2 0 21976: additive_inverse 22 1 0 21976: multiply 40 2 0 21976: add 24 2 0 21976: additive_identity 9 0 1 3 21976: associator 2 3 1 0,2 21976: y 1 0 1 2,2 21976: x 2 0 2 1,2 NO CLASH, using fixed ground order 21977: Facts: 21977: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 21977: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 21977: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 21977: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 21977: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 21977: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 21977: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 21977: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 21977: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 21977: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 21977: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 21977: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 21977: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 21977: Id : 15, {_}: associator ?37 ?38 ?39 =>= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 21977: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 21977: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 21977: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 21977: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 21977: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 21977: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 21977: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 21977: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 21977: Goal: 21977: Id : 1, {_}: associator x y x =>= additive_identity [] by prove_flexible_law 21977: Order: 21977: lpo 21977: Leaf order: 21977: commutator 1 2 0 21977: additive_inverse 22 1 0 21977: multiply 40 2 0 21977: add 24 2 0 21977: additive_identity 9 0 1 3 21977: associator 2 3 1 0,2 21977: y 1 0 1 2,2 21977: x 2 0 2 1,2 % SZS status Timeout for RNG025-7.p CLASH, statistics insufficient 22004: Facts: 22004: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 CLASH, statistics insufficient 22005: Facts: 22005: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 22005: Id : 3, {_}: apply (apply k ?7) ?8 =>= ?7 [8, 7] by k_definition ?7 ?8 22005: Goal: 22005: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 22005: Order: 22005: kbo 22005: Leaf order: 22005: k 1 0 0 22005: s 1 0 0 22005: apply 11 2 3 0,2 22005: f 3 1 3 0,2,2 22004: Id : 3, {_}: apply (apply k ?7) ?8 =>= ?7 [8, 7] by k_definition ?7 ?8 22004: Goal: 22004: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 22004: Order: 22004: nrkbo 22004: Leaf order: 22004: k 1 0 0 22004: s 1 0 0 22004: apply 11 2 3 0,2 22004: f 3 1 3 0,2,2 CLASH, statistics insufficient 22006: Facts: 22006: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 22006: Id : 3, {_}: apply (apply k ?7) ?8 =>= ?7 [8, 7] by k_definition ?7 ?8 22006: Goal: 22006: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 22006: Order: 22006: lpo 22006: Leaf order: 22006: k 1 0 0 22006: s 1 0 0 22006: apply 11 2 3 0,2 22006: f 3 1 3 0,2,2 % SZS status Timeout for COL006-1.p NO CLASH, using fixed ground order 22027: Facts: 22027: Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4 22027: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 NO CLASH, using fixed ground order 22028: Facts: 22028: Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4 22028: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 22028: Id : 4, {_}: strong_fixed_point =<= apply (apply s (apply k (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) (apply (apply s (apply k (apply (apply s s) (apply s k)))) (apply (apply s (apply k s)) k)) [] by strong_fixed_point 22028: Goal: 22028: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 22028: Order: 22028: kbo 22028: Leaf order: 22028: k 10 0 0 22028: s 11 0 0 22028: apply 29 2 3 0,2 22028: fixed_pt 3 0 3 2,2 22028: strong_fixed_point 3 0 2 1,2 22027: Id : 4, {_}: strong_fixed_point =<= apply (apply s (apply k (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) (apply (apply s (apply k (apply (apply s s) (apply s k)))) (apply (apply s (apply k s)) k)) [] by strong_fixed_point 22027: Goal: 22027: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 22027: Order: 22027: nrkbo 22027: Leaf order: 22027: k 10 0 0 22027: s 11 0 0 22027: apply 29 2 3 0,2 22027: fixed_pt 3 0 3 2,2 22027: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 22029: Facts: 22029: Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4 22029: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 22029: Id : 4, {_}: strong_fixed_point =<= apply (apply s (apply k (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) (apply (apply s (apply k (apply (apply s s) (apply s k)))) (apply (apply s (apply k s)) k)) [] by strong_fixed_point 22029: Goal: 22029: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 22029: Order: 22029: lpo 22029: Leaf order: 22029: k 10 0 0 22029: s 11 0 0 22029: apply 29 2 3 0,2 22029: fixed_pt 3 0 3 2,2 22029: strong_fixed_point 3 0 2 1,2 % SZS status Timeout for COL006-5.p NO CLASH, using fixed ground order 22056: Facts: 22056: Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4 22056: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 22056: Id : 4, {_}: strong_fixed_point =<= apply (apply s (apply k (apply (apply (apply s s) (apply (apply s k) k)) (apply (apply s s) (apply s k))))) (apply (apply s (apply k s)) k) [] by strong_fixed_point 22056: Goal: 22056: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 22056: Order: 22056: nrkbo 22056: Leaf order: 22056: k 7 0 0 22056: s 10 0 0 22056: apply 25 2 3 0,2 22056: fixed_pt 3 0 3 2,2 22056: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 22057: Facts: 22057: Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4 22057: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 22057: Id : 4, {_}: strong_fixed_point =<= apply (apply s (apply k (apply (apply (apply s s) (apply (apply s k) k)) (apply (apply s s) (apply s k))))) (apply (apply s (apply k s)) k) [] by strong_fixed_point 22057: Goal: 22057: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 22057: Order: 22057: kbo 22057: Leaf order: 22057: k 7 0 0 22057: s 10 0 0 22057: apply 25 2 3 0,2 22057: fixed_pt 3 0 3 2,2 22057: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 22058: Facts: 22058: Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4 22058: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 22058: Id : 4, {_}: strong_fixed_point =<= apply (apply s (apply k (apply (apply (apply s s) (apply (apply s k) k)) (apply (apply s s) (apply s k))))) (apply (apply s (apply k s)) k) [] by strong_fixed_point 22058: Goal: 22058: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 22058: Order: 22058: lpo 22058: Leaf order: 22058: k 7 0 0 22058: s 10 0 0 22058: apply 25 2 3 0,2 22058: fixed_pt 3 0 3 2,2 22058: strong_fixed_point 3 0 2 1,2 % SZS status Timeout for COL006-7.p NO CLASH, using fixed ground order 22074: Facts: 22074: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 22074: Id : 3, {_}: apply (apply (apply n ?6) ?7) ?8 =?= apply (apply (apply ?6 ?8) ?7) ?8 [8, 7, 6] by n_definition ?6 ?7 ?8 22074: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply n (apply (apply b b) (apply (apply n (apply (apply b b) n)) n))) n)) b)) b [] by strong_fixed_point 22074: Goal: 22074: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 22074: Order: 22074: nrkbo 22074: Leaf order: 22074: n 6 0 0 22074: b 9 0 0 22074: apply 26 2 3 0,2 22074: fixed_pt 3 0 3 2,2 22074: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 22075: Facts: 22075: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 22075: Id : 3, {_}: apply (apply (apply n ?6) ?7) ?8 =?= apply (apply (apply ?6 ?8) ?7) ?8 [8, 7, 6] by n_definition ?6 ?7 ?8 22075: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply n (apply (apply b b) (apply (apply n (apply (apply b b) n)) n))) n)) b)) b [] by strong_fixed_point 22075: Goal: 22075: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 22075: Order: 22075: kbo 22075: Leaf order: 22075: n 6 0 0 22075: b 9 0 0 22075: apply 26 2 3 0,2 22075: fixed_pt 3 0 3 2,2 22075: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 22076: Facts: 22076: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 22076: Id : 3, {_}: apply (apply (apply n ?6) ?7) ?8 =?= apply (apply (apply ?6 ?8) ?7) ?8 [8, 7, 6] by n_definition ?6 ?7 ?8 22076: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply n (apply (apply b b) (apply (apply n (apply (apply b b) n)) n))) n)) b)) b [] by strong_fixed_point 22076: Goal: 22076: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 22076: Order: 22076: lpo 22076: Leaf order: 22076: n 6 0 0 22076: b 9 0 0 22076: apply 26 2 3 0,2 22076: fixed_pt 3 0 3 2,2 22076: strong_fixed_point 3 0 2 1,2 % SZS status Timeout for COL044-6.p NO CLASH, using fixed ground order 22116: Facts: 22116: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 22116: Id : 3, {_}: apply (apply (apply n ?6) ?7) ?8 =?= apply (apply (apply ?6 ?8) ?7) ?8 [8, 7, 6] by n_definition ?6 ?7 ?8 22116: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply n (apply (apply b b) (apply (apply n (apply n (apply b b))) n))) n)) b)) b [] by strong_fixed_point 22116: Goal: 22116: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 22116: Order: 22116: nrkbo 22116: Leaf order: 22116: n 6 0 0 22116: b 9 0 0 22116: apply 26 2 3 0,2 22116: fixed_pt 3 0 3 2,2 22116: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 22117: Facts: 22117: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 22117: Id : 3, {_}: apply (apply (apply n ?6) ?7) ?8 =?= apply (apply (apply ?6 ?8) ?7) ?8 [8, 7, 6] by n_definition ?6 ?7 ?8 22117: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply n (apply (apply b b) (apply (apply n (apply n (apply b b))) n))) n)) b)) b [] by strong_fixed_point 22117: Goal: 22117: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 22117: Order: 22117: kbo 22117: Leaf order: 22117: n 6 0 0 22117: b 9 0 0 22117: apply 26 2 3 0,2 22117: fixed_pt 3 0 3 2,2 22117: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 22118: Facts: 22118: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 22118: Id : 3, {_}: apply (apply (apply n ?6) ?7) ?8 =?= apply (apply (apply ?6 ?8) ?7) ?8 [8, 7, 6] by n_definition ?6 ?7 ?8 22118: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply n (apply (apply b b) (apply (apply n (apply n (apply b b))) n))) n)) b)) b [] by strong_fixed_point 22118: Goal: 22118: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 22118: Order: 22118: lpo 22118: Leaf order: 22118: n 6 0 0 22118: b 9 0 0 22118: apply 26 2 3 0,2 22118: fixed_pt 3 0 3 2,2 22118: strong_fixed_point 3 0 2 1,2 % SZS status Timeout for COL044-7.p CLASH, statistics insufficient 22135: Facts: 22135: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 22135: Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 22135: Goal: 22135: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (f ?1)) (g ?1) [1] by prove_v_combinator ?1 22135: Order: 22135: nrkbo 22135: Leaf order: 22135: t 1 0 0 22135: b 1 0 0 22135: h 2 1 2 0,2,2 22135: g 2 1 2 0,2,1,2 22135: apply 13 2 5 0,2 22135: f 2 1 2 0,2,1,1,2 CLASH, statistics insufficient 22136: Facts: 22136: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 22136: Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 22136: Goal: 22136: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (f ?1)) (g ?1) [1] by prove_v_combinator ?1 22136: Order: 22136: kbo 22136: Leaf order: 22136: t 1 0 0 22136: b 1 0 0 22136: h 2 1 2 0,2,2 22136: g 2 1 2 0,2,1,2 22136: apply 13 2 5 0,2 22136: f 2 1 2 0,2,1,1,2 CLASH, statistics insufficient 22137: Facts: 22137: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 22137: Id : 3, {_}: apply (apply t ?7) ?8 =?= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 22137: Goal: 22137: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (f ?1)) (g ?1) [1] by prove_v_combinator ?1 22137: Order: 22137: lpo 22137: Leaf order: 22137: t 1 0 0 22137: b 1 0 0 22137: h 2 1 2 0,2,2 22137: g 2 1 2 0,2,1,2 22137: apply 13 2 5 0,2 22137: f 2 1 2 0,2,1,1,2 Goal subsumed Statistics : Max weight : 124 Found proof, 35.273110s % SZS status Unsatisfiable for COL064-1.p % SZS output start CNFRefutation for COL064-1.p Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 Id : 10997, {_}: apply (apply (h (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) === apply (apply (h (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) [] by Super 10996 with 3 at 2 Id : 10996, {_}: apply (apply ?37685 (g (apply (apply b (apply t (apply (apply b b) ?37685))) (apply (apply b b) (apply (apply b b) t))))) (apply (h (apply (apply b (apply t (apply (apply b b) ?37685))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) ?37685))) (apply (apply b b) (apply (apply b b) t))))) =>= apply (apply (h (apply (apply b (apply t (apply (apply b b) ?37685))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) ?37685))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b b) ?37685))) (apply (apply b b) (apply (apply b b) t)))) [37685] by Super 3193 with 2 at 2 Id : 3193, {_}: apply (apply (apply ?10612 (apply ?10613 (g (apply (apply b (apply t (apply (apply b ?10612) ?10613))) (apply (apply b b) (apply (apply b b) t)))))) (h (apply (apply b (apply t (apply (apply b ?10612) ?10613))) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t (apply (apply b ?10612) ?10613))) (apply (apply b b) (apply (apply b b) t)))) =>= apply (apply (h (apply (apply b (apply t (apply (apply b ?10612) ?10613))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b ?10612) ?10613))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b ?10612) ?10613))) (apply (apply b b) (apply (apply b b) t)))) [10613, 10612] by Super 3188 with 2 at 1,1,2 Id : 3188, {_}: apply (apply (apply ?10602 (g (apply (apply b (apply t ?10602)) (apply (apply b b) (apply (apply b b) t))))) (h (apply (apply b (apply t ?10602)) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t ?10602)) (apply (apply b b) (apply (apply b b) t)))) =>= apply (apply (h (apply (apply b (apply t ?10602)) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t ?10602)) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t ?10602)) (apply (apply b b) (apply (apply b b) t)))) [10602] by Super 3164 with 3 at 2 Id : 3164, {_}: apply (apply ?10539 (f (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) (apply (apply ?10540 (g (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) (h (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) =>= apply (apply (h (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539)))) (f (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) (g (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539)))) [10540, 10539] by Super 442 with 2 at 2 Id : 442, {_}: apply (apply (apply ?1394 (apply ?1395 (f (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))))) (apply ?1396 (g (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))))) (h (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))) =>= apply (apply (h (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))) (f (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395))))) (g (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))) [1396, 1395, 1394] by Super 277 with 2 at 1,1,2 Id : 277, {_}: apply (apply (apply ?900 (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (apply ?901 (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))))) (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) =>= apply (apply (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) [901, 900] by Super 29 with 2 at 1,2 Id : 29, {_}: apply (apply (apply (apply ?85 (apply ?86 (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))))) ?87) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) =>= apply (apply (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) [87, 86, 85] by Super 13 with 3 at 1,1,2 Id : 13, {_}: apply (apply (apply ?33 (apply ?34 (apply ?35 (f (apply (apply b ?33) (apply (apply b ?34) ?35)))))) (g (apply (apply b ?33) (apply (apply b ?34) ?35)))) (h (apply (apply b ?33) (apply (apply b ?34) ?35))) =>= apply (apply (h (apply (apply b ?33) (apply (apply b ?34) ?35))) (f (apply (apply b ?33) (apply (apply b ?34) ?35)))) (g (apply (apply b ?33) (apply (apply b ?34) ?35))) [35, 34, 33] by Super 6 with 2 at 2,1,1,2 Id : 6, {_}: apply (apply (apply ?18 (apply ?19 (f (apply (apply b ?18) ?19)))) (g (apply (apply b ?18) ?19))) (h (apply (apply b ?18) ?19)) =>= apply (apply (h (apply (apply b ?18) ?19)) (f (apply (apply b ?18) ?19))) (g (apply (apply b ?18) ?19)) [19, 18] by Super 1 with 2 at 1,1,2 Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (f ?1)) (g ?1) [1] by prove_v_combinator ?1 % SZS output end CNFRefutation for COL064-1.p 22135: solved COL064-1.p in 35.146196 using nrkbo 22135: status Unsatisfiable for COL064-1.p CLASH, statistics insufficient 22153: Facts: 22153: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 22153: Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 22153: Goal: 22153: Id : 1, {_}: apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)) (i ?1) =>= apply (apply (f ?1) (i ?1)) (apply (g ?1) (h ?1)) [1] by prove_g_combinator ?1 22153: Order: 22153: nrkbo 22153: Leaf order: 22153: t 1 0 0 22153: b 1 0 0 22153: i 2 1 2 0,2,2 22153: h 2 1 2 0,2,1,2 22153: g 2 1 2 0,2,1,1,2 22153: apply 15 2 7 0,2 22153: f 2 1 2 0,2,1,1,1,2 CLASH, statistics insufficient 22154: Facts: 22154: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 22154: Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 22154: Goal: 22154: Id : 1, {_}: apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)) (i ?1) =>= apply (apply (f ?1) (i ?1)) (apply (g ?1) (h ?1)) [1] by prove_g_combinator ?1 22154: Order: 22154: kbo 22154: Leaf order: 22154: t 1 0 0 22154: b 1 0 0 22154: i 2 1 2 0,2,2 22154: h 2 1 2 0,2,1,2 22154: g 2 1 2 0,2,1,1,2 22154: apply 15 2 7 0,2 22154: f 2 1 2 0,2,1,1,1,2 CLASH, statistics insufficient 22155: Facts: 22155: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 22155: Id : 3, {_}: apply (apply t ?7) ?8 =?= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 22155: Goal: 22155: Id : 1, {_}: apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)) (i ?1) =>= apply (apply (f ?1) (i ?1)) (apply (g ?1) (h ?1)) [1] by prove_g_combinator ?1 22155: Order: 22155: lpo 22155: Leaf order: 22155: t 1 0 0 22155: b 1 0 0 22155: i 2 1 2 0,2,2 22155: h 2 1 2 0,2,1,2 22155: g 2 1 2 0,2,1,1,2 22155: apply 15 2 7 0,2 22155: f 2 1 2 0,2,1,1,1,2 % SZS status Timeout for COL065-1.p CLASH, statistics insufficient 22171: Facts: 22171: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 22171: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 22171: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 22171: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 22171: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 22171: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 22171: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 22171: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 22171: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 22171: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 22171: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 22171: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 22171: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 22171: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 22171: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 22171: Id : 17, {_}: greatest_lower_bound a c =>= greatest_lower_bound b c [] by p12_1 22171: Id : 18, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12_2 22171: Goal: 22171: Id : 1, {_}: a =>= b [] by prove_p12 22171: Order: 22171: nrkbo 22171: Leaf order: 22171: c 4 0 0 22171: least_upper_bound 15 2 0 22171: greatest_lower_bound 15 2 0 22171: inverse 1 1 0 22171: multiply 18 2 0 22171: identity 2 0 0 22171: b 3 0 1 3 22171: a 3 0 1 2 CLASH, statistics insufficient 22172: Facts: 22172: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 22172: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 22172: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 22172: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 22172: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 22172: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 22172: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 22172: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 22172: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 22172: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 22172: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 22172: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 22172: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 22172: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 22172: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 22172: Id : 17, {_}: greatest_lower_bound a c =>= greatest_lower_bound b c [] by p12_1 22172: Id : 18, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12_2 22172: Goal: 22172: Id : 1, {_}: a =>= b [] by prove_p12 22172: Order: 22172: kbo 22172: Leaf order: 22172: c 4 0 0 22172: least_upper_bound 15 2 0 22172: greatest_lower_bound 15 2 0 22172: inverse 1 1 0 22172: multiply 18 2 0 22172: identity 2 0 0 22172: b 3 0 1 3 22172: a 3 0 1 2 CLASH, statistics insufficient 22173: Facts: 22173: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 22173: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 22173: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 22173: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 22173: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 22173: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 22173: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 22173: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 22173: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 22173: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 22173: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 22173: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 22173: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =>= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 22173: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 22173: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =>= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 22173: Id : 17, {_}: greatest_lower_bound a c =>= greatest_lower_bound b c [] by p12_1 22173: Id : 18, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12_2 22173: Goal: 22173: Id : 1, {_}: a =>= b [] by prove_p12 22173: Order: 22173: lpo 22173: Leaf order: 22173: c 4 0 0 22173: least_upper_bound 15 2 0 22173: greatest_lower_bound 15 2 0 22173: inverse 1 1 0 22173: multiply 18 2 0 22173: identity 2 0 0 22173: b 3 0 1 3 22173: a 3 0 1 2 % SZS status Timeout for GRP181-1.p CLASH, statistics insufficient 22201: Facts: 22201: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 22201: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 22201: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 22201: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 22201: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 22201: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 22201: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 22201: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 22201: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 22201: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 22201: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 22201: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 22201: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 22201: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 22201: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 22201: Id : 17, {_}: inverse identity =>= identity [] by p12_1 22201: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p12_2 ?51 22201: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p12_3 ?53 ?54 22201: Id : 20, {_}: greatest_lower_bound a c =>= greatest_lower_bound b c [] by p12_4 22201: Id : 21, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12_5 22201: Goal: 22201: Id : 1, {_}: a =>= b [] by prove_p12 22201: Order: 22201: kbo 22201: Leaf order: 22201: c 4 0 0 22201: least_upper_bound 15 2 0 22201: greatest_lower_bound 15 2 0 22201: inverse 7 1 0 22201: multiply 20 2 0 22201: identity 4 0 0 22201: b 3 0 1 3 22201: a 3 0 1 2 CLASH, statistics insufficient 22202: Facts: 22202: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 22202: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 22202: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 22202: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 22202: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 22202: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 22202: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 22202: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 22202: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 22202: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 22202: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 22202: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 22202: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =>= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 22202: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 22202: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =>= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 22202: Id : 17, {_}: inverse identity =>= identity [] by p12_1 22202: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p12_2 ?51 22202: Id : 19, {_}: inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53) [54, 53] by p12_3 ?53 ?54 22202: Id : 20, {_}: greatest_lower_bound a c =>= greatest_lower_bound b c [] by p12_4 22202: Id : 21, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12_5 22202: Goal: 22202: Id : 1, {_}: a =>= b [] by prove_p12 22202: Order: 22202: lpo 22202: Leaf order: 22202: c 4 0 0 22202: least_upper_bound 15 2 0 22202: greatest_lower_bound 15 2 0 22202: inverse 7 1 0 22202: multiply 20 2 0 22202: identity 4 0 0 22202: b 3 0 1 3 22202: a 3 0 1 2 CLASH, statistics insufficient 22200: Facts: 22200: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 22200: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 22200: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 22200: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 22200: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 22200: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 22200: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 22200: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 22200: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 22200: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 22200: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 22200: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 22200: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 22200: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 22200: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 22200: Id : 17, {_}: inverse identity =>= identity [] by p12_1 22200: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p12_2 ?51 22200: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p12_3 ?53 ?54 22200: Id : 20, {_}: greatest_lower_bound a c =>= greatest_lower_bound b c [] by p12_4 22200: Id : 21, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12_5 22200: Goal: 22200: Id : 1, {_}: a =>= b [] by prove_p12 22200: Order: 22200: nrkbo 22200: Leaf order: 22200: c 4 0 0 22200: least_upper_bound 15 2 0 22200: greatest_lower_bound 15 2 0 22200: inverse 7 1 0 22200: multiply 20 2 0 22200: identity 4 0 0 22200: b 3 0 1 3 22200: a 3 0 1 2 % SZS status Timeout for GRP181-2.p NO CLASH, using fixed ground order 22218: Facts: 22218: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 22218: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 22218: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 22218: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 22218: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 22218: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 22218: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 22218: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 22218: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 22218: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 22218: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 22218: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 22218: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 22218: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 22218: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 22218: Id : 17, {_}: greatest_lower_bound (least_upper_bound a (inverse a)) (least_upper_bound b (inverse b)) =>= identity [] by p33_1 22218: Goal: 22218: Id : 1, {_}: multiply a b =>= multiply b a [] by prove_p33 22218: Order: 22218: nrkbo 22218: Leaf order: 22218: least_upper_bound 15 2 0 22218: greatest_lower_bound 14 2 0 22218: inverse 3 1 0 22218: identity 3 0 0 22218: multiply 20 2 2 0,2 22218: b 4 0 2 2,2 22218: a 4 0 2 1,2 NO CLASH, using fixed ground order 22219: Facts: 22219: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 22219: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 22219: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 22219: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 22219: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 22219: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 22219: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 22219: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 22219: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 22219: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 22219: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 22219: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 22219: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 22219: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 22219: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 22219: Id : 17, {_}: greatest_lower_bound (least_upper_bound a (inverse a)) (least_upper_bound b (inverse b)) =>= identity [] by p33_1 22219: Goal: 22219: Id : 1, {_}: multiply a b =>= multiply b a [] by prove_p33 22219: Order: 22219: kbo 22219: Leaf order: 22219: least_upper_bound 15 2 0 22219: greatest_lower_bound 14 2 0 22219: inverse 3 1 0 22219: identity 3 0 0 22219: multiply 20 2 2 0,2 22219: b 4 0 2 2,2 22219: a 4 0 2 1,2 NO CLASH, using fixed ground order 22220: Facts: 22220: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 22220: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 22220: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 22220: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 22220: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 22220: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 22220: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 22220: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 22220: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 22220: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 22220: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 22220: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 22220: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =>= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 22220: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 22220: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =>= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 22220: Id : 17, {_}: greatest_lower_bound (least_upper_bound a (inverse a)) (least_upper_bound b (inverse b)) =>= identity [] by p33_1 22220: Goal: 22220: Id : 1, {_}: multiply a b =>= multiply b a [] by prove_p33 22220: Order: 22220: lpo 22220: Leaf order: 22220: least_upper_bound 15 2 0 22220: greatest_lower_bound 14 2 0 22220: inverse 3 1 0 22220: identity 3 0 0 22220: multiply 20 2 2 0,2 22220: b 4 0 2 2,2 22220: a 4 0 2 1,2 % SZS status Timeout for GRP187-1.p NO CLASH, using fixed ground order 22280: Facts: 22280: Id : 2, {_}: multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) (multiply (inverse (multiply ?4 ?5)) (multiply ?4 (inverse (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) ?7 =>= ?6 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22280: Goal: 22280: Id : 1, {_}: multiply (inverse a1) a1 =>= multiply (inverse b1) b1 [] by prove_these_axioms_1 22280: Order: 22280: nrkbo 22280: Leaf order: 22280: b1 2 0 2 1,1,3 22280: multiply 12 2 2 0,2 22280: inverse 9 1 2 0,1,2 22280: a1 2 0 2 1,1,2 NO CLASH, using fixed ground order 22281: Facts: 22281: Id : 2, {_}: multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) (multiply (inverse (multiply ?4 ?5)) (multiply ?4 (inverse (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) ?7 =>= ?6 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22281: Goal: 22281: Id : 1, {_}: multiply (inverse a1) a1 =>= multiply (inverse b1) b1 [] by prove_these_axioms_1 22281: Order: 22281: kbo 22281: Leaf order: 22281: b1 2 0 2 1,1,3 22281: multiply 12 2 2 0,2 22281: inverse 9 1 2 0,1,2 22281: a1 2 0 2 1,1,2 NO CLASH, using fixed ground order 22282: Facts: 22282: Id : 2, {_}: multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) (multiply (inverse (multiply ?4 ?5)) (multiply ?4 (inverse (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) ?7 =>= ?6 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22282: Goal: 22282: Id : 1, {_}: multiply (inverse a1) a1 =>= multiply (inverse b1) b1 [] by prove_these_axioms_1 22282: Order: 22282: lpo 22282: Leaf order: 22282: b1 2 0 2 1,1,3 22282: multiply 12 2 2 0,2 22282: inverse 9 1 2 0,1,2 22282: a1 2 0 2 1,1,2 % SZS status Timeout for GRP505-1.p NO CLASH, using fixed ground order 22298: Facts: 22298: Id : 2, {_}: multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) (multiply (inverse (multiply ?4 ?5)) (multiply ?4 (inverse (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) ?7 =>= ?6 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22298: Goal: 22298: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 22298: Order: 22298: nrkbo 22298: Leaf order: 22298: inverse 7 1 0 22298: c3 2 0 2 2,2 22298: multiply 14 2 4 0,2 22298: b3 2 0 2 2,1,2 22298: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 22299: Facts: 22299: Id : 2, {_}: multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) (multiply (inverse (multiply ?4 ?5)) (multiply ?4 (inverse (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) ?7 =>= ?6 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22299: Goal: 22299: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 22299: Order: 22299: kbo 22299: Leaf order: 22299: inverse 7 1 0 22299: c3 2 0 2 2,2 22299: multiply 14 2 4 0,2 22299: b3 2 0 2 2,1,2 22299: a3 2 0 2 1,1,2 NO CLASH, using fixed ground order 22300: Facts: 22300: Id : 2, {_}: multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) (multiply (inverse (multiply ?4 ?5)) (multiply ?4 (inverse (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) ?7 =>= ?6 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22300: Goal: 22300: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 22300: Order: 22300: lpo 22300: Leaf order: 22300: inverse 7 1 0 22300: c3 2 0 2 2,2 22300: multiply 14 2 4 0,2 22300: b3 2 0 2 2,1,2 22300: a3 2 0 2 1,1,2 % SZS status Timeout for GRP507-1.p NO CLASH, using fixed ground order 22343: Facts: 22343: Id : 2, {_}: multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) (multiply (inverse (multiply ?4 ?5)) (multiply ?4 (inverse (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) ?7 =>= ?6 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22343: Goal: 22343: Id : 1, {_}: multiply a b =>= multiply b a [] by prove_these_axioms_4 22343: Order: 22343: nrkbo 22343: Leaf order: 22343: inverse 7 1 0 22343: multiply 12 2 2 0,2 22343: b 2 0 2 2,2 22343: a 2 0 2 1,2 NO CLASH, using fixed ground order 22344: Facts: 22344: Id : 2, {_}: multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) (multiply (inverse (multiply ?4 ?5)) (multiply ?4 (inverse (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) ?7 =>= ?6 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22344: Goal: 22344: Id : 1, {_}: multiply a b =>= multiply b a [] by prove_these_axioms_4 22344: Order: 22344: kbo 22344: Leaf order: 22344: inverse 7 1 0 22344: multiply 12 2 2 0,2 22344: b 2 0 2 2,2 22344: a 2 0 2 1,2 NO CLASH, using fixed ground order 22345: Facts: 22345: Id : 2, {_}: multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) (multiply (inverse (multiply ?4 ?5)) (multiply ?4 (inverse (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) ?7 =>= ?6 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22345: Goal: 22345: Id : 1, {_}: multiply a b =>= multiply b a [] by prove_these_axioms_4 22345: Order: 22345: lpo 22345: Leaf order: 22345: inverse 7 1 0 22345: multiply 12 2 2 0,2 22345: b 2 0 2 2,2 22345: a 2 0 2 1,2 % SZS status Timeout for GRP508-1.p NO CLASH, using fixed ground order 22381: Facts: 22381: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 22381: Goal: 22381: Id : 1, {_}: meet a a =>= a [] by prove_normal_axioms_1 22381: Order: 22381: nrkbo 22381: Leaf order: 22381: join 20 2 0 22381: meet 19 2 1 0,2 22381: a 3 0 3 1,2 NO CLASH, using fixed ground order 22382: Facts: 22382: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 22382: Goal: 22382: Id : 1, {_}: meet a a =>= a [] by prove_normal_axioms_1 22382: Order: 22382: kbo 22382: Leaf order: 22382: join 20 2 0 22382: meet 19 2 1 0,2 22382: a 3 0 3 1,2 NO CLASH, using fixed ground order 22383: Facts: 22383: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 22383: Goal: 22383: Id : 1, {_}: meet a a =>= a [] by prove_normal_axioms_1 22383: Order: 22383: lpo 22383: Leaf order: 22383: join 20 2 0 22383: meet 19 2 1 0,2 22383: a 3 0 3 1,2 % SZS status Timeout for LAT080-1.p NO CLASH, using fixed ground order 22413: Facts: 22413: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 22413: Goal: 22413: Id : 1, {_}: join a a =>= a [] by prove_normal_axioms_4 22413: Order: 22413: nrkbo 22413: Leaf order: 22413: meet 18 2 0 22413: join 21 2 1 0,2 22413: a 3 0 3 1,2 NO CLASH, using fixed ground order 22414: Facts: 22414: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 22414: Goal: 22414: Id : 1, {_}: join a a =>= a [] by prove_normal_axioms_4 22414: Order: 22414: kbo 22414: Leaf order: 22414: meet 18 2 0 22414: join 21 2 1 0,2 22414: a 3 0 3 1,2 NO CLASH, using fixed ground order 22415: Facts: 22415: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 22415: Goal: 22415: Id : 1, {_}: join a a =>= a [] by prove_normal_axioms_4 22415: Order: 22415: lpo 22415: Leaf order: 22415: meet 18 2 0 22415: join 21 2 1 0,2 22415: a 3 0 3 1,2 % SZS status Timeout for LAT083-1.p NO CLASH, using fixed ground order 22432: Facts: 22432: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22432: Goal: 22432: Id : 1, {_}: meet a a =>= a [] by prove_wal_axioms_1 22432: Order: 22432: nrkbo 22432: Leaf order: 22432: join 18 2 0 22432: meet 19 2 1 0,2 22432: a 3 0 3 1,2 NO CLASH, using fixed ground order 22434: Facts: 22434: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22434: Goal: 22434: Id : 1, {_}: meet a a =>= a [] by prove_wal_axioms_1 22434: Order: 22434: lpo 22434: Leaf order: 22434: join 18 2 0 22434: meet 19 2 1 0,2 22434: a 3 0 3 1,2 NO CLASH, using fixed ground order 22433: Facts: 22433: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22433: Goal: 22433: Id : 1, {_}: meet a a =>= a [] by prove_wal_axioms_1 22433: Order: 22433: kbo 22433: Leaf order: 22433: join 18 2 0 22433: meet 19 2 1 0,2 22433: a 3 0 3 1,2 % SZS status Timeout for LAT092-1.p NO CLASH, using fixed ground order 22466: Facts: 22466: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22466: Goal: 22466: Id : 1, {_}: meet b a =>= meet a b [] by prove_wal_axioms_2 22466: Order: 22466: nrkbo 22466: Leaf order: 22466: join 18 2 0 22466: meet 20 2 2 0,2 22466: a 2 0 2 2,2 22466: b 2 0 2 1,2 NO CLASH, using fixed ground order 22467: Facts: 22467: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22467: Goal: 22467: Id : 1, {_}: meet b a =>= meet a b [] by prove_wal_axioms_2 22467: Order: 22467: kbo 22467: Leaf order: 22467: join 18 2 0 22467: meet 20 2 2 0,2 22467: a 2 0 2 2,2 22467: b 2 0 2 1,2 NO CLASH, using fixed ground order 22468: Facts: 22468: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22468: Goal: 22468: Id : 1, {_}: meet b a =>= meet a b [] by prove_wal_axioms_2 22468: Order: 22468: lpo 22468: Leaf order: 22468: join 18 2 0 22468: meet 20 2 2 0,2 22468: a 2 0 2 2,2 22468: b 2 0 2 1,2 % SZS status Timeout for LAT093-1.p NO CLASH, using fixed ground order 22493: Facts: 22493: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22493: Goal: 22493: Id : 1, {_}: join a a =>= a [] by prove_wal_axioms_3 22493: Order: 22493: nrkbo 22493: Leaf order: 22493: meet 18 2 0 22493: join 19 2 1 0,2 22493: a 3 0 3 1,2 NO CLASH, using fixed ground order 22494: Facts: 22494: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22494: Goal: 22494: Id : 1, {_}: join a a =>= a [] by prove_wal_axioms_3 22494: Order: 22494: kbo 22494: Leaf order: 22494: meet 18 2 0 22494: join 19 2 1 0,2 22494: a 3 0 3 1,2 NO CLASH, using fixed ground order 22495: Facts: 22495: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22495: Goal: 22495: Id : 1, {_}: join a a =>= a [] by prove_wal_axioms_3 22495: Order: 22495: lpo 22495: Leaf order: 22495: meet 18 2 0 22495: join 19 2 1 0,2 22495: a 3 0 3 1,2 % SZS status Timeout for LAT094-1.p NO CLASH, using fixed ground order 22522: Facts: 22522: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22522: Goal: 22522: Id : 1, {_}: join b a =>= join a b [] by prove_wal_axioms_4 22522: Order: 22522: nrkbo 22522: Leaf order: 22522: meet 18 2 0 22522: join 20 2 2 0,2 22522: a 2 0 2 2,2 22522: b 2 0 2 1,2 NO CLASH, using fixed ground order 22523: Facts: 22523: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22523: Goal: 22523: Id : 1, {_}: join b a =>= join a b [] by prove_wal_axioms_4 22523: Order: 22523: kbo 22523: Leaf order: 22523: meet 18 2 0 22523: join 20 2 2 0,2 22523: a 2 0 2 2,2 22523: b 2 0 2 1,2 NO CLASH, using fixed ground order 22524: Facts: 22524: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22524: Goal: 22524: Id : 1, {_}: join b a =>= join a b [] by prove_wal_axioms_4 22524: Order: 22524: lpo 22524: Leaf order: 22524: meet 18 2 0 22524: join 20 2 2 0,2 22524: a 2 0 2 2,2 22524: b 2 0 2 1,2 % SZS status Timeout for LAT095-1.p NO CLASH, using fixed ground order 22540: Facts: 22540: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22540: Goal: 22540: Id : 1, {_}: meet (meet (join a b) (join c b)) b =>= b [] by prove_wal_axioms_5 22540: Order: 22540: nrkbo 22540: Leaf order: 22540: meet 20 2 2 0,2 22540: c 1 0 1 1,2,1,2 22540: join 20 2 2 0,1,1,2 22540: b 4 0 4 2,1,1,2 22540: a 1 0 1 1,1,1,2 NO CLASH, using fixed ground order 22541: Facts: 22541: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22541: Goal: 22541: Id : 1, {_}: meet (meet (join a b) (join c b)) b =>= b [] by prove_wal_axioms_5 22541: Order: 22541: kbo 22541: Leaf order: 22541: meet 20 2 2 0,2 22541: c 1 0 1 1,2,1,2 22541: join 20 2 2 0,1,1,2 22541: b 4 0 4 2,1,1,2 22541: a 1 0 1 1,1,1,2 NO CLASH, using fixed ground order 22542: Facts: 22542: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22542: Goal: 22542: Id : 1, {_}: meet (meet (join a b) (join c b)) b =>= b [] by prove_wal_axioms_5 22542: Order: 22542: lpo 22542: Leaf order: 22542: meet 20 2 2 0,2 22542: c 1 0 1 1,2,1,2 22542: join 20 2 2 0,1,1,2 22542: b 4 0 4 2,1,1,2 22542: a 1 0 1 1,1,1,2 % SZS status Timeout for LAT096-1.p NO CLASH, using fixed ground order 22569: Facts: 22569: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22569: Goal: 22569: Id : 1, {_}: join (join (meet a b) (meet c b)) b =>= b [] by prove_wal_axioms_6 22569: Order: 22569: nrkbo 22569: Leaf order: 22569: join 20 2 2 0,2 22569: c 1 0 1 1,2,1,2 22569: meet 20 2 2 0,1,1,2 22569: b 4 0 4 2,1,1,2 22569: a 1 0 1 1,1,1,2 NO CLASH, using fixed ground order 22570: Facts: 22570: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22570: Goal: 22570: Id : 1, {_}: join (join (meet a b) (meet c b)) b =>= b [] by prove_wal_axioms_6 22570: Order: 22570: kbo 22570: Leaf order: 22570: join 20 2 2 0,2 22570: c 1 0 1 1,2,1,2 22570: meet 20 2 2 0,1,1,2 22570: b 4 0 4 2,1,1,2 22570: a 1 0 1 1,1,1,2 NO CLASH, using fixed ground order 22571: Facts: 22571: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 22571: Goal: 22571: Id : 1, {_}: join (join (meet a b) (meet c b)) b =>= b [] by prove_wal_axioms_6 22571: Order: 22571: lpo 22571: Leaf order: 22571: join 20 2 2 0,2 22571: c 1 0 1 1,2,1,2 22571: meet 20 2 2 0,1,1,2 22571: b 4 0 4 2,1,1,2 22571: a 1 0 1 1,1,1,2 % SZS status Timeout for LAT097-1.p NO CLASH, using fixed ground order 22740: Facts: 22740: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 22740: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 22740: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 22740: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 22740: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 22740: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 22740: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 22740: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 22740: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 ?29)) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28))))) [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29 22740: Goal: 22740: Id : 1, {_}: meet a (join b (meet a (meet c d))) =<= meet a (join b (meet c (meet d (join a (meet b d))))) [] by prove_H28 22740: Order: 22740: nrkbo 22740: Leaf order: 22740: join 16 2 3 0,2,2 22740: meet 21 2 7 0,2 22740: d 3 0 3 2,2,2,2,2 22740: c 2 0 2 1,2,2,2,2 22740: b 3 0 3 1,2,2 22740: a 4 0 4 1,2 NO CLASH, using fixed ground order 22742: Facts: 22742: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 22742: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 22742: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 22742: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 22742: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 22742: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 22742: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 22742: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 22742: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 ?29)) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28))))) [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29 22742: Goal: 22742: Id : 1, {_}: meet a (join b (meet a (meet c d))) =>= meet a (join b (meet c (meet d (join a (meet b d))))) [] by prove_H28 22742: Order: 22742: lpo 22742: Leaf order: 22742: join 16 2 3 0,2,2 22742: meet 21 2 7 0,2 22742: d 3 0 3 2,2,2,2,2 22742: c 2 0 2 1,2,2,2,2 22742: b 3 0 3 1,2,2 22742: a 4 0 4 1,2 NO CLASH, using fixed ground order 22741: Facts: 22741: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 22741: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 22741: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 22741: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 22741: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 22741: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 22741: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 22741: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 22741: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 ?29)) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28))))) [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29 22741: Goal: 22741: Id : 1, {_}: meet a (join b (meet a (meet c d))) =<= meet a (join b (meet c (meet d (join a (meet b d))))) [] by prove_H28 22741: Order: 22741: kbo 22741: Leaf order: 22741: join 16 2 3 0,2,2 22741: meet 21 2 7 0,2 22741: d 3 0 3 2,2,2,2,2 22741: c 2 0 2 1,2,2,2,2 22741: b 3 0 3 1,2,2 22741: a 4 0 4 1,2 % SZS status Timeout for LAT146-1.p NO CLASH, using fixed ground order 22773: Facts: 22773: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 22773: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 22773: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 22773: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 22773: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 22773: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 22773: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 22773: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 22773: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 ?29)) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28))))) [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29 22773: Goal: 22773: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet a (join (meet a b) (meet c (join a b))))) [] by prove_H7 22773: Order: 22773: nrkbo 22773: Leaf order: 22773: join 17 2 4 0,2,2 22773: meet 20 2 6 0,2 22773: c 2 0 2 2,2,2,2 22773: b 4 0 4 1,2,2 22773: a 6 0 6 1,2 NO CLASH, using fixed ground order 22774: Facts: 22774: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 22774: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 22774: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 22774: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 22774: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 22774: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 22774: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 22774: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 22774: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 ?29)) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28))))) [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29 22774: Goal: 22774: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet a (join (meet a b) (meet c (join a b))))) [] by prove_H7 22774: Order: 22774: kbo 22774: Leaf order: 22774: join 17 2 4 0,2,2 22774: meet 20 2 6 0,2 22774: c 2 0 2 2,2,2,2 22774: b 4 0 4 1,2,2 22774: a 6 0 6 1,2 NO CLASH, using fixed ground order 22775: Facts: 22775: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 22775: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 22775: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 22775: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 22775: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 22775: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 22775: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 22775: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 22775: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 ?29)) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28))))) [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29 22775: Goal: 22775: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet a (join (meet a b) (meet c (join a b))))) [] by prove_H7 22775: Order: 22775: lpo 22775: Leaf order: 22775: join 17 2 4 0,2,2 22775: meet 20 2 6 0,2 22775: c 2 0 2 2,2,2,2 22775: b 4 0 4 1,2,2 22775: a 6 0 6 1,2 % SZS status Timeout for LAT148-1.p NO CLASH, using fixed ground order 22791: Facts: 22791: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 22791: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 22791: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 22791: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 22791: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 22791: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 22791: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 22791: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 22791: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (join (meet ?26 ?28) (meet ?28 (join ?27 ?29)))) [29, 28, 27, 26] by equation_H49 ?26 ?27 ?28 ?29 22791: Goal: 22791: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 22791: Order: 22791: nrkbo 22791: Leaf order: 22791: join 18 2 4 0,2,2 22791: meet 20 2 6 0,2 22791: c 3 0 3 2,2,2,2 22791: b 3 0 3 1,2,2 22791: a 6 0 6 1,2 NO CLASH, using fixed ground order 22792: Facts: 22792: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 22792: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 22792: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 22792: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 22792: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 22792: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 22792: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 22792: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 22792: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (join (meet ?26 ?28) (meet ?28 (join ?27 ?29)))) [29, 28, 27, 26] by equation_H49 ?26 ?27 ?28 ?29 22792: Goal: 22792: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 22792: Order: 22792: kbo 22792: Leaf order: 22792: join 18 2 4 0,2,2 22792: meet 20 2 6 0,2 22792: c 3 0 3 2,2,2,2 22792: b 3 0 3 1,2,2 22792: a 6 0 6 1,2 NO CLASH, using fixed ground order 22793: Facts: 22793: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 22793: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 22793: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 22793: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 22793: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 22793: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 22793: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 22793: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 22793: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =?= meet ?26 (join ?27 (join (meet ?26 ?28) (meet ?28 (join ?27 ?29)))) [29, 28, 27, 26] by equation_H49 ?26 ?27 ?28 ?29 22793: Goal: 22793: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 22793: Order: 22793: lpo 22793: Leaf order: 22793: join 18 2 4 0,2,2 22793: meet 20 2 6 0,2 22793: c 3 0 3 2,2,2,2 22793: b 3 0 3 1,2,2 22793: a 6 0 6 1,2 % SZS status Timeout for LAT156-1.p NO CLASH, using fixed ground order NO CLASH, using fixed ground order 22830: Facts: 22830: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 22830: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 22830: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 22830: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 22830: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 22830: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 22830: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 22830: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 22830: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (join (meet ?28 ?29) (meet ?28 (join ?26 ?27)))) [29, 28, 27, 26] by equation_H52 ?26 ?27 ?28 ?29 22830: Goal: 22830: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (join (meet a c) (meet c d))) [] by prove_H51 22830: Order: 22830: kbo 22830: Leaf order: 22830: meet 19 2 5 0,2 22830: join 18 2 4 0,2,2 22830: d 2 0 2 2,2,2,2,2 22830: c 3 0 3 1,2,2,2 22830: b 2 0 2 1,2,2 22830: a 4 0 4 1,2 NO CLASH, using fixed ground order 22831: Facts: 22831: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 22831: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 22831: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 22831: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 22831: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 22831: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 22831: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 22831: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 22831: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =?= meet ?26 (join ?27 (join (meet ?28 ?29) (meet ?28 (join ?26 ?27)))) [29, 28, 27, 26] by equation_H52 ?26 ?27 ?28 ?29 22831: Goal: 22831: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (join (meet a c) (meet c d))) [] by prove_H51 22831: Order: 22831: lpo 22831: Leaf order: 22831: meet 19 2 5 0,2 22831: join 18 2 4 0,2,2 22831: d 2 0 2 2,2,2,2,2 22831: c 3 0 3 1,2,2,2 22831: b 2 0 2 1,2,2 22831: a 4 0 4 1,2 22829: Facts: 22829: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 22829: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 22829: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 22829: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 22829: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 22829: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 22829: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 22829: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 22829: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (join (meet ?28 ?29) (meet ?28 (join ?26 ?27)))) [29, 28, 27, 26] by equation_H52 ?26 ?27 ?28 ?29 22829: Goal: 22829: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (join (meet a c) (meet c d))) [] by prove_H51 22829: Order: 22829: nrkbo 22829: Leaf order: 22829: meet 19 2 5 0,2 22829: join 18 2 4 0,2,2 22829: d 2 0 2 2,2,2,2,2 22829: c 3 0 3 1,2,2,2 22829: b 2 0 2 1,2,2 22829: a 4 0 4 1,2 % SZS status Timeout for LAT160-1.p NO CLASH, using fixed ground order 22849: Facts: 22849: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 22849: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 22849: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 22849: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 22849: Id : 6, {_}: or ?14 ?15 =<= implies (not ?14) ?15 [15, 14] by or_definition ?14 ?15 22849: Id : 7, {_}: or (or ?17 ?18) ?19 =?= or ?17 (or ?18 ?19) [19, 18, 17] by or_associativity ?17 ?18 ?19 22849: Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22 22849: Id : 9, {_}: and ?24 ?25 =<= not (or (not ?24) (not ?25)) [25, 24] by and_definition ?24 ?25 22849: Id : 10, {_}: and (and ?27 ?28) ?29 =?= and ?27 (and ?28 ?29) [29, 28, 27] by and_associativity ?27 ?28 ?29 22849: Id : 11, {_}: and ?31 ?32 =?= and ?32 ?31 [32, 31] by and_commutativity ?31 ?32 22849: Id : 12, {_}: xor ?34 ?35 =<= or (and ?34 (not ?35)) (and (not ?34) ?35) [35, 34] by xor_definition ?34 ?35 22849: Id : 13, {_}: xor ?37 ?38 =?= xor ?38 ?37 [38, 37] by xor_commutativity ?37 ?38 22849: Id : 14, {_}: and_star ?40 ?41 =<= not (or (not ?40) (not ?41)) [41, 40] by and_star_definition ?40 ?41 22849: Id : 15, {_}: and_star (and_star ?43 ?44) ?45 =?= and_star ?43 (and_star ?44 ?45) [45, 44, 43] by and_star_associativity ?43 ?44 ?45 22849: Id : 16, {_}: and_star ?47 ?48 =?= and_star ?48 ?47 [48, 47] by and_star_commutativity ?47 ?48 22849: Id : 17, {_}: not truth =>= falsehood [] by false_definition 22849: Goal: 22849: Id : 1, {_}: and_star (xor (and_star (xor truth x) y) truth) y =>= and_star (xor (and_star (xor truth y) x) truth) x [] by prove_alternative_wajsberg_axiom 22849: Order: 22849: nrkbo 22849: Leaf order: 22849: falsehood 1 0 0 22849: and 9 2 0 22849: or 10 2 0 22849: not 12 1 0 22849: implies 14 2 0 22849: and_star 11 2 4 0,2 22849: y 3 0 3 2,1,1,2 22849: xor 7 2 4 0,1,2 22849: x 3 0 3 2,1,1,1,2 22849: truth 8 0 4 1,1,1,1,2 NO CLASH, using fixed ground order 22850: Facts: 22850: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 22850: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 22850: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 22850: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 22850: Id : 6, {_}: or ?14 ?15 =<= implies (not ?14) ?15 [15, 14] by or_definition ?14 ?15 22850: Id : 7, {_}: or (or ?17 ?18) ?19 =>= or ?17 (or ?18 ?19) [19, 18, 17] by or_associativity ?17 ?18 ?19 22850: Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22 22850: Id : 9, {_}: and ?24 ?25 =<= not (or (not ?24) (not ?25)) [25, 24] by and_definition ?24 ?25 22850: Id : 10, {_}: and (and ?27 ?28) ?29 =>= and ?27 (and ?28 ?29) [29, 28, 27] by and_associativity ?27 ?28 ?29 22850: Id : 11, {_}: and ?31 ?32 =?= and ?32 ?31 [32, 31] by and_commutativity ?31 ?32 22850: Id : 12, {_}: xor ?34 ?35 =<= or (and ?34 (not ?35)) (and (not ?34) ?35) [35, 34] by xor_definition ?34 ?35 22850: Id : 13, {_}: xor ?37 ?38 =?= xor ?38 ?37 [38, 37] by xor_commutativity ?37 ?38 22850: Id : 14, {_}: and_star ?40 ?41 =<= not (or (not ?40) (not ?41)) [41, 40] by and_star_definition ?40 ?41 22850: Id : 15, {_}: and_star (and_star ?43 ?44) ?45 =>= and_star ?43 (and_star ?44 ?45) [45, 44, 43] by and_star_associativity ?43 ?44 ?45 22850: Id : 16, {_}: and_star ?47 ?48 =?= and_star ?48 ?47 [48, 47] by and_star_commutativity ?47 ?48 22850: Id : 17, {_}: not truth =>= falsehood [] by false_definition 22850: Goal: 22850: Id : 1, {_}: and_star (xor (and_star (xor truth x) y) truth) y =?= and_star (xor (and_star (xor truth y) x) truth) x [] by prove_alternative_wajsberg_axiom 22850: Order: 22850: kbo 22850: Leaf order: 22850: falsehood 1 0 0 22850: and 9 2 0 22850: or 10 2 0 22850: not 12 1 0 22850: implies 14 2 0 22850: and_star 11 2 4 0,2 22850: y 3 0 3 2,1,1,2 22850: xor 7 2 4 0,1,2 22850: x 3 0 3 2,1,1,1,2 22850: truth 8 0 4 1,1,1,1,2 NO CLASH, using fixed ground order 22851: Facts: 22851: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 22851: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 22851: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 22851: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 22851: Id : 6, {_}: or ?14 ?15 =<= implies (not ?14) ?15 [15, 14] by or_definition ?14 ?15 22851: Id : 7, {_}: or (or ?17 ?18) ?19 =>= or ?17 (or ?18 ?19) [19, 18, 17] by or_associativity ?17 ?18 ?19 22851: Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22 22851: Id : 9, {_}: and ?24 ?25 =<= not (or (not ?24) (not ?25)) [25, 24] by and_definition ?24 ?25 22851: Id : 10, {_}: and (and ?27 ?28) ?29 =>= and ?27 (and ?28 ?29) [29, 28, 27] by and_associativity ?27 ?28 ?29 22851: Id : 11, {_}: and ?31 ?32 =?= and ?32 ?31 [32, 31] by and_commutativity ?31 ?32 22851: Id : 12, {_}: xor ?34 ?35 =>= or (and ?34 (not ?35)) (and (not ?34) ?35) [35, 34] by xor_definition ?34 ?35 22851: Id : 13, {_}: xor ?37 ?38 =?= xor ?38 ?37 [38, 37] by xor_commutativity ?37 ?38 22851: Id : 14, {_}: and_star ?40 ?41 =>= not (or (not ?40) (not ?41)) [41, 40] by and_star_definition ?40 ?41 22851: Id : 15, {_}: and_star (and_star ?43 ?44) ?45 =>= and_star ?43 (and_star ?44 ?45) [45, 44, 43] by and_star_associativity ?43 ?44 ?45 22851: Id : 16, {_}: and_star ?47 ?48 =?= and_star ?48 ?47 [48, 47] by and_star_commutativity ?47 ?48 22851: Id : 17, {_}: not truth =>= falsehood [] by false_definition 22851: Goal: 22851: Id : 1, {_}: and_star (xor (and_star (xor truth x) y) truth) y =>= and_star (xor (and_star (xor truth y) x) truth) x [] by prove_alternative_wajsberg_axiom 22851: Order: 22851: lpo 22851: Leaf order: 22851: falsehood 1 0 0 22851: and 9 2 0 22851: or 10 2 0 22851: not 12 1 0 22851: implies 14 2 0 22851: and_star 11 2 4 0,2 22851: y 3 0 3 2,1,1,2 22851: xor 7 2 4 0,1,2 22851: x 3 0 3 2,1,1,1,2 22851: truth 8 0 4 1,1,1,1,2 % SZS status Timeout for LCL160-1.p NO CLASH, using fixed ground order 22879: Facts: 22879: Id : 2, {_}: add ?2 additive_identity =>= ?2 [2] by right_identity ?2 22879: Id : 3, {_}: add ?4 (additive_inverse ?4) =>= additive_identity [4] by right_additive_inverse ?4 22879: Id : 4, {_}: multiply ?6 (add ?7 ?8) =<= add (multiply ?6 ?7) (multiply ?6 ?8) [8, 7, 6] by distribute1 ?6 ?7 ?8 22879: Id : 5, {_}: multiply (add ?10 ?11) ?12 =<= add (multiply ?10 ?12) (multiply ?11 ?12) [12, 11, 10] by distribute2 ?10 ?11 ?12 22879: Id : 6, {_}: add (add ?14 ?15) ?16 =?= add ?14 (add ?15 ?16) [16, 15, 14] by associative_addition ?14 ?15 ?16 22879: Id : 7, {_}: add ?18 ?19 =?= add ?19 ?18 [19, 18] by commutative_addition ?18 ?19 22879: Id : 8, {_}: multiply (multiply ?21 ?22) ?23 =?= multiply ?21 (multiply ?22 ?23) [23, 22, 21] by associative_multiplication ?21 ?22 ?23 22879: Id : 9, {_}: multiply ?25 (multiply ?25 ?25) =>= ?25 [25] by x_cubed_is_x ?25 22879: Goal: 22879: Id : 1, {_}: multiply a b =>= multiply b a [] by prove_commutativity 22879: Order: 22879: nrkbo 22879: Leaf order: 22879: additive_inverse 1 1 0 22879: add 12 2 0 22879: additive_identity 2 0 0 22879: multiply 14 2 2 0,2 22879: b 2 0 2 2,2 22879: a 2 0 2 1,2 NO CLASH, using fixed ground order 22880: Facts: 22880: Id : 2, {_}: add ?2 additive_identity =>= ?2 [2] by right_identity ?2 22880: Id : 3, {_}: add ?4 (additive_inverse ?4) =>= additive_identity [4] by right_additive_inverse ?4 22880: Id : 4, {_}: multiply ?6 (add ?7 ?8) =<= add (multiply ?6 ?7) (multiply ?6 ?8) [8, 7, 6] by distribute1 ?6 ?7 ?8 22880: Id : 5, {_}: multiply (add ?10 ?11) ?12 =<= add (multiply ?10 ?12) (multiply ?11 ?12) [12, 11, 10] by distribute2 ?10 ?11 ?12 22880: Id : 6, {_}: add (add ?14 ?15) ?16 =>= add ?14 (add ?15 ?16) [16, 15, 14] by associative_addition ?14 ?15 ?16 22880: Id : 7, {_}: add ?18 ?19 =?= add ?19 ?18 [19, 18] by commutative_addition ?18 ?19 22880: Id : 8, {_}: multiply (multiply ?21 ?22) ?23 =>= multiply ?21 (multiply ?22 ?23) [23, 22, 21] by associative_multiplication ?21 ?22 ?23 22880: Id : 9, {_}: multiply ?25 (multiply ?25 ?25) =>= ?25 [25] by x_cubed_is_x ?25 22880: Goal: 22880: Id : 1, {_}: multiply a b =>= multiply b a [] by prove_commutativity 22880: Order: 22880: kbo 22880: Leaf order: 22880: additive_inverse 1 1 0 22880: add 12 2 0 22880: additive_identity 2 0 0 22880: multiply 14 2 2 0,2 22880: b 2 0 2 2,2 22880: a 2 0 2 1,2 NO CLASH, using fixed ground order 22881: Facts: 22881: Id : 2, {_}: add ?2 additive_identity =>= ?2 [2] by right_identity ?2 22881: Id : 3, {_}: add ?4 (additive_inverse ?4) =>= additive_identity [4] by right_additive_inverse ?4 22881: Id : 4, {_}: multiply ?6 (add ?7 ?8) =>= add (multiply ?6 ?7) (multiply ?6 ?8) [8, 7, 6] by distribute1 ?6 ?7 ?8 22881: Id : 5, {_}: multiply (add ?10 ?11) ?12 =>= add (multiply ?10 ?12) (multiply ?11 ?12) [12, 11, 10] by distribute2 ?10 ?11 ?12 22881: Id : 6, {_}: add (add ?14 ?15) ?16 =>= add ?14 (add ?15 ?16) [16, 15, 14] by associative_addition ?14 ?15 ?16 22881: Id : 7, {_}: add ?18 ?19 =?= add ?19 ?18 [19, 18] by commutative_addition ?18 ?19 22881: Id : 8, {_}: multiply (multiply ?21 ?22) ?23 =>= multiply ?21 (multiply ?22 ?23) [23, 22, 21] by associative_multiplication ?21 ?22 ?23 22881: Id : 9, {_}: multiply ?25 (multiply ?25 ?25) =>= ?25 [25] by x_cubed_is_x ?25 22881: Goal: 22881: Id : 1, {_}: multiply a b =>= multiply b a [] by prove_commutativity 22881: Order: 22881: lpo 22881: Leaf order: 22881: additive_inverse 1 1 0 22881: add 12 2 0 22881: additive_identity 2 0 0 22881: multiply 14 2 2 0,2 22881: b 2 0 2 2,2 22881: a 2 0 2 1,2 % SZS status Timeout for RNG009-5.p NO CLASH, using fixed ground order NO CLASH, using fixed ground order 22919: Facts: 22919: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 22919: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 22919: Id : 4, {_}: add (additive_inverse ?6) ?6 =>= additive_identity [6] by left_additive_inverse ?6 22919: Id : 5, {_}: add ?8 (additive_inverse ?8) =>= additive_identity [8] by right_additive_inverse ?8 22919: Id : 6, {_}: add ?10 (add ?11 ?12) =<= add (add ?10 ?11) ?12 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12 22919: Id : 7, {_}: add ?14 ?15 =?= add ?15 ?14 [15, 14] by commutativity_for_addition ?14 ?15 22919: Id : 8, {_}: multiply ?17 (multiply ?18 ?19) =<= multiply (multiply ?17 ?18) ?19 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19 22919: Id : 9, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 22919: Id : 10, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 22919: Id : 11, {_}: multiply ?29 (multiply ?29 ?29) =>= ?29 [29] by x_cubed_is_x ?29 22919: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c 22919: Goal: 22919: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity 22919: Order: 22919: kbo 22919: Leaf order: 22919: additive_inverse 2 1 0 22919: add 14 2 0 22919: additive_identity 4 0 0 22919: c 2 0 1 3 22919: multiply 14 2 1 0,2 22919: a 2 0 1 2,2 22919: b 2 0 1 1,2 22918: Facts: 22918: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 22918: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 22918: Id : 4, {_}: add (additive_inverse ?6) ?6 =>= additive_identity [6] by left_additive_inverse ?6 22918: Id : 5, {_}: add ?8 (additive_inverse ?8) =>= additive_identity [8] by right_additive_inverse ?8 22918: Id : 6, {_}: add ?10 (add ?11 ?12) =?= add (add ?10 ?11) ?12 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12 22918: Id : 7, {_}: add ?14 ?15 =?= add ?15 ?14 [15, 14] by commutativity_for_addition ?14 ?15 22918: Id : 8, {_}: multiply ?17 (multiply ?18 ?19) =?= multiply (multiply ?17 ?18) ?19 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19 22918: Id : 9, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 22918: Id : 10, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 22918: Id : 11, {_}: multiply ?29 (multiply ?29 ?29) =>= ?29 [29] by x_cubed_is_x ?29 22918: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c 22918: Goal: 22918: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity 22918: Order: 22918: nrkbo 22918: Leaf order: 22918: additive_inverse 2 1 0 22918: add 14 2 0 22918: additive_identity 4 0 0 22918: c 2 0 1 3 22918: multiply 14 2 1 0,2 22918: a 2 0 1 2,2 22918: b 2 0 1 1,2 NO CLASH, using fixed ground order 22920: Facts: 22920: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 22920: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 22920: Id : 4, {_}: add (additive_inverse ?6) ?6 =>= additive_identity [6] by left_additive_inverse ?6 22920: Id : 5, {_}: add ?8 (additive_inverse ?8) =>= additive_identity [8] by right_additive_inverse ?8 22920: Id : 6, {_}: add ?10 (add ?11 ?12) =<= add (add ?10 ?11) ?12 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12 22920: Id : 7, {_}: add ?14 ?15 =?= add ?15 ?14 [15, 14] by commutativity_for_addition ?14 ?15 22920: Id : 8, {_}: multiply ?17 (multiply ?18 ?19) =<= multiply (multiply ?17 ?18) ?19 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19 22920: Id : 9, {_}: multiply ?21 (add ?22 ?23) =>= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 22920: Id : 10, {_}: multiply (add ?25 ?26) ?27 =>= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 22920: Id : 11, {_}: multiply ?29 (multiply ?29 ?29) =>= ?29 [29] by x_cubed_is_x ?29 22920: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c 22920: Goal: 22920: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity 22920: Order: 22920: lpo 22920: Leaf order: 22920: additive_inverse 2 1 0 22920: add 14 2 0 22920: additive_identity 4 0 0 22920: c 2 0 1 3 22920: multiply 14 2 1 0,2 22920: a 2 0 1 2,2 22920: b 2 0 1 1,2 % SZS status Timeout for RNG009-7.p NO CLASH, using fixed ground order 22947: Facts: 22947: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 22947: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 22947: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 22947: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 22947: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 22947: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 22947: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 22947: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 22947: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 22947: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 22947: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 22947: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 22947: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 22947: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 22947: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 22947: Goal: 22947: Id : 1, {_}: add (add (associator (multiply a b) c d) (associator a b (multiply c d))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by prove_teichmuller_identity 22947: Order: 22947: nrkbo 22947: Leaf order: 22947: commutator 1 2 0 22947: additive_identity 9 0 1 3 22947: additive_inverse 7 1 1 0,2,2 22947: add 20 2 4 0,2 22947: associator 6 3 5 0,1,1,2 22947: d 5 0 5 3,1,1,2 22947: c 5 0 5 2,1,1,2 22947: multiply 27 2 5 0,1,1,1,2 22947: b 5 0 5 2,1,1,1,2 22947: a 5 0 5 1,1,1,1,2 NO CLASH, using fixed ground order 22948: Facts: 22948: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 22948: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 22948: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 22948: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 22948: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 22948: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 22948: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 22948: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 22948: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 22948: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 22948: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 22948: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 22948: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 22948: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 22948: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 22948: Goal: 22948: Id : 1, {_}: add (add (associator (multiply a b) c d) (associator a b (multiply c d))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by prove_teichmuller_identity 22948: Order: 22948: kbo 22948: Leaf order: 22948: commutator 1 2 0 22948: additive_identity 9 0 1 3 22948: additive_inverse 7 1 1 0,2,2 22948: add 20 2 4 0,2 22948: associator 6 3 5 0,1,1,2 22948: d 5 0 5 3,1,1,2 22948: c 5 0 5 2,1,1,2 22948: multiply 27 2 5 0,1,1,1,2 22948: b 5 0 5 2,1,1,1,2 22948: a 5 0 5 1,1,1,1,2 NO CLASH, using fixed ground order 22949: Facts: 22949: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 22949: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 22949: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 22949: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 22949: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 22949: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 22949: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 22949: Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 22949: Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 22949: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 22949: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 22949: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 22949: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 22949: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 22949: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 22949: Goal: 22949: Id : 1, {_}: add (add (associator (multiply a b) c d) (associator a b (multiply c d))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by prove_teichmuller_identity 22949: Order: 22949: lpo 22949: Leaf order: 22949: commutator 1 2 0 22949: additive_identity 9 0 1 3 22949: additive_inverse 7 1 1 0,2,2 22949: add 20 2 4 0,2 22949: associator 6 3 5 0,1,1,2 22949: d 5 0 5 3,1,1,2 22949: c 5 0 5 2,1,1,2 22949: multiply 27 2 5 0,1,1,1,2 22949: b 5 0 5 2,1,1,1,2 22949: a 5 0 5 1,1,1,1,2 % SZS status Timeout for RNG026-6.p NO CLASH, using fixed ground order 22966: Facts: NO CLASH, using fixed ground order 22967: Facts: 22967: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 22967: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 22967: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 NO CLASH, using fixed ground order 22966: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 22966: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 22966: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 22966: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 22966: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 22966: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 22966: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 22965: Facts: 22966: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 22966: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 22966: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 22965: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 22965: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 22965: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 22965: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 22965: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 22965: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 22965: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 22965: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 22965: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 22965: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 22965: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 22965: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 22965: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 22965: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 22965: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 22965: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 22965: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 22965: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 22965: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 22965: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 22965: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 22965: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 22965: Goal: 22965: Id : 1, {_}: add (add (associator (multiply a b) c d) (associator a b (multiply c d))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by prove_teichmuller_identity 22965: Order: 22965: nrkbo 22965: Leaf order: 22965: commutator 1 2 0 22965: additive_identity 9 0 1 3 22965: additive_inverse 23 1 1 0,2,2 22965: add 28 2 4 0,2 22965: associator 6 3 5 0,1,1,2 22965: d 5 0 5 3,1,1,2 22965: c 5 0 5 2,1,1,2 22965: multiply 45 2 5 0,1,1,1,2 22965: b 5 0 5 2,1,1,1,2 22965: a 5 0 5 1,1,1,1,2 22967: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 22966: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 22966: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 22966: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 22966: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 22966: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 22966: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 22966: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 22966: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 22966: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 22966: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 22966: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 22966: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 22966: Goal: 22966: Id : 1, {_}: add (add (associator (multiply a b) c d) (associator a b (multiply c d))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by prove_teichmuller_identity 22966: Order: 22966: kbo 22966: Leaf order: 22966: commutator 1 2 0 22966: additive_identity 9 0 1 3 22966: additive_inverse 23 1 1 0,2,2 22966: add 28 2 4 0,2 22966: associator 6 3 5 0,1,1,2 22966: d 5 0 5 3,1,1,2 22966: c 5 0 5 2,1,1,2 22966: multiply 45 2 5 0,1,1,1,2 22966: b 5 0 5 2,1,1,1,2 22966: a 5 0 5 1,1,1,1,2 22967: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 22967: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 22967: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 22967: Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 22967: Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 22967: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 22967: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 22967: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 22967: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 22967: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 22967: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 22967: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 22967: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 22967: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 22967: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =>= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 22967: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =>= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 22967: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =>= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 22967: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =>= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 22967: Goal: 22967: Id : 1, {_}: add (add (associator (multiply a b) c d) (associator a b (multiply c d))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by prove_teichmuller_identity 22967: Order: 22967: lpo 22967: Leaf order: 22967: commutator 1 2 0 22967: additive_identity 9 0 1 3 22967: additive_inverse 23 1 1 0,2,2 22967: add 28 2 4 0,2 22967: associator 6 3 5 0,1,1,2 22967: d 5 0 5 3,1,1,2 22967: c 5 0 5 2,1,1,2 22967: multiply 45 2 5 0,1,1,1,2 22967: b 5 0 5 2,1,1,1,2 22967: a 5 0 5 1,1,1,1,2 % SZS status Timeout for RNG026-7.p NO CLASH, using fixed ground order 22994: Facts: 22994: Id : 2, {_}: nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by sh_1 ?2 ?3 ?4 22994: Goal: 22994: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 22994: Order: 22994: nrkbo 22994: Leaf order: 22994: nand 12 2 6 0,2 22994: c 2 0 2 2,2,2,2 22994: b 3 0 3 1,2,2 22994: a 3 0 3 1,2 NO CLASH, using fixed ground order 22995: Facts: 22995: Id : 2, {_}: nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by sh_1 ?2 ?3 ?4 22995: Goal: 22995: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 22995: Order: 22995: kbo 22995: Leaf order: 22995: nand 12 2 6 0,2 22995: c 2 0 2 2,2,2,2 22995: b 3 0 3 1,2,2 22995: a 3 0 3 1,2 NO CLASH, using fixed ground order 22996: Facts: 22996: Id : 2, {_}: nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by sh_1 ?2 ?3 ?4 22996: Goal: 22996: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 22996: Order: 22996: lpo 22996: Leaf order: 22996: nand 12 2 6 0,2 22996: c 2 0 2 2,2,2,2 22996: b 3 0 3 1,2,2 22996: a 3 0 3 1,2 % SZS status Timeout for BOO076-1.p CLASH, statistics insufficient 23012: Facts: 23012: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 23012: Id : 3, {_}: apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 [8, 7] by w_definition ?7 ?8 23012: Goal: 23012: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 23012: Order: 23012: nrkbo 23012: Leaf order: 23012: w 1 0 0 23012: b 1 0 0 23012: apply 12 2 3 0,2 23012: f 3 1 3 0,2,2 CLASH, statistics insufficient 23013: Facts: 23013: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 23013: Id : 3, {_}: apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 [8, 7] by w_definition ?7 ?8 23013: Goal: 23013: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 23013: Order: 23013: kbo 23013: Leaf order: 23013: w 1 0 0 23013: b 1 0 0 23013: apply 12 2 3 0,2 23013: f 3 1 3 0,2,2 CLASH, statistics insufficient 23014: Facts: 23014: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 23014: Id : 3, {_}: apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 [8, 7] by w_definition ?7 ?8 23014: Goal: 23014: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 23014: Order: 23014: lpo 23014: Leaf order: 23014: w 1 0 0 23014: b 1 0 0 23014: apply 12 2 3 0,2 23014: f 3 1 3 0,2,2 % SZS status Timeout for COL003-1.p CLASH, statistics insufficient 23460: Facts: 23460: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 23460: Id : 3, {_}: apply (apply w1 ?7) ?8 =?= apply (apply ?8 ?7) ?7 [8, 7] by w1_definition ?7 ?8 23460: Goal: 23460: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 23460: Order: 23460: nrkbo 23460: Leaf order: 23460: w1 1 0 0 23460: b 1 0 0 23460: apply 12 2 3 0,2 23460: f 3 1 3 0,2,2 CLASH, statistics insufficient 23462: Facts: 23462: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 23462: Id : 3, {_}: apply (apply w1 ?7) ?8 =?= apply (apply ?8 ?7) ?7 [8, 7] by w1_definition ?7 ?8 23462: Goal: 23462: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 23462: Order: 23462: lpo 23462: Leaf order: 23462: w1 1 0 0 23462: b 1 0 0 23462: apply 12 2 3 0,2 23462: f 3 1 3 0,2,2 CLASH, statistics insufficient 23461: Facts: 23461: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 23461: Id : 3, {_}: apply (apply w1 ?7) ?8 =?= apply (apply ?8 ?7) ?7 [8, 7] by w1_definition ?7 ?8 23461: Goal: 23461: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 23461: Order: 23461: kbo 23461: Leaf order: 23461: w1 1 0 0 23461: b 1 0 0 23461: apply 12 2 3 0,2 23461: f 3 1 3 0,2,2 % SZS status Timeout for COL042-1.p NO CLASH, using fixed ground order 23502: Facts: 23502: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 23502: Id : 3, {_}: apply (apply (apply h ?6) ?7) ?8 =?= apply (apply (apply ?6 ?7) ?8) ?7 [8, 7, 6] by h_definition ?6 ?7 ?8 23502: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply h (apply (apply b (apply (apply b h) (apply b b))) (apply h (apply (apply b h) (apply b b))))) h)) b)) b [] by strong_fixed_point 23502: Goal: 23502: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 23502: Order: 23502: nrkbo 23502: Leaf order: 23502: h 6 0 0 23502: b 12 0 0 23502: apply 29 2 3 0,2 23502: fixed_pt 3 0 3 2,2 23502: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 23503: Facts: 23503: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 23503: Id : 3, {_}: apply (apply (apply h ?6) ?7) ?8 =?= apply (apply (apply ?6 ?7) ?8) ?7 [8, 7, 6] by h_definition ?6 ?7 ?8 23503: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply h (apply (apply b (apply (apply b h) (apply b b))) (apply h (apply (apply b h) (apply b b))))) h)) b)) b [] by strong_fixed_point 23503: Goal: 23503: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 23503: Order: 23503: kbo 23503: Leaf order: 23503: h 6 0 0 23503: b 12 0 0 23503: apply 29 2 3 0,2 23503: fixed_pt 3 0 3 2,2 23503: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 23504: Facts: 23504: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 23504: Id : 3, {_}: apply (apply (apply h ?6) ?7) ?8 =?= apply (apply (apply ?6 ?7) ?8) ?7 [8, 7, 6] by h_definition ?6 ?7 ?8 23504: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply h (apply (apply b (apply (apply b h) (apply b b))) (apply h (apply (apply b h) (apply b b))))) h)) b)) b [] by strong_fixed_point 23504: Goal: 23504: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 23504: Order: 23504: lpo 23504: Leaf order: 23504: h 6 0 0 23504: b 12 0 0 23504: apply 29 2 3 0,2 23504: fixed_pt 3 0 3 2,2 23504: strong_fixed_point 3 0 2 1,2 % SZS status Timeout for COL043-3.p NO CLASH, using fixed ground order 23537: Facts: 23537: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 23537: Id : 3, {_}: apply (apply (apply n ?6) ?7) ?8 =?= apply (apply (apply ?6 ?8) ?7) ?8 [8, 7, 6] by n_definition ?6 ?7 ?8 23537: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply n (apply n (apply (apply b (apply b b)) (apply n (apply (apply b b) n))))) n)) b)) b [] by strong_fixed_point 23537: Goal: 23537: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 23537: Order: 23537: nrkbo 23537: Leaf order: 23537: n 6 0 0 23537: b 10 0 0 23537: apply 27 2 3 0,2 23537: fixed_pt 3 0 3 2,2 23537: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 23538: Facts: 23538: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 23538: Id : 3, {_}: apply (apply (apply n ?6) ?7) ?8 =?= apply (apply (apply ?6 ?8) ?7) ?8 [8, 7, 6] by n_definition ?6 ?7 ?8 23538: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply n (apply n (apply (apply b (apply b b)) (apply n (apply (apply b b) n))))) n)) b)) b [] by strong_fixed_point 23538: Goal: 23538: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 23538: Order: 23538: kbo 23538: Leaf order: 23538: n 6 0 0 23538: b 10 0 0 23538: apply 27 2 3 0,2 23538: fixed_pt 3 0 3 2,2 23538: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 23539: Facts: 23539: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 23539: Id : 3, {_}: apply (apply (apply n ?6) ?7) ?8 =?= apply (apply (apply ?6 ?8) ?7) ?8 [8, 7, 6] by n_definition ?6 ?7 ?8 23539: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply n (apply n (apply (apply b (apply b b)) (apply n (apply (apply b b) n))))) n)) b)) b [] by strong_fixed_point 23539: Goal: 23539: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 23539: Order: 23539: lpo 23539: Leaf order: 23539: n 6 0 0 23539: b 10 0 0 23539: apply 27 2 3 0,2 23539: fixed_pt 3 0 3 2,2 23539: strong_fixed_point 3 0 2 1,2 % SZS status Timeout for COL044-8.p NO CLASH, using fixed ground order NO CLASH, using fixed ground order 23557: Facts: 23557: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 23557: Id : 3, {_}: apply (apply (apply n ?6) ?7) ?8 =?= apply (apply (apply ?6 ?8) ?7) ?8 [8, 7, 6] by n_definition ?6 ?7 ?8 23557: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply n (apply n (apply (apply b (apply b b)) (apply n (apply n (apply b b)))))) n)) b)) b [] by strong_fixed_point 23557: Goal: 23557: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 23557: Order: 23557: kbo 23557: Leaf order: 23557: n 6 0 0 23557: b 10 0 0 23557: apply 27 2 3 0,2 23557: fixed_pt 3 0 3 2,2 23557: strong_fixed_point 3 0 2 1,2 NO CLASH, using fixed ground order 23558: Facts: 23558: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 23558: Id : 3, {_}: apply (apply (apply n ?6) ?7) ?8 =?= apply (apply (apply ?6 ?8) ?7) ?8 [8, 7, 6] by n_definition ?6 ?7 ?8 23558: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply n (apply n (apply (apply b (apply b b)) (apply n (apply n (apply b b)))))) n)) b)) b [] by strong_fixed_point 23558: Goal: 23558: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 23558: Order: 23558: lpo 23558: Leaf order: 23558: n 6 0 0 23558: b 10 0 0 23558: apply 27 2 3 0,2 23558: fixed_pt 3 0 3 2,2 23558: strong_fixed_point 3 0 2 1,2 23556: Facts: 23556: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 23556: Id : 3, {_}: apply (apply (apply n ?6) ?7) ?8 =?= apply (apply (apply ?6 ?8) ?7) ?8 [8, 7, 6] by n_definition ?6 ?7 ?8 23556: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply n (apply n (apply (apply b (apply b b)) (apply n (apply n (apply b b)))))) n)) b)) b [] by strong_fixed_point 23556: Goal: 23556: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point 23556: Order: 23556: nrkbo 23556: Leaf order: 23556: n 6 0 0 23556: b 10 0 0 23556: apply 27 2 3 0,2 23556: fixed_pt 3 0 3 2,2 23556: strong_fixed_point 3 0 2 1,2 % SZS status Timeout for COL044-9.p NO CLASH, using fixed ground order 23710: Facts: 23710: Id : 2, {_}: multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) (multiply (inverse (multiply ?4 ?5)) (multiply ?4 (inverse (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) ?7 =>= ?6 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 23710: Goal: 23710: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 23710: Order: 23710: nrkbo 23710: Leaf order: 23710: a2 2 0 2 2,2 23710: multiply 12 2 2 0,2 23710: inverse 8 1 1 0,1,1,2 23710: b2 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 23711: Facts: 23711: Id : 2, {_}: multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) (multiply (inverse (multiply ?4 ?5)) (multiply ?4 (inverse (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) ?7 =>= ?6 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 23711: Goal: 23711: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 23711: Order: 23711: kbo 23711: Leaf order: 23711: a2 2 0 2 2,2 23711: multiply 12 2 2 0,2 23711: inverse 8 1 1 0,1,1,2 23711: b2 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 23712: Facts: 23712: Id : 2, {_}: multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) (multiply (inverse (multiply ?4 ?5)) (multiply ?4 (inverse (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) ?7 =>= ?6 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 23712: Goal: 23712: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 23712: Order: 23712: lpo 23712: Leaf order: 23712: a2 2 0 2 2,2 23712: multiply 12 2 2 0,2 23712: inverse 8 1 1 0,1,1,2 23712: b2 2 0 2 1,1,1,2 % SZS status Timeout for GRP506-1.p NO CLASH, using fixed ground order 23731: Facts: 23731: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 23731: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 23731: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 23731: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 23731: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 23731: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 23731: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 23731: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 23731: Id : 10, {_}: complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 23731: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 23731: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 23731: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 23731: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 23731: Id : 15, {_}: join (meet (complement ?38) (join ?38 ?39)) (join (complement ?39) (meet ?38 ?39)) =>= n1 [39, 38] by megill ?38 ?39 23731: Goal: 23731: Id : 1, {_}: meet a (join b (meet a (join (complement a) (meet a b)))) =>= meet a (join (complement a) (meet a b)) [] by prove_this 23731: Order: 23731: nrkbo 23731: Leaf order: 23731: n0 1 0 0 23731: n1 2 0 0 23731: join 18 2 3 0,2,2 23731: meet 19 2 5 0,2 23731: complement 14 1 2 0,1,2,2,2,2 23731: b 3 0 3 1,2,2 23731: a 7 0 7 1,2 NO CLASH, using fixed ground order 23732: Facts: 23732: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 23732: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 23732: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 23732: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 23732: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 23732: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 23732: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 23732: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 23732: Id : 10, {_}: complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 23732: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 23732: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 23732: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 23732: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 23732: Id : 15, {_}: join (meet (complement ?38) (join ?38 ?39)) (join (complement ?39) (meet ?38 ?39)) =>= n1 [39, 38] by megill ?38 ?39 23732: Goal: 23732: Id : 1, {_}: meet a (join b (meet a (join (complement a) (meet a b)))) =>= meet a (join (complement a) (meet a b)) [] by prove_this 23732: Order: 23732: kbo 23732: Leaf order: 23732: n0 1 0 0 23732: n1 2 0 0 23732: join 18 2 3 0,2,2 23732: meet 19 2 5 0,2 23732: complement 14 1 2 0,1,2,2,2,2 23732: b 3 0 3 1,2,2 23732: a 7 0 7 1,2 NO CLASH, using fixed ground order 23733: Facts: 23733: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 23733: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 23733: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 23733: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 23733: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 23733: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 23733: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 23733: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 23733: Id : 10, {_}: complement (join ?26 ?27) =>= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 23733: Id : 11, {_}: complement (meet ?29 ?30) =>= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 23733: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 23733: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 23733: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 23733: Id : 15, {_}: join (meet (complement ?38) (join ?38 ?39)) (join (complement ?39) (meet ?38 ?39)) =>= n1 [39, 38] by megill ?38 ?39 23733: Goal: 23733: Id : 1, {_}: meet a (join b (meet a (join (complement a) (meet a b)))) =>= meet a (join (complement a) (meet a b)) [] by prove_this 23733: Order: 23733: lpo 23733: Leaf order: 23733: n0 1 0 0 23733: n1 2 0 0 23733: join 18 2 3 0,2,2 23733: meet 19 2 5 0,2 23733: complement 14 1 2 0,1,2,2,2,2 23733: b 3 0 3 1,2,2 23733: a 7 0 7 1,2 % SZS status Timeout for LAT053-1.p NO CLASH, using fixed ground order 23764: Facts: NO CLASH, using fixed ground order 23765: Facts: 23764: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23764: Goal: 23764: Id : 1, {_}: meet a b =>= meet b a [] by prove_normal_axioms_2 23764: Order: 23764: nrkbo 23764: Leaf order: 23764: join 20 2 0 23764: meet 20 2 2 0,2 23764: b 2 0 2 2,2 23764: a 2 0 2 1,2 23765: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23765: Goal: 23765: Id : 1, {_}: meet a b =>= meet b a [] by prove_normal_axioms_2 23765: Order: 23765: kbo 23765: Leaf order: 23765: join 20 2 0 23765: meet 20 2 2 0,2 23765: b 2 0 2 2,2 23765: a 2 0 2 1,2 NO CLASH, using fixed ground order 23766: Facts: 23766: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23766: Goal: 23766: Id : 1, {_}: meet a b =>= meet b a [] by prove_normal_axioms_2 23766: Order: 23766: lpo 23766: Leaf order: 23766: join 20 2 0 23766: meet 20 2 2 0,2 23766: b 2 0 2 2,2 23766: a 2 0 2 1,2 % SZS status Timeout for LAT081-1.p NO CLASH, using fixed ground order 23787: Facts: 23787: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23787: Goal: 23787: Id : 1, {_}: join a b =>= join b a [] by prove_normal_axioms_5 23787: Order: 23787: nrkbo 23787: Leaf order: 23787: meet 18 2 0 23787: join 22 2 2 0,2 23787: b 2 0 2 2,2 23787: a 2 0 2 1,2 NO CLASH, using fixed ground order 23788: Facts: 23788: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23788: Goal: 23788: Id : 1, {_}: join a b =>= join b a [] by prove_normal_axioms_5 23788: Order: 23788: kbo 23788: Leaf order: 23788: meet 18 2 0 23788: join 22 2 2 0,2 23788: b 2 0 2 2,2 23788: a 2 0 2 1,2 NO CLASH, using fixed ground order 23789: Facts: 23789: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23789: Goal: 23789: Id : 1, {_}: join a b =>= join b a [] by prove_normal_axioms_5 23789: Order: 23789: lpo 23789: Leaf order: 23789: meet 18 2 0 23789: join 22 2 2 0,2 23789: b 2 0 2 2,2 23789: a 2 0 2 1,2 % SZS status Timeout for LAT084-1.p NO CLASH, using fixed ground order 23816: Facts: 23816: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23816: Goal: 23816: Id : 1, {_}: meet a (join a b) =>= a [] by prove_normal_axioms_7 23816: Order: 23816: nrkbo 23816: Leaf order: 23816: meet 19 2 1 0,2 23816: join 21 2 1 0,2,2 23816: b 1 0 1 2,2,2 23816: a 3 0 3 1,2 NO CLASH, using fixed ground order 23817: Facts: 23817: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23817: Goal: 23817: Id : 1, {_}: meet a (join a b) =>= a [] by prove_normal_axioms_7 23817: Order: 23817: kbo 23817: Leaf order: 23817: meet 19 2 1 0,2 23817: join 21 2 1 0,2,2 23817: b 1 0 1 2,2,2 23817: a 3 0 3 1,2 NO CLASH, using fixed ground order 23818: Facts: 23818: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23818: Goal: 23818: Id : 1, {_}: meet a (join a b) =>= a [] by prove_normal_axioms_7 23818: Order: 23818: lpo 23818: Leaf order: 23818: meet 19 2 1 0,2 23818: join 21 2 1 0,2,2 23818: b 1 0 1 2,2,2 23818: a 3 0 3 1,2 % SZS status Timeout for LAT086-1.p NO CLASH, using fixed ground order 23840: Facts: 23840: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23840: Goal: 23840: Id : 1, {_}: join a (meet a b) =>= a [] by prove_normal_axioms_8 23840: Order: 23840: nrkbo 23840: Leaf order: 23840: join 21 2 1 0,2 23840: meet 19 2 1 0,2,2 23840: b 1 0 1 2,2,2 23840: a 3 0 3 1,2 NO CLASH, using fixed ground order 23842: Facts: 23842: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23842: Goal: 23842: Id : 1, {_}: join a (meet a b) =>= a [] by prove_normal_axioms_8 23842: Order: 23842: lpo 23842: Leaf order: 23842: join 21 2 1 0,2 23842: meet 19 2 1 0,2,2 23842: b 1 0 1 2,2,2 23842: a 3 0 3 1,2 NO CLASH, using fixed ground order 23841: Facts: 23841: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23841: Goal: 23841: Id : 1, {_}: join a (meet a b) =>= a [] by prove_normal_axioms_8 23841: Order: 23841: kbo 23841: Leaf order: 23841: join 21 2 1 0,2 23841: meet 19 2 1 0,2,2 23841: b 1 0 1 2,2,2 23841: a 3 0 3 1,2 % SZS status Timeout for LAT087-1.p NO CLASH, using fixed ground order 23873: Facts: 23873: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 23873: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 23873: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 23873: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 23873: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 23873: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 23873: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 23873: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 23873: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27)))))) [28, 27, 26] by equation_H3 ?26 ?27 ?28 23873: Goal: 23873: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 23873: Order: 23873: nrkbo 23873: Leaf order: 23873: join 17 2 4 0,2,2 23873: meet 21 2 6 0,2 23873: c 4 0 4 2,2,2,2 23873: b 4 0 4 1,2,2 23873: a 4 0 4 1,2 NO CLASH, using fixed ground order 23874: Facts: 23874: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 23874: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 23874: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 23874: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 23874: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 23874: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 23874: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 23874: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 23874: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27)))))) [28, 27, 26] by equation_H3 ?26 ?27 ?28 23874: Goal: 23874: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 23874: Order: 23874: kbo 23874: Leaf order: 23874: join 17 2 4 0,2,2 23874: meet 21 2 6 0,2 23874: c 4 0 4 2,2,2,2 23874: b 4 0 4 1,2,2 23874: a 4 0 4 1,2 NO CLASH, using fixed ground order 23875: Facts: 23875: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 23875: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 23875: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 23875: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 23875: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 23875: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 23875: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 23875: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 23875: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27)))))) [28, 27, 26] by equation_H3 ?26 ?27 ?28 23875: Goal: 23875: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 23875: Order: 23875: lpo 23875: Leaf order: 23875: join 17 2 4 0,2,2 23875: meet 21 2 6 0,2 23875: c 4 0 4 2,2,2,2 23875: b 4 0 4 1,2,2 23875: a 4 0 4 1,2 % SZS status Timeout for LAT099-1.p NO CLASH, using fixed ground order 24259: Facts: 24259: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24259: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24259: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24259: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24259: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24259: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24259: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24259: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24259: Id : 10, {_}: meet ?26 (join ?27 (join ?28 (meet ?26 ?29))) =<= meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29 24259: Goal: 24259: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 24259: Order: 24259: nrkbo 24259: Leaf order: 24259: meet 19 2 5 0,2 24259: join 19 2 5 0,2,2 24259: d 2 0 2 2,2,2,2,2 24259: c 3 0 3 1,2,2,2 24259: b 3 0 3 1,2,2 24259: a 4 0 4 1,2 NO CLASH, using fixed ground order 24260: Facts: 24260: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24260: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24260: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24260: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24260: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24260: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24260: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24260: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24260: Id : 10, {_}: meet ?26 (join ?27 (join ?28 (meet ?26 ?29))) =<= meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29 24260: Goal: 24260: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 24260: Order: 24260: kbo 24260: Leaf order: 24260: meet 19 2 5 0,2 24260: join 19 2 5 0,2,2 24260: d 2 0 2 2,2,2,2,2 24260: c 3 0 3 1,2,2,2 24260: b 3 0 3 1,2,2 24260: a 4 0 4 1,2 NO CLASH, using fixed ground order 24261: Facts: 24261: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24261: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24261: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24261: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24261: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24261: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24261: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24261: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24261: Id : 10, {_}: meet ?26 (join ?27 (join ?28 (meet ?26 ?29))) =?= meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29 24261: Goal: 24261: Id : 1, {_}: meet a (join b (meet c (join a d))) =>= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 24261: Order: 24261: lpo 24261: Leaf order: 24261: meet 19 2 5 0,2 24261: join 19 2 5 0,2,2 24261: d 2 0 2 2,2,2,2,2 24261: c 3 0 3 1,2,2,2 24261: b 3 0 3 1,2,2 24261: a 4 0 4 1,2 % SZS status Timeout for LAT110-1.p NO CLASH, using fixed ground order 24393: Facts: 24393: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24393: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24393: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24393: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24393: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24393: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24393: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24393: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24393: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join (meet ?26 (join ?27 (meet ?26 ?28))) (meet ?28 ?29)) [29, 28, 27, 26] by equation_H79 ?26 ?27 ?28 ?29 24393: Goal: 24393: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 24393: Order: 24393: nrkbo 24393: Leaf order: 24393: meet 20 2 5 0,2 24393: join 17 2 4 0,2,2 24393: c 3 0 3 2,2,2 24393: b 3 0 3 1,2,2 24393: a 5 0 5 1,2 NO CLASH, using fixed ground order 24394: Facts: 24394: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24394: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24394: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24394: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24394: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24394: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24394: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24394: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24394: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join (meet ?26 (join ?27 (meet ?26 ?28))) (meet ?28 ?29)) [29, 28, 27, 26] by equation_H79 ?26 ?27 ?28 ?29 24394: Goal: 24394: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 24394: Order: 24394: kbo 24394: Leaf order: 24394: meet 20 2 5 0,2 24394: join 17 2 4 0,2,2 24394: c 3 0 3 2,2,2 24394: b 3 0 3 1,2,2 24394: a 5 0 5 1,2 NO CLASH, using fixed ground order 24395: Facts: 24395: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24395: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24395: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24395: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24395: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24395: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24395: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24395: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24395: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join (meet ?26 (join ?27 (meet ?26 ?28))) (meet ?28 ?29)) [29, 28, 27, 26] by equation_H79 ?26 ?27 ?28 ?29 24395: Goal: 24395: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 24395: Order: 24395: lpo 24395: Leaf order: 24395: meet 20 2 5 0,2 24395: join 17 2 4 0,2,2 24395: c 3 0 3 2,2,2 24395: b 3 0 3 1,2,2 24395: a 5 0 5 1,2 % SZS status Timeout for LAT118-1.p NO CLASH, using fixed ground order 24412: Facts: 24412: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24412: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24412: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24412: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24412: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24412: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24412: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24412: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24412: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?28 (meet ?26 ?27))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H22 ?26 ?27 ?28 24412: Goal: 24412: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 24412: Order: 24412: nrkbo 24412: Leaf order: 24412: join 17 2 4 0,2,2 24412: meet 21 2 6 0,2 24412: c 3 0 3 2,2,2,2 24412: b 3 0 3 1,2,2 24412: a 6 0 6 1,2 NO CLASH, using fixed ground order 24413: Facts: 24413: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24413: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24413: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24413: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24413: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24413: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24413: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24413: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24413: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?28 (meet ?26 ?27))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H22 ?26 ?27 ?28 24413: Goal: 24413: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 24413: Order: 24413: kbo 24413: Leaf order: 24413: join 17 2 4 0,2,2 24413: meet 21 2 6 0,2 24413: c 3 0 3 2,2,2,2 24413: b 3 0 3 1,2,2 24413: a 6 0 6 1,2 NO CLASH, using fixed ground order 24414: Facts: 24414: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24414: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24414: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24414: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24414: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24414: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24414: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24414: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24414: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?28 (meet ?26 ?27))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H22 ?26 ?27 ?28 24414: Goal: 24414: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 24414: Order: 24414: lpo 24414: Leaf order: 24414: join 17 2 4 0,2,2 24414: meet 21 2 6 0,2 24414: c 3 0 3 2,2,2,2 24414: b 3 0 3 1,2,2 24414: a 6 0 6 1,2 % SZS status Timeout for LAT142-1.p NO CLASH, using fixed ground order 24444: Facts: 24444: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24444: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24444: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24444: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24444: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24444: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24444: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24444: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24444: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 ?29)) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28))))) [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29 24444: Goal: 24444: Id : 1, {_}: meet a (meet b (join c (meet a d))) =<= meet a (meet b (join c (meet d (join a (meet b c))))) [] by prove_H45 24444: Order: 24444: nrkbo 24444: Leaf order: 24444: join 16 2 3 0,2,2,2 24444: meet 21 2 7 0,2 24444: d 2 0 2 2,2,2,2,2 24444: c 3 0 3 1,2,2,2 24444: b 3 0 3 1,2,2 24444: a 4 0 4 1,2 NO CLASH, using fixed ground order 24445: Facts: 24445: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24445: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24445: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24445: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24445: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24445: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24445: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24445: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24445: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 ?29)) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28))))) [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29 24445: Goal: 24445: Id : 1, {_}: meet a (meet b (join c (meet a d))) =<= meet a (meet b (join c (meet d (join a (meet b c))))) [] by prove_H45 24445: Order: 24445: kbo 24445: Leaf order: 24445: join 16 2 3 0,2,2,2 24445: meet 21 2 7 0,2 24445: d 2 0 2 2,2,2,2,2 24445: c 3 0 3 1,2,2,2 24445: b 3 0 3 1,2,2 24445: a 4 0 4 1,2 NO CLASH, using fixed ground order 24446: Facts: 24446: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24446: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24446: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24446: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24446: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24446: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24446: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24446: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24446: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 ?29)) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28))))) [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29 24446: Goal: 24446: Id : 1, {_}: meet a (meet b (join c (meet a d))) =>= meet a (meet b (join c (meet d (join a (meet b c))))) [] by prove_H45 24446: Order: 24446: lpo 24446: Leaf order: 24446: join 16 2 3 0,2,2,2 24446: meet 21 2 7 0,2 24446: d 2 0 2 2,2,2,2,2 24446: c 3 0 3 1,2,2,2 24446: b 3 0 3 1,2,2 24446: a 4 0 4 1,2 % SZS status Timeout for LAT147-1.p NO CLASH, using fixed ground order 24463: Facts: 24463: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24463: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24463: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24463: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24463: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24463: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24463: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24463: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24463: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (join ?29 (meet ?26 ?28))))) [29, 28, 27, 26] by equation_H42 ?26 ?27 ?28 ?29 24463: Goal: 24463: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 24463: Order: 24463: kbo 24463: Leaf order: 24463: join 18 2 4 0,2,2 24463: meet 20 2 6 0,2 24463: c 3 0 3 2,2,2,2 24463: b 3 0 3 1,2,2 24463: a 6 0 6 1,2 NO CLASH, using fixed ground order 24464: Facts: 24464: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24464: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24464: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24464: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24464: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24464: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24464: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24464: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24464: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =?= meet ?26 (join ?27 (meet ?28 (join ?27 (join ?29 (meet ?26 ?28))))) [29, 28, 27, 26] by equation_H42 ?26 ?27 ?28 ?29 24464: Goal: 24464: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 24464: Order: 24464: lpo 24464: Leaf order: 24464: join 18 2 4 0,2,2 24464: meet 20 2 6 0,2 24464: c 3 0 3 2,2,2,2 24464: b 3 0 3 1,2,2 24464: a 6 0 6 1,2 NO CLASH, using fixed ground order 24462: Facts: 24462: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24462: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24462: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24462: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24462: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24462: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24462: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24462: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24462: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (join ?29 (meet ?26 ?28))))) [29, 28, 27, 26] by equation_H42 ?26 ?27 ?28 ?29 24462: Goal: 24462: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 24462: Order: 24462: nrkbo 24462: Leaf order: 24462: join 18 2 4 0,2,2 24462: meet 20 2 6 0,2 24462: c 3 0 3 2,2,2,2 24462: b 3 0 3 1,2,2 24462: a 6 0 6 1,2 % SZS status Timeout for LAT154-1.p NO CLASH, using fixed ground order 24500: Facts: 24500: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24500: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24500: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24500: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24500: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24500: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24500: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24500: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24500: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (join (meet ?26 ?28) (meet ?28 (join ?27 ?29)))) [29, 28, 27, 26] by equation_H49 ?26 ?27 ?28 ?29 24500: Goal: 24500: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 24500: Order: 24500: nrkbo 24500: Leaf order: 24500: join 18 2 4 0,2,2 24500: meet 20 2 6 0,2 24500: c 4 0 4 2,2,2,2 24500: b 4 0 4 1,2,2 24500: a 4 0 4 1,2 NO CLASH, using fixed ground order 24501: Facts: 24501: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24501: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24501: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24501: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24501: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24501: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24501: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24501: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24501: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (join (meet ?26 ?28) (meet ?28 (join ?27 ?29)))) [29, 28, 27, 26] by equation_H49 ?26 ?27 ?28 ?29 24501: Goal: 24501: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 24501: Order: 24501: kbo 24501: Leaf order: 24501: join 18 2 4 0,2,2 24501: meet 20 2 6 0,2 24501: c 4 0 4 2,2,2,2 24501: b 4 0 4 1,2,2 24501: a 4 0 4 1,2 NO CLASH, using fixed ground order 24502: Facts: 24502: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24502: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24502: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24502: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24502: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24502: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24502: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24502: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24502: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =?= meet ?26 (join ?27 (join (meet ?26 ?28) (meet ?28 (join ?27 ?29)))) [29, 28, 27, 26] by equation_H49 ?26 ?27 ?28 ?29 24502: Goal: 24502: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 24502: Order: 24502: lpo 24502: Leaf order: 24502: join 18 2 4 0,2,2 24502: meet 20 2 6 0,2 24502: c 4 0 4 2,2,2,2 24502: b 4 0 4 1,2,2 24502: a 4 0 4 1,2 % SZS status Timeout for LAT155-1.p NO CLASH, using fixed ground order 24518: Facts: 24518: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24518: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24518: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24518: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24518: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24518: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24518: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24518: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24518: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= join ?26 (meet ?27 (meet (join ?26 ?28) (join ?28 (meet ?27 ?29)))) [29, 28, 27, 26] by equation_H49_dual ?26 ?27 ?28 ?29 24518: Goal: 24518: Id : 1, {_}: meet a (join b c) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H58 24518: Order: 24518: nrkbo 24518: Leaf order: 24518: meet 18 2 4 0,2 24518: join 18 2 4 0,2,2 24518: c 2 0 2 2,2,2 24518: b 4 0 4 1,2,2 24518: a 4 0 4 1,2 NO CLASH, using fixed ground order 24519: Facts: 24519: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24519: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24519: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24519: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24519: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24519: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24519: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24519: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24519: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= join ?26 (meet ?27 (meet (join ?26 ?28) (join ?28 (meet ?27 ?29)))) [29, 28, 27, 26] by equation_H49_dual ?26 ?27 ?28 ?29 24519: Goal: 24519: Id : 1, {_}: meet a (join b c) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H58 24519: Order: 24519: kbo 24519: Leaf order: 24519: meet 18 2 4 0,2 24519: join 18 2 4 0,2,2 24519: c 2 0 2 2,2,2 24519: b 4 0 4 1,2,2 24519: a 4 0 4 1,2 NO CLASH, using fixed ground order 24520: Facts: 24520: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24520: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24520: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24520: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24520: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24520: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24520: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24520: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24520: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =?= join ?26 (meet ?27 (meet (join ?26 ?28) (join ?28 (meet ?27 ?29)))) [29, 28, 27, 26] by equation_H49_dual ?26 ?27 ?28 ?29 24520: Goal: 24520: Id : 1, {_}: meet a (join b c) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H58 24520: Order: 24520: lpo 24520: Leaf order: 24520: meet 18 2 4 0,2 24520: join 18 2 4 0,2,2 24520: c 2 0 2 2,2,2 24520: b 4 0 4 1,2,2 24520: a 4 0 4 1,2 % SZS status Timeout for LAT170-1.p NO CLASH, using fixed ground order 24547: Facts: 24547: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_for_addition ?2 ?3 24547: Id : 3, {_}: add ?5 (add ?6 ?7) =?= add (add ?5 ?6) ?7 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7 24547: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9 24547: Id : 5, {_}: add ?11 additive_identity =>= ?11 [11] by right_additive_identity ?11 24547: Id : 6, {_}: multiply additive_identity ?13 =>= additive_identity [13] by left_multiplicative_zero ?13 24547: Id : 7, {_}: multiply ?15 additive_identity =>= additive_identity [15] by right_multiplicative_zero ?15 24547: Id : 8, {_}: add (additive_inverse ?17) ?17 =>= additive_identity [17] by left_additive_inverse ?17 24547: Id : 9, {_}: add ?19 (additive_inverse ?19) =>= additive_identity [19] by right_additive_inverse ?19 24547: Id : 10, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 24547: Id : 11, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 24547: Id : 12, {_}: additive_inverse (additive_inverse ?29) =>= ?29 [29] by additive_inverse_additive_inverse ?29 24547: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 24547: Id : 14, {_}: associator ?34 ?35 ?36 =<= add (multiply (multiply ?34 ?35) ?36) (additive_inverse (multiply ?34 (multiply ?35 ?36))) [36, 35, 34] by associator ?34 ?35 ?36 24547: Id : 15, {_}: commutator ?38 ?39 =<= add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39)) [39, 38] by commutator ?38 ?39 24547: Goal: 24547: Id : 1, {_}: multiply (multiply (multiply (associator x x y) (associator x x y)) x) (multiply (associator x x y) (associator x x y)) =>= additive_identity [] by prove_conjecture_2 24547: Order: 24547: nrkbo 24547: Leaf order: 24547: commutator 1 2 0 24547: additive_inverse 6 1 0 24547: add 16 2 0 24547: additive_identity 9 0 1 3 24547: multiply 22 2 4 0,2 24547: associator 5 3 4 0,1,1,1,2 24547: y 4 0 4 3,1,1,1,2 24547: x 9 0 9 1,1,1,1,2 NO CLASH, using fixed ground order 24548: Facts: 24548: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_for_addition ?2 ?3 24548: Id : 3, {_}: add ?5 (add ?6 ?7) =<= add (add ?5 ?6) ?7 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7 24548: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9 24548: Id : 5, {_}: add ?11 additive_identity =>= ?11 [11] by right_additive_identity ?11 24548: Id : 6, {_}: multiply additive_identity ?13 =>= additive_identity [13] by left_multiplicative_zero ?13 24548: Id : 7, {_}: multiply ?15 additive_identity =>= additive_identity [15] by right_multiplicative_zero ?15 24548: Id : 8, {_}: add (additive_inverse ?17) ?17 =>= additive_identity [17] by left_additive_inverse ?17 24548: Id : 9, {_}: add ?19 (additive_inverse ?19) =>= additive_identity [19] by right_additive_inverse ?19 24548: Id : 10, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 24548: Id : 11, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 24548: Id : 12, {_}: additive_inverse (additive_inverse ?29) =>= ?29 [29] by additive_inverse_additive_inverse ?29 24548: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 24548: Id : 14, {_}: associator ?34 ?35 ?36 =<= add (multiply (multiply ?34 ?35) ?36) (additive_inverse (multiply ?34 (multiply ?35 ?36))) [36, 35, 34] by associator ?34 ?35 ?36 24548: Id : 15, {_}: commutator ?38 ?39 =<= add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39)) [39, 38] by commutator ?38 ?39 24548: Goal: 24548: Id : 1, {_}: multiply (multiply (multiply (associator x x y) (associator x x y)) x) (multiply (associator x x y) (associator x x y)) =>= additive_identity [] by prove_conjecture_2 24548: Order: 24548: kbo 24548: Leaf order: 24548: commutator 1 2 0 24548: additive_inverse 6 1 0 24548: add 16 2 0 24548: additive_identity 9 0 1 3 24548: multiply 22 2 4 0,2 24548: associator 5 3 4 0,1,1,1,2 24548: y 4 0 4 3,1,1,1,2 24548: x 9 0 9 1,1,1,1,2 NO CLASH, using fixed ground order 24549: Facts: 24549: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_for_addition ?2 ?3 24549: Id : 3, {_}: add ?5 (add ?6 ?7) =<= add (add ?5 ?6) ?7 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7 24549: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9 24549: Id : 5, {_}: add ?11 additive_identity =>= ?11 [11] by right_additive_identity ?11 24549: Id : 6, {_}: multiply additive_identity ?13 =>= additive_identity [13] by left_multiplicative_zero ?13 24549: Id : 7, {_}: multiply ?15 additive_identity =>= additive_identity [15] by right_multiplicative_zero ?15 24549: Id : 8, {_}: add (additive_inverse ?17) ?17 =>= additive_identity [17] by left_additive_inverse ?17 24549: Id : 9, {_}: add ?19 (additive_inverse ?19) =>= additive_identity [19] by right_additive_inverse ?19 24549: Id : 10, {_}: multiply ?21 (add ?22 ?23) =>= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 24549: Id : 11, {_}: multiply (add ?25 ?26) ?27 =>= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 24549: Id : 12, {_}: additive_inverse (additive_inverse ?29) =>= ?29 [29] by additive_inverse_additive_inverse ?29 24549: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 24549: Id : 14, {_}: associator ?34 ?35 ?36 =>= add (multiply (multiply ?34 ?35) ?36) (additive_inverse (multiply ?34 (multiply ?35 ?36))) [36, 35, 34] by associator ?34 ?35 ?36 24549: Id : 15, {_}: commutator ?38 ?39 =<= add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39)) [39, 38] by commutator ?38 ?39 24549: Goal: 24549: Id : 1, {_}: multiply (multiply (multiply (associator x x y) (associator x x y)) x) (multiply (associator x x y) (associator x x y)) =>= additive_identity [] by prove_conjecture_2 24549: Order: 24549: lpo 24549: Leaf order: 24549: commutator 1 2 0 24549: additive_inverse 6 1 0 24549: add 16 2 0 24549: additive_identity 9 0 1 3 24549: multiply 22 2 4 0,2 24549: associator 5 3 4 0,1,1,1,2 24549: y 4 0 4 3,1,1,1,2 24549: x 9 0 9 1,1,1,1,2 % SZS status Timeout for RNG031-6.p NO CLASH, using fixed ground order 24576: Facts: 24576: Id : 2, {_}: multiply (additive_inverse ?2) (additive_inverse ?3) =>= multiply ?2 ?3 [3, 2] by product_of_inverses ?2 ?3 24576: Id : 3, {_}: multiply (additive_inverse ?5) ?6 =>= additive_inverse (multiply ?5 ?6) [6, 5] by inverse_product1 ?5 ?6 24576: Id : 4, {_}: multiply ?8 (additive_inverse ?9) =>= additive_inverse (multiply ?8 ?9) [9, 8] by inverse_product2 ?8 ?9 24576: Id : 5, {_}: multiply ?11 (add ?12 (additive_inverse ?13)) =<= add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13)) [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13 24576: Id : 6, {_}: multiply (add ?15 (additive_inverse ?16)) ?17 =<= add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17)) [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17 24576: Id : 7, {_}: multiply (additive_inverse ?19) (add ?20 ?21) =<= add (additive_inverse (multiply ?19 ?20)) (additive_inverse (multiply ?19 ?21)) [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21 24576: Id : 8, {_}: multiply (add ?23 ?24) (additive_inverse ?25) =<= add (additive_inverse (multiply ?23 ?25)) (additive_inverse (multiply ?24 ?25)) [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25 24576: Id : 9, {_}: add ?27 ?28 =?= add ?28 ?27 [28, 27] by commutativity_for_addition ?27 ?28 24576: Id : 10, {_}: add ?30 (add ?31 ?32) =?= add (add ?30 ?31) ?32 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32 24576: Id : 11, {_}: add additive_identity ?34 =>= ?34 [34] by left_additive_identity ?34 24576: Id : 12, {_}: add ?36 additive_identity =>= ?36 [36] by right_additive_identity ?36 24576: Id : 13, {_}: multiply additive_identity ?38 =>= additive_identity [38] by left_multiplicative_zero ?38 24576: Id : 14, {_}: multiply ?40 additive_identity =>= additive_identity [40] by right_multiplicative_zero ?40 24576: Id : 15, {_}: add (additive_inverse ?42) ?42 =>= additive_identity [42] by left_additive_inverse ?42 24576: Id : 16, {_}: add ?44 (additive_inverse ?44) =>= additive_identity [44] by right_additive_inverse ?44 24576: Id : 17, {_}: multiply ?46 (add ?47 ?48) =<= add (multiply ?46 ?47) (multiply ?46 ?48) [48, 47, 46] by distribute1 ?46 ?47 ?48 24576: Id : 18, {_}: multiply (add ?50 ?51) ?52 =<= add (multiply ?50 ?52) (multiply ?51 ?52) [52, 51, 50] by distribute2 ?50 ?51 ?52 24576: Id : 19, {_}: additive_inverse (additive_inverse ?54) =>= ?54 [54] by additive_inverse_additive_inverse ?54 24576: Id : 20, {_}: multiply (multiply ?56 ?57) ?57 =?= multiply ?56 (multiply ?57 ?57) [57, 56] by right_alternative ?56 ?57 24576: Id : 21, {_}: associator ?59 ?60 ?61 =<= add (multiply (multiply ?59 ?60) ?61) (additive_inverse (multiply ?59 (multiply ?60 ?61))) [61, 60, 59] by associator ?59 ?60 ?61 24576: Id : 22, {_}: commutator ?63 ?64 =<= add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64)) [64, 63] by commutator ?63 ?64 24576: Goal: 24576: Id : 1, {_}: multiply (multiply (multiply (associator x x y) (associator x x y)) x) (multiply (associator x x y) (associator x x y)) =>= additive_identity [] by prove_conjecture_2 24576: Order: 24576: nrkbo 24576: Leaf order: 24576: commutator 1 2 0 24576: add 24 2 0 24576: additive_inverse 22 1 0 24576: additive_identity 9 0 1 3 24576: multiply 40 2 4 0,2add 24576: associator 5 3 4 0,1,1,1,2 24576: y 4 0 4 3,1,1,1,2 24576: x 9 0 9 1,1,1,1,2 NO CLASH, using fixed ground order 24577: Facts: 24577: Id : 2, {_}: multiply (additive_inverse ?2) (additive_inverse ?3) =>= multiply ?2 ?3 [3, 2] by product_of_inverses ?2 ?3 NO CLASH, using fixed ground order 24578: Facts: 24578: Id : 2, {_}: multiply (additive_inverse ?2) (additive_inverse ?3) =>= multiply ?2 ?3 [3, 2] by product_of_inverses ?2 ?3 24578: Id : 3, {_}: multiply (additive_inverse ?5) ?6 =>= additive_inverse (multiply ?5 ?6) [6, 5] by inverse_product1 ?5 ?6 24578: Id : 4, {_}: multiply ?8 (additive_inverse ?9) =>= additive_inverse (multiply ?8 ?9) [9, 8] by inverse_product2 ?8 ?9 24578: Id : 5, {_}: multiply ?11 (add ?12 (additive_inverse ?13)) =>= add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13)) [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13 24578: Id : 6, {_}: multiply (add ?15 (additive_inverse ?16)) ?17 =>= add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17)) [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17 24578: Id : 7, {_}: multiply (additive_inverse ?19) (add ?20 ?21) =>= add (additive_inverse (multiply ?19 ?20)) (additive_inverse (multiply ?19 ?21)) [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21 24578: Id : 8, {_}: multiply (add ?23 ?24) (additive_inverse ?25) =>= add (additive_inverse (multiply ?23 ?25)) (additive_inverse (multiply ?24 ?25)) [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25 24578: Id : 9, {_}: add ?27 ?28 =?= add ?28 ?27 [28, 27] by commutativity_for_addition ?27 ?28 24578: Id : 10, {_}: add ?30 (add ?31 ?32) =<= add (add ?30 ?31) ?32 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32 24578: Id : 11, {_}: add additive_identity ?34 =>= ?34 [34] by left_additive_identity ?34 24578: Id : 12, {_}: add ?36 additive_identity =>= ?36 [36] by right_additive_identity ?36 24578: Id : 13, {_}: multiply additive_identity ?38 =>= additive_identity [38] by left_multiplicative_zero ?38 24578: Id : 14, {_}: multiply ?40 additive_identity =>= additive_identity [40] by right_multiplicative_zero ?40 24578: Id : 15, {_}: add (additive_inverse ?42) ?42 =>= additive_identity [42] by left_additive_inverse ?42 24578: Id : 16, {_}: add ?44 (additive_inverse ?44) =>= additive_identity [44] by right_additive_inverse ?44 24578: Id : 17, {_}: multiply ?46 (add ?47 ?48) =>= add (multiply ?46 ?47) (multiply ?46 ?48) [48, 47, 46] by distribute1 ?46 ?47 ?48 24578: Id : 18, {_}: multiply (add ?50 ?51) ?52 =>= add (multiply ?50 ?52) (multiply ?51 ?52) [52, 51, 50] by distribute2 ?50 ?51 ?52 24578: Id : 19, {_}: additive_inverse (additive_inverse ?54) =>= ?54 [54] by additive_inverse_additive_inverse ?54 24578: Id : 20, {_}: multiply (multiply ?56 ?57) ?57 =>= multiply ?56 (multiply ?57 ?57) [57, 56] by right_alternative ?56 ?57 24578: Id : 21, {_}: associator ?59 ?60 ?61 =>= add (multiply (multiply ?59 ?60) ?61) (additive_inverse (multiply ?59 (multiply ?60 ?61))) [61, 60, 59] by associator ?59 ?60 ?61 24578: Id : 22, {_}: commutator ?63 ?64 =<= add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64)) [64, 63] by commutator ?63 ?64 24578: Goal: 24578: Id : 1, {_}: multiply (multiply (multiply (associator x x y) (associator x x y)) x) (multiply (associator x x y) (associator x x y)) =>= additive_identity [] by prove_conjecture_2 24578: Order: 24578: lpo 24578: Leaf order: 24578: commutator 1 2 0 24578: add 24 2 0 24578: additive_inverse 22 1 0 24578: additive_identity 9 0 1 3 24578: multiply 40 2 4 0,2add 24578: associator 5 3 4 0,1,1,1,2 24578: y 4 0 4 3,1,1,1,2 24578: x 9 0 9 1,1,1,1,2 24577: Id : 3, {_}: multiply (additive_inverse ?5) ?6 =>= additive_inverse (multiply ?5 ?6) [6, 5] by inverse_product1 ?5 ?6 24577: Id : 4, {_}: multiply ?8 (additive_inverse ?9) =>= additive_inverse (multiply ?8 ?9) [9, 8] by inverse_product2 ?8 ?9 24577: Id : 5, {_}: multiply ?11 (add ?12 (additive_inverse ?13)) =<= add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13)) [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13 24577: Id : 6, {_}: multiply (add ?15 (additive_inverse ?16)) ?17 =<= add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17)) [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17 24577: Id : 7, {_}: multiply (additive_inverse ?19) (add ?20 ?21) =<= add (additive_inverse (multiply ?19 ?20)) (additive_inverse (multiply ?19 ?21)) [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21 24577: Id : 8, {_}: multiply (add ?23 ?24) (additive_inverse ?25) =<= add (additive_inverse (multiply ?23 ?25)) (additive_inverse (multiply ?24 ?25)) [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25 24577: Id : 9, {_}: add ?27 ?28 =?= add ?28 ?27 [28, 27] by commutativity_for_addition ?27 ?28 24577: Id : 10, {_}: add ?30 (add ?31 ?32) =<= add (add ?30 ?31) ?32 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32 24577: Id : 11, {_}: add additive_identity ?34 =>= ?34 [34] by left_additive_identity ?34 24577: Id : 12, {_}: add ?36 additive_identity =>= ?36 [36] by right_additive_identity ?36 24577: Id : 13, {_}: multiply additive_identity ?38 =>= additive_identity [38] by left_multiplicative_zero ?38 24577: Id : 14, {_}: multiply ?40 additive_identity =>= additive_identity [40] by right_multiplicative_zero ?40 24577: Id : 15, {_}: add (additive_inverse ?42) ?42 =>= additive_identity [42] by left_additive_inverse ?42 24577: Id : 16, {_}: add ?44 (additive_inverse ?44) =>= additive_identity [44] by right_additive_inverse ?44 24577: Id : 17, {_}: multiply ?46 (add ?47 ?48) =<= add (multiply ?46 ?47) (multiply ?46 ?48) [48, 47, 46] by distribute1 ?46 ?47 ?48 24577: Id : 18, {_}: multiply (add ?50 ?51) ?52 =<= add (multiply ?50 ?52) (multiply ?51 ?52) [52, 51, 50] by distribute2 ?50 ?51 ?52 24577: Id : 19, {_}: additive_inverse (additive_inverse ?54) =>= ?54 [54] by additive_inverse_additive_inverse ?54 24577: Id : 20, {_}: multiply (multiply ?56 ?57) ?57 =>= multiply ?56 (multiply ?57 ?57) [57, 56] by right_alternative ?56 ?57 24577: Id : 21, {_}: associator ?59 ?60 ?61 =<= add (multiply (multiply ?59 ?60) ?61) (additive_inverse (multiply ?59 (multiply ?60 ?61))) [61, 60, 59] by associator ?59 ?60 ?61 24577: Id : 22, {_}: commutator ?63 ?64 =<= add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64)) [64, 63] by commutator ?63 ?64 24577: Goal: 24577: Id : 1, {_}: multiply (multiply (multiply (associator x x y) (associator x x y)) x) (multiply (associator x x y) (associator x x y)) =>= additive_identity [] by prove_conjecture_2 24577: Order: 24577: kbo 24577: Leaf order: 24577: commutator 1 2 0 24577: add 24 2 0 24577: additive_inverse 22 1 0 24577: additive_identity 9 0 1 3 24577: multiply 40 2 4 0,2add 24577: associator 5 3 4 0,1,1,1,2 24577: y 4 0 4 3,1,1,1,2 24577: x 9 0 9 1,1,1,1,2 % SZS status Timeout for RNG031-7.p NO CLASH, using fixed ground order 24609: Facts: 24609: Id : 2, {_}: f (g1 ?3) =>= ?3 [3] by clause1 ?3 24609: Id : 3, {_}: f (g2 ?5) =>= ?5 [5] by clause2 ?5 24609: Goal: 24609: Id : 1, {_}: g1 ?1 =>= g2 ?1 [1] by clause3 ?1 24609: Order: 24609: nrkbo 24609: Leaf order: 24609: f 2 1 0 24609: g2 2 1 1 0,3 24609: g1 2 1 1 0,2 NO CLASH, using fixed ground order 24610: Facts: 24610: Id : 2, {_}: f (g1 ?3) =>= ?3 [3] by clause1 ?3 24610: Id : 3, {_}: f (g2 ?5) =>= ?5 [5] by clause2 ?5 24610: Goal: 24610: Id : 1, {_}: g1 ?1 =>= g2 ?1 [1] by clause3 ?1 24610: Order: 24610: kbo 24610: Leaf order: 24610: f 2 1 0 24610: g2 2 1 1 0,3 24610: g1 2 1 1 0,2 NO CLASH, using fixed ground order 24611: Facts: 24611: Id : 2, {_}: f (g1 ?3) =>= ?3 [3] by clause1 ?3 24611: Id : 3, {_}: f (g2 ?5) =>= ?5 [5] by clause2 ?5 24611: Goal: 24611: Id : 1, {_}: g1 ?1 =>= g2 ?1 [1] by clause3 ?1 24611: Order: 24611: lpo 24611: Leaf order: 24611: f 2 1 0 24611: g2 2 1 1 0,3 24611: g1 2 1 1 0,2 24609: status GaveUp for SYN305-1.p 24610: status GaveUp for SYN305-1.p 24611: status GaveUp for SYN305-1.p % SZS status Timeout for SYN305-1.p CLASH, statistics insufficient 24616: Facts: 24616: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 24616: Id : 3, {_}: apply (apply (apply h ?7) ?8) ?9 =?= apply (apply (apply ?7 ?8) ?9) ?8 [9, 8, 7] by h_definition ?7 ?8 ?9 24616: Goal: 24616: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 24616: Order: 24616: nrkbo 24616: Leaf order: 24616: h 1 0 0 24616: b 1 0 0 24616: apply 14 2 3 0,2 24616: f 3 1 3 0,2,2 CLASH, statistics insufficient 24617: Facts: 24617: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 24617: Id : 3, {_}: apply (apply (apply h ?7) ?8) ?9 =?= apply (apply (apply ?7 ?8) ?9) ?8 [9, 8, 7] by h_definition ?7 ?8 ?9 24617: Goal: 24617: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 24617: Order: 24617: kbo 24617: Leaf order: 24617: h 1 0 0 24617: b 1 0 0 24617: apply 14 2 3 0,2 24617: f 3 1 3 0,2,2 CLASH, statistics insufficient 24618: Facts: 24618: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 24618: Id : 3, {_}: apply (apply (apply h ?7) ?8) ?9 =?= apply (apply (apply ?7 ?8) ?9) ?8 [9, 8, 7] by h_definition ?7 ?8 ?9 24618: Goal: 24618: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 24618: Order: 24618: lpo 24618: Leaf order: 24618: h 1 0 0 24618: b 1 0 0 24618: apply 14 2 3 0,2 24618: f 3 1 3 0,2,2 % SZS status Timeout for COL043-1.p CLASH, statistics insufficient 24654: Facts: CLASH, statistics insufficient 24655: Facts: 24655: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 24655: Id : 3, {_}: apply (apply (apply q ?7) ?8) ?9 =>= apply ?8 (apply ?7 ?9) [9, 8, 7] by q_definition ?7 ?8 ?9 24655: Id : 4, {_}: apply (apply w ?11) ?12 =?= apply (apply ?11 ?12) ?12 [12, 11] by w_definition ?11 ?12 24655: Goal: 24655: Id : 1, {_}: apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (g ?1)) (h ?1) =<= apply (apply (f ?1) (g ?1)) (apply (apply (f ?1) (g ?1)) (h ?1)) [1] by prove_p_combinator ?1 24655: Order: 24655: kbo 24655: Leaf order: 24655: w 1 0 0 24655: q 1 0 0 24655: b 1 0 0 24655: h 2 1 2 0,2,2 24655: g 4 1 4 0,2,1,1,2 24655: apply 22 2 8 0,2 24655: f 3 1 3 0,2,1,1,1,2 CLASH, statistics insufficient 24656: Facts: 24656: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 24656: Id : 3, {_}: apply (apply (apply q ?7) ?8) ?9 =>= apply ?8 (apply ?7 ?9) [9, 8, 7] by q_definition ?7 ?8 ?9 24656: Id : 4, {_}: apply (apply w ?11) ?12 =?= apply (apply ?11 ?12) ?12 [12, 11] by w_definition ?11 ?12 24656: Goal: 24656: Id : 1, {_}: apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (g ?1)) (h ?1) =>= apply (apply (f ?1) (g ?1)) (apply (apply (f ?1) (g ?1)) (h ?1)) [1] by prove_p_combinator ?1 24656: Order: 24656: lpo 24656: Leaf order: 24656: w 1 0 0 24656: q 1 0 0 24656: b 1 0 0 24656: h 2 1 2 0,2,2 24656: g 4 1 4 0,2,1,1,2 24656: apply 22 2 8 0,2 24656: f 3 1 3 0,2,1,1,1,2 24654: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 24654: Id : 3, {_}: apply (apply (apply q ?7) ?8) ?9 =>= apply ?8 (apply ?7 ?9) [9, 8, 7] by q_definition ?7 ?8 ?9 24654: Id : 4, {_}: apply (apply w ?11) ?12 =?= apply (apply ?11 ?12) ?12 [12, 11] by w_definition ?11 ?12 24654: Goal: 24654: Id : 1, {_}: apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (g ?1)) (h ?1) =<= apply (apply (f ?1) (g ?1)) (apply (apply (f ?1) (g ?1)) (h ?1)) [1] by prove_p_combinator ?1 24654: Order: 24654: nrkbo 24654: Leaf order: 24654: w 1 0 0 24654: q 1 0 0 24654: b 1 0 0 24654: h 2 1 2 0,2,2 24654: g 4 1 4 0,2,1,1,2 24654: apply 22 2 8 0,2 24654: f 3 1 3 0,2,1,1,1,2 % SZS status Timeout for COL066-1.p NO CLASH, using fixed ground order 24759: Facts: 24759: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2 24759: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4 24759: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7 24759: Id : 5, {_}: meet ?9 ?10 =?= meet ?10 ?9 [10, 9] by commutativity_of_meet ?9 ?10 24759: Id : 6, {_}: join ?12 ?13 =?= join ?13 ?12 [13, 12] by commutativity_of_join ?12 ?13 24759: Id : 7, {_}: meet (meet ?15 ?16) ?17 =?= meet ?15 (meet ?16 ?17) [17, 16, 15] by associativity_of_meet ?15 ?16 ?17 24759: Id : 8, {_}: join (join ?19 ?20) ?21 =?= join ?19 (join ?20 ?21) [21, 20, 19] by associativity_of_join ?19 ?20 ?21 24759: Id : 9, {_}: complement (complement ?23) =>= ?23 [23] by complement_involution ?23 24759: Id : 10, {_}: join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26) [26, 25] by join_complement ?25 ?26 24759: Id : 11, {_}: meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29)) [29, 28] by meet_complement ?28 ?29 24759: Goal: 24759: Id : 1, {_}: join (complement (join (join (meet (complement a) b) (meet (complement a) (complement b))) (meet a (join (complement a) b)))) (join (complement a) b) =>= n1 [] by prove_e3 24759: Order: 24759: nrkbo 24759: Leaf order: 24759: n0 1 0 0 24759: n1 2 0 1 3 24759: join 17 2 5 0,2 24759: meet 12 2 3 0,1,1,1,1,2 24759: b 4 0 4 2,1,1,1,1,2 24759: complement 15 1 6 0,1,2 24759: a 5 0 5 1,1,1,1,1,1,2 NO CLASH, using fixed ground order 24760: Facts: 24760: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2 24760: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4 24760: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7 24760: Id : 5, {_}: meet ?9 ?10 =?= meet ?10 ?9 [10, 9] by commutativity_of_meet ?9 ?10 24760: Id : 6, {_}: join ?12 ?13 =?= join ?13 ?12 [13, 12] by commutativity_of_join ?12 ?13 24760: Id : 7, {_}: meet (meet ?15 ?16) ?17 =>= meet ?15 (meet ?16 ?17) [17, 16, 15] by associativity_of_meet ?15 ?16 ?17 24760: Id : 8, {_}: join (join ?19 ?20) ?21 =>= join ?19 (join ?20 ?21) [21, 20, 19] by associativity_of_join ?19 ?20 ?21 24760: Id : 9, {_}: complement (complement ?23) =>= ?23 [23] by complement_involution ?23 24760: Id : 10, {_}: join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26) [26, 25] by join_complement ?25 ?26 24760: Id : 11, {_}: meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29)) [29, 28] by meet_complement ?28 ?29 24760: Goal: 24760: Id : 1, {_}: join (complement (join (join (meet (complement a) b) (meet (complement a) (complement b))) (meet a (join (complement a) b)))) (join (complement a) b) =>= n1 [] by prove_e3 24760: Order: 24760: kbo 24760: Leaf order: 24760: n0 1 0 0 24760: n1 2 0 1 3 24760: join 17 2 5 0,2 24760: meet 12 2 3 0,1,1,1,1,2 24760: b 4 0 4 2,1,1,1,1,2 24760: complement 15 1 6 0,1,2 24760: a 5 0 5 1,1,1,1,1,1,2 NO CLASH, using fixed ground order 24761: Facts: 24761: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2 24761: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4 24761: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7 24761: Id : 5, {_}: meet ?9 ?10 =?= meet ?10 ?9 [10, 9] by commutativity_of_meet ?9 ?10 24761: Id : 6, {_}: join ?12 ?13 =?= join ?13 ?12 [13, 12] by commutativity_of_join ?12 ?13 24761: Id : 7, {_}: meet (meet ?15 ?16) ?17 =>= meet ?15 (meet ?16 ?17) [17, 16, 15] by associativity_of_meet ?15 ?16 ?17 24761: Id : 8, {_}: join (join ?19 ?20) ?21 =>= join ?19 (join ?20 ?21) [21, 20, 19] by associativity_of_join ?19 ?20 ?21 24761: Id : 9, {_}: complement (complement ?23) =>= ?23 [23] by complement_involution ?23 24761: Id : 10, {_}: join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26) [26, 25] by join_complement ?25 ?26 24761: Id : 11, {_}: meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29)) [29, 28] by meet_complement ?28 ?29 24761: Goal: 24761: Id : 1, {_}: join (complement (join (join (meet (complement a) b) (meet (complement a) (complement b))) (meet a (join (complement a) b)))) (join (complement a) b) =>= n1 [] by prove_e3 24761: Order: 24761: lpo 24761: Leaf order: 24761: n0 1 0 0 24761: n1 2 0 1 3 24761: join 17 2 5 0,2 24761: meet 12 2 3 0,1,1,1,1,2 24761: b 4 0 4 2,1,1,1,1,2 24761: complement 15 1 6 0,1,2 24761: a 5 0 5 1,1,1,1,1,1,2 % SZS status Timeout for LAT018-1.p NO CLASH, using fixed ground order 24778: Facts: 24778: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 24778: Goal: 24778: Id : 1, {_}: meet (meet a b) c =>= meet a (meet b c) [] by prove_normal_axioms_3 24778: Order: 24778: nrkbo 24778: Leaf order: 24778: join 20 2 0 24778: c 2 0 2 2,2 24778: meet 22 2 4 0,2 24778: b 2 0 2 2,1,2 24778: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 24779: Facts: 24779: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 24779: Goal: 24779: Id : 1, {_}: meet (meet a b) c =>= meet a (meet b c) [] by prove_normal_axioms_3 24779: Order: 24779: kbo 24779: Leaf order: 24779: join 20 2 0 24779: c 2 0 2 2,2 24779: meet 22 2 4 0,2 24779: b 2 0 2 2,1,2 24779: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 24780: Facts: 24780: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 24780: Goal: 24780: Id : 1, {_}: meet (meet a b) c =>= meet a (meet b c) [] by prove_normal_axioms_3 24780: Order: 24780: lpo 24780: Leaf order: 24780: join 20 2 0 24780: c 2 0 2 2,2 24780: meet 22 2 4 0,2 24780: b 2 0 2 2,1,2 24780: a 2 0 2 1,1,2 % SZS status Timeout for LAT082-1.p NO CLASH, using fixed ground order 24809: Facts: 24809: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 24809: Goal: 24809: Id : 1, {_}: join (join a b) c =>= join a (join b c) [] by prove_normal_axioms_6 24809: Order: 24809: kbo 24809: Leaf order: 24809: meet 18 2 0 24809: c 2 0 2 2,2 24809: join 24 2 4 0,2 24809: b 2 0 2 2,1,2 24809: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 24810: Facts: 24810: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 24810: Goal: 24810: Id : 1, {_}: join (join a b) c =>= join a (join b c) [] by prove_normal_axioms_6 24810: Order: 24810: lpo 24810: Leaf order: 24810: meet 18 2 0 24810: c 2 0 2 2,2 24810: join 24 2 4 0,2 24810: b 2 0 2 2,1,2 24810: a 2 0 2 1,1,2 NO CLASH, using fixed ground order 24808: Facts: 24808: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 24808: Goal: 24808: Id : 1, {_}: join (join a b) c =>= join a (join b c) [] by prove_normal_axioms_6 24808: Order: 24808: nrkbo 24808: Leaf order: 24808: meet 18 2 0 24808: c 2 0 2 2,2 24808: join 24 2 4 0,2 24808: b 2 0 2 2,1,2 24808: a 2 0 2 1,1,2 % SZS status Timeout for LAT085-1.p NO CLASH, using fixed ground order 24831: Facts: 24831: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24831: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24831: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24831: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24831: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24831: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24831: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24831: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24831: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 (meet ?28 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join (meet ?26 ?29) (meet ?27 ?29)))) [29, 28, 27, 26] by equation_H32 ?26 ?27 ?28 ?29 24831: Goal: 24831: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 24831: Order: 24831: nrkbo 24831: Leaf order: 24831: join 16 2 4 0,2,2 24831: meet 22 2 6 0,2 24831: c 4 0 4 2,2,2,2 24831: b 4 0 4 1,2,2 24831: a 4 0 4 1,2 NO CLASH, using fixed ground order 24832: Facts: 24832: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24832: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24832: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24832: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24832: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24832: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24832: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24832: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24832: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 (meet ?28 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join (meet ?26 ?29) (meet ?27 ?29)))) [29, 28, 27, 26] by equation_H32 ?26 ?27 ?28 ?29 24832: Goal: 24832: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 24832: Order: 24832: kbo 24832: Leaf order: 24832: join 16 2 4 0,2,2 24832: meet 22 2 6 0,2 24832: c 4 0 4 2,2,2,2 24832: b 4 0 4 1,2,2 24832: a 4 0 4 1,2 NO CLASH, using fixed ground order 24833: Facts: 24833: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24833: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24833: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24833: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24833: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24833: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24833: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24833: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24833: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 (meet ?28 ?29))) =?= meet ?26 (join ?27 (meet ?28 (join (meet ?26 ?29) (meet ?27 ?29)))) [29, 28, 27, 26] by equation_H32 ?26 ?27 ?28 ?29 24833: Goal: 24833: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 24833: Order: 24833: lpo 24833: Leaf order: 24833: join 16 2 4 0,2,2 24833: meet 22 2 6 0,2 24833: c 4 0 4 2,2,2,2 24833: b 4 0 4 1,2,2 24833: a 4 0 4 1,2 % SZS status Timeout for LAT144-1.p NO CLASH, using fixed ground order 24860: Facts: 24860: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24860: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24860: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24860: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24860: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24860: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24860: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24860: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24860: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?28)))) [29, 28, 27, 26] by equation_H39 ?26 ?27 ?28 ?29 24860: Goal: 24860: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 24860: Order: 24860: nrkbo 24860: Leaf order: 24860: meet 19 2 5 0,2 24860: join 18 2 5 0,2,2 24860: d 2 0 2 2,2,2,2,2 24860: c 3 0 3 1,2,2,2 24860: b 3 0 3 1,2,2 24860: a 4 0 4 1,2 NO CLASH, using fixed ground order 24861: Facts: 24861: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24861: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24861: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24861: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24861: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24861: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24861: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24861: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24861: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?28)))) [29, 28, 27, 26] by equation_H39 ?26 ?27 ?28 ?29 24861: Goal: 24861: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 24861: Order: 24861: kbo 24861: Leaf order: 24861: meet 19 2 5 0,2 24861: join 18 2 5 0,2,2 24861: d 2 0 2 2,2,2,2,2 24861: c 3 0 3 1,2,2,2 24861: b 3 0 3 1,2,2 24861: a 4 0 4 1,2 NO CLASH, using fixed ground order 24862: Facts: 24862: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24862: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24862: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24862: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24862: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24862: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24862: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24862: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24862: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =?= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?28)))) [29, 28, 27, 26] by equation_H39 ?26 ?27 ?28 ?29 24862: Goal: 24862: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 24862: Order: 24862: lpo 24862: Leaf order: 24862: meet 19 2 5 0,2 24862: join 18 2 5 0,2,2 24862: d 2 0 2 2,2,2,2,2 24862: c 3 0 3 1,2,2,2 24862: b 3 0 3 1,2,2 24862: a 4 0 4 1,2 % SZS status Timeout for LAT150-1.p NO CLASH, using fixed ground order NO CLASH, using fixed ground order 24889: Facts: 24889: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24889: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24889: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24889: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24889: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24889: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24889: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24889: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24889: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?28)))) [29, 28, 27, 26] by equation_H39 ?26 ?27 ?28 ?29 24889: Goal: 24889: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 24889: Order: 24889: kbo 24889: Leaf order: 24889: meet 19 2 5 0,2 24889: join 18 2 5 0,2,2 24889: d 2 0 2 2,2,2,2,2 24889: c 3 0 3 1,2,2,2 24889: b 3 0 3 1,2,2 24889: a 4 0 4 1,2 24888: Facts: 24888: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24888: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24888: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24888: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24888: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24888: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24888: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24888: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24888: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?28)))) [29, 28, 27, 26] by equation_H39 ?26 ?27 ?28 ?29 24888: Goal: 24888: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 24888: Order: 24888: nrkbo 24888: Leaf order: 24888: meet 19 2 5 0,2 24888: join 18 2 5 0,2,2 24888: d 2 0 2 2,2,2,2,2 24888: c 3 0 3 1,2,2,2 24888: b 3 0 3 1,2,2 24888: a 4 0 4 1,2 NO CLASH, using fixed ground order 24890: Facts: 24890: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24890: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24890: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24890: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24890: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24890: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24890: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24890: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24890: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =?= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?28)))) [29, 28, 27, 26] by equation_H39 ?26 ?27 ?28 ?29 24890: Goal: 24890: Id : 1, {_}: meet a (join b (meet c (join a d))) =>= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 24890: Order: 24890: lpo 24890: Leaf order: 24890: meet 19 2 5 0,2 24890: join 18 2 5 0,2,2 24890: d 2 0 2 2,2,2,2,2 24890: c 3 0 3 1,2,2,2 24890: b 3 0 3 1,2,2 24890: a 4 0 4 1,2 % SZS status Timeout for LAT151-1.p NO CLASH, using fixed ground order 24921: Facts: 24921: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24921: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24921: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24921: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24921: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24921: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24921: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24921: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24921: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?28 (join ?26 ?27))))) [29, 28, 27, 26] by equation_H40 ?26 ?27 ?28 ?29 24921: Goal: 24921: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 24921: Order: 24921: nrkbo 24921: Leaf order: 24921: join 18 2 4 0,2,2 24921: meet 20 2 6 0,2 24921: c 3 0 3 2,2,2,2 24921: b 3 0 3 1,2,2 24921: a 6 0 6 1,2 NO CLASH, using fixed ground order 24922: Facts: 24922: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24922: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24922: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24922: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24922: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24922: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24922: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24922: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24922: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?28 (join ?26 ?27))))) [29, 28, 27, 26] by equation_H40 ?26 ?27 ?28 ?29 24922: Goal: 24922: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 24922: Order: 24922: kbo 24922: Leaf order: 24922: join 18 2 4 0,2,2 24922: meet 20 2 6 0,2 24922: c 3 0 3 2,2,2,2 24922: b 3 0 3 1,2,2 24922: a 6 0 6 1,2 NO CLASH, using fixed ground order 24923: Facts: 24923: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24923: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24923: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24923: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24923: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24923: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24923: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24923: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24923: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =?= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?28 (join ?26 ?27))))) [29, 28, 27, 26] by equation_H40 ?26 ?27 ?28 ?29 24923: Goal: 24923: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 24923: Order: 24923: lpo 24923: Leaf order: 24923: join 18 2 4 0,2,2 24923: meet 20 2 6 0,2 24923: c 3 0 3 2,2,2,2 24923: b 3 0 3 1,2,2 24923: a 6 0 6 1,2 % SZS status Timeout for LAT152-1.p NO CLASH, using fixed ground order 24939: Facts: 24939: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24939: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24939: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24939: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24939: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24939: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24939: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24939: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24939: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 24939: Goal: 24939: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet a (join (meet a b) (meet c (join a b))))) [] by prove_H7 24939: Order: 24939: nrkbo 24939: Leaf order: 24939: join 18 2 4 0,2,2 24939: meet 20 2 6 0,2 24939: c 2 0 2 2,2,2,2 24939: b 4 0 4 1,2,2 24939: a 6 0 6 1,2 NO CLASH, using fixed ground order 24940: Facts: 24940: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24940: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24940: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24940: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24940: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24940: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24940: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24940: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24940: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 24940: Goal: 24940: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet a (join (meet a b) (meet c (join a b))))) [] by prove_H7 24940: Order: 24940: kbo 24940: Leaf order: 24940: join 18 2 4 0,2,2 24940: meet 20 2 6 0,2 24940: c 2 0 2 2,2,2,2 24940: b 4 0 4 1,2,2 24940: a 6 0 6 1,2 NO CLASH, using fixed ground order 24941: Facts: 24941: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24941: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24941: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24941: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24941: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24941: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24941: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24941: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24941: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 24941: Goal: 24941: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet a (join (meet a b) (meet c (join a b))))) [] by prove_H7 24941: Order: 24941: lpo 24941: Leaf order: 24941: join 18 2 4 0,2,2 24941: meet 20 2 6 0,2 24941: c 2 0 2 2,2,2,2 24941: b 4 0 4 1,2,2 24941: a 6 0 6 1,2 % SZS status Timeout for LAT159-1.p NO CLASH, using fixed ground order 24972: Facts: 24972: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24972: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24972: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 NO CLASH, using fixed ground order 24972: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24972: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24972: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24972: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24972: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24972: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= meet ?26 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27)))) [28, 27, 26] by equation_H68 ?26 ?27 ?28 24972: Goal: 24972: Id : 1, {_}: meet a (meet b (join c d)) =<= meet a (meet b (join c (meet a (join d (meet b c))))) [] by prove_H73 24972: Order: 24972: nrkbo 24972: Leaf order: 24972: meet 19 2 6 0,2 24972: join 15 2 3 0,2,2,2 24972: d 2 0 2 2,2,2,2 24972: c 3 0 3 1,2,2,2 24972: b 3 0 3 1,2,2 24972: a 3 0 3 1,2 24973: Facts: 24973: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24973: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24973: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24973: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24973: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24973: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24973: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24973: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24973: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= meet ?26 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27)))) [28, 27, 26] by equation_H68 ?26 ?27 ?28 24973: Goal: 24973: Id : 1, {_}: meet a (meet b (join c d)) =<= meet a (meet b (join c (meet a (join d (meet b c))))) [] by prove_H73 24973: Order: 24973: kbo 24973: Leaf order: 24973: meet 19 2 6 0,2 24973: join 15 2 3 0,2,2,2 24973: d 2 0 2 2,2,2,2 24973: c 3 0 3 1,2,2,2 24973: b 3 0 3 1,2,2 24973: a 3 0 3 1,2 NO CLASH, using fixed ground order 24974: Facts: 24974: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24974: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24974: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24974: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24974: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24974: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24974: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24974: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24974: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= meet ?26 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27)))) [28, 27, 26] by equation_H68 ?26 ?27 ?28 24974: Goal: 24974: Id : 1, {_}: meet a (meet b (join c d)) =<= meet a (meet b (join c (meet a (join d (meet b c))))) [] by prove_H73 24974: Order: 24974: lpo 24974: Leaf order: 24974: meet 19 2 6 0,2 24974: join 15 2 3 0,2,2,2 24974: d 2 0 2 2,2,2,2 24974: c 3 0 3 1,2,2,2 24974: b 3 0 3 1,2,2 24974: a 3 0 3 1,2 % SZS status Timeout for LAT162-1.p NO CLASH, using fixed ground order 24990: Facts: 24990: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24990: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24990: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24990: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24990: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24990: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24990: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24990: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24990: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27)))) [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29 24990: Goal: 24990: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 24990: Order: 24990: nrkbo 24990: Leaf order: 24990: join 17 2 4 0,2,2 24990: meet 20 2 6 0,2 24990: c 3 0 3 2,2,2,2 24990: b 3 0 3 1,2,2 24990: a 6 0 6 1,2 NO CLASH, using fixed ground order 24991: Facts: 24991: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24991: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24991: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24991: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24991: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24991: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24991: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24991: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24991: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27)))) [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29 24991: Goal: 24991: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 24991: Order: 24991: kbo 24991: Leaf order: 24991: join 17 2 4 0,2,2 24991: meet 20 2 6 0,2 24991: c 3 0 3 2,2,2,2 24991: b 3 0 3 1,2,2 24991: a 6 0 6 1,2 NO CLASH, using fixed ground order 24992: Facts: 24992: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24992: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24992: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24992: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24992: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24992: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24992: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24992: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24992: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =?= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27)))) [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29 24992: Goal: 24992: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 24992: Order: 24992: lpo 24992: Leaf order: 24992: join 17 2 4 0,2,2 24992: meet 20 2 6 0,2 24992: c 3 0 3 2,2,2,2 24992: b 3 0 3 1,2,2 24992: a 6 0 6 1,2 % SZS status Timeout for LAT164-1.p NO CLASH, using fixed ground order 25019: Facts: NO CLASH, using fixed ground order 25020: Facts: 25020: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25020: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25020: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25020: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25020: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25020: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25020: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25020: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25020: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?27 (meet ?26 (join ?27 ?28))) (join ?28 (meet ?26 ?27))) [28, 27, 26] by equation_H21_dual ?26 ?27 ?28 25020: Goal: 25020: Id : 1, {_}: meet a (join b c) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H58 25020: Order: 25020: kbo 25020: Leaf order: 25020: meet 17 2 4 0,2 25020: join 19 2 4 0,2,2 25020: c 2 0 2 2,2,2 25020: b 4 0 4 1,2,2 25020: a 4 0 4 1,2 25019: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25019: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25019: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25019: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25019: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25019: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25019: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 NO CLASH, using fixed ground order 25019: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25019: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?27 (meet ?26 (join ?27 ?28))) (join ?28 (meet ?26 ?27))) [28, 27, 26] by equation_H21_dual ?26 ?27 ?28 25019: Goal: 25019: Id : 1, {_}: meet a (join b c) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H58 25019: Order: 25019: nrkbo 25019: Leaf order: 25019: meet 17 2 4 0,2 25019: join 19 2 4 0,2,2 25019: c 2 0 2 2,2,2 25019: b 4 0 4 1,2,2 25019: a 4 0 4 1,2 25021: Facts: 25021: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25021: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25021: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25021: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25021: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25021: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25021: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25021: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25021: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?27 (meet ?26 (join ?27 ?28))) (join ?28 (meet ?26 ?27))) [28, 27, 26] by equation_H21_dual ?26 ?27 ?28 25021: Goal: 25021: Id : 1, {_}: meet a (join b c) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H58 25021: Order: 25021: lpo 25021: Leaf order: 25021: meet 17 2 4 0,2 25021: join 19 2 4 0,2,2 25021: c 2 0 2 2,2,2 25021: b 4 0 4 1,2,2 25021: a 4 0 4 1,2 % SZS status Timeout for LAT169-1.p NO CLASH, using fixed ground order 25071: Facts: 25071: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25071: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25071: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25071: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25071: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25071: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25071: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25071: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25071: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?27 ?29))) =<= join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27)))) [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29 25071: Goal: 25071: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 25071: Order: 25071: nrkbo 25071: Leaf order: 25071: join 18 2 4 0,2,2 25071: meet 19 2 6 0,2 25071: c 3 0 3 2,2,2,2 25071: b 3 0 3 1,2,2 25071: a 6 0 6 1,2 NO CLASH, using fixed ground order 25072: Facts: 25072: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25072: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25072: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25072: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25072: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25072: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25072: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25072: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25072: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?27 ?29))) =<= join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27)))) [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29 25072: Goal: 25072: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 25072: Order: 25072: kbo 25072: Leaf order: 25072: join 18 2 4 0,2,2 25072: meet 19 2 6 0,2 25072: c 3 0 3 2,2,2,2 25072: b 3 0 3 1,2,2 25072: a 6 0 6 1,2 NO CLASH, using fixed ground order 25073: Facts: 25073: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25073: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25073: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25073: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25073: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25073: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25073: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25073: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25073: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?27 ?29))) =?= join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27)))) [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29 25073: Goal: 25073: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 25073: Order: 25073: lpo 25073: Leaf order: 25073: join 18 2 4 0,2,2 25073: meet 19 2 6 0,2 25073: c 3 0 3 2,2,2,2 25073: b 3 0 3 1,2,2 25073: a 6 0 6 1,2 % SZS status Timeout for LAT174-1.p NO CLASH, using fixed ground order 25101: Facts: 25101: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25101: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25101: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25101: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25101: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25101: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25101: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25101: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25101: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25101: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25101: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25101: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25101: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25101: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25101: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25101: Goal: 25101: Id : 1, {_}: multiply cz (multiply cx (multiply cy cx)) =<= multiply (multiply (multiply cz cx) cy) cx [] by prove_right_moufang 25101: Order: 25101: nrkbo 25101: Leaf order: 25101: commutator 1 2 0 25101: associator 1 3 0 25101: additive_inverse 6 1 0 25101: add 16 2 0 25101: additive_identity 8 0 0 25101: multiply 28 2 6 0,2 25101: cy 2 0 2 1,2,2,2 25101: cx 4 0 4 1,2,2 25101: cz 2 0 2 1,2 NO CLASH, using fixed ground order 25102: Facts: 25102: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25102: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25102: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25102: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25102: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25102: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25102: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25102: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25102: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25102: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 NO CLASH, using fixed ground order 25103: Facts: 25103: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25103: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25103: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25103: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25103: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25103: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25103: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25103: Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25103: Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25102: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25102: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25102: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25102: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25102: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25102: Goal: 25102: Id : 1, {_}: multiply cz (multiply cx (multiply cy cx)) =<= multiply (multiply (multiply cz cx) cy) cx [] by prove_right_moufang 25102: Order: 25102: kbo 25102: Leaf order: 25102: commutator 1 2 0 25102: associator 1 3 0 25102: additive_inverse 6 1 0 25102: add 16 2 0 25102: additive_identity 8 0 0 25102: multiply 28 2 6 0,2 25102: cy 2 0 2 1,2,2,2 25102: cx 4 0 4 1,2,2 25102: cz 2 0 2 1,2 25103: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25103: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25103: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25103: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25103: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25103: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25103: Goal: 25103: Id : 1, {_}: multiply cz (multiply cx (multiply cy cx)) =<= multiply (multiply (multiply cz cx) cy) cx [] by prove_right_moufang 25103: Order: 25103: lpo 25103: Leaf order: 25103: commutator 1 2 0 25103: associator 1 3 0 25103: additive_inverse 6 1 0 25103: add 16 2 0 25103: additive_identity 8 0 0 25103: multiply 28 2 6 0,2 25103: cy 2 0 2 1,2,2,2 25103: cx 4 0 4 1,2,2 25103: cz 2 0 2 1,2 % SZS status Timeout for RNG027-5.p NO CLASH, using fixed ground order 25119: Facts: 25119: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25119: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25119: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25119: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25119: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25119: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25119: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25119: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25119: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25119: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25119: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25119: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25119: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25119: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25119: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25119: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 25119: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 25119: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 25119: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 25119: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 25119: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 25119: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 25119: Goal: 25119: Id : 1, {_}: multiply cz (multiply cx (multiply cy cx)) =<= multiply (multiply (multiply cz cx) cy) cx [] by prove_right_moufang 25119: Order: 25119: nrkbo 25119: Leaf order: 25119: commutator 1 2 0 25119: associator 1 3 0 25119: additive_inverse 22 1 0 25119: add 24 2 0 25119: additive_identity 8 0 0 25119: multiply 46 2 6 0,2 25119: cy 2 0 2 1,2,2,2 25119: cx 4 0 4 1,2,2 25119: cz 2 0 2 1,2 NO CLASH, using fixed ground order 25120: Facts: 25120: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25120: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25120: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25120: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25120: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25120: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25120: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25120: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25120: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25120: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25120: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25120: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25120: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25120: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25120: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25120: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 25120: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 25120: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 25120: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 25120: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 25120: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 25120: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 25120: Goal: 25120: Id : 1, {_}: multiply cz (multiply cx (multiply cy cx)) =<= multiply (multiply (multiply cz cx) cy) cx [] by prove_right_moufang 25120: Order: 25120: kbo 25120: Leaf order: 25120: commutator 1 2 0 25120: associator 1 3 0 25120: additive_inverse 22 1 0 25120: add 24 2 0 25120: additive_identity 8 0 0 25120: multiply 46 2 6 0,2 25120: cy 2 0 2 1,2,2,2 25120: cx 4 0 4 1,2,2 25120: cz 2 0 2 1,2 NO CLASH, using fixed ground order 25121: Facts: 25121: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25121: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25121: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25121: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25121: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25121: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25121: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25121: Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25121: Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25121: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25121: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25121: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25121: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25121: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25121: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25121: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 25121: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 25121: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 25121: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =>= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 25121: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =>= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 25121: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =>= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 25121: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =>= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 25121: Goal: 25121: Id : 1, {_}: multiply cz (multiply cx (multiply cy cx)) =<= multiply (multiply (multiply cz cx) cy) cx [] by prove_right_moufang 25121: Order: 25121: lpo 25121: Leaf order: 25121: commutator 1 2 0 25121: associator 1 3 0 25121: additive_inverse 22 1 0 25121: add 24 2 0 25121: additive_identity 8 0 0 25121: multiply 46 2 6 0,2 25121: cy 2 0 2 1,2,2,2 25121: cx 4 0 4 1,2,2 25121: cz 2 0 2 1,2 % SZS status Timeout for RNG027-7.p NO CLASH, using fixed ground order 25148: Facts: 25148: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25148: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25148: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25148: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25148: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25148: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25148: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25148: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25148: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25148: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25148: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25148: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25148: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25148: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25148: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25148: Goal: 25148: Id : 1, {_}: associator x (multiply x y) z =<= multiply (associator x y z) x [] by prove_right_moufang 25148: Order: 25148: nrkbo 25148: Leaf order: 25148: commutator 1 2 0 25148: additive_inverse 6 1 0 25148: add 16 2 0 25148: additive_identity 8 0 0 25148: associator 3 3 2 0,2 25148: z 2 0 2 3,2 25148: multiply 24 2 2 0,2,2 25148: y 2 0 2 2,2,2 25148: x 4 0 4 1,2 NO CLASH, using fixed ground order 25149: Facts: 25149: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25149: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25149: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25149: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25149: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25149: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25149: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25149: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25149: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25149: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25149: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25149: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25149: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25149: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25149: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25149: Goal: 25149: Id : 1, {_}: associator x (multiply x y) z =<= multiply (associator x y z) x [] by prove_right_moufang 25149: Order: 25149: kbo 25149: Leaf order: 25149: commutator 1 2 0 25149: additive_inverse 6 1 0 25149: add 16 2 0 25149: additive_identity 8 0 0 25149: associator 3 3 2 0,2 25149: z 2 0 2 3,2 25149: multiply 24 2 2 0,2,2 25149: y 2 0 2 2,2,2 25149: x 4 0 4 1,2 NO CLASH, using fixed ground order 25150: Facts: 25150: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25150: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25150: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25150: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25150: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25150: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25150: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25150: Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25150: Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25150: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25150: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25150: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25150: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25150: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25150: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25150: Goal: 25150: Id : 1, {_}: associator x (multiply x y) z =<= multiply (associator x y z) x [] by prove_right_moufang 25150: Order: 25150: lpo 25150: Leaf order: 25150: commutator 1 2 0 25150: additive_inverse 6 1 0 25150: add 16 2 0 25150: additive_identity 8 0 0 25150: associator 3 3 2 0,2 25150: z 2 0 2 3,2 25150: multiply 24 2 2 0,2,2 25150: y 2 0 2 2,2,2 25150: x 4 0 4 1,2 % SZS status Timeout for RNG027-8.p NO CLASH, using fixed ground order 25166: Facts: 25166: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25166: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25166: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25166: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25166: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25166: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25166: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25166: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25166: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25166: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25166: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25166: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25166: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25166: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25166: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25166: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 25166: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 25166: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 25166: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 25166: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 25166: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 25166: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 25166: Goal: 25166: Id : 1, {_}: associator x (multiply x y) z =<= multiply (associator x y z) x [] by prove_right_moufang 25166: Order: 25166: nrkbo 25166: Leaf order: 25166: commutator 1 2 0 25166: additive_inverse 22 1 0 25166: add 24 2 0 25166: additive_identity 8 0 0 25166: associator 3 3 2 0,2 25166: z 2 0 2 3,2 25166: multiply 42 2 2 0,2,2 25166: y 2 0 2 2,2,2 25166: x 4 0 4 1,2 NO CLASH, using fixed ground order 25168: Facts: 25168: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25168: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25168: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25168: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25168: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25168: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25168: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25168: Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25168: Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25168: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25168: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25168: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25168: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25168: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25168: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25168: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 25168: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 25168: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 25168: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =>= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 25168: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =>= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 25168: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =>= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 25168: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =>= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 25168: Goal: 25168: Id : 1, {_}: associator x (multiply x y) z =<= multiply (associator x y z) x [] by prove_right_moufang 25168: Order: 25168: lpo 25168: Leaf order: 25168: commutator 1 2 0 25168: additive_inverse 22 1 0 25168: add 24 2 0 25168: additive_identity 8 0 0 25168: associator 3 3 2 0,2 25168: z 2 0 2 3,2 25168: multiply 42 2 2 0,2,2 25168: y 2 0 2 2,2,2 25168: x 4 0 4 1,2 NO CLASH, using fixed ground order 25167: Facts: 25167: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25167: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25167: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25167: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25167: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25167: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25167: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25167: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25167: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25167: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25167: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25167: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25167: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25167: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25167: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25167: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 25167: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 25167: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 25167: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 25167: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 25167: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 25167: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 25167: Goal: 25167: Id : 1, {_}: associator x (multiply x y) z =<= multiply (associator x y z) x [] by prove_right_moufang 25167: Order: 25167: kbo 25167: Leaf order: 25167: commutator 1 2 0 25167: additive_inverse 22 1 0 25167: add 24 2 0 25167: additive_identity 8 0 0 25167: associator 3 3 2 0,2 25167: z 2 0 2 3,2 25167: multiply 42 2 2 0,2,2 25167: y 2 0 2 2,2,2 25167: x 4 0 4 1,2 % SZS status Timeout for RNG027-9.p NO CLASH, using fixed ground order 25195: Facts: 25195: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25195: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25195: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25195: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25195: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25195: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25195: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25195: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25195: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25195: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25195: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25195: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25195: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25195: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25195: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25195: Goal: 25195: Id : 1, {_}: multiply (multiply cx (multiply cy cx)) cz =>= multiply cx (multiply cy (multiply cx cz)) [] by prove_left_moufang 25195: Order: 25195: nrkbo 25195: Leaf order: 25195: commutator 1 2 0 25195: associator 1 3 0 25195: additive_inverse 6 1 0 25195: add 16 2 0 25195: additive_identity 8 0 0 25195: cz 2 0 2 2,2 25195: multiply 28 2 6 0,2 25195: cy 2 0 2 1,2,1,2 25195: cx 4 0 4 1,1,2 NO CLASH, using fixed ground order 25196: Facts: 25196: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25196: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25196: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25196: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25196: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25196: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25196: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25196: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25196: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25196: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25196: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25196: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25196: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25196: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25196: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25196: Goal: 25196: Id : 1, {_}: multiply (multiply cx (multiply cy cx)) cz =>= multiply cx (multiply cy (multiply cx cz)) [] by prove_left_moufang 25196: Order: 25196: kbo 25196: Leaf order: 25196: commutator 1 2 0 25196: associator 1 3 0 25196: additive_inverse 6 1 0 25196: add 16 2 0 25196: additive_identity 8 0 0 25196: cz 2 0 2 2,2 25196: multiply 28 2 6 0,2 25196: cy 2 0 2 1,2,1,2 25196: cx 4 0 4 1,1,2 NO CLASH, using fixed ground order 25197: Facts: 25197: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25197: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25197: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25197: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25197: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25197: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25197: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25197: Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25197: Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25197: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25197: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25197: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25197: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25197: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25197: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25197: Goal: 25197: Id : 1, {_}: multiply (multiply cx (multiply cy cx)) cz =>= multiply cx (multiply cy (multiply cx cz)) [] by prove_left_moufang 25197: Order: 25197: lpo 25197: Leaf order: 25197: commutator 1 2 0 25197: associator 1 3 0 25197: additive_inverse 6 1 0 25197: add 16 2 0 25197: additive_identity 8 0 0 25197: cz 2 0 2 2,2 25197: multiply 28 2 6 0,2 25197: cy 2 0 2 1,2,1,2 25197: cx 4 0 4 1,1,2 % SZS status Timeout for RNG028-5.p NO CLASH, using fixed ground order 25213: Facts: 25213: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25213: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25213: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25213: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25213: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25213: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25213: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25213: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25213: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25213: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25213: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25213: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25213: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25213: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25213: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25213: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 25213: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 25213: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 25213: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 25213: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 25213: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 25213: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 25213: Goal: 25213: Id : 1, {_}: multiply (multiply cx (multiply cy cx)) cz =>= multiply cx (multiply cy (multiply cx cz)) [] by prove_left_moufang 25213: Order: 25213: nrkbo 25213: Leaf order: 25213: commutator 1 2 0 25213: associator 1 3 0 25213: additive_inverse 22 1 0 25213: add 24 2 0 25213: additive_identity 8 0 0 25213: cz 2 0 2 2,2 25213: multiply 46 2 6 0,2 25213: cy 2 0 2 1,2,1,2 25213: cx 4 0 4 1,1,2 NO CLASH, using fixed ground order 25214: Facts: 25214: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25214: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25214: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25214: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25214: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25214: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25214: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25214: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25214: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25214: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25214: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25214: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25214: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25214: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25214: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25214: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 25214: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 25214: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 25214: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 25214: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 25214: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 25214: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 25214: Goal: 25214: Id : 1, {_}: multiply (multiply cx (multiply cy cx)) cz =>= multiply cx (multiply cy (multiply cx cz)) [] by prove_left_moufang 25214: Order: 25214: kbo 25214: Leaf order: 25214: commutator 1 2 0 25214: associator 1 3 0 25214: additive_inverse 22 1 0 25214: add 24 2 0 25214: additive_identity 8 0 0 25214: cz 2 0 2 2,2 25214: multiply 46 2 6 0,2 25214: cy 2 0 2 1,2,1,2 25214: cx 4 0 4 1,1,2 NO CLASH, using fixed ground order 25215: Facts: 25215: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25215: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25215: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25215: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25215: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25215: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25215: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25215: Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25215: Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25215: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25215: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25215: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25215: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25215: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25215: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25215: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 25215: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 25215: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 25215: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =>= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 25215: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =>= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 25215: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =>= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 25215: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =>= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 25215: Goal: 25215: Id : 1, {_}: multiply (multiply cx (multiply cy cx)) cz =>= multiply cx (multiply cy (multiply cx cz)) [] by prove_left_moufang 25215: Order: 25215: lpo 25215: Leaf order: 25215: commutator 1 2 0 25215: associator 1 3 0 25215: additive_inverse 22 1 0 25215: add 24 2 0 25215: additive_identity 8 0 0 25215: cz 2 0 2 2,2 25215: multiply 46 2 6 0,2 25215: cy 2 0 2 1,2,1,2 25215: cx 4 0 4 1,1,2 % SZS status Timeout for RNG028-7.p NO CLASH, using fixed ground order 25251: Facts: 25251: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25251: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25251: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25251: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25251: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25251: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25251: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25251: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25251: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25251: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25251: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25251: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25251: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25251: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25251: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25251: Goal: 25251: Id : 1, {_}: associator x (multiply y x) z =<= multiply x (associator x y z) [] by prove_left_moufang 25251: Order: 25251: nrkbo 25251: Leaf order: 25251: commutator 1 2 0 25251: additive_inverse 6 1 0 25251: add 16 2 0 25251: additive_identity 8 0 0 25251: associator 3 3 2 0,2 25251: z 2 0 2 3,2 25251: multiply 24 2 2 0,2,2 25251: y 2 0 2 1,2,2 25251: x 4 0 4 1,2 NO CLASH, using fixed ground order 25252: Facts: 25252: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25252: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25252: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25252: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25252: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25252: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25252: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25252: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25252: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25252: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25252: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25252: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25252: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25252: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25252: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25252: Goal: 25252: Id : 1, {_}: associator x (multiply y x) z =<= multiply x (associator x y z) [] by prove_left_moufang 25252: Order: 25252: kbo 25252: Leaf order: 25252: commutator 1 2 0 25252: additive_inverse 6 1 0 25252: add 16 2 0 25252: additive_identity 8 0 0 25252: associator 3 3 2 0,2 25252: z 2 0 2 3,2 25252: multiply 24 2 2 0,2,2 25252: y 2 0 2 1,2,2 25252: x 4 0 4 1,2 NO CLASH, using fixed ground order 25253: Facts: 25253: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25253: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25253: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25253: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25253: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25253: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25253: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25253: Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25253: Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25253: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25253: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25253: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25253: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25253: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25253: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25253: Goal: 25253: Id : 1, {_}: associator x (multiply y x) z =<= multiply x (associator x y z) [] by prove_left_moufang 25253: Order: 25253: lpo 25253: Leaf order: 25253: commutator 1 2 0 25253: additive_inverse 6 1 0 25253: add 16 2 0 25253: additive_identity 8 0 0 25253: associator 3 3 2 0,2 25253: z 2 0 2 3,2 25253: multiply 24 2 2 0,2,2 25253: y 2 0 2 1,2,2 25253: x 4 0 4 1,2 % SZS status Timeout for RNG028-8.p NO CLASH, using fixed ground order 25289: Facts: 25289: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25289: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25289: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25289: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25289: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25289: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25289: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25289: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25289: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25289: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25289: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25289: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25289: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25289: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25289: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25289: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 25289: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 25289: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 25289: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 25289: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 25289: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 25289: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 25289: Goal: 25289: Id : 1, {_}: associator x (multiply y x) z =<= multiply x (associator x y z) [] by prove_left_moufang 25289: Order: 25289: nrkbo 25289: Leaf order: 25289: commutator 1 2 0 25289: additive_inverse 22 1 0 25289: add 24 2 0 25289: additive_identity 8 0 0 25289: associator 3 3 2 0,2 25289: z 2 0 2 3,2 25289: multiply 42 2 2 0,2,2 25289: y 2 0 2 1,2,2 25289: x 4 0 4 1,2 NO CLASH, using fixed ground order 25290: Facts: 25290: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25290: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25290: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25290: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25290: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25290: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25290: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25290: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25290: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25290: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25290: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25290: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25290: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25290: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25290: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25290: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 25290: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 25290: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 25290: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 25290: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 25290: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 25290: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 25290: Goal: 25290: Id : 1, {_}: associator x (multiply y x) z =<= multiply x (associator x y z) [] by prove_left_moufang 25290: Order: 25290: kbo 25290: Leaf order: 25290: commutator 1 2 0 25290: additive_inverse 22 1 0 25290: add 24 2 0 25290: additive_identity 8 0 0 25290: associator 3 3 2 0,2 25290: z 2 0 2 3,2 25290: multiply 42 2 2 0,2,2 25290: y 2 0 2 1,2,2 25290: x 4 0 4 1,2 NO CLASH, using fixed ground order 25291: Facts: 25291: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25291: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25291: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25291: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25291: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25291: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25291: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25291: Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25291: Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25291: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25291: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25291: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25291: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25291: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25291: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25291: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 25291: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 25291: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 25291: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =>= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 25291: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =>= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 25291: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =>= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 25291: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =>= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 25291: Goal: 25291: Id : 1, {_}: associator x (multiply y x) z =<= multiply x (associator x y z) [] by prove_left_moufang 25291: Order: 25291: lpo 25291: Leaf order: 25291: commutator 1 2 0 25291: additive_inverse 22 1 0 25291: add 24 2 0 25291: additive_identity 8 0 0 25291: associator 3 3 2 0,2 25291: z 2 0 2 3,2 25291: multiply 42 2 2 0,2,2 25291: y 2 0 2 1,2,2 25291: x 4 0 4 1,2 % SZS status Timeout for RNG028-9.p NO CLASH, using fixed ground order 25318: Facts: 25318: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25318: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25318: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25318: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25318: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25318: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25318: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25318: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25318: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25318: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25318: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25318: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25318: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25318: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25318: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25318: Goal: 25318: Id : 1, {_}: multiply (multiply cx cy) (multiply cz cx) =>= multiply cx (multiply (multiply cy cz) cx) [] by prove_middle_law 25318: Order: 25318: nrkbo 25318: Leaf order: 25318: commutator 1 2 0 25318: associator 1 3 0 25318: additive_inverse 6 1 0 25318: add 16 2 0 25318: additive_identity 8 0 0 25318: cz 2 0 2 1,2,2 25318: multiply 28 2 6 0,2 25318: cy 2 0 2 2,1,2 25318: cx 4 0 4 1,1,2 NO CLASH, using fixed ground order 25320: Facts: 25320: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25320: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25320: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25320: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25320: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25320: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25320: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25320: Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25320: Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25320: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25320: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25320: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25320: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25320: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25320: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25320: Goal: 25320: Id : 1, {_}: multiply (multiply cx cy) (multiply cz cx) =>= multiply cx (multiply (multiply cy cz) cx) [] by prove_middle_law 25320: Order: 25320: lpo 25320: Leaf order: 25320: commutator 1 2 0 25320: associator 1 3 0 25320: additive_inverse 6 1 0 25320: add 16 2 0 25320: additive_identity 8 0 0 25320: cz 2 0 2 1,2,2 25320: multiply 28 2 6 0,2 25320: cy 2 0 2 2,1,2 25320: cx 4 0 4 1,1,2 NO CLASH, using fixed ground order 25319: Facts: 25319: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25319: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25319: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25319: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25319: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25319: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25319: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25319: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25319: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25319: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25319: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25319: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25319: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25319: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25319: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25319: Goal: 25319: Id : 1, {_}: multiply (multiply cx cy) (multiply cz cx) =>= multiply cx (multiply (multiply cy cz) cx) [] by prove_middle_law 25319: Order: 25319: kbo 25319: Leaf order: 25319: commutator 1 2 0 25319: associator 1 3 0 25319: additive_inverse 6 1 0 25319: add 16 2 0 25319: additive_identity 8 0 0 25319: cz 2 0 2 1,2,2 25319: multiply 28 2 6 0,2 25319: cy 2 0 2 2,1,2 25319: cx 4 0 4 1,1,2 % SZS status Timeout for RNG029-5.p NO CLASH, using fixed ground order 25337: Facts: 25337: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25337: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25337: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25337: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25337: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25337: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25337: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25337: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25337: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25337: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25337: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25337: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25337: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25337: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25337: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25337: Goal: 25337: Id : 1, {_}: multiply (multiply x y) (multiply z x) =<= multiply (multiply x (multiply y z)) x [] by prove_middle_moufang 25337: Order: 25337: nrkbo 25337: Leaf order: 25337: commutator 1 2 0 25337: associator 1 3 0 25337: additive_inverse 6 1 0 25337: add 16 2 0 25337: additive_identity 8 0 0 25337: z 2 0 2 1,2,2 25337: multiply 28 2 6 0,2 25337: y 2 0 2 2,1,2 25337: x 4 0 4 1,1,2 NO CLASH, using fixed ground order 25338: Facts: 25338: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25338: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25338: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25338: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25338: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25338: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25338: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25338: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25338: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25338: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25338: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25338: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25338: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25338: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25338: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25338: Goal: 25338: Id : 1, {_}: multiply (multiply x y) (multiply z x) =<= multiply (multiply x (multiply y z)) x [] by prove_middle_moufang 25338: Order: 25338: kbo 25338: Leaf order: 25338: commutator 1 2 0 25338: associator 1 3 0 25338: additive_inverse 6 1 0 25338: add 16 2 0 25338: additive_identity 8 0 0 25338: z 2 0 2 1,2,2 25338: multiply 28 2 6 0,2 25338: y 2 0 2 2,1,2 25338: x 4 0 4 1,1,2 NO CLASH, using fixed ground order 25339: Facts: 25339: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25339: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25339: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25339: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25339: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25339: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25339: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25339: Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25339: Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25339: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25339: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25339: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25339: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25339: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25339: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25339: Goal: 25339: Id : 1, {_}: multiply (multiply x y) (multiply z x) =<= multiply (multiply x (multiply y z)) x [] by prove_middle_moufang 25339: Order: 25339: lpo 25339: Leaf order: 25339: commutator 1 2 0 25339: associator 1 3 0 25339: additive_inverse 6 1 0 25339: add 16 2 0 25339: additive_identity 8 0 0 25339: z 2 0 2 1,2,2 25339: multiply 28 2 6 0,2 25339: y 2 0 2 2,1,2 25339: x 4 0 4 1,1,2 % SZS status Timeout for RNG029-6.p NO CLASH, using fixed ground order 25367: Facts: 25367: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25367: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25367: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25367: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25367: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25367: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25367: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25367: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25367: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25367: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25367: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25367: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25367: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25367: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25367: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25367: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 25367: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 25367: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 25367: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 25367: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 25367: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 25367: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 25367: Goal: 25367: Id : 1, {_}: multiply (multiply x y) (multiply z x) =<= multiply (multiply x (multiply y z)) x [] by prove_middle_moufang 25367: Order: 25367: nrkbo 25367: Leaf order: 25367: commutator 1 2 0 25367: associator 1 3 0 25367: additive_inverse 22 1 0 25367: add 24 2 0 25367: additive_identity 8 0 0 25367: z 2 0 2 1,2,2 25367: multiply 46 2 6 0,2 25367: y 2 0 2 2,1,2 25367: x 4 0 4 1,1,2 NO CLASH, using fixed ground order 25368: Facts: 25368: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25368: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25368: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 NO CLASH, using fixed ground order 25369: Facts: 25369: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 25369: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 25369: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 25369: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25369: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25369: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25369: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25369: Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25369: Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25369: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25369: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25369: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25369: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25369: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25369: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25369: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 25369: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 25369: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 25369: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =>= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 25369: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =>= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 25369: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =>= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 25369: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =>= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 25369: Goal: 25369: Id : 1, {_}: multiply (multiply x y) (multiply z x) =<= multiply (multiply x (multiply y z)) x [] by prove_middle_moufang 25369: Order: 25369: lpo 25369: Leaf order: 25369: commutator 1 2 0 25369: associator 1 3 0 25369: additive_inverse 22 1 0 25369: add 24 2 0 25369: additive_identity 8 0 0 25369: z 2 0 2 1,2,2 25369: multiply 46 2 6 0,2 25369: y 2 0 2 2,1,2 25369: x 4 0 4 1,1,2 25368: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 25368: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 25368: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 25368: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 25368: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 25368: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 25368: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 25368: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 25368: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 25368: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 25368: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 25368: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 25368: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 25368: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 25368: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 25368: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 25368: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 25368: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 25368: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 25368: Goal: 25368: Id : 1, {_}: multiply (multiply x y) (multiply z x) =<= multiply (multiply x (multiply y z)) x [] by prove_middle_moufang 25368: Order: 25368: kbo 25368: Leaf order: 25368: commutator 1 2 0 25368: associator 1 3 0 25368: additive_inverse 22 1 0 25368: add 24 2 0 25368: additive_identity 8 0 0 25368: z 2 0 2 1,2,2 25368: multiply 46 2 6 0,2 25368: y 2 0 2 2,1,2 25368: x 4 0 4 1,1,2 % SZS status Timeout for RNG029-7.p NO CLASH, using fixed ground order 25651: Facts: 25651: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 25651: Id : 3, {_}: add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 25651: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 25651: Id : 5, {_}: add c d =>= d [] by absorbtion 25651: Goal: NO CLASH, using fixed ground order 25652: Facts: 25652: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 25652: Id : 3, {_}: add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 25652: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 25652: Id : 5, {_}: add c d =>= d [] by absorbtion 25652: Goal: 25652: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 25652: Order: 25652: kbo 25652: Leaf order: 25652: d 2 0 0 25652: c 1 0 0 25652: add 13 2 3 0,2 25652: negate 9 1 5 0,1,2 25652: b 3 0 3 1,2,1,1,2 25652: a 2 0 2 1,1,1,2 25651: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 25651: Order: 25651: nrkbo 25651: Leaf order: 25651: d 2 0 0 25651: c 1 0 0 25651: add 13 2 3 0,2 25651: negate 9 1 5 0,1,2 25651: b 3 0 3 1,2,1,1,2 25651: a 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 25653: Facts: 25653: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 25653: Id : 3, {_}: add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 25653: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 25653: Id : 5, {_}: add c d =>= d [] by absorbtion 25653: Goal: 25653: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 25653: Order: 25653: lpo 25653: Leaf order: 25653: d 2 0 0 25653: c 1 0 0 25653: add 13 2 3 0,2 25653: negate 9 1 5 0,1,2 25653: b 3 0 3 1,2,1,1,2 25653: a 2 0 2 1,1,1,2 % SZS status Timeout for ROB006-1.p NO CLASH, using fixed ground order 25684: Facts: 25684: Id : 2, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4 25684: Id : 3, {_}: add (add ?6 ?7) ?8 =?= add ?6 (add ?7 ?8) [8, 7, 6] by associativity_of_add ?6 ?7 ?8 25684: Id : 4, {_}: negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11)))) =>= ?10 [11, 10] by robbins_axiom ?10 ?11 25684: Id : 5, {_}: add c d =>= d [] by absorbtion 25684: Goal: 25684: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1 25684: Order: 25684: nrkbo 25684: Leaf order: 25684: d 2 0 0 25684: c 1 0 0 25684: negate 4 1 0 25684: add 11 2 1 0,2 NO CLASH, using fixed ground order 25685: Facts: 25685: Id : 2, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4 25685: Id : 3, {_}: add (add ?6 ?7) ?8 =>= add ?6 (add ?7 ?8) [8, 7, 6] by associativity_of_add ?6 ?7 ?8 25685: Id : 4, {_}: negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11)))) =>= ?10 [11, 10] by robbins_axiom ?10 ?11 25685: Id : 5, {_}: add c d =>= d [] by absorbtion 25685: Goal: 25685: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1 25685: Order: 25685: kbo 25685: Leaf order: 25685: d 2 0 0 25685: c 1 0 0 25685: negate 4 1 0 25685: add 11 2 1 0,2 NO CLASH, using fixed ground order 25686: Facts: 25686: Id : 2, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4 25686: Id : 3, {_}: add (add ?6 ?7) ?8 =>= add ?6 (add ?7 ?8) [8, 7, 6] by associativity_of_add ?6 ?7 ?8 25686: Id : 4, {_}: negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11)))) =>= ?10 [11, 10] by robbins_axiom ?10 ?11 25686: Id : 5, {_}: add c d =>= d [] by absorbtion 25686: Goal: 25686: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1 25686: Order: 25686: lpo 25686: Leaf order: 25686: d 2 0 0 25686: c 1 0 0 25686: negate 4 1 0 25686: add 11 2 1 0,2 % SZS status Timeout for ROB006-2.p NO CLASH, using fixed ground order 25702: Facts: 25702: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 25702: Id : 3, {_}: add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 25702: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 25702: Id : 5, {_}: add c d =>= c [] by identity_constant 25702: Goal: 25702: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 25702: Order: 25702: nrkbo 25702: Leaf order: 25702: d 1 0 0 25702: c 2 0 0 25702: add 13 2 3 0,2 25702: negate 9 1 5 0,1,2 25702: b 3 0 3 1,2,1,1,2 25702: a 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 25704: Facts: 25704: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 25704: Id : 3, {_}: add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 25704: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 25704: Id : 5, {_}: add c d =>= c [] by identity_constant 25704: Goal: 25704: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 25704: Order: 25704: lpo 25704: Leaf order: 25704: d 1 0 0 25704: c 2 0 0 25704: add 13 2 3 0,2 25704: negate 9 1 5 0,1,2 25704: b 3 0 3 1,2,1,1,2 25704: a 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 25703: Facts: 25703: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 25703: Id : 3, {_}: add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 25703: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 25703: Id : 5, {_}: add c d =>= c [] by identity_constant 25703: Goal: 25703: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 25703: Order: 25703: kbo 25703: Leaf order: 25703: d 1 0 0 25703: c 2 0 0 25703: add 13 2 3 0,2 25703: negate 9 1 5 0,1,2 25703: b 3 0 3 1,2,1,1,2 25703: a 2 0 2 1,1,1,2 % SZS status Timeout for ROB026-1.p NO CLASH, using fixed ground order 25731: Facts: 25731: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 25731: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 25731: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 25731: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 25731: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 25731: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 25731: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 25731: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 25731: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 25731: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 25731: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 25731: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 25731: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 25731: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 25731: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 25731: Goal: 25731: Id : 1, {_}: least_upper_bound a (greatest_lower_bound b c) =<= greatest_lower_bound (least_upper_bound a b) (least_upper_bound a c) [] by prove_distrnu 25731: Order: 25731: nrkbo 25731: Leaf order: 25731: inverse 1 1 0 25731: multiply 18 2 0 25731: identity 2 0 0 25731: least_upper_bound 16 2 3 0,2 25731: greatest_lower_bound 15 2 2 0,2,2 25731: c 2 0 2 2,2,2 25731: b 2 0 2 1,2,2 25731: a 3 0 3 1,2 NO CLASH, using fixed ground order 25732: Facts: 25732: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 25732: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 25732: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 25732: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 25732: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 25732: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 25732: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 25732: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 25732: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 25732: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 25732: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 25732: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 25732: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 25732: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 25732: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 25732: Goal: 25732: Id : 1, {_}: least_upper_bound a (greatest_lower_bound b c) =<= greatest_lower_bound (least_upper_bound a b) (least_upper_bound a c) [] by prove_distrnu 25732: Order: 25732: kbo 25732: Leaf order: 25732: inverse 1 1 0 25732: multiply 18 2 0 25732: identity 2 0 0 25732: least_upper_bound 16 2 3 0,2 25732: greatest_lower_bound 15 2 2 0,2,2 25732: c 2 0 2 2,2,2 25732: b 2 0 2 1,2,2 25732: a 3 0 3 1,2 NO CLASH, using fixed ground order 25733: Facts: 25733: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 25733: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 25733: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 25733: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 25733: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 25733: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 25733: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 25733: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 25733: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 25733: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 25733: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 25733: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 25733: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 25733: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 25733: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 25733: Goal: 25733: Id : 1, {_}: least_upper_bound a (greatest_lower_bound b c) =<= greatest_lower_bound (least_upper_bound a b) (least_upper_bound a c) [] by prove_distrnu 25733: Order: 25733: lpo 25733: Leaf order: 25733: inverse 1 1 0 25733: multiply 18 2 0 25733: identity 2 0 0 25733: least_upper_bound 16 2 3 0,2 25733: greatest_lower_bound 15 2 2 0,2,2 25733: c 2 0 2 2,2,2 25733: b 2 0 2 1,2,2 25733: a 3 0 3 1,2 % SZS status Timeout for GRP164-1.p NO CLASH, using fixed ground order 25749: Facts: 25749: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 25749: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 25749: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 25749: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 25749: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 25749: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 25749: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 25749: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 25749: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 25749: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 25749: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 25749: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 25749: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 25749: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 25749: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 25749: Goal: 25749: Id : 1, {_}: greatest_lower_bound a (least_upper_bound b c) =<= least_upper_bound (greatest_lower_bound a b) (greatest_lower_bound a c) [] by prove_distrun 25749: Order: 25749: nrkbo 25749: Leaf order: 25749: inverse 1 1 0 25749: multiply 18 2 0 25749: identity 2 0 0 25749: greatest_lower_bound 16 2 3 0,2 25749: least_upper_bound 15 2 2 0,2,2 25749: c 2 0 2 2,2,2 25749: b 2 0 2 1,2,2 25749: a 3 0 3 1,2 NO CLASH, using fixed ground order 25750: Facts: 25750: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 25750: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 25750: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 25750: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 25750: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 25750: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 25750: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 25750: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 25750: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 25750: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 25750: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 NO CLASH, using fixed ground order 25751: Facts: 25751: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 25751: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 25751: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 25751: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 25751: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 25751: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 25751: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 25751: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 25751: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 25751: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 25751: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 25751: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 25751: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 25751: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 25751: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 25751: Goal: 25751: Id : 1, {_}: greatest_lower_bound a (least_upper_bound b c) =<= least_upper_bound (greatest_lower_bound a b) (greatest_lower_bound a c) [] by prove_distrun 25751: Order: 25751: lpo 25751: Leaf order: 25751: inverse 1 1 0 25751: multiply 18 2 0 25751: identity 2 0 0 25751: greatest_lower_bound 16 2 3 0,2 25751: least_upper_bound 15 2 2 0,2,2 25751: c 2 0 2 2,2,2 25751: b 2 0 2 1,2,2 25751: a 3 0 3 1,2 25750: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 25750: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 25750: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 25750: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 25750: Goal: 25750: Id : 1, {_}: greatest_lower_bound a (least_upper_bound b c) =<= least_upper_bound (greatest_lower_bound a b) (greatest_lower_bound a c) [] by prove_distrun 25750: Order: 25750: kbo 25750: Leaf order: 25750: inverse 1 1 0 25750: multiply 18 2 0 25750: identity 2 0 0 25750: greatest_lower_bound 16 2 3 0,2 25750: least_upper_bound 15 2 2 0,2,2 25750: c 2 0 2 2,2,2 25750: b 2 0 2 1,2,2 25750: a 3 0 3 1,2 % SZS status Timeout for GRP164-2.p NO CLASH, using fixed ground order 25782: Facts: 25782: Id : 2, {_}: multiply (multiply ?2 ?3) ?4 =?= multiply ?2 (multiply ?3 ?4) [4, 3, 2] by associativity_of_multiply ?2 ?3 ?4 25782: Id : 3, {_}: multiply ?6 (multiply ?7 (multiply ?7 ?7)) =?= multiply ?7 (multiply ?7 (multiply ?7 ?6)) [7, 6] by condition ?6 ?7 25782: Goal: 25782: Id : 1, {_}: multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a b)))))))))))))))) =<= multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply b (multiply b (multiply b (multiply b (multiply b (multiply b (multiply b (multiply b b)))))))))))))))) [] by prove_this 25782: Order: 25782: nrkbo 25782: Leaf order: 25782: multiply 44 2 34 0,2 25782: b 18 0 18 1,2,2 25782: a 18 0 18 1,2 NO CLASH, using fixed ground order 25783: Facts: 25783: Id : 2, {_}: multiply (multiply ?2 ?3) ?4 =>= multiply ?2 (multiply ?3 ?4) [4, 3, 2] by associativity_of_multiply ?2 ?3 ?4 25783: Id : 3, {_}: multiply ?6 (multiply ?7 (multiply ?7 ?7)) =?= multiply ?7 (multiply ?7 (multiply ?7 ?6)) [7, 6] by condition ?6 ?7 25783: Goal: 25783: Id : 1, {_}: multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a b)))))))))))))))) =?= multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply b (multiply b (multiply b (multiply b (multiply b (multiply b (multiply b (multiply b b)))))))))))))))) [] by prove_this 25783: Order: 25783: kbo 25783: Leaf order: 25783: multiply 44 2 34 0,2 25783: b 18 0 18 1,2,2 25783: a 18 0 18 1,2 NO CLASH, using fixed ground order % SZS status Timeout for GRP196-1.p NO CLASH, using fixed ground order 25809: Facts: 25809: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?3 ?4)) ?5) (f ?3 (f (f ?3 (f (f ?2 ?2) ?2)) ?4)) =>= ?3 [5, 4, 3, 2] by ol_23A ?2 ?3 ?4 ?5 25809: Goal: 25809: Id : 1, {_}: f a (f (f b c) (f b c)) =>= f c (f (f b a) (f b a)) [] by associativity 25809: Order: 25809: nrkbo 25809: Leaf order: 25809: f 18 2 8 0,2 25809: c 3 0 3 2,1,2,2 25809: b 4 0 4 1,1,2,2 25809: a 3 0 3 1,2 NO CLASH, using fixed ground order 25810: Facts: 25810: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?3 ?4)) ?5) (f ?3 (f (f ?3 (f (f ?2 ?2) ?2)) ?4)) =>= ?3 [5, 4, 3, 2] by ol_23A ?2 ?3 ?4 ?5 25810: Goal: 25810: Id : 1, {_}: f a (f (f b c) (f b c)) =>= f c (f (f b a) (f b a)) [] by associativity 25810: Order: 25810: kbo 25810: Leaf order: 25810: f 18 2 8 0,2 25810: c 3 0 3 2,1,2,2 25810: b 4 0 4 1,1,2,2 25810: a 3 0 3 1,2 NO CLASH, using fixed ground order 25811: Facts: 25811: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?3 ?4)) ?5) (f ?3 (f (f ?3 (f (f ?2 ?2) ?2)) ?4)) =>= ?3 [5, 4, 3, 2] by ol_23A ?2 ?3 ?4 ?5 25811: Goal: 25811: Id : 1, {_}: f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a)) [] by associativity 25811: Order: 25811: lpo 25811: Leaf order: 25811: f 18 2 8 0,2 25811: c 3 0 3 2,1,2,2 25811: b 4 0 4 1,1,2,2 25811: a 3 0 3 1,2 % SZS status Timeout for LAT070-1.p NO CLASH, using fixed ground order NO CLASH, using fixed ground order 25843: Facts: 25843: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25843: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25843: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25843: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25843: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25843: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25843: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25843: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25843: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?26 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27))))) [28, 27, 26] by equation_H7 ?26 ?27 ?28 25843: Goal: 25843: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 25843: Order: 25843: kbo 25843: Leaf order: 25843: join 17 2 4 0,2,2 25843: meet 21 2 6 0,2 25843: c 3 0 3 2,2,2,2 25843: b 3 0 3 1,2,2 25843: a 6 0 6 1,2 NO CLASH, using fixed ground order 25844: Facts: 25844: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25844: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25844: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25844: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25844: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25844: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25844: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25844: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25844: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?26 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27))))) [28, 27, 26] by equation_H7 ?26 ?27 ?28 25844: Goal: 25844: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 25844: Order: 25844: lpo 25844: Leaf order: 25844: join 17 2 4 0,2,2 25844: meet 21 2 6 0,2 25844: c 3 0 3 2,2,2,2 25844: b 3 0 3 1,2,2 25844: a 6 0 6 1,2 25842: Facts: 25842: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25842: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25842: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25842: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25842: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25842: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25842: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25842: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25842: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?26 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27))))) [28, 27, 26] by equation_H7 ?26 ?27 ?28 25842: Goal: 25842: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 25842: Order: 25842: nrkbo 25842: Leaf order: 25842: join 17 2 4 0,2,2 25842: meet 21 2 6 0,2 25842: c 3 0 3 2,2,2,2 25842: b 3 0 3 1,2,2 25842: a 6 0 6 1,2 % SZS status Timeout for LAT138-1.p NO CLASH, using fixed ground order 25866: Facts: 25866: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25866: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25866: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25866: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25866: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25866: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25866: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25866: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25866: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?26 (meet ?27 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H21 ?26 ?27 ?28 25866: Goal: 25866: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 25866: Order: 25866: nrkbo 25866: Leaf order: 25866: join 17 2 4 0,2,2 25866: meet 21 2 6 0,2 25866: c 4 0 4 2,2,2,2 25866: b 4 0 4 1,2,2 25866: a 4 0 4 1,2 NO CLASH, using fixed ground order 25867: Facts: 25867: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25867: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25867: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25867: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25867: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25867: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25867: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25867: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25867: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?26 (meet ?27 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H21 ?26 ?27 ?28 25867: Goal: 25867: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 25867: Order: 25867: kbo 25867: Leaf order: 25867: join 17 2 4 0,2,2 25867: meet 21 2 6 0,2 25867: c 4 0 4 2,2,2,2 25867: b 4 0 4 1,2,2 25867: a 4 0 4 1,2 NO CLASH, using fixed ground order 25868: Facts: 25868: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25868: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25868: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25868: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25868: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25868: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25868: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25868: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25868: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?26 (meet ?27 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H21 ?26 ?27 ?28 25868: Goal: 25868: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 25868: Order: 25868: lpo 25868: Leaf order: 25868: join 17 2 4 0,2,2 25868: meet 21 2 6 0,2 25868: c 4 0 4 2,2,2,2 25868: b 4 0 4 1,2,2 25868: a 4 0 4 1,2 % SZS status Timeout for LAT140-1.p NO CLASH, using fixed ground order 25928: Facts: 25928: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25928: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25928: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25928: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25928: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25928: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25928: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25928: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25928: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 (meet ?28 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join (meet ?26 ?29) (meet ?27 ?29)))) [29, 28, 27, 26] by equation_H32 ?26 ?27 ?28 ?29 25928: Goal: NO CLASH, using fixed ground order 25929: Facts: 25929: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25929: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25929: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25929: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25929: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25929: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25929: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25929: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25929: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 (meet ?28 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join (meet ?26 ?29) (meet ?27 ?29)))) [29, 28, 27, 26] by equation_H32 ?26 ?27 ?28 ?29 25929: Goal: 25929: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 25929: Order: 25929: kbo 25929: Leaf order: 25929: join 16 2 4 0,2,2 25929: meet 22 2 6 0,2 25929: c 3 0 3 2,2,2,2 25929: b 3 0 3 1,2,2 25929: a 6 0 6 1,2 25928: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 25928: Order: 25928: nrkbo 25928: Leaf order: 25928: join 16 2 4 0,2,2 25928: meet 22 2 6 0,2 25928: c 3 0 3 2,2,2,2 25928: b 3 0 3 1,2,2 25928: a 6 0 6 1,2 NO CLASH, using fixed ground order 25930: Facts: 25930: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25930: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25930: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25930: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25930: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25930: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25930: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25930: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25930: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 (meet ?28 ?29))) =?= meet ?26 (join ?27 (meet ?28 (join (meet ?26 ?29) (meet ?27 ?29)))) [29, 28, 27, 26] by equation_H32 ?26 ?27 ?28 ?29 25930: Goal: 25930: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 25930: Order: 25930: lpo 25930: Leaf order: 25930: join 16 2 4 0,2,2 25930: meet 22 2 6 0,2 25930: c 3 0 3 2,2,2,2 25930: b 3 0 3 1,2,2 25930: a 6 0 6 1,2 % SZS status Timeout for LAT145-1.p NO CLASH, using fixed ground order 25948: Facts: 25948: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25948: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25948: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25948: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25948: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25948: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25948: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25948: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25948: Id : 10, {_}: meet ?26 (join ?27 (join ?28 (meet ?26 ?29))) =<= meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29 25948: Goal: 25948: Id : 1, {_}: meet a (join b (meet c (join b d))) =<= meet a (join b (meet c (join d (meet a (join b d))))) [] by prove_H43 25948: Order: 25948: nrkbo 25948: Leaf order: 25948: meet 19 2 5 0,2 25948: join 19 2 5 0,2,2 25948: d 3 0 3 2,2,2,2,2 25948: c 2 0 2 1,2,2,2 25948: b 4 0 4 1,2,2 25948: a 3 0 3 1,2 NO CLASH, using fixed ground order 25949: Facts: 25949: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25949: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25949: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25949: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25949: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25949: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25949: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25949: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25949: Id : 10, {_}: meet ?26 (join ?27 (join ?28 (meet ?26 ?29))) =<= meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29 25949: Goal: 25949: Id : 1, {_}: meet a (join b (meet c (join b d))) =<= meet a (join b (meet c (join d (meet a (join b d))))) [] by prove_H43 25949: Order: 25949: kbo 25949: Leaf order: 25949: meet 19 2 5 0,2 25949: join 19 2 5 0,2,2 25949: d 3 0 3 2,2,2,2,2 25949: c 2 0 2 1,2,2,2 25949: b 4 0 4 1,2,2 25949: a 3 0 3 1,2 NO CLASH, using fixed ground order 25950: Facts: 25950: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25950: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25950: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25950: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25950: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25950: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25950: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25950: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25950: Id : 10, {_}: meet ?26 (join ?27 (join ?28 (meet ?26 ?29))) =?= meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29 25950: Goal: 25950: Id : 1, {_}: meet a (join b (meet c (join b d))) =<= meet a (join b (meet c (join d (meet a (join b d))))) [] by prove_H43 25950: Order: 25950: lpo 25950: Leaf order: 25950: meet 19 2 5 0,2 25950: join 19 2 5 0,2,2 25950: d 3 0 3 2,2,2,2,2 25950: c 2 0 2 1,2,2,2 25950: b 4 0 4 1,2,2 25950: a 3 0 3 1,2 % SZS status Timeout for LAT149-1.p NO CLASH, using fixed ground order 26495: Facts: 26495: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26495: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26495: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26495: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26495: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26495: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26495: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26495: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26495: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?28 (join ?26 ?27))))) [29, 28, 27, 26] by equation_H40 ?26 ?27 ?28 ?29 26495: Goal: 26495: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet a (join (meet a b) (meet c (join a b))))) [] by prove_H7 26495: Order: 26495: nrkbo 26495: Leaf order: 26495: join 18 2 4 0,2,2 26495: meet 20 2 6 0,2 26495: c 2 0 2 2,2,2,2 26495: b 4 0 4 1,2,2 26495: a 6 0 6 1,2 NO CLASH, using fixed ground order 26496: Facts: 26496: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26496: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26496: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26496: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26496: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26496: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26496: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26496: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26496: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?28 (join ?26 ?27))))) [29, 28, 27, 26] by equation_H40 ?26 ?27 ?28 ?29 26496: Goal: 26496: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet a (join (meet a b) (meet c (join a b))))) [] by prove_H7 26496: Order: 26496: kbo 26496: Leaf order: 26496: join 18 2 4 0,2,2 26496: meet 20 2 6 0,2 26496: c 2 0 2 2,2,2,2 26496: b 4 0 4 1,2,2 26496: a 6 0 6 1,2 NO CLASH, using fixed ground order 26497: Facts: 26497: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26497: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26497: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26497: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26497: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26497: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26497: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26497: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26497: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =?= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?28 (join ?26 ?27))))) [29, 28, 27, 26] by equation_H40 ?26 ?27 ?28 ?29 26497: Goal: 26497: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet a (join (meet a b) (meet c (join a b))))) [] by prove_H7 26497: Order: 26497: lpo 26497: Leaf order: 26497: join 18 2 4 0,2,2 26497: meet 20 2 6 0,2 26497: c 2 0 2 2,2,2,2 26497: b 4 0 4 1,2,2 26497: a 6 0 6 1,2 % SZS status Timeout for LAT153-1.p NO CLASH, using fixed ground order 26513: Facts: 26513: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26513: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26513: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26513: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26513: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26513: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26513: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26513: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26513: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 26513: Goal: 26513: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 26513: Order: 26513: nrkbo 26513: Leaf order: 26513: join 18 2 4 0,2,2 26513: meet 20 2 6 0,2 26513: c 4 0 4 2,2,2,2 26513: b 4 0 4 1,2,2 26513: a 4 0 4 1,2 NO CLASH, using fixed ground order 26514: Facts: 26514: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26514: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26514: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26514: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26514: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26514: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26514: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26514: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26514: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 26514: Goal: 26514: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 26514: Order: 26514: kbo 26514: Leaf order: 26514: join 18 2 4 0,2,2 26514: meet 20 2 6 0,2 26514: c 4 0 4 2,2,2,2 26514: b 4 0 4 1,2,2 26514: a 4 0 4 1,2 NO CLASH, using fixed ground order 26515: Facts: 26515: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26515: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26515: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26515: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26515: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26515: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26515: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26515: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26515: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 26515: Goal: 26515: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 26515: Order: 26515: lpo 26515: Leaf order: 26515: join 18 2 4 0,2,2 26515: meet 20 2 6 0,2 26515: c 4 0 4 2,2,2,2 26515: b 4 0 4 1,2,2 26515: a 4 0 4 1,2 % SZS status Timeout for LAT157-1.p NO CLASH, using fixed ground order 26542: Facts: 26542: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26542: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26542: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26542: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26542: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26542: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26542: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26542: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26542: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 26542: Goal: 26542: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (join (meet a c) (meet c (join b d)))) [] by prove_H49 26542: Order: 26542: nrkbo 26542: Leaf order: 26542: meet 19 2 5 0,2 26542: join 19 2 5 0,2,2 26542: d 2 0 2 2,2,2,2,2 26542: c 3 0 3 1,2,2,2 26542: b 3 0 3 1,2,2 26542: a 4 0 4 1,2 NO CLASH, using fixed ground order 26543: Facts: 26543: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26543: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26543: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26543: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26543: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26543: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26543: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26543: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26543: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 26543: Goal: 26543: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (join (meet a c) (meet c (join b d)))) [] by prove_H49 26543: Order: 26543: kbo 26543: Leaf order: 26543: meet 19 2 5 0,2 26543: join 19 2 5 0,2,2 26543: d 2 0 2 2,2,2,2,2 26543: c 3 0 3 1,2,2,2 26543: b 3 0 3 1,2,2 26543: a 4 0 4 1,2 NO CLASH, using fixed ground order 26544: Facts: 26544: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26544: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26544: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26544: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26544: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26544: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26544: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26544: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26544: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 26544: Goal: 26544: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (join (meet a c) (meet c (join b d)))) [] by prove_H49 26544: Order: 26544: lpo 26544: Leaf order: 26544: meet 19 2 5 0,2 26544: join 19 2 5 0,2,2 26544: d 2 0 2 2,2,2,2,2 26544: c 3 0 3 1,2,2,2 26544: b 3 0 3 1,2,2 26544: a 4 0 4 1,2 % SZS status Timeout for LAT158-1.p NO CLASH, using fixed ground order 26561: Facts: 26561: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26561: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26561: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26561: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26561: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26561: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26561: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26561: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26561: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27)))) [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29 26561: Goal: 26561: Id : 1, {_}: meet a (join b (meet a (meet c d))) =<= meet a (join b (meet c (join (meet a d) (meet b d)))) [] by prove_H32 26561: Order: 26561: nrkbo 26561: Leaf order: 26561: join 16 2 3 0,2,2 26561: meet 21 2 7 0,2 26561: d 3 0 3 2,2,2,2,2 26561: c 2 0 2 1,2,2,2,2 26561: b 3 0 3 1,2,2 26561: a 4 0 4 1,2 NO CLASH, using fixed ground order 26562: Facts: 26562: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26562: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26562: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26562: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26562: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26562: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26562: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26562: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26562: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27)))) [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29 26562: Goal: 26562: Id : 1, {_}: meet a (join b (meet a (meet c d))) =<= meet a (join b (meet c (join (meet a d) (meet b d)))) [] by prove_H32 26562: Order: 26562: kbo 26562: Leaf order: 26562: join 16 2 3 0,2,2 26562: meet 21 2 7 0,2 26562: d 3 0 3 2,2,2,2,2 26562: c 2 0 2 1,2,2,2,2 26562: b 3 0 3 1,2,2 26562: a 4 0 4 1,2 NO CLASH, using fixed ground order 26563: Facts: 26563: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26563: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26563: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26563: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26563: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26563: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26563: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26563: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26563: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =?= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27)))) [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29 26563: Goal: 26563: Id : 1, {_}: meet a (join b (meet a (meet c d))) =>= meet a (join b (meet c (join (meet a d) (meet b d)))) [] by prove_H32 26563: Order: 26563: lpo 26563: Leaf order: 26563: join 16 2 3 0,2,2 26563: meet 21 2 7 0,2 26563: d 3 0 3 2,2,2,2,2 26563: c 2 0 2 1,2,2,2,2 26563: b 3 0 3 1,2,2 26563: a 4 0 4 1,2 % SZS status Timeout for LAT163-1.p NO CLASH, using fixed ground order NO CLASH, using fixed ground order 26595: Facts: 26595: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26595: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26595: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26595: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26595: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26595: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26595: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26595: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26595: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27)))) [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29 26595: Goal: 26595: Id : 1, {_}: meet a (join b (meet c (join b d))) =<= meet a (join b (meet c (join d (meet a (meet b c))))) [] by prove_H77 26595: Order: 26595: kbo 26595: Leaf order: 26595: meet 20 2 6 0,2 26595: join 17 2 4 0,2,2 26595: d 2 0 2 2,2,2,2,2 26595: c 3 0 3 1,2,2,2 26595: b 4 0 4 1,2,2 26595: a 3 0 3 1,2 26594: Facts: 26594: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26594: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26594: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26594: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26594: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26594: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26594: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26594: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26594: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27)))) [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29 26594: Goal: 26594: Id : 1, {_}: meet a (join b (meet c (join b d))) =<= meet a (join b (meet c (join d (meet a (meet b c))))) [] by prove_H77 26594: Order: 26594: nrkbo 26594: Leaf order: 26594: meet 20 2 6 0,2 26594: join 17 2 4 0,2,2 26594: d 2 0 2 2,2,2,2,2 26594: c 3 0 3 1,2,2,2 26594: b 4 0 4 1,2,2 26594: a 3 0 3 1,2 NO CLASH, using fixed ground order 26596: Facts: 26596: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26596: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26596: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26596: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26596: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26596: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26596: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26596: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26596: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =?= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27)))) [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29 26596: Goal: 26596: Id : 1, {_}: meet a (join b (meet c (join b d))) =>= meet a (join b (meet c (join d (meet a (meet b c))))) [] by prove_H77 26596: Order: 26596: lpo 26596: Leaf order: 26596: meet 20 2 6 0,2 26596: join 17 2 4 0,2,2 26596: d 2 0 2 2,2,2,2,2 26596: c 3 0 3 1,2,2,2 26596: b 4 0 4 1,2,2 26596: a 3 0 3 1,2 % SZS status Timeout for LAT165-1.p NO CLASH, using fixed ground order 26645: Facts: 26645: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26645: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26645: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26645: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26645: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26645: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26645: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26645: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26645: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H77 ?26 ?27 ?28 ?29 26645: Goal: 26645: Id : 1, {_}: meet a (join b (meet c (join b d))) =<= meet a (join b (meet c (join d (meet b (join a d))))) [] by prove_H78 26645: Order: 26645: nrkbo 26645: Leaf order: 26645: meet 20 2 5 0,2 26645: join 18 2 5 0,2,2 26645: d 3 0 3 2,2,2,2,2 26645: c 2 0 2 1,2,2,2 26645: b 4 0 4 1,2,2 26645: a 3 0 3 1,2 NO CLASH, using fixed ground order 26646: Facts: 26646: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26646: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26646: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26646: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26646: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26646: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26646: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26646: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26646: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H77 ?26 ?27 ?28 ?29 26646: Goal: 26646: Id : 1, {_}: meet a (join b (meet c (join b d))) =<= meet a (join b (meet c (join d (meet b (join a d))))) [] by prove_H78 26646: Order: 26646: kbo 26646: Leaf order: 26646: meet 20 2 5 0,2 26646: join 18 2 5 0,2,2 26646: d 3 0 3 2,2,2,2,2 26646: c 2 0 2 1,2,2,2 26646: b 4 0 4 1,2,2 26646: a 3 0 3 1,2 NO CLASH, using fixed ground order 26647: Facts: 26647: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26647: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26647: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26647: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26647: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26647: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26647: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26647: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26647: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =?= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H77 ?26 ?27 ?28 ?29 26647: Goal: 26647: Id : 1, {_}: meet a (join b (meet c (join b d))) =<= meet a (join b (meet c (join d (meet b (join a d))))) [] by prove_H78 26647: Order: 26647: lpo 26647: Leaf order: 26647: meet 20 2 5 0,2 26647: join 18 2 5 0,2,2 26647: d 3 0 3 2,2,2,2,2 26647: c 2 0 2 1,2,2,2 26647: b 4 0 4 1,2,2 26647: a 3 0 3 1,2 % SZS status Timeout for LAT166-1.p NO CLASH, using fixed ground order 26677: Facts: 26677: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26677: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26677: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26677: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26677: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26677: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26677: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26677: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26677: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?27 (join ?26 ?29))))) [29, 28, 27, 26] by equation_H78 ?26 ?27 ?28 ?29 26677: Goal: 26677: Id : 1, {_}: meet a (join b (meet c (join b d))) =<= meet a (join b (meet c (join d (meet a (meet b c))))) [] by prove_H77 26677: Order: 26677: kbo 26677: Leaf order: 26677: meet 20 2 6 0,2 26677: join 18 2 4 0,2,2 26677: d 2 0 2 2,2,2,2,2 26677: c 3 0 3 1,2,2,2 26677: b 4 0 4 1,2,2 26677: a 3 0 3 1,2 NO CLASH, using fixed ground order 26676: Facts: 26676: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26676: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26676: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26676: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26676: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26676: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26676: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26676: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26676: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?27 (join ?26 ?29))))) [29, 28, 27, 26] by equation_H78 ?26 ?27 ?28 ?29 26676: Goal: 26676: Id : 1, {_}: meet a (join b (meet c (join b d))) =<= meet a (join b (meet c (join d (meet a (meet b c))))) [] by prove_H77 26676: Order: 26676: nrkbo 26676: Leaf order: 26676: meet 20 2 6 0,2 26676: join 18 2 4 0,2,2 26676: d 2 0 2 2,2,2,2,2 26676: c 3 0 3 1,2,2,2 26676: b 4 0 4 1,2,2 26676: a 3 0 3 1,2 NO CLASH, using fixed ground order 26678: Facts: 26678: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26678: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26678: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26678: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26678: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26678: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26678: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26678: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26678: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =?= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?27 (join ?26 ?29))))) [29, 28, 27, 26] by equation_H78 ?26 ?27 ?28 ?29 26678: Goal: 26678: Id : 1, {_}: meet a (join b (meet c (join b d))) =>= meet a (join b (meet c (join d (meet a (meet b c))))) [] by prove_H77 26678: Order: 26678: lpo 26678: Leaf order: 26678: meet 20 2 6 0,2 26678: join 18 2 4 0,2,2 26678: d 2 0 2 2,2,2,2,2 26678: c 3 0 3 1,2,2,2 26678: b 4 0 4 1,2,2 26678: a 3 0 3 1,2 % SZS status Timeout for LAT167-1.p NO CLASH, using fixed ground order 26697: Facts: 26697: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26697: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26697: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26697: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26697: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26697: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26697: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26697: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26697: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?27 ?29))) =<= join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27)))) [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29 26697: Goal: 26697: Id : 1, {_}: meet a (join b (meet a (meet c d))) =<= meet a (join b (meet c (join (meet a d) (meet b d)))) [] by prove_H32 26697: Order: 26697: nrkbo 26697: Leaf order: 26697: join 17 2 3 0,2,2 26697: meet 20 2 7 0,2 26697: d 3 0 3 2,2,2,2,2 26697: c 2 0 2 1,2,2,2,2 26697: b 3 0 3 1,2,2 26697: a 4 0 4 1,2 NO CLASH, using fixed ground order 26698: Facts: 26698: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26698: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26698: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26698: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26698: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26698: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26698: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26698: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26698: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?27 ?29))) =<= join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27)))) [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29 26698: Goal: 26698: Id : 1, {_}: meet a (join b (meet a (meet c d))) =<= meet a (join b (meet c (join (meet a d) (meet b d)))) [] by prove_H32 26698: Order: 26698: kbo 26698: Leaf order: 26698: join 17 2 3 0,2,2 26698: meet 20 2 7 0,2 26698: d 3 0 3 2,2,2,2,2 26698: c 2 0 2 1,2,2,2,2 26698: b 3 0 3 1,2,2 26698: a 4 0 4 1,2 NO CLASH, using fixed ground order 26699: Facts: 26699: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26699: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26699: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26699: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26699: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26699: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26699: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26699: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26699: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?27 ?29))) =?= join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27)))) [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29 26699: Goal: 26699: Id : 1, {_}: meet a (join b (meet a (meet c d))) =>= meet a (join b (meet c (join (meet a d) (meet b d)))) [] by prove_H32 26699: Order: 26699: lpo 26699: Leaf order: 26699: join 17 2 3 0,2,2 26699: meet 20 2 7 0,2 26699: d 3 0 3 2,2,2,2,2 26699: c 2 0 2 1,2,2,2,2 26699: b 3 0 3 1,2,2 26699: a 4 0 4 1,2 % SZS status Timeout for LAT172-1.p NO CLASH, using fixed ground order 26727: Facts: 26727: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26727: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26727: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26727: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26727: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26727: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26727: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26727: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26727: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?27 ?29))) =<= join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27)))) [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29 26727: Goal: 26727: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 26727: Order: 26727: nrkbo 26727: Leaf order: 26727: meet 18 2 5 0,2 26727: join 19 2 5 0,2,2 26727: d 2 0 2 2,2,2,2,2 26727: c 3 0 3 1,2,2,2 26727: b 3 0 3 1,2,2 26727: a 4 0 4 1,2 NO CLASH, using fixed ground order 26728: Facts: 26728: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26728: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26728: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26728: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26728: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26728: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26728: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26728: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26728: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?27 ?29))) =<= join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27)))) [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29 26728: Goal: 26728: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 26728: Order: 26728: kbo 26728: Leaf order: 26728: meet 18 2 5 0,2 26728: join 19 2 5 0,2,2 26728: d 2 0 2 2,2,2,2,2 26728: c 3 0 3 1,2,2,2 26728: b 3 0 3 1,2,2 26728: a 4 0 4 1,2 NO CLASH, using fixed ground order 26729: Facts: 26729: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26729: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26729: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26729: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26729: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26729: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26729: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26729: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26729: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?27 ?29))) =?= join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27)))) [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29 26729: Goal: 26729: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 26729: Order: 26729: lpo 26729: Leaf order: 26729: meet 18 2 5 0,2 26729: join 19 2 5 0,2,2 26729: d 2 0 2 2,2,2,2,2 26729: c 3 0 3 1,2,2,2 26729: b 3 0 3 1,2,2 26729: a 4 0 4 1,2 % SZS status Timeout for LAT173-1.p NO CLASH, using fixed ground order 26747: Facts: 26747: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26747: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26747: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26747: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26747: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26747: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26747: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26747: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26747: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29)) [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29 26747: Goal: 26747: Id : 1, {_}: meet a (join b (meet a (meet c d))) =<= meet a (join b (meet c (join (meet a d) (meet b d)))) [] by prove_H32 26747: Order: 26747: kbo 26747: Leaf order: 26747: join 18 2 3 0,2,2 26747: meet 20 2 7 0,2 26747: d 3 0 3 2,2,2,2,2 26747: c 2 0 2 1,2,2,2,2 26747: b 3 0 3 1,2,2 26747: a 4 0 4 1,2 NO CLASH, using fixed ground order 26746: Facts: 26746: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26746: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26746: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26746: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26746: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26746: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26746: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26746: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26746: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29)) [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29 26746: Goal: 26746: Id : 1, {_}: meet a (join b (meet a (meet c d))) =<= meet a (join b (meet c (join (meet a d) (meet b d)))) [] by prove_H32 26746: Order: 26746: nrkbo 26746: Leaf order: 26746: join 18 2 3 0,2,2 26746: meet 20 2 7 0,2 26746: d 3 0 3 2,2,2,2,2 26746: c 2 0 2 1,2,2,2,2 26746: b 3 0 3 1,2,2 26746: a 4 0 4 1,2 NO CLASH, using fixed ground order 26748: Facts: 26748: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26748: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26748: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26748: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26748: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26748: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26748: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26748: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26748: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29)) [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29 26748: Goal: 26748: Id : 1, {_}: meet a (join b (meet a (meet c d))) =>= meet a (join b (meet c (join (meet a d) (meet b d)))) [] by prove_H32 26748: Order: 26748: lpo 26748: Leaf order: 26748: join 18 2 3 0,2,2 26748: meet 20 2 7 0,2 26748: d 3 0 3 2,2,2,2,2 26748: c 2 0 2 1,2,2,2,2 26748: b 3 0 3 1,2,2 26748: a 4 0 4 1,2 % SZS status Timeout for LAT175-1.p NO CLASH, using fixed ground order 26789: Facts: 26789: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26789: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26789: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26789: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26789: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26789: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26789: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26789: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26789: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29)) [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29 26789: Goal: 26789: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 26789: Order: 26789: nrkbo 26789: Leaf order: 26789: meet 18 2 5 0,2 26789: join 20 2 5 0,2,2 26789: d 2 0 2 2,2,2,2,2 26789: c 3 0 3 1,2,2,2 26789: b 3 0 3 1,2,2 26789: a 4 0 4 1,2 NO CLASH, using fixed ground order 26790: Facts: 26790: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26790: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26790: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26790: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26790: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26790: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26790: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26790: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26790: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29)) [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29 26790: Goal: 26790: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 26790: Order: 26790: kbo 26790: Leaf order: 26790: meet 18 2 5 0,2 26790: join 20 2 5 0,2,2 26790: d 2 0 2 2,2,2,2,2 26790: c 3 0 3 1,2,2,2 26790: b 3 0 3 1,2,2 26790: a 4 0 4 1,2 NO CLASH, using fixed ground order 26791: Facts: 26791: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26791: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26791: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26791: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26791: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26791: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26791: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26791: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26791: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =?= join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29)) [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29 26791: Goal: 26791: Id : 1, {_}: meet a (join b (meet c (join a d))) =>= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 26791: Order: 26791: lpo 26791: Leaf order: 26791: meet 18 2 5 0,2 26791: join 20 2 5 0,2,2 26791: d 2 0 2 2,2,2,2,2 26791: c 3 0 3 1,2,2,2 26791: b 3 0 3 1,2,2 26791: a 4 0 4 1,2 % SZS status Timeout for LAT176-1.p NO CLASH, using fixed ground order 27075: Facts: 27075: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 27075: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 27075: Id : 4, {_}: add (additive_inverse ?6) ?6 =>= additive_identity [6] by left_additive_inverse ?6 27075: Id : 5, {_}: add ?8 (additive_inverse ?8) =>= additive_identity [8] by right_additive_inverse ?8 27075: Id : 6, {_}: add ?10 (add ?11 ?12) =?= add (add ?10 ?11) ?12 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12 27075: Id : 7, {_}: add ?14 ?15 =?= add ?15 ?14 [15, 14] by commutativity_for_addition ?14 ?15 27075: Id : 8, {_}: multiply ?17 (multiply ?18 ?19) =?= multiply (multiply ?17 ?18) ?19 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19 27075: Id : 9, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 27075: Id : 10, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 27075: Id : 11, {_}: multiply ?29 (multiply ?29 (multiply ?29 ?29)) =>= ?29 [29] by x_fourthed_is_x ?29 27075: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c 27075: Goal: 27075: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity 27075: Order: 27075: nrkbo 27075: Leaf order: 27075: additive_inverse 2 1 0 27075: add 14 2 0 27075: additive_identity 4 0 0 27075: c 2 0 1 3 27075: multiply 15 2 1 0,2 27075: a 2 0 1 2,2 27075: b 2 0 1 1,2 NO CLASH, using fixed ground order 27077: Facts: 27077: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 27077: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 27077: Id : 4, {_}: add (additive_inverse ?6) ?6 =>= additive_identity [6] by left_additive_inverse ?6 27077: Id : 5, {_}: add ?8 (additive_inverse ?8) =>= additive_identity [8] by right_additive_inverse ?8 27077: Id : 6, {_}: add ?10 (add ?11 ?12) =<= add (add ?10 ?11) ?12 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12 27077: Id : 7, {_}: add ?14 ?15 =?= add ?15 ?14 [15, 14] by commutativity_for_addition ?14 ?15 27077: Id : 8, {_}: multiply ?17 (multiply ?18 ?19) =<= multiply (multiply ?17 ?18) ?19 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19 27077: Id : 9, {_}: multiply ?21 (add ?22 ?23) =>= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 27077: Id : 10, {_}: multiply (add ?25 ?26) ?27 =>= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 27077: Id : 11, {_}: multiply ?29 (multiply ?29 (multiply ?29 ?29)) =>= ?29 [29] by x_fourthed_is_x ?29 27077: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c 27077: Goal: 27077: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity 27077: Order: 27077: lpo 27077: Leaf order: 27077: additive_inverse 2 1 0 27077: add 14 2 0 27077: additive_identity 4 0 0 27077: c 2 0 1 3 27077: multiply 15 2 1 0,2 27077: a 2 0 1 2,2 27077: b 2 0 1 1,2 NO CLASH, using fixed ground order 27076: Facts: 27076: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 27076: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 27076: Id : 4, {_}: add (additive_inverse ?6) ?6 =>= additive_identity [6] by left_additive_inverse ?6 27076: Id : 5, {_}: add ?8 (additive_inverse ?8) =>= additive_identity [8] by right_additive_inverse ?8 27076: Id : 6, {_}: add ?10 (add ?11 ?12) =<= add (add ?10 ?11) ?12 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12 27076: Id : 7, {_}: add ?14 ?15 =?= add ?15 ?14 [15, 14] by commutativity_for_addition ?14 ?15 27076: Id : 8, {_}: multiply ?17 (multiply ?18 ?19) =<= multiply (multiply ?17 ?18) ?19 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19 27076: Id : 9, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 27076: Id : 10, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 27076: Id : 11, {_}: multiply ?29 (multiply ?29 (multiply ?29 ?29)) =>= ?29 [29] by x_fourthed_is_x ?29 27076: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c 27076: Goal: 27076: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity 27076: Order: 27076: kbo 27076: Leaf order: 27076: additive_inverse 2 1 0 27076: add 14 2 0 27076: additive_identity 4 0 0 27076: c 2 0 1 3 27076: multiply 15 2 1 0,2 27076: a 2 0 1 2,2 27076: b 2 0 1 1,2 % SZS status Timeout for RNG035-7.p NO CLASH, using fixed ground order 27109: Facts: 27109: Id : 2, {_}: nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c1 ?2 ?3 ?4 27109: Goal: 27109: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27109: Order: 27109: nrkbo 27109: Leaf order: 27109: b 1 0 1 1,2,2 27109: nand 9 2 3 0,2 27109: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27110: Facts: 27110: Id : 2, {_}: nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c1 ?2 ?3 ?4 27110: Goal: 27110: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27110: Order: 27110: kbo 27110: Leaf order: 27110: b 1 0 1 1,2,2 27110: nand 9 2 3 0,2 27110: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27111: Facts: 27111: Id : 2, {_}: nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c1 ?2 ?3 ?4 27111: Goal: 27111: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27111: Order: 27111: lpo 27111: Leaf order: 27111: b 1 0 1 1,2,2 27111: nand 9 2 3 0,2 27111: a 4 0 4 1,1,2 % SZS status Timeout for BOO077-1.p NO CLASH, using fixed ground order 27127: Facts: 27127: Id : 2, {_}: nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c1 ?2 ?3 ?4 27127: Goal: 27127: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27127: Order: 27127: nrkbo 27127: Leaf order: 27127: nand 12 2 6 0,2 27127: c 2 0 2 2,2,2,2 27127: b 3 0 3 1,2,2 27127: a 3 0 3 1,2 NO CLASH, using fixed ground order 27128: Facts: 27128: Id : 2, {_}: nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c1 ?2 ?3 ?4 27128: Goal: 27128: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27128: Order: 27128: kbo 27128: Leaf order: 27128: nand 12 2 6 0,2 27128: c 2 0 2 2,2,2,2 27128: b 3 0 3 1,2,2 27128: a 3 0 3 1,2 NO CLASH, using fixed ground order 27129: Facts: 27129: Id : 2, {_}: nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c1 ?2 ?3 ?4 27129: Goal: 27129: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27129: Order: 27129: lpo 27129: Leaf order: 27129: nand 12 2 6 0,2 27129: c 2 0 2 2,2,2,2 27129: b 3 0 3 1,2,2 27129: a 3 0 3 1,2 % SZS status Timeout for BOO078-1.p NO CLASH, using fixed ground order 27161: Facts: 27161: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?2))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c2 ?2 ?3 ?4 27161: Goal: 27161: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27161: Order: 27161: kbo 27161: Leaf order: 27161: b 1 0 1 1,2,2 27161: nand 9 2 3 0,2 27161: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27162: Facts: 27162: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?2))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c2 ?2 ?3 ?4 27162: Goal: 27162: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27162: Order: 27162: lpo 27162: Leaf order: 27162: b 1 0 1 1,2,2 27162: nand 9 2 3 0,2 27162: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27160: Facts: 27160: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?2))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c2 ?2 ?3 ?4 27160: Goal: 27160: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27160: Order: 27160: nrkbo 27160: Leaf order: 27160: b 1 0 1 1,2,2 27160: nand 9 2 3 0,2 27160: a 4 0 4 1,1,2 % SZS status Timeout for BOO079-1.p NO CLASH, using fixed ground order 27178: Facts: 27178: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?2))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c2 ?2 ?3 ?4 27178: Goal: 27178: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27178: Order: 27178: nrkbo 27178: Leaf order: 27178: nand 12 2 6 0,2 27178: c 2 0 2 2,2,2,2 27178: b 3 0 3 1,2,2 27178: a 3 0 3 1,2 NO CLASH, using fixed ground order 27179: Facts: 27179: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?2))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c2 ?2 ?3 ?4 27179: Goal: 27179: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27179: Order: 27179: kbo 27179: Leaf order: 27179: nand 12 2 6 0,2 27179: c 2 0 2 2,2,2,2 27179: b 3 0 3 1,2,2 27179: a 3 0 3 1,2 NO CLASH, using fixed ground order 27180: Facts: 27180: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?2))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c2 ?2 ?3 ?4 27180: Goal: 27180: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27180: Order: 27180: lpo 27180: Leaf order: 27180: nand 12 2 6 0,2 27180: c 2 0 2 2,2,2,2 27180: b 3 0 3 1,2,2 27180: a 3 0 3 1,2 % SZS status Timeout for BOO080-1.p NO CLASH, using fixed ground order 27207: Facts: 27207: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c3 ?2 ?3 ?4 27207: Goal: 27207: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27207: Order: 27207: nrkbo 27207: Leaf order: 27207: b 1 0 1 1,2,2 27207: nand 9 2 3 0,2 27207: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27208: Facts: 27208: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c3 ?2 ?3 ?4 27208: Goal: 27208: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27208: Order: 27208: kbo 27208: Leaf order: 27208: b 1 0 1 1,2,2 27208: nand 9 2 3 0,2 27208: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27209: Facts: 27209: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c3 ?2 ?3 ?4 27209: Goal: 27209: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27209: Order: 27209: lpo 27209: Leaf order: 27209: b 1 0 1 1,2,2 27209: nand 9 2 3 0,2 27209: a 4 0 4 1,1,2 % SZS status Timeout for BOO081-1.p NO CLASH, using fixed ground order 27227: Facts: 27227: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c3 ?2 ?3 ?4 27227: Goal: 27227: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27227: Order: 27227: nrkbo 27227: Leaf order: 27227: nand 12 2 6 0,2 27227: c 2 0 2 2,2,2,2 27227: b 3 0 3 1,2,2 27227: a 3 0 3 1,2 NO CLASH, using fixed ground order 27228: Facts: 27228: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c3 ?2 ?3 ?4 27228: Goal: 27228: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27228: Order: 27228: kbo 27228: Leaf order: 27228: nand 12 2 6 0,2 27228: c 2 0 2 2,2,2,2 27228: b 3 0 3 1,2,2 27228: a 3 0 3 1,2 NO CLASH, using fixed ground order 27229: Facts: 27229: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c3 ?2 ?3 ?4 27229: Goal: 27229: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27229: Order: 27229: lpo 27229: Leaf order: 27229: nand 12 2 6 0,2 27229: c 2 0 2 2,2,2,2 27229: b 3 0 3 1,2,2 27229: a 3 0 3 1,2 % SZS status Timeout for BOO082-1.p NO CLASH, using fixed ground order 27257: Facts: 27257: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c4 ?2 ?3 ?4 27257: Goal: 27257: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27257: Order: 27257: nrkbo 27257: Leaf order: 27257: b 1 0 1 1,2,2 27257: nand 9 2 3 0,2 27257: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27258: Facts: 27258: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c4 ?2 ?3 ?4 27258: Goal: 27258: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27258: Order: 27258: kbo 27258: Leaf order: 27258: b 1 0 1 1,2,2 27258: nand 9 2 3 0,2 27258: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27259: Facts: 27259: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c4 ?2 ?3 ?4 27259: Goal: 27259: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27259: Order: 27259: lpo 27259: Leaf order: 27259: b 1 0 1 1,2,2 27259: nand 9 2 3 0,2 27259: a 4 0 4 1,1,2 % SZS status Timeout for BOO083-1.p NO CLASH, using fixed ground order 27275: Facts: 27275: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c4 ?2 ?3 ?4 27275: Goal: 27275: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27275: Order: 27275: nrkbo 27275: Leaf order: 27275: nand 12 2 6 0,2 27275: c 2 0 2 2,2,2,2 27275: b 3 0 3 1,2,2 27275: a 3 0 3 1,2 NO CLASH, using fixed ground order 27276: Facts: 27276: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c4 ?2 ?3 ?4 27276: Goal: 27276: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27276: Order: 27276: kbo 27276: Leaf order: 27276: nand 12 2 6 0,2 27276: c 2 0 2 2,2,2,2 27276: b 3 0 3 1,2,2 27276: a 3 0 3 1,2 NO CLASH, using fixed ground order 27277: Facts: 27277: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c4 ?2 ?3 ?4 27277: Goal: 27277: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27277: Order: 27277: lpo 27277: Leaf order: 27277: nand 12 2 6 0,2 27277: c 2 0 2 2,2,2,2 27277: b 3 0 3 1,2,2 27277: a 3 0 3 1,2 % SZS status Timeout for BOO084-1.p NO CLASH, using fixed ground order 27304: Facts: 27304: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c5 ?2 ?3 ?4 27304: Goal: 27304: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27304: Order: 27304: nrkbo 27304: Leaf order: 27304: b 1 0 1 1,2,2 27304: nand 9 2 3 0,2 27304: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27305: Facts: 27305: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c5 ?2 ?3 ?4 27305: Goal: 27305: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27305: Order: 27305: kbo 27305: Leaf order: 27305: b 1 0 1 1,2,2 27305: nand 9 2 3 0,2 27305: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27306: Facts: 27306: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c5 ?2 ?3 ?4 27306: Goal: 27306: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27306: Order: 27306: lpo 27306: Leaf order: 27306: b 1 0 1 1,2,2 27306: nand 9 2 3 0,2 27306: a 4 0 4 1,1,2 % SZS status Timeout for BOO085-1.p NO CLASH, using fixed ground order 27328: Facts: 27328: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c5 ?2 ?3 ?4 27328: Goal: 27328: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27328: Order: 27328: nrkbo 27328: Leaf order: 27328: nand 12 2 6 0,2 27328: c 2 0 2 2,2,2,2 27328: b 3 0 3 1,2,2 27328: a 3 0 3 1,2 NO CLASH, using fixed ground order 27331: Facts: 27331: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c5 ?2 ?3 ?4 27331: Goal: 27331: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27331: Order: 27331: lpo 27331: Leaf order: 27331: nand 12 2 6 0,2 27331: c 2 0 2 2,2,2,2 27331: b 3 0 3 1,2,2 27331: a 3 0 3 1,2 NO CLASH, using fixed ground order 27329: Facts: 27329: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c5 ?2 ?3 ?4 27329: Goal: 27329: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27329: Order: 27329: kbo 27329: Leaf order: 27329: nand 12 2 6 0,2 27329: c 2 0 2 2,2,2,2 27329: b 3 0 3 1,2,2 27329: a 3 0 3 1,2 % SZS status Timeout for BOO086-1.p NO CLASH, using fixed ground order 27408: Facts: 27408: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?4 (nand ?2 ?3)) =>= ?4 [4, 3, 2] by c6 ?2 ?3 ?4 27408: Goal: 27408: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27408: Order: 27408: kbo 27408: Leaf order: 27408: b 1 0 1 1,2,2 27408: nand 9 2 3 0,2 27408: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27407: Facts: 27407: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?4 (nand ?2 ?3)) =>= ?4 [4, 3, 2] by c6 ?2 ?3 ?4 27407: Goal: 27407: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27407: Order: 27407: nrkbo 27407: Leaf order: 27407: b 1 0 1 1,2,2 27407: nand 9 2 3 0,2 27407: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27409: Facts: 27409: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?4 (nand ?2 ?3)) =>= ?4 [4, 3, 2] by c6 ?2 ?3 ?4 27409: Goal: 27409: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27409: Order: 27409: lpo 27409: Leaf order: 27409: b 1 0 1 1,2,2 27409: nand 9 2 3 0,2 27409: a 4 0 4 1,1,2 % SZS status Timeout for BOO087-1.p NO CLASH, using fixed ground order 27425: Facts: 27425: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?4 (nand ?2 ?3)) =>= ?4 [4, 3, 2] by c6 ?2 ?3 ?4 27425: Goal: 27425: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27425: Order: 27425: nrkbo 27425: Leaf order: 27425: nand 12 2 6 0,2 27425: c 2 0 2 2,2,2,2 27425: b 3 0 3 1,2,2 27425: a 3 0 3 1,2 NO CLASH, using fixed ground order 27426: Facts: 27426: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?4 (nand ?2 ?3)) =>= ?4 [4, 3, 2] by c6 ?2 ?3 ?4 27426: Goal: 27426: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27426: Order: 27426: kbo 27426: Leaf order: 27426: nand 12 2 6 0,2 27426: c 2 0 2 2,2,2,2 27426: b 3 0 3 1,2,2 27426: a 3 0 3 1,2 NO CLASH, using fixed ground order 27427: Facts: 27427: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?4 (nand ?2 ?3)) =>= ?4 [4, 3, 2] by c6 ?2 ?3 ?4 27427: Goal: 27427: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27427: Order: 27427: lpo 27427: Leaf order: 27427: nand 12 2 6 0,2 27427: c 2 0 2 2,2,2,2 27427: b 3 0 3 1,2,2 27427: a 3 0 3 1,2 % SZS status Timeout for BOO088-1.p NO CLASH, using fixed ground order 27458: Facts: 27458: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c7 ?2 ?3 ?4 27458: Goal: 27458: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27458: Order: 27458: nrkbo 27458: Leaf order: 27458: b 1 0 1 1,2,2 27458: nand 9 2 3 0,2 27458: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27459: Facts: 27459: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c7 ?2 ?3 ?4 27459: Goal: 27459: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27459: Order: 27459: kbo 27459: Leaf order: 27459: b 1 0 1 1,2,2 27459: nand 9 2 3 0,2 27459: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27460: Facts: 27460: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c7 ?2 ?3 ?4 27460: Goal: 27460: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27460: Order: 27460: lpo 27460: Leaf order: 27460: b 1 0 1 1,2,2 27460: nand 9 2 3 0,2 27460: a 4 0 4 1,1,2 % SZS status Timeout for BOO089-1.p NO CLASH, using fixed ground order 27496: Facts: 27496: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c7 ?2 ?3 ?4 27496: Goal: 27496: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27496: Order: 27496: nrkbo 27496: Leaf order: 27496: nand 12 2 6 0,2 27496: c 2 0 2 2,2,2,2 27496: b 3 0 3 1,2,2 27496: a 3 0 3 1,2 NO CLASH, using fixed ground order 27497: Facts: 27497: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c7 ?2 ?3 ?4 27497: Goal: 27497: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27497: Order: 27497: kbo 27497: Leaf order: 27497: nand 12 2 6 0,2 27497: c 2 0 2 2,2,2,2 27497: b 3 0 3 1,2,2 27497: a 3 0 3 1,2 NO CLASH, using fixed ground order 27498: Facts: 27498: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c7 ?2 ?3 ?4 27498: Goal: 27498: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27498: Order: 27498: lpo 27498: Leaf order: 27498: nand 12 2 6 0,2 27498: c 2 0 2 2,2,2,2 27498: b 3 0 3 1,2,2 27498: a 3 0 3 1,2 % SZS status Timeout for BOO090-1.p NO CLASH, using fixed ground order 27534: Facts: 27534: Id : 2, {_}: nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c8 ?2 ?3 ?4 27534: Goal: 27534: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27534: Order: 27534: nrkbo 27534: Leaf order: 27534: b 1 0 1 1,2,2 27534: nand 9 2 3 0,2 27534: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27535: Facts: 27535: Id : 2, {_}: nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c8 ?2 ?3 ?4 27535: Goal: 27535: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27535: Order: 27535: kbo 27535: Leaf order: 27535: b 1 0 1 1,2,2 27535: nand 9 2 3 0,2 27535: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27536: Facts: 27536: Id : 2, {_}: nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c8 ?2 ?3 ?4 27536: Goal: 27536: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27536: Order: 27536: lpo 27536: Leaf order: 27536: b 1 0 1 1,2,2 27536: nand 9 2 3 0,2 27536: a 4 0 4 1,1,2 % SZS status Timeout for BOO091-1.p NO CLASH, using fixed ground order 27553: Facts: 27553: Id : 2, {_}: nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c8 ?2 ?3 ?4 27553: Goal: 27553: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27553: Order: 27553: nrkbo 27553: Leaf order: 27553: nand 12 2 6 0,2 27553: c 2 0 2 2,2,2,2 27553: b 3 0 3 1,2,2 27553: a 3 0 3 1,2 NO CLASH, using fixed ground order 27554: Facts: 27554: Id : 2, {_}: nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c8 ?2 ?3 ?4 27554: Goal: 27554: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27554: Order: 27554: kbo 27554: Leaf order: 27554: nand 12 2 6 0,2 27554: c 2 0 2 2,2,2,2 27554: b 3 0 3 1,2,2 27554: a 3 0 3 1,2 NO CLASH, using fixed ground order 27555: Facts: 27555: Id : 2, {_}: nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c8 ?2 ?3 ?4 27555: Goal: 27555: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27555: Order: 27555: lpo 27555: Leaf order: 27555: nand 12 2 6 0,2 27555: c 2 0 2 2,2,2,2 27555: b 3 0 3 1,2,2 27555: a 3 0 3 1,2 % SZS status Timeout for BOO092-1.p NO CLASH, using fixed ground order 27585: Facts: 27585: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c9 ?2 ?3 ?4 27585: Goal: 27585: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27585: Order: 27585: kbo 27585: Leaf order: 27585: b 1 0 1 1,2,2 27585: nand 9 2 3 0,2 27585: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27584: Facts: 27584: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c9 ?2 ?3 ?4 27584: Goal: 27584: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27584: Order: 27584: nrkbo 27584: Leaf order: 27584: b 1 0 1 1,2,2 27584: nand 9 2 3 0,2 27584: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27586: Facts: 27586: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c9 ?2 ?3 ?4 27586: Goal: 27586: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27586: Order: 27586: lpo 27586: Leaf order: 27586: b 1 0 1 1,2,2 27586: nand 9 2 3 0,2 27586: a 4 0 4 1,1,2 % SZS status Timeout for BOO093-1.p NO CLASH, using fixed ground order 27602: Facts: 27602: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c9 ?2 ?3 ?4 27602: Goal: 27602: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27602: Order: 27602: nrkbo 27602: Leaf order: 27602: nand 12 2 6 0,2 27602: c 2 0 2 2,2,2,2 27602: b 3 0 3 1,2,2 27602: a 3 0 3 1,2 NO CLASH, using fixed ground order 27603: Facts: 27603: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c9 ?2 ?3 ?4 27603: Goal: 27603: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27603: Order: 27603: kbo 27603: Leaf order: 27603: nand 12 2 6 0,2 27603: c 2 0 2 2,2,2,2 27603: b 3 0 3 1,2,2 27603: a 3 0 3 1,2 NO CLASH, using fixed ground order 27604: Facts: 27604: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c9 ?2 ?3 ?4 27604: Goal: 27604: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27604: Order: 27604: lpo 27604: Leaf order: 27604: nand 12 2 6 0,2 27604: c 2 0 2 2,2,2,2 27604: b 3 0 3 1,2,2 27604: a 3 0 3 1,2 % SZS status Timeout for BOO094-1.p NO CLASH, using fixed ground order 27635: Facts: 27635: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c10 ?2 ?3 ?4 27635: Goal: 27635: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27635: Order: 27635: nrkbo 27635: Leaf order: 27635: b 1 0 1 1,2,2 27635: nand 9 2 3 0,2 27635: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27636: Facts: 27636: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c10 ?2 ?3 ?4 27636: Goal: 27636: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27636: Order: 27636: kbo 27636: Leaf order: 27636: b 1 0 1 1,2,2 27636: nand 9 2 3 0,2 27636: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27637: Facts: 27637: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c10 ?2 ?3 ?4 27637: Goal: 27637: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27637: Order: 27637: lpo 27637: Leaf order: 27637: b 1 0 1 1,2,2 27637: nand 9 2 3 0,2 27637: a 4 0 4 1,1,2 % SZS status Timeout for BOO095-1.p NO CLASH, using fixed ground order 27662: Facts: 27662: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c10 ?2 ?3 ?4 27662: Goal: 27662: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27662: Order: 27662: nrkbo 27662: Leaf order: 27662: nand 12 2 6 0,2 27662: c 2 0 2 2,2,2,2 27662: b 3 0 3 1,2,2 27662: a 3 0 3 1,2 NO CLASH, using fixed ground order 27663: Facts: 27663: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c10 ?2 ?3 ?4 27663: Goal: 27663: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27663: Order: 27663: kbo 27663: Leaf order: 27663: nand 12 2 6 0,2 27663: c 2 0 2 2,2,2,2 27663: b 3 0 3 1,2,2 27663: a 3 0 3 1,2 NO CLASH, using fixed ground order 27664: Facts: 27664: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c10 ?2 ?3 ?4 27664: Goal: 27664: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27664: Order: 27664: lpo 27664: Leaf order: 27664: nand 12 2 6 0,2 27664: c 2 0 2 2,2,2,2 27664: b 3 0 3 1,2,2 27664: a 3 0 3 1,2 % SZS status Timeout for BOO096-1.p NO CLASH, using fixed ground order 27691: Facts: 27691: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?4 (nand ?2 ?3)) =>= ?4 [4, 3, 2] by c11 ?2 ?3 ?4 27691: Goal: 27691: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27691: Order: 27691: nrkbo 27691: Leaf order: 27691: b 1 0 1 1,2,2 27691: nand 9 2 3 0,2 27691: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27692: Facts: 27692: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?4 (nand ?2 ?3)) =>= ?4 [4, 3, 2] by c11 ?2 ?3 ?4 27692: Goal: 27692: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27692: Order: 27692: kbo 27692: Leaf order: 27692: b 1 0 1 1,2,2 27692: nand 9 2 3 0,2 27692: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27693: Facts: 27693: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?4 (nand ?2 ?3)) =>= ?4 [4, 3, 2] by c11 ?2 ?3 ?4 27693: Goal: 27693: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27693: Order: 27693: lpo 27693: Leaf order: 27693: b 1 0 1 1,2,2 27693: nand 9 2 3 0,2 27693: a 4 0 4 1,1,2 % SZS status Timeout for BOO097-1.p NO CLASH, using fixed ground order 27766: Facts: 27766: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?4 (nand ?2 ?3)) =>= ?4 [4, 3, 2] by c11 ?2 ?3 ?4 27766: Goal: 27766: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27766: Order: 27766: nrkbo 27766: Leaf order: 27766: nand 12 2 6 0,2 27766: c 2 0 2 2,2,2,2 27766: b 3 0 3 1,2,2 27766: a 3 0 3 1,2 NO CLASH, using fixed ground order 27767: Facts: 27767: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?4 (nand ?2 ?3)) =>= ?4 [4, 3, 2] by c11 ?2 ?3 ?4 27767: Goal: 27767: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27767: Order: 27767: kbo 27767: Leaf order: 27767: nand 12 2 6 0,2 27767: c 2 0 2 2,2,2,2 27767: b 3 0 3 1,2,2 27767: a 3 0 3 1,2 NO CLASH, using fixed ground order 27768: Facts: 27768: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?4 (nand ?2 ?3)) =>= ?4 [4, 3, 2] by c11 ?2 ?3 ?4 27768: Goal: 27768: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27768: Order: 27768: lpo 27768: Leaf order: 27768: nand 12 2 6 0,2 27768: c 2 0 2 2,2,2,2 27768: b 3 0 3 1,2,2 27768: a 3 0 3 1,2 % SZS status Timeout for BOO098-1.p NO CLASH, using fixed ground order 27800: Facts: 27800: Id : 2, {_}: nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c12 ?2 ?3 ?4 27800: Goal: 27800: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27800: Order: 27800: nrkbo 27800: Leaf order: 27800: b 1 0 1 1,2,2 27800: nand 9 2 3 0,2 27800: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27801: Facts: 27801: Id : 2, {_}: nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c12 ?2 ?3 ?4 27801: Goal: 27801: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27801: Order: 27801: kbo 27801: Leaf order: 27801: b 1 0 1 1,2,2 27801: nand 9 2 3 0,2 27801: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27802: Facts: 27802: Id : 2, {_}: nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c12 ?2 ?3 ?4 27802: Goal: 27802: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27802: Order: 27802: lpo 27802: Leaf order: 27802: b 1 0 1 1,2,2 27802: nand 9 2 3 0,2 27802: a 4 0 4 1,1,2 % SZS status Timeout for BOO099-1.p NO CLASH, using fixed ground order 27864: Facts: 27864: Id : 2, {_}: nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c12 ?2 ?3 ?4 27864: Goal: 27864: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27864: Order: 27864: nrkbo 27864: Leaf order: 27864: nand 12 2 6 0,2 27864: c 2 0 2 2,2,2,2 27864: b 3 0 3 1,2,2 27864: a 3 0 3 1,2 NO CLASH, using fixed ground order 27865: Facts: 27865: Id : 2, {_}: nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c12 ?2 ?3 ?4 27865: Goal: 27865: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27865: Order: 27865: kbo 27865: Leaf order: 27865: nand 12 2 6 0,2 27865: c 2 0 2 2,2,2,2 27865: b 3 0 3 1,2,2 27865: a 3 0 3 1,2 NO CLASH, using fixed ground order 27866: Facts: 27866: Id : 2, {_}: nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c12 ?2 ?3 ?4 27866: Goal: 27866: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27866: Order: 27866: lpo 27866: Leaf order: 27866: nand 12 2 6 0,2 27866: c 2 0 2 2,2,2,2 27866: b 3 0 3 1,2,2 27866: a 3 0 3 1,2 % SZS status Timeout for BOO100-1.p NO CLASH, using fixed ground order 27893: Facts: 27893: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c13 ?2 ?3 ?4 27893: Goal: 27893: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27893: Order: 27893: nrkbo 27893: Leaf order: 27893: b 1 0 1 1,2,2 27893: nand 9 2 3 0,2 27893: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27894: Facts: 27894: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c13 ?2 ?3 ?4 27894: Goal: 27894: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27894: Order: 27894: kbo 27894: Leaf order: 27894: b 1 0 1 1,2,2 27894: nand 9 2 3 0,2 27894: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27895: Facts: 27895: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c13 ?2 ?3 ?4 27895: Goal: 27895: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27895: Order: 27895: lpo 27895: Leaf order: 27895: b 1 0 1 1,2,2 27895: nand 9 2 3 0,2 27895: a 4 0 4 1,1,2 % SZS status Timeout for BOO101-1.p NO CLASH, using fixed ground order 27912: Facts: 27912: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c13 ?2 ?3 ?4 27912: Goal: 27912: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27912: Order: 27912: nrkbo 27912: Leaf order: 27912: nand 12 2 6 0,2 27912: c 2 0 2 2,2,2,2 27912: b 3 0 3 1,2,2 27912: a 3 0 3 1,2 NO CLASH, using fixed ground order 27913: Facts: 27913: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c13 ?2 ?3 ?4 27913: Goal: 27913: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27913: Order: 27913: kbo 27913: Leaf order: 27913: nand 12 2 6 0,2 27913: c 2 0 2 2,2,2,2 27913: b 3 0 3 1,2,2 27913: a 3 0 3 1,2 NO CLASH, using fixed ground order 27914: Facts: 27914: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c13 ?2 ?3 ?4 27914: Goal: 27914: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27914: Order: 27914: lpo 27914: Leaf order: 27914: nand 12 2 6 0,2 27914: c 2 0 2 2,2,2,2 27914: b 3 0 3 1,2,2 27914: a 3 0 3 1,2 % SZS status Timeout for BOO102-1.p NO CLASH, using fixed ground order 27942: Facts: 27942: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c14 ?2 ?3 ?4 27942: Goal: 27942: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27942: Order: 27942: nrkbo 27942: Leaf order: 27942: b 1 0 1 1,2,2 27942: nand 9 2 3 0,2 27942: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27943: Facts: 27943: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c14 ?2 ?3 ?4 27943: Goal: 27943: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27943: Order: 27943: kbo 27943: Leaf order: 27943: b 1 0 1 1,2,2 27943: nand 9 2 3 0,2 27943: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27944: Facts: 27944: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c14 ?2 ?3 ?4 27944: Goal: 27944: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27944: Order: 27944: lpo 27944: Leaf order: 27944: b 1 0 1 1,2,2 27944: nand 9 2 3 0,2 27944: a 4 0 4 1,1,2 % SZS status Timeout for BOO103-1.p NO CLASH, using fixed ground order 27963: Facts: 27963: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c14 ?2 ?3 ?4 27963: Goal: 27963: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27963: Order: 27963: nrkbo 27963: Leaf order: 27963: nand 12 2 6 0,2 27963: c 2 0 2 2,2,2,2 27963: b 3 0 3 1,2,2 27963: a 3 0 3 1,2 NO CLASH, using fixed ground order 27964: Facts: 27964: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c14 ?2 ?3 ?4 27964: Goal: 27964: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27964: Order: 27964: kbo 27964: Leaf order: 27964: nand 12 2 6 0,2 27964: c 2 0 2 2,2,2,2 27964: b 3 0 3 1,2,2 27964: a 3 0 3 1,2 NO CLASH, using fixed ground order 27965: Facts: 27965: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c14 ?2 ?3 ?4 27965: Goal: 27965: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 27965: Order: 27965: lpo 27965: Leaf order: 27965: nand 12 2 6 0,2 27965: c 2 0 2 2,2,2,2 27965: b 3 0 3 1,2,2 27965: a 3 0 3 1,2 % SZS status Timeout for BOO104-1.p NO CLASH, using fixed ground order 27992: Facts: 27992: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c15 ?2 ?3 ?4 27992: Goal: 27992: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27992: Order: 27992: nrkbo 27992: Leaf order: 27992: b 1 0 1 1,2,2 27992: nand 9 2 3 0,2 27992: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27993: Facts: 27993: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c15 ?2 ?3 ?4 27993: Goal: 27993: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27993: Order: 27993: kbo 27993: Leaf order: 27993: b 1 0 1 1,2,2 27993: nand 9 2 3 0,2 27993: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 27994: Facts: 27994: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c15 ?2 ?3 ?4 27994: Goal: 27994: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 27994: Order: 27994: lpo 27994: Leaf order: 27994: b 1 0 1 1,2,2 27994: nand 9 2 3 0,2 27994: a 4 0 4 1,1,2 % SZS status Timeout for BOO105-1.p NO CLASH, using fixed ground order 28010: Facts: 28010: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c15 ?2 ?3 ?4 28010: Goal: 28010: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 28010: Order: 28010: nrkbo 28010: Leaf order: 28010: nand 12 2 6 0,2 28010: c 2 0 2 2,2,2,2 28010: b 3 0 3 1,2,2 28010: a 3 0 3 1,2 NO CLASH, using fixed ground order 28011: Facts: 28011: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c15 ?2 ?3 ?4 28011: Goal: 28011: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 28011: Order: 28011: kbo 28011: Leaf order: 28011: nand 12 2 6 0,2 28011: c 2 0 2 2,2,2,2 28011: b 3 0 3 1,2,2 28011: a 3 0 3 1,2 NO CLASH, using fixed ground order 28012: Facts: 28012: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c15 ?2 ?3 ?4 28012: Goal: 28012: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 28012: Order: 28012: lpo 28012: Leaf order: 28012: nand 12 2 6 0,2 28012: c 2 0 2 2,2,2,2 28012: b 3 0 3 1,2,2 28012: a 3 0 3 1,2 % SZS status Timeout for BOO106-1.p NO CLASH, using fixed ground order 28046: Facts: 28046: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c16 ?2 ?3 ?4 28046: Goal: 28046: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 28046: Order: 28046: nrkbo 28046: Leaf order: 28046: b 1 0 1 1,2,2 28046: nand 9 2 3 0,2 28046: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 28047: Facts: 28047: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c16 ?2 ?3 ?4 28047: Goal: 28047: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 28047: Order: 28047: kbo 28047: Leaf order: 28047: b 1 0 1 1,2,2 28047: nand 9 2 3 0,2 28047: a 4 0 4 1,1,2 NO CLASH, using fixed ground order 28048: Facts: 28048: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c16 ?2 ?3 ?4 28048: Goal: 28048: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 28048: Order: 28048: lpo 28048: Leaf order: 28048: b 1 0 1 1,2,2 28048: nand 9 2 3 0,2 28048: a 4 0 4 1,1,2 % SZS status Timeout for BOO107-1.p NO CLASH, using fixed ground order 28069: Facts: 28069: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c16 ?2 ?3 ?4 28069: Goal: 28069: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 28069: Order: 28069: nrkbo 28069: Leaf order: 28069: nand 12 2 6 0,2 28069: c 2 0 2 2,2,2,2 28069: b 3 0 3 1,2,2 28069: a 3 0 3 1,2 NO CLASH, using fixed ground order 28070: Facts: 28070: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c16 ?2 ?3 ?4 28070: Goal: 28070: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 28070: Order: 28070: kbo 28070: Leaf order: 28070: nand 12 2 6 0,2 28070: c 2 0 2 2,2,2,2 28070: b 3 0 3 1,2,2 28070: a 3 0 3 1,2 NO CLASH, using fixed ground order 28071: Facts: 28071: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c16 ?2 ?3 ?4 28071: Goal: 28071: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 28071: Order: 28071: lpo 28071: Leaf order: 28071: nand 12 2 6 0,2 28071: c 2 0 2 2,2,2,2 28071: b 3 0 3 1,2,2 28071: a 3 0 3 1,2 % SZS status Timeout for BOO108-1.p CLASH, statistics insufficient 28456: Facts: 28456: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 28456: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 28456: Goal: 28456: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 28456: Order: 28456: nrkbo 28456: Leaf order: 28456: b 1 0 0 28456: s 1 0 0 28456: apply 14 2 3 0,2 28456: f 3 1 3 0,2,2 CLASH, statistics insufficient 28457: Facts: 28457: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 28457: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 28457: Goal: 28457: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 28457: Order: 28457: kbo 28457: Leaf order: 28457: b 1 0 0 28457: s 1 0 0 28457: apply 14 2 3 0,2 28457: f 3 1 3 0,2,2 CLASH, statistics insufficient 28458: Facts: 28458: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 28458: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 28458: Goal: 28458: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 28458: Order: 28458: lpo 28458: Leaf order: 28458: b 1 0 0 28458: s 1 0 0 28458: apply 14 2 3 0,2 28458: f 3 1 3 0,2,2 % SZS status Timeout for COL067-1.p CLASH, statistics insufficient 28873: Facts: 28873: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 28873: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 28873: Goal: 28873: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_fixed_point ?1 28873: Order: 28873: nrkbo 28873: Leaf order: 28873: b 1 0 0 28873: s 1 0 0 28873: apply 12 2 1 0,3 28873: combinator 1 0 1 1,3 CLASH, statistics insufficient 28874: Facts: 28874: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 28874: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 28874: Goal: 28874: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_fixed_point ?1 28874: Order: 28874: kbo 28874: Leaf order: 28874: b 1 0 0 28874: s 1 0 0 28874: apply 12 2 1 0,3 28874: combinator 1 0 1 1,3 CLASH, statistics insufficient 28875: Facts: 28875: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 28875: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 28875: Goal: 28875: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_fixed_point ?1 28875: Order: 28875: lpo 28875: Leaf order: 28875: b 1 0 0 28875: s 1 0 0 28875: apply 12 2 1 0,3 28875: combinator 1 0 1 1,3 % SZS status Timeout for COL068-1.p CLASH, statistics insufficient 28902: Facts: 28902: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 28902: Id : 3, {_}: apply (apply l ?7) ?8 =?= apply ?7 (apply ?8 ?8) [8, 7] by l_definition ?7 ?8 28902: Goal: 28902: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 28902: Order: 28902: nrkbo 28902: Leaf order: 28902: l 1 0 0 28902: b 1 0 0 28902: apply 12 2 3 0,2 28902: f 3 1 3 0,2,2 CLASH, statistics insufficient 28903: Facts: 28903: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 28903: Id : 3, {_}: apply (apply l ?7) ?8 =?= apply ?7 (apply ?8 ?8) [8, 7] by l_definition ?7 ?8 28903: Goal: 28903: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 28903: Order: 28903: kbo 28903: Leaf order: 28903: l 1 0 0 28903: b 1 0 0 28903: apply 12 2 3 0,2 28903: f 3 1 3 0,2,2 CLASH, statistics insufficient 28904: Facts: 28904: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 28904: Id : 3, {_}: apply (apply l ?7) ?8 =?= apply ?7 (apply ?8 ?8) [8, 7] by l_definition ?7 ?8 28904: Goal: 28904: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 28904: Order: 28904: lpo 28904: Leaf order: 28904: l 1 0 0 28904: b 1 0 0 28904: apply 12 2 3 0,2 28904: f 3 1 3 0,2,2 % SZS status Timeout for COL069-1.p CLASH, statistics insufficient 28921: Facts: 28921: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by definition_B ?3 ?4 ?5 28921: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by definition_M ?7 28921: Goal: 28921: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by strong_fixpoint ?1 28921: Order: 28921: nrkbo 28921: Leaf order: 28921: m 1 0 0 28921: b 1 0 0 28921: apply 10 2 3 0,2 28921: f 3 1 3 0,2,2 CLASH, statistics insufficient 28922: Facts: 28922: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by definition_B ?3 ?4 ?5 28922: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by definition_M ?7 28922: Goal: 28922: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by strong_fixpoint ?1 28922: Order: 28922: kbo 28922: Leaf order: 28922: m 1 0 0 28922: b 1 0 0 28922: apply 10 2 3 0,2 28922: f 3 1 3 0,2,2 CLASH, statistics insufficient 28923: Facts: 28923: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by definition_B ?3 ?4 ?5 28923: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by definition_M ?7 28923: Goal: 28923: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by strong_fixpoint ?1 28923: Order: 28923: lpo 28923: Leaf order: 28923: m 1 0 0 28923: b 1 0 0 28923: apply 10 2 3 0,2 28923: f 3 1 3 0,2,2 % SZS status Timeout for COL087-1.p NO CLASH, using fixed ground order 28951: Facts: 28951: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 28951: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 28951: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 28951: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 28951: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 28951: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 28951: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 28951: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 28951: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 28951: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 28951: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 28951: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 28951: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 28951: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 28951: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 28951: Id : 17, {_}: least_upper_bound identity a =>= a [] by p08a_1 28951: Id : 18, {_}: least_upper_bound identity b =>= b [] by p08a_2 28951: Id : 19, {_}: least_upper_bound identity c =>= c [] by p08a_3 28951: Goal: 28951: Id : 1, {_}: least_upper_bound (greatest_lower_bound a (multiply b c)) (multiply (greatest_lower_bound a b) (greatest_lower_bound a c)) =>= multiply (greatest_lower_bound a b) (greatest_lower_bound a c) [] by prove_p08a 28951: Order: 28951: nrkbo 28951: Leaf order: 28951: inverse 1 1 0 28951: identity 5 0 0 28951: least_upper_bound 17 2 1 0,2 28951: greatest_lower_bound 18 2 5 0,1,2 28951: multiply 21 2 3 0,2,1,2 28951: c 5 0 3 2,2,1,2 28951: b 5 0 3 1,2,1,2 28951: a 7 0 5 1,1,2 NO CLASH, using fixed ground order 28952: Facts: 28952: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 28952: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 28952: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 28952: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 28952: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 28952: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 28952: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 28952: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 28952: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 28952: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 28952: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 28952: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 28952: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 28952: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 28952: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 28952: Id : 17, {_}: least_upper_bound identity a =>= a [] by p08a_1 28952: Id : 18, {_}: least_upper_bound identity b =>= b [] by p08a_2 28952: Id : 19, {_}: least_upper_bound identity c =>= c [] by p08a_3 28952: Goal: 28952: Id : 1, {_}: least_upper_bound (greatest_lower_bound a (multiply b c)) (multiply (greatest_lower_bound a b) (greatest_lower_bound a c)) =>= multiply (greatest_lower_bound a b) (greatest_lower_bound a c) [] by prove_p08a 28952: Order: 28952: kbo 28952: Leaf order: 28952: inverse 1 1 0 28952: identity 5 0 0 28952: least_upper_bound 17 2 1 0,2 28952: greatest_lower_bound 18 2 5 0,1,2 28952: multiply 21 2 3 0,2,1,2 28952: c 5 0 3 2,2,1,2 28952: b 5 0 3 1,2,1,2 28952: a 7 0 5 1,1,2 NO CLASH, using fixed ground order 28953: Facts: 28953: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 28953: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 28953: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 28953: Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 28953: Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 28953: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 28953: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 28953: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 28953: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 28953: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 28953: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 28953: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 28953: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =>= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 28953: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 28953: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =>= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 28953: Id : 17, {_}: least_upper_bound identity a =>= a [] by p08a_1 28953: Id : 18, {_}: least_upper_bound identity b =>= b [] by p08a_2 28953: Id : 19, {_}: least_upper_bound identity c =>= c [] by p08a_3 28953: Goal: 28953: Id : 1, {_}: least_upper_bound (greatest_lower_bound a (multiply b c)) (multiply (greatest_lower_bound a b) (greatest_lower_bound a c)) =>= multiply (greatest_lower_bound a b) (greatest_lower_bound a c) [] by prove_p08a 28953: Order: 28953: lpo 28953: Leaf order: 28953: inverse 1 1 0 28953: identity 5 0 0 28953: least_upper_bound 17 2 1 0,2 28953: greatest_lower_bound 18 2 5 0,1,2 28953: multiply 21 2 3 0,2,1,2 28953: c 5 0 3 2,2,1,2 28953: b 5 0 3 1,2,1,2 28953: a 7 0 5 1,1,2 % SZS status Timeout for GRP177-1.p NO CLASH, using fixed ground order 28970: Facts: 28970: Id : 2, {_}: f (f ?2 ?3) (f (f (f (f ?2 ?3) ?3) (f ?4 ?3)) (f (f ?3 ?3) ?5)) =>= ?3 [5, 4, 3, 2] by oml_21C ?2 ?3 ?4 ?5 28970: Goal: 28970: Id : 1, {_}: f a (f (f b c) (f b c)) =>= f c (f (f b a) (f b a)) [] by associativity 28970: Order: 28970: nrkbo 28970: Leaf order: 28970: f 17 2 8 0,2 28970: c 3 0 3 2,1,2,2 28970: b 4 0 4 1,1,2,2 28970: a 3 0 3 1,2 NO CLASH, using fixed ground order 28971: Facts: 28971: Id : 2, {_}: f (f ?2 ?3) (f (f (f (f ?2 ?3) ?3) (f ?4 ?3)) (f (f ?3 ?3) ?5)) =>= ?3 [5, 4, 3, 2] by oml_21C ?2 ?3 ?4 ?5 28971: Goal: 28971: Id : 1, {_}: f a (f (f b c) (f b c)) =>= f c (f (f b a) (f b a)) [] by associativity 28971: Order: 28971: kbo 28971: Leaf order: 28971: f 17 2 8 0,2 28971: c 3 0 3 2,1,2,2 28971: b 4 0 4 1,1,2,2 28971: a 3 0 3 1,2 NO CLASH, using fixed ground order 28972: Facts: 28972: Id : 2, {_}: f (f ?2 ?3) (f (f (f (f ?2 ?3) ?3) (f ?4 ?3)) (f (f ?3 ?3) ?5)) =>= ?3 [5, 4, 3, 2] by oml_21C ?2 ?3 ?4 ?5 28972: Goal: 28972: Id : 1, {_}: f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a)) [] by associativity 28972: Order: 28972: lpo 28972: Leaf order: 28972: f 17 2 8 0,2 28972: c 3 0 3 2,1,2,2 28972: b 4 0 4 1,1,2,2 28972: a 3 0 3 1,2 % SZS status Timeout for LAT071-1.p NO CLASH, using fixed ground order 29000: Facts: 29000: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?3 ?4)) ?5) (f ?3 (f (f ?4 (f (f ?3 ?3) ?4)) ?4)) =>= ?3 [5, 4, 3, 2] by oml_23A ?2 ?3 ?4 ?5 29000: Goal: 29000: Id : 1, {_}: f a (f (f b c) (f b c)) =>= f c (f (f b a) (f b a)) [] by associativity 29000: Order: 29000: nrkbo 29000: Leaf order: 29000: f 18 2 8 0,2 29000: c 3 0 3 2,1,2,2 29000: b 4 0 4 1,1,2,2 29000: a 3 0 3 1,2 NO CLASH, using fixed ground order 29001: Facts: 29001: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?3 ?4)) ?5) (f ?3 (f (f ?4 (f (f ?3 ?3) ?4)) ?4)) =>= ?3 [5, 4, 3, 2] by oml_23A ?2 ?3 ?4 ?5 29001: Goal: 29001: Id : 1, {_}: f a (f (f b c) (f b c)) =>= f c (f (f b a) (f b a)) [] by associativity 29001: Order: 29001: kbo 29001: Leaf order: 29001: f 18 2 8 0,2 29001: c 3 0 3 2,1,2,2 29001: b 4 0 4 1,1,2,2 29001: a 3 0 3 1,2 NO CLASH, using fixed ground order 29002: Facts: 29002: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?3 ?4)) ?5) (f ?3 (f (f ?4 (f (f ?3 ?3) ?4)) ?4)) =>= ?3 [5, 4, 3, 2] by oml_23A ?2 ?3 ?4 ?5 29002: Goal: 29002: Id : 1, {_}: f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a)) [] by associativity 29002: Order: 29002: lpo 29002: Leaf order: 29002: f 18 2 8 0,2 29002: c 3 0 3 2,1,2,2 29002: b 4 0 4 1,1,2,2 29002: a 3 0 3 1,2 % SZS status Timeout for LAT072-1.p NO CLASH, using fixed ground order 29018: Facts: 29018: Id : 2, {_}: f (f (f ?2 (f ?3 ?2)) ?2) (f ?3 (f ?4 (f (f ?3 ?2) (f (f ?4 ?4) ?5)))) =>= ?3 [5, 4, 3, 2] by mol_23C ?2 ?3 ?4 ?5 29018: Goal: 29018: Id : 1, {_}: f a (f b (f a (f c c))) =>= f a (f c (f a (f b b))) [] by modularity 29018: Order: 29018: nrkbo 29018: Leaf order: 29018: f 18 2 8 0,2 29018: c 3 0 3 1,2,2,2,2 29018: b 3 0 3 1,2,2 29018: a 4 0 4 1,2 NO CLASH, using fixed ground order 29019: Facts: 29019: Id : 2, {_}: f (f (f ?2 (f ?3 ?2)) ?2) (f ?3 (f ?4 (f (f ?3 ?2) (f (f ?4 ?4) ?5)))) =>= ?3 [5, 4, 3, 2] by mol_23C ?2 ?3 ?4 ?5 29019: Goal: 29019: Id : 1, {_}: f a (f b (f a (f c c))) =?= f a (f c (f a (f b b))) [] by modularity 29019: Order: 29019: kbo 29019: Leaf order: 29019: f 18 2 8 0,2 29019: c 3 0 3 1,2,2,2,2 29019: b 3 0 3 1,2,2 29019: a 4 0 4 1,2 NO CLASH, using fixed ground order 29020: Facts: 29020: Id : 2, {_}: f (f (f ?2 (f ?3 ?2)) ?2) (f ?3 (f ?4 (f (f ?3 ?2) (f (f ?4 ?4) ?5)))) =>= ?3 [5, 4, 3, 2] by mol_23C ?2 ?3 ?4 ?5 29020: Goal: 29020: Id : 1, {_}: f a (f b (f a (f c c))) =<= f a (f c (f a (f b b))) [] by modularity 29020: Order: 29020: lpo 29020: Leaf order: 29020: f 18 2 8 0,2 29020: c 3 0 3 1,2,2,2,2 29020: b 3 0 3 1,2,2 29020: a 4 0 4 1,2 % SZS status Timeout for LAT073-1.p NO CLASH, using fixed ground order 29047: Facts: 29047: Id : 2, {_}: f (f ?2 ?3) (f (f (f ?3 ?3) ?4) (f (f (f (f (f ?3 ?2) ?4) ?4) ?3) (f ?3 ?5))) =>= ?3 [5, 4, 3, 2] by mol_25A ?2 ?3 ?4 ?5 29047: Goal: 29047: Id : 1, {_}: f a (f (f b c) (f b c)) =>= f c (f (f b a) (f b a)) [] by associativity 29047: Order: 29047: nrkbo 29047: Leaf order: 29047: f 19 2 8 0,2 29047: c 3 0 3 2,1,2,2 29047: b 4 0 4 1,1,2,2 29047: a 3 0 3 1,2 NO CLASH, using fixed ground order 29048: Facts: 29048: Id : 2, {_}: f (f ?2 ?3) (f (f (f ?3 ?3) ?4) (f (f (f (f (f ?3 ?2) ?4) ?4) ?3) (f ?3 ?5))) =>= ?3 [5, 4, 3, 2] by mol_25A ?2 ?3 ?4 ?5 29048: Goal: 29048: Id : 1, {_}: f a (f (f b c) (f b c)) =>= f c (f (f b a) (f b a)) [] by associativity 29048: Order: 29048: kbo 29048: Leaf order: 29048: f 19 2 8 0,2 29048: c 3 0 3 2,1,2,2 29048: b 4 0 4 1,1,2,2 29048: a 3 0 3 1,2 NO CLASH, using fixed ground order 29049: Facts: 29049: Id : 2, {_}: f (f ?2 ?3) (f (f (f ?3 ?3) ?4) (f (f (f (f (f ?3 ?2) ?4) ?4) ?3) (f ?3 ?5))) =>= ?3 [5, 4, 3, 2] by mol_25A ?2 ?3 ?4 ?5 29049: Goal: 29049: Id : 1, {_}: f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a)) [] by associativity 29049: Order: 29049: lpo 29049: Leaf order: 29049: f 19 2 8 0,2 29049: c 3 0 3 2,1,2,2 29049: b 4 0 4 1,1,2,2 29049: a 3 0 3 1,2 % SZS status Timeout for LAT074-1.p NO CLASH, using fixed ground order 29065: Facts: 29065: Id : 2, {_}: f (f ?2 ?3) (f (f (f ?3 ?3) ?4) (f (f (f (f (f ?3 ?2) ?4) ?4) ?3) (f ?3 ?5))) =>= ?3 [5, 4, 3, 2] by mol_25A ?2 ?3 ?4 ?5 29065: Goal: 29065: Id : 1, {_}: f a (f b (f a (f c c))) =>= f a (f c (f a (f b b))) [] by modularity 29065: Order: 29065: nrkbo 29065: Leaf order: 29065: f 19 2 8 0,2 29065: c 3 0 3 1,2,2,2,2 29065: b 3 0 3 1,2,2 29065: a 4 0 4 1,2 NO CLASH, using fixed ground order 29066: Facts: 29066: Id : 2, {_}: f (f ?2 ?3) (f (f (f ?3 ?3) ?4) (f (f (f (f (f ?3 ?2) ?4) ?4) ?3) (f ?3 ?5))) =>= ?3 [5, 4, 3, 2] by mol_25A ?2 ?3 ?4 ?5 29066: Goal: 29066: Id : 1, {_}: f a (f b (f a (f c c))) =?= f a (f c (f a (f b b))) [] by modularity 29066: Order: 29066: kbo 29066: Leaf order: 29066: f 19 2 8 0,2 29066: c 3 0 3 1,2,2,2,2 29066: b 3 0 3 1,2,2 29066: a 4 0 4 1,2 NO CLASH, using fixed ground order 29067: Facts: 29067: Id : 2, {_}: f (f ?2 ?3) (f (f (f ?3 ?3) ?4) (f (f (f (f (f ?3 ?2) ?4) ?4) ?3) (f ?3 ?5))) =>= ?3 [5, 4, 3, 2] by mol_25A ?2 ?3 ?4 ?5 29067: Goal: 29067: Id : 1, {_}: f a (f b (f a (f c c))) =<= f a (f c (f a (f b b))) [] by modularity 29067: Order: 29067: lpo 29067: Leaf order: 29067: f 19 2 8 0,2 29067: c 3 0 3 1,2,2,2,2 29067: b 3 0 3 1,2,2 29067: a 4 0 4 1,2 % SZS status Timeout for LAT075-1.p NO CLASH, using fixed ground order 29098: Facts: 29098: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?4 ?3)) ?5) (f ?3 (f (f (f (f (f (f ?2 ?2) ?3) ?4) ?4) ?3) ?2)) =>= ?3 [5, 4, 3, 2] by mol_27B1 ?2 ?3 ?4 ?5 29098: Goal: 29098: Id : 1, {_}: f a (f (f b c) (f b c)) =>= f c (f (f b a) (f b a)) [] by associativity 29098: Order: 29098: nrkbo 29098: Leaf order: 29098: f 20 2 8 0,2 29098: c 3 0 3 2,1,2,2 29098: b 4 0 4 1,1,2,2 29098: a 3 0 3 1,2 NO CLASH, using fixed ground order 29099: Facts: 29099: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?4 ?3)) ?5) (f ?3 (f (f (f (f (f (f ?2 ?2) ?3) ?4) ?4) ?3) ?2)) =>= ?3 [5, 4, 3, 2] by mol_27B1 ?2 ?3 ?4 ?5 29099: Goal: 29099: Id : 1, {_}: f a (f (f b c) (f b c)) =>= f c (f (f b a) (f b a)) [] by associativity 29099: Order: 29099: kbo 29099: Leaf order: 29099: f 20 2 8 0,2 29099: c 3 0 3 2,1,2,2 29099: b 4 0 4 1,1,2,2 29099: a 3 0 3 1,2 NO CLASH, using fixed ground order 29100: Facts: 29100: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?4 ?3)) ?5) (f ?3 (f (f (f (f (f (f ?2 ?2) ?3) ?4) ?4) ?3) ?2)) =>= ?3 [5, 4, 3, 2] by mol_27B1 ?2 ?3 ?4 ?5 29100: Goal: 29100: Id : 1, {_}: f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a)) [] by associativity 29100: Order: 29100: lpo 29100: Leaf order: 29100: f 20 2 8 0,2 29100: c 3 0 3 2,1,2,2 29100: b 4 0 4 1,1,2,2 29100: a 3 0 3 1,2 % SZS status Timeout for LAT076-1.p NO CLASH, using fixed ground order 29161: Facts: NO CLASH, using fixed ground order 29162: Facts: 29162: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?4 ?3)) ?5) (f ?3 (f (f (f (f (f (f ?2 ?2) ?3) ?4) ?4) ?3) ?2)) =>= ?3 [5, 4, 3, 2] by mol_27B1 ?2 ?3 ?4 ?5 29162: Goal: 29162: Id : 1, {_}: f a (f b (f a (f c c))) =?= f a (f c (f a (f b b))) [] by modularity 29162: Order: 29162: kbo 29162: Leaf order: 29162: f 20 2 8 0,2 29162: c 3 0 3 1,2,2,2,2 29162: b 3 0 3 1,2,2 29162: a 4 0 4 1,2 29161: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?4 ?3)) ?5) (f ?3 (f (f (f (f (f (f ?2 ?2) ?3) ?4) ?4) ?3) ?2)) =>= ?3 [5, 4, 3, 2] by mol_27B1 ?2 ?3 ?4 ?5 29161: Goal: 29161: Id : 1, {_}: f a (f b (f a (f c c))) =>= f a (f c (f a (f b b))) [] by modularity 29161: Order: 29161: nrkbo 29161: Leaf order: 29161: f 20 2 8 0,2 29161: c 3 0 3 1,2,2,2,2 29161: b 3 0 3 1,2,2 29161: a 4 0 4 1,2 NO CLASH, using fixed ground order 29163: Facts: 29163: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?4 ?3)) ?5) (f ?3 (f (f (f (f (f (f ?2 ?2) ?3) ?4) ?4) ?3) ?2)) =>= ?3 [5, 4, 3, 2] by mol_27B1 ?2 ?3 ?4 ?5 29163: Goal: 29163: Id : 1, {_}: f a (f b (f a (f c c))) =<= f a (f c (f a (f b b))) [] by modularity 29163: Order: 29163: lpo 29163: Leaf order: 29163: f 20 2 8 0,2 29163: c 3 0 3 1,2,2,2,2 29163: b 3 0 3 1,2,2 29163: a 4 0 4 1,2 % SZS status Timeout for LAT077-1.p NO CLASH, using fixed ground order 29191: Facts: 29191: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?3 ?4)) ?5) (f ?3 (f (f (f ?2 (f ?2 (f (f ?4 ?4) ?3))) ?3) ?4)) =>= ?3 [5, 4, 3, 2] by mol_27B2 ?2 ?3 ?4 ?5 29191: Goal: 29191: Id : 1, {_}: f a (f (f b c) (f b c)) =>= f c (f (f b a) (f b a)) [] by associativity 29191: Order: 29191: nrkbo 29191: Leaf order: 29191: f 20 2 8 0,2 29191: c 3 0 3 2,1,2,2 29191: b 4 0 4 1,1,2,2 29191: a 3 0 3 1,2 NO CLASH, using fixed ground order 29192: Facts: 29192: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?3 ?4)) ?5) (f ?3 (f (f (f ?2 (f ?2 (f (f ?4 ?4) ?3))) ?3) ?4)) =>= ?3 [5, 4, 3, 2] by mol_27B2 ?2 ?3 ?4 ?5 29192: Goal: 29192: Id : 1, {_}: f a (f (f b c) (f b c)) =>= f c (f (f b a) (f b a)) [] by associativity 29192: Order: 29192: kbo 29192: Leaf order: 29192: f 20 2 8 0,2 29192: c 3 0 3 2,1,2,2 29192: b 4 0 4 1,1,2,2 29192: a 3 0 3 1,2 NO CLASH, using fixed ground order 29193: Facts: 29193: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?3 ?4)) ?5) (f ?3 (f (f (f ?2 (f ?2 (f (f ?4 ?4) ?3))) ?3) ?4)) =>= ?3 [5, 4, 3, 2] by mol_27B2 ?2 ?3 ?4 ?5 29193: Goal: 29193: Id : 1, {_}: f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a)) [] by associativity 29193: Order: 29193: lpo 29193: Leaf order: 29193: f 20 2 8 0,2 29193: c 3 0 3 2,1,2,2 29193: b 4 0 4 1,1,2,2 29193: a 3 0 3 1,2 % SZS status Timeout for LAT078-1.p NO CLASH, using fixed ground order 29210: Facts: 29210: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?3 ?4)) ?5) (f ?3 (f (f (f ?2 (f ?2 (f (f ?4 ?4) ?3))) ?3) ?4)) =>= ?3 [5, 4, 3, 2] by mol_27B2 ?2 ?3 ?4 ?5 29210: Goal: 29210: Id : 1, {_}: f a (f b (f a (f c c))) =>= f a (f c (f a (f b b))) [] by modularity 29210: Order: 29210: nrkbo 29210: Leaf order: 29210: f 20 2 8 0,2 29210: c 3 0 3 1,2,2,2,2 29210: b 3 0 3 1,2,2 29210: a 4 0 4 1,2 NO CLASH, using fixed ground order 29211: Facts: 29211: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?3 ?4)) ?5) (f ?3 (f (f (f ?2 (f ?2 (f (f ?4 ?4) ?3))) ?3) ?4)) =>= ?3 [5, 4, 3, 2] by mol_27B2 ?2 ?3 ?4 ?5 29211: Goal: 29211: Id : 1, {_}: f a (f b (f a (f c c))) =?= f a (f c (f a (f b b))) [] by modularity 29211: Order: 29211: kbo 29211: Leaf order: 29211: f 20 2 8 0,2 29211: c 3 0 3 1,2,2,2,2 29211: b 3 0 3 1,2,2 29211: a 4 0 4 1,2 NO CLASH, using fixed ground order 29212: Facts: 29212: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?3 ?4)) ?5) (f ?3 (f (f (f ?2 (f ?2 (f (f ?4 ?4) ?3))) ?3) ?4)) =>= ?3 [5, 4, 3, 2] by mol_27B2 ?2 ?3 ?4 ?5 29212: Goal: 29212: Id : 1, {_}: f a (f b (f a (f c c))) =<= f a (f c (f a (f b b))) [] by modularity 29212: Order: 29212: lpo 29212: Leaf order: 29212: f 20 2 8 0,2 29212: c 3 0 3 1,2,2,2,2 29212: b 3 0 3 1,2,2 29212: a 4 0 4 1,2 % SZS status Timeout for LAT079-1.p NO CLASH, using fixed ground order 29240: Facts: 29240: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 29240: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 29240: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 29240: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 29240: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 29240: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 29240: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 29240: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 29240: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?27 (join ?28 (meet ?26 ?27)))))) [28, 27, 26] by equation_H11 ?26 ?27 ?28 29240: Goal: 29240: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join a (meet b c)))) [] by prove_H10 29240: Order: 29240: nrkbo 29240: Leaf order: 29240: join 16 2 3 0,2,2 29240: meet 20 2 5 0,2 29240: c 3 0 3 2,2,2,2 29240: b 3 0 3 1,2,2 29240: a 4 0 4 1,2 NO CLASH, using fixed ground order 29241: Facts: 29241: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 29241: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 29241: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 29241: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 29241: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 29241: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 29241: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 29241: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 29241: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?27 (join ?28 (meet ?26 ?27)))))) [28, 27, 26] by equation_H11 ?26 ?27 ?28 29241: Goal: 29241: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join a (meet b c)))) [] by prove_H10 29241: Order: 29241: kbo 29241: Leaf order: 29241: join 16 2 3 0,2,2 29241: meet 20 2 5 0,2 29241: c 3 0 3 2,2,2,2 29241: b 3 0 3 1,2,2 29241: a 4 0 4 1,2 NO CLASH, using fixed ground order 29242: Facts: 29242: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 29242: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 29242: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 29242: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 29242: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 29242: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 29242: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 29242: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 29242: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =?= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?27 (join ?28 (meet ?26 ?27)))))) [28, 27, 26] by equation_H11 ?26 ?27 ?28 29242: Goal: 29242: Id : 1, {_}: meet a (join b (meet a c)) =>= meet a (join b (meet c (join a (meet b c)))) [] by prove_H10 29242: Order: 29242: lpo 29242: Leaf order: 29242: join 16 2 3 0,2,2 29242: meet 20 2 5 0,2 29242: c 3 0 3 2,2,2,2 29242: b 3 0 3 1,2,2 29242: a 4 0 4 1,2 % SZS status Timeout for LAT139-1.p NO CLASH, using fixed ground order 29258: Facts: 29258: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 29258: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 29258: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 29258: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 29258: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 29258: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 29258: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 29258: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 29258: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?26 (meet ?27 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H21 ?26 ?27 ?28 29258: Goal: 29258: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 29258: Order: 29258: nrkbo 29258: Leaf order: 29258: join 17 2 4 0,2,2 29258: meet 21 2 6 0,2 29258: c 3 0 3 2,2,2,2 29258: b 3 0 3 1,2,2 29258: a 6 0 6 1,2 NO CLASH, using fixed ground order 29259: Facts: 29259: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 29259: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 29259: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 29259: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 29259: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 29259: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 29259: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 29259: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 29259: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?26 (meet ?27 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H21 ?26 ?27 ?28 29259: Goal: 29259: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 29259: Order: 29259: kbo 29259: Leaf order: 29259: join 17 2 4 0,2,2 29259: meet 21 2 6 0,2 29259: c 3 0 3 2,2,2,2 NO CLASH, using fixed ground order 29260: Facts: 29260: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 29260: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 29260: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 29260: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 29260: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 29260: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 29260: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 29260: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 29260: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?26 (meet ?27 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H21 ?26 ?27 ?28 29260: Goal: 29260: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 29260: Order: 29260: lpo 29260: Leaf order: 29260: join 17 2 4 0,2,2 29260: meet 21 2 6 0,2 29260: c 3 0 3 2,2,2,2 29260: b 3 0 3 1,2,2 29260: a 6 0 6 1,2 29259: b 3 0 3 1,2,2 29259: a 6 0 6 1,2 % SZS status Timeout for LAT141-1.p NO CLASH, using fixed ground order NO CLASH, using fixed ground order 29297: Facts: 29297: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 29297: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 29297: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 29297: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 29297: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 29297: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 29297: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 29297: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 29297: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= meet ?26 (join ?27 (meet (join ?26 ?27) (join ?28 (meet ?26 ?27)))) [28, 27, 26] by equation_H58 ?26 ?27 ?28 29297: Goal: 29297: Id : 1, {_}: meet a (meet (join b c) (join b d)) =<= meet a (join b (meet (join b d) (join c (meet a b)))) [] by prove_H59 29297: Order: 29297: kbo 29297: Leaf order: 29297: meet 18 2 5 0,2 29297: d 2 0 2 2,2,2,2 29297: join 18 2 5 0,1,2,2 29297: c 2 0 2 2,1,2,2 29297: b 5 0 5 1,1,2,2 29297: a 3 0 3 1,2 29296: Facts: 29296: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 29296: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 29296: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 29296: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 29296: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 29296: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 29296: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 29296: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 29296: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= meet ?26 (join ?27 (meet (join ?26 ?27) (join ?28 (meet ?26 ?27)))) [28, 27, 26] by equation_H58 ?26 ?27 ?28 29296: Goal: 29296: Id : 1, {_}: meet a (meet (join b c) (join b d)) =<= meet a (join b (meet (join b d) (join c (meet a b)))) [] by prove_H59 29296: Order: 29296: nrkbo 29296: Leaf order: 29296: meet 18 2 5 0,2 29296: d 2 0 2 2,2,2,2 29296: join 18 2 5 0,1,2,2 29296: c 2 0 2 2,1,2,2 29296: b 5 0 5 1,1,2,2 29296: a 3 0 3 1,2 NO CLASH, using fixed ground order 29298: Facts: 29298: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 29298: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 29298: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 29298: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 29298: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 29298: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 29298: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 29298: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 29298: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= meet ?26 (join ?27 (meet (join ?26 ?27) (join ?28 (meet ?26 ?27)))) [28, 27, 26] by equation_H58 ?26 ?27 ?28 29298: Goal: 29298: Id : 1, {_}: meet a (meet (join b c) (join b d)) =<= meet a (join b (meet (join b d) (join c (meet a b)))) [] by prove_H59 29298: Order: 29298: lpo 29298: Leaf order: 29298: meet 18 2 5 0,2 29298: d 2 0 2 2,2,2,2 29298: join 18 2 5 0,1,2,2 29298: c 2 0 2 2,1,2,2 29298: b 5 0 5 1,1,2,2 29298: a 3 0 3 1,2 % SZS status Timeout for LAT161-1.p NO CLASH, using fixed ground order 29316: Facts: 29316: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 29316: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 29316: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 29316: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 29316: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 29316: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 29316: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 29316: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 29316: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29)) [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29 29316: Goal: 29316: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 29316: Order: 29316: nrkbo 29316: Leaf order: 29316: join 19 2 4 0,2,2 29316: meet 19 2 6 0,2 29316: c 3 0 3 2,2,2,2 29316: b 3 0 3 1,2,2 29316: a 6 0 6 1,2 NO CLASH, using fixed ground order 29317: Facts: 29317: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 29317: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 29317: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 29317: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 29317: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 29317: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 29317: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 29317: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 29317: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29)) [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29 29317: Goal: 29317: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 29317: Order: 29317: kbo 29317: Leaf order: 29317: join 19 2 4 0,2,2 29317: meet 19 2 6 0,2 29317: c 3 0 3 2,2,2,2 29317: b 3 0 3 1,2,2 29317: a 6 0 6 1,2 NO CLASH, using fixed ground order 29318: Facts: 29318: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 29318: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 29318: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 29318: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 29318: Id : 6, {_}: meet ?12 ?13 =?= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 29318: Id : 7, {_}: join ?15 ?16 =?= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 29318: Id : 8, {_}: meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 29318: Id : 9, {_}: join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 29318: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29)) [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29 29318: Goal: 29318: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 29318: Order: 29318: lpo 29318: Leaf order: 29318: join 19 2 4 0,2,2 29318: meet 19 2 6 0,2 29318: c 3 0 3 2,2,2,2 29318: b 3 0 3 1,2,2 29318: a 6 0 6 1,2 % SZS status Timeout for LAT177-1.p NO CLASH, using fixed ground order 29346: Facts: 29346: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutative_addition ?2 ?3 29346: Id : 3, {_}: add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7) [7, 6, 5] by associative_addition ?5 ?6 ?7 NO CLASH, using fixed ground order 29347: Facts: 29347: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutative_addition ?2 ?3 29347: Id : 3, {_}: add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7) [7, 6, 5] by associative_addition ?5 ?6 ?7 29347: Id : 4, {_}: add ?9 additive_identity =>= ?9 [9] by right_identity ?9 29347: Id : 5, {_}: add additive_identity ?11 =>= ?11 [11] by left_identity ?11 29347: Id : 6, {_}: add ?13 (additive_inverse ?13) =>= additive_identity [13] by right_additive_inverse ?13 29347: Id : 7, {_}: add (additive_inverse ?15) ?15 =>= additive_identity [15] by left_additive_inverse ?15 29347: Id : 8, {_}: additive_inverse additive_identity =>= additive_identity [] by additive_inverse_identity 29347: Id : 9, {_}: add ?18 (add (additive_inverse ?18) ?19) =>= ?19 [19, 18] by property_of_inverse_and_add ?18 ?19 29347: Id : 10, {_}: additive_inverse (add ?21 ?22) =>= add (additive_inverse ?21) (additive_inverse ?22) [22, 21] by distribute_additive_inverse ?21 ?22 29347: Id : 11, {_}: additive_inverse (additive_inverse ?24) =>= ?24 [24] by additive_inverse_additive_inverse ?24 29347: Id : 12, {_}: multiply ?26 additive_identity =>= additive_identity [26] by multiply_additive_id1 ?26 29347: Id : 13, {_}: multiply additive_identity ?28 =>= additive_identity [28] by multiply_additive_id2 ?28 29347: Id : 14, {_}: multiply (additive_inverse ?30) (additive_inverse ?31) =>= multiply ?30 ?31 [31, 30] by product_of_inverse ?30 ?31 NO CLASH, using fixed ground order 29346: Id : 4, {_}: add ?9 additive_identity =>= ?9 [9] by right_identity ?9 29346: Id : 5, {_}: add additive_identity ?11 =>= ?11 [11] by left_identity ?11 29346: Id : 6, {_}: add ?13 (additive_inverse ?13) =>= additive_identity [13] by right_additive_inverse ?13 29346: Id : 7, {_}: add (additive_inverse ?15) ?15 =>= additive_identity [15] by left_additive_inverse ?15 29346: Id : 8, {_}: additive_inverse additive_identity =>= additive_identity [] by additive_inverse_identity 29345: Facts: 29346: Id : 9, {_}: add ?18 (add (additive_inverse ?18) ?19) =>= ?19 [19, 18] by property_of_inverse_and_add ?18 ?19 29346: Id : 10, {_}: additive_inverse (add ?21 ?22) =<= add (additive_inverse ?21) (additive_inverse ?22) [22, 21] by distribute_additive_inverse ?21 ?22 29345: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutative_addition ?2 ?3 29345: Id : 3, {_}: add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) [7, 6, 5] by associative_addition ?5 ?6 ?7 29346: Id : 11, {_}: additive_inverse (additive_inverse ?24) =>= ?24 [24] by additive_inverse_additive_inverse ?24 29345: Id : 4, {_}: add ?9 additive_identity =>= ?9 [9] by right_identity ?9 29346: Id : 12, {_}: multiply ?26 additive_identity =>= additive_identity [26] by multiply_additive_id1 ?26 29345: Id : 5, {_}: add additive_identity ?11 =>= ?11 [11] by left_identity ?11 29346: Id : 13, {_}: multiply additive_identity ?28 =>= additive_identity [28] by multiply_additive_id2 ?28 29346: Id : 14, {_}: multiply (additive_inverse ?30) (additive_inverse ?31) =>= multiply ?30 ?31 [31, 30] by product_of_inverse ?30 ?31 29346: Id : 15, {_}: multiply ?33 (additive_inverse ?34) =<= additive_inverse (multiply ?33 ?34) [34, 33] by multiply_additive_inverse1 ?33 ?34 29345: Id : 6, {_}: add ?13 (additive_inverse ?13) =>= additive_identity [13] by right_additive_inverse ?13 29345: Id : 7, {_}: add (additive_inverse ?15) ?15 =>= additive_identity [15] by left_additive_inverse ?15 29345: Id : 8, {_}: additive_inverse additive_identity =>= additive_identity [] by additive_inverse_identity 29346: Id : 16, {_}: multiply (additive_inverse ?36) ?37 =<= additive_inverse (multiply ?36 ?37) [37, 36] by multiply_additive_inverse2 ?36 ?37 29345: Id : 9, {_}: add ?18 (add (additive_inverse ?18) ?19) =>= ?19 [19, 18] by property_of_inverse_and_add ?18 ?19 29346: Id : 17, {_}: multiply ?39 (add ?40 ?41) =<= add (multiply ?39 ?40) (multiply ?39 ?41) [41, 40, 39] by distribute1 ?39 ?40 ?41 29345: Id : 10, {_}: additive_inverse (add ?21 ?22) =<= add (additive_inverse ?21) (additive_inverse ?22) [22, 21] by distribute_additive_inverse ?21 ?22 29346: Id : 18, {_}: multiply (add ?43 ?44) ?45 =<= add (multiply ?43 ?45) (multiply ?44 ?45) [45, 44, 43] by distribute2 ?43 ?44 ?45 29345: Id : 11, {_}: additive_inverse (additive_inverse ?24) =>= ?24 [24] by additive_inverse_additive_inverse ?24 29345: Id : 12, {_}: multiply ?26 additive_identity =>= additive_identity [26] by multiply_additive_id1 ?26 29345: Id : 13, {_}: multiply additive_identity ?28 =>= additive_identity [28] by multiply_additive_id2 ?28 29345: Id : 14, {_}: multiply (additive_inverse ?30) (additive_inverse ?31) =>= multiply ?30 ?31 [31, 30] by product_of_inverse ?30 ?31 29345: Id : 15, {_}: multiply ?33 (additive_inverse ?34) =<= additive_inverse (multiply ?33 ?34) [34, 33] by multiply_additive_inverse1 ?33 ?34 29345: Id : 16, {_}: multiply (additive_inverse ?36) ?37 =<= additive_inverse (multiply ?36 ?37) [37, 36] by multiply_additive_inverse2 ?36 ?37 29345: Id : 17, {_}: multiply ?39 (add ?40 ?41) =<= add (multiply ?39 ?40) (multiply ?39 ?41) [41, 40, 39] by distribute1 ?39 ?40 ?41 29345: Id : 18, {_}: multiply (add ?43 ?44) ?45 =<= add (multiply ?43 ?45) (multiply ?44 ?45) [45, 44, 43] by distribute2 ?43 ?44 ?45 29345: Id : 19, {_}: multiply (multiply ?47 ?48) ?48 =?= multiply ?47 (multiply ?48 ?48) [48, 47] by right_alternative ?47 ?48 29347: Id : 15, {_}: multiply ?33 (additive_inverse ?34) =<= additive_inverse (multiply ?33 ?34) [34, 33] by multiply_additive_inverse1 ?33 ?34 29345: Id : 20, {_}: associator ?50 ?51 ?52 =<= add (multiply (multiply ?50 ?51) ?52) (additive_inverse (multiply ?50 (multiply ?51 ?52))) [52, 51, 50] by associator ?50 ?51 ?52 29345: Id : 21, {_}: commutator ?54 ?55 =<= add (multiply ?55 ?54) (additive_inverse (multiply ?54 ?55)) [55, 54] by commutator ?54 ?55 29347: Id : 16, {_}: multiply (additive_inverse ?36) ?37 =<= additive_inverse (multiply ?36 ?37) [37, 36] by multiply_additive_inverse2 ?36 ?37 29347: Id : 17, {_}: multiply ?39 (add ?40 ?41) =<= add (multiply ?39 ?40) (multiply ?39 ?41) [41, 40, 39] by distribute1 ?39 ?40 ?41 29347: Id : 18, {_}: multiply (add ?43 ?44) ?45 =<= add (multiply ?43 ?45) (multiply ?44 ?45) [45, 44, 43] by distribute2 ?43 ?44 ?45 29347: Id : 19, {_}: multiply (multiply ?47 ?48) ?48 =>= multiply ?47 (multiply ?48 ?48) [48, 47] by right_alternative ?47 ?48 29347: Id : 20, {_}: associator ?50 ?51 ?52 =<= add (multiply (multiply ?50 ?51) ?52) (additive_inverse (multiply ?50 (multiply ?51 ?52))) [52, 51, 50] by associator ?50 ?51 ?52 29347: Id : 21, {_}: commutator ?54 ?55 =<= add (multiply ?55 ?54) (additive_inverse (multiply ?54 ?55)) [55, 54] by commutator ?54 ?55 29347: Id : 22, {_}: multiply (multiply (associator ?57 ?57 ?58) ?57) (associator ?57 ?57 ?58) =>= additive_identity [58, 57] by middle_associator ?57 ?58 29347: Id : 23, {_}: multiply (multiply ?60 ?60) ?61 =>= multiply ?60 (multiply ?60 ?61) [61, 60] by left_alternative ?60 ?61 29347: Id : 24, {_}: s ?63 ?64 ?65 ?66 =>= add (add (associator (multiply ?63 ?64) ?65 ?66) (additive_inverse (multiply ?64 (associator ?63 ?65 ?66)))) (additive_inverse (multiply (associator ?64 ?65 ?66) ?63)) [66, 65, 64, 63] by defines_s ?63 ?64 ?65 ?66 29347: Id : 25, {_}: multiply ?68 (multiply ?69 (multiply ?70 ?69)) =<= multiply (multiply (multiply ?68 ?69) ?70) ?69 [70, 69, 68] by right_moufang ?68 ?69 ?70 29347: Id : 26, {_}: multiply (multiply ?72 (multiply ?73 ?72)) ?74 =>= multiply ?72 (multiply ?73 (multiply ?72 ?74)) [74, 73, 72] by left_moufang ?72 ?73 ?74 29347: Id : 27, {_}: multiply (multiply ?76 ?77) (multiply ?78 ?76) =<= multiply (multiply ?76 (multiply ?77 ?78)) ?76 [78, 77, 76] by middle_moufang ?76 ?77 ?78 29347: Goal: 29347: Id : 1, {_}: s a b c d =>= additive_inverse (s b a c d) [] by prove_skew_symmetry 29347: Order: 29347: lpo 29347: Leaf order: 29347: commutator 1 2 0 29347: associator 6 3 0 29347: multiply 51 2 0 29347: additive_identity 11 0 0 29347: add 22 2 0 29347: additive_inverse 20 1 1 0,3 29347: s 3 4 2 0,2 29347: d 2 0 2 4,2 29347: c 2 0 2 3,2 29347: b 2 0 2 2,2 29347: a 2 0 2 1,2 29346: Id : 19, {_}: multiply (multiply ?47 ?48) ?48 =>= multiply ?47 (multiply ?48 ?48) [48, 47] by right_alternative ?47 ?48 29345: Id : 22, {_}: multiply (multiply (associator ?57 ?57 ?58) ?57) (associator ?57 ?57 ?58) =>= additive_identity [58, 57] by middle_associator ?57 ?58 29345: Id : 23, {_}: multiply (multiply ?60 ?60) ?61 =?= multiply ?60 (multiply ?60 ?61) [61, 60] by left_alternative ?60 ?61 29345: Id : 24, {_}: s ?63 ?64 ?65 ?66 =<= add (add (associator (multiply ?63 ?64) ?65 ?66) (additive_inverse (multiply ?64 (associator ?63 ?65 ?66)))) (additive_inverse (multiply (associator ?64 ?65 ?66) ?63)) [66, 65, 64, 63] by defines_s ?63 ?64 ?65 ?66 29345: Id : 25, {_}: multiply ?68 (multiply ?69 (multiply ?70 ?69)) =?= multiply (multiply (multiply ?68 ?69) ?70) ?69 [70, 69, 68] by right_moufang ?68 ?69 ?70 29345: Id : 26, {_}: multiply (multiply ?72 (multiply ?73 ?72)) ?74 =?= multiply ?72 (multiply ?73 (multiply ?72 ?74)) [74, 73, 72] by left_moufang ?72 ?73 ?74 29345: Id : 27, {_}: multiply (multiply ?76 ?77) (multiply ?78 ?76) =?= multiply (multiply ?76 (multiply ?77 ?78)) ?76 [78, 77, 76] by middle_moufang ?76 ?77 ?78 29345: Goal: 29345: Id : 1, {_}: s a b c d =<= additive_inverse (s b a c d) [] by prove_skew_symmetry 29345: Order: 29345: nrkbo 29345: Leaf order: 29345: commutator 1 2 0 29345: associator 6 3 0 29345: multiply 51 2 0 29345: additive_identity 11 0 0 29345: add 22 2 0 29345: additive_inverse 20 1 1 0,3 29345: s 3 4 2 0,2 29345: d 2 0 2 4,2 29345: c 2 0 2 3,2 29345: b 2 0 2 2,2 29345: a 2 0 2 1,2 29346: Id : 20, {_}: associator ?50 ?51 ?52 =<= add (multiply (multiply ?50 ?51) ?52) (additive_inverse (multiply ?50 (multiply ?51 ?52))) [52, 51, 50] by associator ?50 ?51 ?52 29346: Id : 21, {_}: commutator ?54 ?55 =<= add (multiply ?55 ?54) (additive_inverse (multiply ?54 ?55)) [55, 54] by commutator ?54 ?55 29346: Id : 22, {_}: multiply (multiply (associator ?57 ?57 ?58) ?57) (associator ?57 ?57 ?58) =>= additive_identity [58, 57] by middle_associator ?57 ?58 29346: Id : 23, {_}: multiply (multiply ?60 ?60) ?61 =>= multiply ?60 (multiply ?60 ?61) [61, 60] by left_alternative ?60 ?61 29346: Id : 24, {_}: s ?63 ?64 ?65 ?66 =<= add (add (associator (multiply ?63 ?64) ?65 ?66) (additive_inverse (multiply ?64 (associator ?63 ?65 ?66)))) (additive_inverse (multiply (associator ?64 ?65 ?66) ?63)) [66, 65, 64, 63] by defines_s ?63 ?64 ?65 ?66 29346: Id : 25, {_}: multiply ?68 (multiply ?69 (multiply ?70 ?69)) =<= multiply (multiply (multiply ?68 ?69) ?70) ?69 [70, 69, 68] by right_moufang ?68 ?69 ?70 29346: Id : 26, {_}: multiply (multiply ?72 (multiply ?73 ?72)) ?74 =>= multiply ?72 (multiply ?73 (multiply ?72 ?74)) [74, 73, 72] by left_moufang ?72 ?73 ?74 29346: Id : 27, {_}: multiply (multiply ?76 ?77) (multiply ?78 ?76) =<= multiply (multiply ?76 (multiply ?77 ?78)) ?76 [78, 77, 76] by middle_moufang ?76 ?77 ?78 29346: Goal: 29346: Id : 1, {_}: s a b c d =<= additive_inverse (s b a c d) [] by prove_skew_symmetry 29346: Order: 29346: kbo 29346: Leaf order: 29346: commutator 1 2 0 29346: associator 6 3 0 29346: multiply 51 2 0 29346: additive_identity 11 0 0 29346: add 22 2 0 29346: additive_inverse 20 1 1 0,3 29346: s 3 4 2 0,2 29346: d 2 0 2 4,2 29346: c 2 0 2 3,2 29346: b 2 0 2 2,2 29346: a 2 0 2 1,2 % SZS status Timeout for RNG010-5.p NO CLASH, using fixed ground order 29364: Facts: 29364: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29364: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29364: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 29364: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 29364: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 29364: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 29364: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 29364: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 29364: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 29364: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 29364: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 29364: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29364: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 29364: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 29364: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 29364: Id : 17, {_}: s ?44 ?45 ?46 ?47 =<= add (add (associator (multiply ?44 ?45) ?46 ?47) (additive_inverse (multiply ?45 (associator ?44 ?46 ?47)))) (additive_inverse (multiply (associator ?45 ?46 ?47) ?44)) [47, 46, 45, 44] by defines_s ?44 ?45 ?46 ?47 29364: Id : 18, {_}: multiply ?49 (multiply ?50 (multiply ?51 ?50)) =<= multiply (multiply (multiply ?49 ?50) ?51) ?50 [51, 50, 49] by right_moufang ?49 ?50 ?51 29364: Id : 19, {_}: multiply (multiply ?53 (multiply ?54 ?53)) ?55 =>= multiply ?53 (multiply ?54 (multiply ?53 ?55)) [55, 54, 53] by left_moufang ?53 ?54 ?55 29364: Id : 20, {_}: multiply (multiply ?57 ?58) (multiply ?59 ?57) =<= multiply (multiply ?57 (multiply ?58 ?59)) ?57 [59, 58, 57] by middle_moufang ?57 ?58 ?59 29364: Goal: 29364: Id : 1, {_}: s a b c d =<= additive_inverse (s b a c d) [] by prove_skew_symmetry 29364: Order: 29364: kbo 29364: Leaf order: 29364: commutator 1 2 0 29364: associator 4 3 0 29364: multiply 43 2 0 29364: add 18 2 0 29364: additive_identity 8 0 0 29364: additive_inverse 9 1 1 0,3 29364: s 3 4 2 0,2 29364: d 2 0 2 4,2 29364: c 2 0 2 3,2 29364: b 2 0 2 2,2 29364: a 2 0 2 1,2 NO CLASH, using fixed ground order 29363: Facts: 29363: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29363: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29363: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 29363: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 29363: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 29363: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 29363: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 29363: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 29363: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 29363: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 29363: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 29363: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29363: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 29363: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 29363: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 29363: Id : 17, {_}: s ?44 ?45 ?46 ?47 =<= add (add (associator (multiply ?44 ?45) ?46 ?47) (additive_inverse (multiply ?45 (associator ?44 ?46 ?47)))) (additive_inverse (multiply (associator ?45 ?46 ?47) ?44)) [47, 46, 45, 44] by defines_s ?44 ?45 ?46 ?47 29363: Id : 18, {_}: multiply ?49 (multiply ?50 (multiply ?51 ?50)) =?= multiply (multiply (multiply ?49 ?50) ?51) ?50 [51, 50, 49] by right_moufang ?49 ?50 ?51 29363: Id : 19, {_}: multiply (multiply ?53 (multiply ?54 ?53)) ?55 =?= multiply ?53 (multiply ?54 (multiply ?53 ?55)) [55, 54, 53] by left_moufang ?53 ?54 ?55 29363: Id : 20, {_}: multiply (multiply ?57 ?58) (multiply ?59 ?57) =?= multiply (multiply ?57 (multiply ?58 ?59)) ?57 [59, 58, 57] by middle_moufang ?57 ?58 ?59 29363: Goal: 29363: Id : 1, {_}: s a b c d =<= additive_inverse (s b a c d) [] by prove_skew_symmetry 29363: Order: 29363: nrkbo 29363: Leaf order: 29363: commutator 1 2 0 29363: associator 4 3 0 29363: multiply 43 2 0 29363: add 18 2 0 29363: additive_identity 8 0 0 29363: additive_inverse 9 1 1 0,3 29363: s 3 4 2 0,2 29363: d 2 0 2 4,2 29363: c 2 0 2 3,2 29363: b 2 0 2 2,2 29363: a 2 0 2 1,2 NO CLASH, using fixed ground order 29365: Facts: 29365: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29365: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29365: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 29365: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 29365: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 29365: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 29365: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 29365: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 29365: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 29365: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 29365: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 29365: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29365: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 29365: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 29365: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 29365: Id : 17, {_}: s ?44 ?45 ?46 ?47 =>= add (add (associator (multiply ?44 ?45) ?46 ?47) (additive_inverse (multiply ?45 (associator ?44 ?46 ?47)))) (additive_inverse (multiply (associator ?45 ?46 ?47) ?44)) [47, 46, 45, 44] by defines_s ?44 ?45 ?46 ?47 29365: Id : 18, {_}: multiply ?49 (multiply ?50 (multiply ?51 ?50)) =<= multiply (multiply (multiply ?49 ?50) ?51) ?50 [51, 50, 49] by right_moufang ?49 ?50 ?51 29365: Id : 19, {_}: multiply (multiply ?53 (multiply ?54 ?53)) ?55 =>= multiply ?53 (multiply ?54 (multiply ?53 ?55)) [55, 54, 53] by left_moufang ?53 ?54 ?55 29365: Id : 20, {_}: multiply (multiply ?57 ?58) (multiply ?59 ?57) =<= multiply (multiply ?57 (multiply ?58 ?59)) ?57 [59, 58, 57] by middle_moufang ?57 ?58 ?59 29365: Goal: 29365: Id : 1, {_}: s a b c d =>= additive_inverse (s b a c d) [] by prove_skew_symmetry 29365: Order: 29365: lpo 29365: Leaf order: 29365: commutator 1 2 0 29365: associator 4 3 0 29365: multiply 43 2 0 29365: add 18 2 0 29365: additive_identity 8 0 0 29365: additive_inverse 9 1 1 0,3 29365: s 3 4 2 0,2 29365: d 2 0 2 4,2 29365: c 2 0 2 3,2 29365: b 2 0 2 2,2 29365: a 2 0 2 1,2 % SZS status Timeout for RNG010-6.p NO CLASH, using fixed ground order 29396: Facts: 29396: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29396: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29396: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 29396: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 29396: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 29396: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 29396: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 29396: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 29396: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 29396: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 29396: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 29396: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29396: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 29396: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 29396: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 29396: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 29396: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =<= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 29396: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =<= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 29396: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 29396: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 29396: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 29396: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 29396: Id : 24, {_}: s ?69 ?70 ?71 ?72 =<= add (add (associator (multiply ?69 ?70) ?71 ?72) (additive_inverse (multiply ?70 (associator ?69 ?71 ?72)))) (additive_inverse (multiply (associator ?70 ?71 ?72) ?69)) [72, 71, 70, 69] by defines_s ?69 ?70 ?71 ?72 29396: Id : 25, {_}: multiply ?74 (multiply ?75 (multiply ?76 ?75)) =?= multiply (multiply (multiply ?74 ?75) ?76) ?75 [76, 75, 74] by right_moufang ?74 ?75 ?76 29396: Id : 26, {_}: multiply (multiply ?78 (multiply ?79 ?78)) ?80 =?= multiply ?78 (multiply ?79 (multiply ?78 ?80)) [80, 79, 78] by left_moufang ?78 ?79 ?80 29396: Id : 27, {_}: multiply (multiply ?82 ?83) (multiply ?84 ?82) =?= multiply (multiply ?82 (multiply ?83 ?84)) ?82 [84, 83, 82] by middle_moufang ?82 ?83 ?84 29396: Goal: 29396: Id : 1, {_}: s a b c d =<= additive_inverse (s b a c d) [] by prove_skew_symmetry 29396: Order: 29396: nrkbo 29396: Leaf order: 29396: commutator 1 2 0 29396: associator 4 3 0 29396: multiply 61 2 0 29396: add 26 2 0 29396: additive_identity 8 0 0 29396: additive_inverse 25 1 1 0,3 29396: s 3 4 2 0,2 29396: d 2 0 2 4,2 29396: c 2 0 2 3,2 29396: b 2 0 2 2,2 29396: a 2 0 2 1,2 NO CLASH, using fixed ground order 29397: Facts: 29397: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29397: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29397: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 29397: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 29397: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 29397: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 29397: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 29397: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 29397: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 29397: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 29397: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 29397: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29397: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 29397: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 29397: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 29397: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 29397: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =<= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 29397: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =<= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 29397: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 29397: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 29397: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 29397: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 29397: Id : 24, {_}: s ?69 ?70 ?71 ?72 =<= add (add (associator (multiply ?69 ?70) ?71 ?72) (additive_inverse (multiply ?70 (associator ?69 ?71 ?72)))) (additive_inverse (multiply (associator ?70 ?71 ?72) ?69)) [72, 71, 70, 69] by defines_s ?69 ?70 ?71 ?72 29397: Id : 25, {_}: multiply ?74 (multiply ?75 (multiply ?76 ?75)) =<= multiply (multiply (multiply ?74 ?75) ?76) ?75 [76, 75, 74] by right_moufang ?74 ?75 ?76 29397: Id : 26, {_}: multiply (multiply ?78 (multiply ?79 ?78)) ?80 =>= multiply ?78 (multiply ?79 (multiply ?78 ?80)) [80, 79, 78] by left_moufang ?78 ?79 ?80 29397: Id : 27, {_}: multiply (multiply ?82 ?83) (multiply ?84 ?82) =<= multiply (multiply ?82 (multiply ?83 ?84)) ?82 [84, 83, 82] by middle_moufang ?82 ?83 ?84 29397: Goal: 29397: Id : 1, {_}: s a b c d =<= additive_inverse (s b a c d) [] by prove_skew_symmetry 29397: Order: 29397: kbo 29397: Leaf order: 29397: commutator 1 2 0 29397: associator 4 3 0 29397: multiply 61 2 0 29397: add 26 2 0 29397: additive_identity 8 0 0 29397: additive_inverse 25 1 1 0,3 29397: s 3 4 2 0,2 29397: d 2 0 2 4,2 29397: c 2 0 2 3,2 29397: b 2 0 2 2,2 29397: a 2 0 2 1,2 NO CLASH, using fixed ground order 29398: Facts: 29398: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29398: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29398: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 29398: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 29398: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 29398: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 29398: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 29398: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 29398: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 29398: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 29398: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 29398: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29398: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 29398: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 29398: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 29398: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 29398: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =<= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 29398: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =<= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 29398: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 29398: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 29398: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 29398: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 29398: Id : 24, {_}: s ?69 ?70 ?71 ?72 =>= add (add (associator (multiply ?69 ?70) ?71 ?72) (additive_inverse (multiply ?70 (associator ?69 ?71 ?72)))) (additive_inverse (multiply (associator ?70 ?71 ?72) ?69)) [72, 71, 70, 69] by defines_s ?69 ?70 ?71 ?72 29398: Id : 25, {_}: multiply ?74 (multiply ?75 (multiply ?76 ?75)) =<= multiply (multiply (multiply ?74 ?75) ?76) ?75 [76, 75, 74] by right_moufang ?74 ?75 ?76 29398: Id : 26, {_}: multiply (multiply ?78 (multiply ?79 ?78)) ?80 =>= multiply ?78 (multiply ?79 (multiply ?78 ?80)) [80, 79, 78] by left_moufang ?78 ?79 ?80 29398: Id : 27, {_}: multiply (multiply ?82 ?83) (multiply ?84 ?82) =<= multiply (multiply ?82 (multiply ?83 ?84)) ?82 [84, 83, 82] by middle_moufang ?82 ?83 ?84 29398: Goal: 29398: Id : 1, {_}: s a b c d =>= additive_inverse (s b a c d) [] by prove_skew_symmetry 29398: Order: 29398: lpo 29398: Leaf order: 29398: commutator 1 2 0 29398: associator 4 3 0 29398: multiply 61 2 0 29398: add 26 2 0 29398: additive_identity 8 0 0 29398: additive_inverse 25 1 1 0,3 29398: s 3 4 2 0,2 29398: d 2 0 2 4,2 29398: c 2 0 2 3,2 29398: b 2 0 2 2,2 29398: a 2 0 2 1,2 % SZS status Timeout for RNG010-7.p NO CLASH, using fixed ground order 29437: Facts: 29437: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_for_addition ?2 ?3 29437: Id : 3, {_}: add ?5 (add ?6 ?7) =?= add (add ?5 ?6) ?7 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7 29437: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9 29437: Id : 5, {_}: add ?11 additive_identity =>= ?11 [11] by right_additive_identity ?11 29437: Id : 6, {_}: multiply additive_identity ?13 =>= additive_identity [13] by left_multiplicative_zero ?13 29437: Id : 7, {_}: multiply ?15 additive_identity =>= additive_identity [15] by right_multiplicative_zero ?15 29437: Id : 8, {_}: add (additive_inverse ?17) ?17 =>= additive_identity [17] by left_additive_inverse ?17 29437: Id : 9, {_}: add ?19 (additive_inverse ?19) =>= additive_identity [19] by right_additive_inverse ?19 29437: Id : 10, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 29437: Id : 11, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 29437: Id : 12, {_}: additive_inverse (additive_inverse ?29) =>= ?29 [29] by additive_inverse_additive_inverse ?29 29437: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29437: Id : 14, {_}: associator ?34 ?35 ?36 =<= add (multiply (multiply ?34 ?35) ?36) (additive_inverse (multiply ?34 (multiply ?35 ?36))) [36, 35, 34] by associator ?34 ?35 ?36 29437: Id : 15, {_}: commutator ?38 ?39 =<= add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39)) [39, 38] by commutator ?38 ?39 29437: Goal: 29437: Id : 1, {_}: add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) =>= additive_identity [] by prove_conjecture_1 29437: Order: 29437: nrkbo 29437: Leaf order: 29437: commutator 1 2 0 29437: additive_inverse 6 1 0 29437: additive_identity 9 0 1 3 29437: add 17 2 1 0,2 29437: multiply 22 2 4 0,1,2 29437: associator 7 3 6 0,1,1,2 29437: y 6 0 6 3,1,1,2 29437: x 12 0 12 1,1,1,2 NO CLASH, using fixed ground order 29438: Facts: 29438: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_for_addition ?2 ?3 29438: Id : 3, {_}: add ?5 (add ?6 ?7) =<= add (add ?5 ?6) ?7 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7 29438: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9 29438: Id : 5, {_}: add ?11 additive_identity =>= ?11 [11] by right_additive_identity ?11 29438: Id : 6, {_}: multiply additive_identity ?13 =>= additive_identity [13] by left_multiplicative_zero ?13 29438: Id : 7, {_}: multiply ?15 additive_identity =>= additive_identity [15] by right_multiplicative_zero ?15 29438: Id : 8, {_}: add (additive_inverse ?17) ?17 =>= additive_identity [17] by left_additive_inverse ?17 29438: Id : 9, {_}: add ?19 (additive_inverse ?19) =>= additive_identity [19] by right_additive_inverse ?19 29438: Id : 10, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 29438: Id : 11, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 29438: Id : 12, {_}: additive_inverse (additive_inverse ?29) =>= ?29 [29] by additive_inverse_additive_inverse ?29 29438: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29438: Id : 14, {_}: associator ?34 ?35 ?36 =<= add (multiply (multiply ?34 ?35) ?36) (additive_inverse (multiply ?34 (multiply ?35 ?36))) [36, 35, 34] by associator ?34 ?35 ?36 29438: Id : 15, {_}: commutator ?38 ?39 =<= add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39)) [39, 38] by commutator ?38 ?39 29438: Goal: 29438: Id : 1, {_}: add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) =>= additive_identity [] by prove_conjecture_1 29438: Order: 29438: kbo 29438: Leaf order: 29438: commutator 1 2 0 29438: additive_inverse 6 1 0 29438: additive_identity 9 0 1 3 29438: add 17 2 1 0,2 29438: multiply 22 2 4 0,1,2 29438: associator 7 3 6 0,1,1,2 29438: y 6 0 6 3,1,1,2 29438: x 12 0 12 1,1,1,2 NO CLASH, using fixed ground order 29439: Facts: 29439: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_for_addition ?2 ?3 29439: Id : 3, {_}: add ?5 (add ?6 ?7) =<= add (add ?5 ?6) ?7 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7 29439: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9 29439: Id : 5, {_}: add ?11 additive_identity =>= ?11 [11] by right_additive_identity ?11 29439: Id : 6, {_}: multiply additive_identity ?13 =>= additive_identity [13] by left_multiplicative_zero ?13 29439: Id : 7, {_}: multiply ?15 additive_identity =>= additive_identity [15] by right_multiplicative_zero ?15 29439: Id : 8, {_}: add (additive_inverse ?17) ?17 =>= additive_identity [17] by left_additive_inverse ?17 29439: Id : 9, {_}: add ?19 (additive_inverse ?19) =>= additive_identity [19] by right_additive_inverse ?19 29439: Id : 10, {_}: multiply ?21 (add ?22 ?23) =>= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 29439: Id : 11, {_}: multiply (add ?25 ?26) ?27 =>= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 29439: Id : 12, {_}: additive_inverse (additive_inverse ?29) =>= ?29 [29] by additive_inverse_additive_inverse ?29 29439: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29439: Id : 14, {_}: associator ?34 ?35 ?36 =>= add (multiply (multiply ?34 ?35) ?36) (additive_inverse (multiply ?34 (multiply ?35 ?36))) [36, 35, 34] by associator ?34 ?35 ?36 29439: Id : 15, {_}: commutator ?38 ?39 =<= add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39)) [39, 38] by commutator ?38 ?39 29439: Goal: 29439: Id : 1, {_}: add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) =>= additive_identity [] by prove_conjecture_1 29439: Order: 29439: lpo 29439: Leaf order: 29439: commutator 1 2 0 29439: additive_inverse 6 1 0 29439: additive_identity 9 0 1 3 29439: add 17 2 1 0,2 29439: multiply 22 2 4 0,1,2 29439: associator 7 3 6 0,1,1,2 29439: y 6 0 6 3,1,1,2 29439: x 12 0 12 1,1,1,2 % SZS status Timeout for RNG030-6.p NO CLASH, using fixed ground order 29722: Facts: 29722: Id : 2, {_}: multiply (additive_inverse ?2) (additive_inverse ?3) =>= multiply ?2 ?3 [3, 2] by product_of_inverses ?2 ?3 29722: Id : 3, {_}: multiply (additive_inverse ?5) ?6 =>= additive_inverse (multiply ?5 ?6) [6, 5] by inverse_product1 ?5 ?6 29722: Id : 4, {_}: multiply ?8 (additive_inverse ?9) =>= additive_inverse (multiply ?8 ?9) [9, 8] by inverse_product2 ?8 ?9 29722: Id : 5, {_}: multiply ?11 (add ?12 (additive_inverse ?13)) =<= add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13)) [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13 29722: Id : 6, {_}: multiply (add ?15 (additive_inverse ?16)) ?17 =<= add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17)) [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17 29722: Id : 7, {_}: multiply (additive_inverse ?19) (add ?20 ?21) =<= add (additive_inverse (multiply ?19 ?20)) (additive_inverse (multiply ?19 ?21)) [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21 29722: Id : 8, {_}: multiply (add ?23 ?24) (additive_inverse ?25) =<= add (additive_inverse (multiply ?23 ?25)) (additive_inverse (multiply ?24 ?25)) [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25 29722: Id : 9, {_}: add ?27 ?28 =?= add ?28 ?27 [28, 27] by commutativity_for_addition ?27 ?28 29722: Id : 10, {_}: add ?30 (add ?31 ?32) =?= add (add ?30 ?31) ?32 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32 29722: Id : 11, {_}: add additive_identity ?34 =>= ?34 [34] by left_additive_identity ?34 29722: Id : 12, {_}: add ?36 additive_identity =>= ?36 [36] by right_additive_identity ?36 29722: Id : 13, {_}: multiply additive_identity ?38 =>= additive_identity [38] by left_multiplicative_zero ?38 29722: Id : 14, {_}: multiply ?40 additive_identity =>= additive_identity [40] by right_multiplicative_zero ?40 29722: Id : 15, {_}: add (additive_inverse ?42) ?42 =>= additive_identity [42] by left_additive_inverse ?42 29722: Id : 16, {_}: add ?44 (additive_inverse ?44) =>= additive_identity [44] by right_additive_inverse ?44 29722: Id : 17, {_}: multiply ?46 (add ?47 ?48) =<= add (multiply ?46 ?47) (multiply ?46 ?48) [48, 47, 46] by distribute1 ?46 ?47 ?48 29722: Id : 18, {_}: multiply (add ?50 ?51) ?52 =<= add (multiply ?50 ?52) (multiply ?51 ?52) [52, 51, 50] by distribute2 ?50 ?51 ?52 29722: Id : 19, {_}: additive_inverse (additive_inverse ?54) =>= ?54 [54] by additive_inverse_additive_inverse ?54 29722: Id : 20, {_}: multiply (multiply ?56 ?57) ?57 =?= multiply ?56 (multiply ?57 ?57) [57, 56] by right_alternative ?56 ?57 29722: Id : 21, {_}: associator ?59 ?60 ?61 =<= add (multiply (multiply ?59 ?60) ?61) (additive_inverse (multiply ?59 (multiply ?60 ?61))) [61, 60, 59] by associator ?59 ?60 ?61 29722: Id : 22, {_}: commutator ?63 ?64 =<= add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64)) [64, 63] by commutator ?63 ?64 29722: Goal: 29722: Id : 1, {_}: add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) =>= additive_identity [] by prove_conjecture_1 29722: Order: 29722: nrkbo 29722: Leaf order: 29722: commutator 1 2 0 29722: additive_inverse 22 1 0 29722: additive_identity 9 0 1 3 29722: add 25 2 1 0,2 29722: multiply 40 2 4 0,1,2add 29722: associator 7 3 6 0,1,1,2 29722: y 6 0 6 3,1,1,2 29722: x 12 0 12 1,1,1,2 NO CLASH, using fixed ground order 29723: Facts: 29723: Id : 2, {_}: multiply (additive_inverse ?2) (additive_inverse ?3) =>= multiply ?2 ?3 [3, 2] by product_of_inverses ?2 ?3 29723: Id : 3, {_}: multiply (additive_inverse ?5) ?6 =>= additive_inverse (multiply ?5 ?6) [6, 5] by inverse_product1 ?5 ?6 29723: Id : 4, {_}: multiply ?8 (additive_inverse ?9) =>= additive_inverse (multiply ?8 ?9) [9, 8] by inverse_product2 ?8 ?9 29723: Id : 5, {_}: multiply ?11 (add ?12 (additive_inverse ?13)) =<= add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13)) [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13 29723: Id : 6, {_}: multiply (add ?15 (additive_inverse ?16)) ?17 =<= add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17)) [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17 29723: Id : 7, {_}: multiply (additive_inverse ?19) (add ?20 ?21) =<= add (additive_inverse (multiply ?19 ?20)) (additive_inverse (multiply ?19 ?21)) [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21 29723: Id : 8, {_}: multiply (add ?23 ?24) (additive_inverse ?25) =<= add (additive_inverse (multiply ?23 ?25)) (additive_inverse (multiply ?24 ?25)) [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25 29723: Id : 9, {_}: add ?27 ?28 =?= add ?28 ?27 [28, 27] by commutativity_for_addition ?27 ?28 29723: Id : 10, {_}: add ?30 (add ?31 ?32) =<= add (add ?30 ?31) ?32 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32 29723: Id : 11, {_}: add additive_identity ?34 =>= ?34 [34] by left_additive_identity ?34 29723: Id : 12, {_}: add ?36 additive_identity =>= ?36 [36] by right_additive_identity ?36 29723: Id : 13, {_}: multiply additive_identity ?38 =>= additive_identity [38] by left_multiplicative_zero ?38 29723: Id : 14, {_}: multiply ?40 additive_identity =>= additive_identity [40] by right_multiplicative_zero ?40 29723: Id : 15, {_}: add (additive_inverse ?42) ?42 =>= additive_identity [42] by left_additive_inverse ?42 29723: Id : 16, {_}: add ?44 (additive_inverse ?44) =>= additive_identity [44] by right_additive_inverse ?44 29723: Id : 17, {_}: multiply ?46 (add ?47 ?48) =<= add (multiply ?46 ?47) (multiply ?46 ?48) [48, 47, 46] by distribute1 ?46 ?47 ?48 29723: Id : 18, {_}: multiply (add ?50 ?51) ?52 =<= add (multiply ?50 ?52) (multiply ?51 ?52) [52, 51, 50] by distribute2 ?50 ?51 ?52 29723: Id : 19, {_}: additive_inverse (additive_inverse ?54) =>= ?54 [54] by additive_inverse_additive_inverse ?54 29723: Id : 20, {_}: multiply (multiply ?56 ?57) ?57 =>= multiply ?56 (multiply ?57 ?57) [57, 56] by right_alternative ?56 ?57 29723: Id : 21, {_}: associator ?59 ?60 ?61 =<= add (multiply (multiply ?59 ?60) ?61) (additive_inverse (multiply ?59 (multiply ?60 ?61))) [61, 60, 59] by associator ?59 ?60 ?61 29723: Id : 22, {_}: commutator ?63 ?64 =<= add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64)) [64, 63] by commutator ?63 ?64 29723: Goal: 29723: Id : 1, {_}: add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) =>= additive_identity [] by prove_conjecture_1 29723: Order: 29723: kbo 29723: Leaf order: 29723: commutator 1 2 0 29723: additive_inverse 22 1 0 29723: additive_identity 9 0 1 3 29723: add 25 2 1 0,2 29723: multiply 40 2 4 0,1,2add 29723: associator 7 3 6 0,1,1,2 29723: y 6 0 6 3,1,1,2 29723: x 12 0 12 1,1,1,2 NO CLASH, using fixed ground order 29724: Facts: 29724: Id : 2, {_}: multiply (additive_inverse ?2) (additive_inverse ?3) =>= multiply ?2 ?3 [3, 2] by product_of_inverses ?2 ?3 29724: Id : 3, {_}: multiply (additive_inverse ?5) ?6 =>= additive_inverse (multiply ?5 ?6) [6, 5] by inverse_product1 ?5 ?6 29724: Id : 4, {_}: multiply ?8 (additive_inverse ?9) =>= additive_inverse (multiply ?8 ?9) [9, 8] by inverse_product2 ?8 ?9 29724: Id : 5, {_}: multiply ?11 (add ?12 (additive_inverse ?13)) =>= add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13)) [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13 29724: Id : 6, {_}: multiply (add ?15 (additive_inverse ?16)) ?17 =>= add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17)) [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17 29724: Id : 7, {_}: multiply (additive_inverse ?19) (add ?20 ?21) =>= add (additive_inverse (multiply ?19 ?20)) (additive_inverse (multiply ?19 ?21)) [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21 29724: Id : 8, {_}: multiply (add ?23 ?24) (additive_inverse ?25) =>= add (additive_inverse (multiply ?23 ?25)) (additive_inverse (multiply ?24 ?25)) [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25 29724: Id : 9, {_}: add ?27 ?28 =?= add ?28 ?27 [28, 27] by commutativity_for_addition ?27 ?28 29724: Id : 10, {_}: add ?30 (add ?31 ?32) =<= add (add ?30 ?31) ?32 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32 29724: Id : 11, {_}: add additive_identity ?34 =>= ?34 [34] by left_additive_identity ?34 29724: Id : 12, {_}: add ?36 additive_identity =>= ?36 [36] by right_additive_identity ?36 29724: Id : 13, {_}: multiply additive_identity ?38 =>= additive_identity [38] by left_multiplicative_zero ?38 29724: Id : 14, {_}: multiply ?40 additive_identity =>= additive_identity [40] by right_multiplicative_zero ?40 29724: Id : 15, {_}: add (additive_inverse ?42) ?42 =>= additive_identity [42] by left_additive_inverse ?42 29724: Id : 16, {_}: add ?44 (additive_inverse ?44) =>= additive_identity [44] by right_additive_inverse ?44 29724: Id : 17, {_}: multiply ?46 (add ?47 ?48) =>= add (multiply ?46 ?47) (multiply ?46 ?48) [48, 47, 46] by distribute1 ?46 ?47 ?48 29724: Id : 18, {_}: multiply (add ?50 ?51) ?52 =>= add (multiply ?50 ?52) (multiply ?51 ?52) [52, 51, 50] by distribute2 ?50 ?51 ?52 29724: Id : 19, {_}: additive_inverse (additive_inverse ?54) =>= ?54 [54] by additive_inverse_additive_inverse ?54 29724: Id : 20, {_}: multiply (multiply ?56 ?57) ?57 =>= multiply ?56 (multiply ?57 ?57) [57, 56] by right_alternative ?56 ?57 29724: Id : 21, {_}: associator ?59 ?60 ?61 =>= add (multiply (multiply ?59 ?60) ?61) (additive_inverse (multiply ?59 (multiply ?60 ?61))) [61, 60, 59] by associator ?59 ?60 ?61 29724: Id : 22, {_}: commutator ?63 ?64 =<= add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64)) [64, 63] by commutator ?63 ?64 29724: Goal: 29724: Id : 1, {_}: add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) =>= additive_identity [] by prove_conjecture_1 29724: Order: 29724: lpo 29724: Leaf order: 29724: commutator 1 2 0 29724: additive_inverse 22 1 0 29724: additive_identity 9 0 1 3 29724: add 25 2 1 0,2 29724: multiply 40 2 4 0,1,2add 29724: associator 7 3 6 0,1,1,2 29724: y 6 0 6 3,1,1,2 29724: x 12 0 12 1,1,1,2 % SZS status Timeout for RNG030-7.p NO CLASH, using fixed ground order 29762: Facts: 29762: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_for_addition ?2 ?3 29762: Id : 3, {_}: add ?5 (add ?6 ?7) =?= add (add ?5 ?6) ?7 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7 29762: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9 29762: Id : 5, {_}: add ?11 additive_identity =>= ?11 [11] by right_additive_identity ?11 29762: Id : 6, {_}: multiply additive_identity ?13 =>= additive_identity [13] by left_multiplicative_zero ?13 29762: Id : 7, {_}: multiply ?15 additive_identity =>= additive_identity [15] by right_multiplicative_zero ?15 29762: Id : 8, {_}: add (additive_inverse ?17) ?17 =>= additive_identity [17] by left_additive_inverse ?17 29762: Id : 9, {_}: add ?19 (additive_inverse ?19) =>= additive_identity [19] by right_additive_inverse ?19 29762: Id : 10, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 29762: Id : 11, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 29762: Id : 12, {_}: additive_inverse (additive_inverse ?29) =>= ?29 [29] by additive_inverse_additive_inverse ?29 29762: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29762: Id : 14, {_}: associator ?34 ?35 ?36 =<= add (multiply (multiply ?34 ?35) ?36) (additive_inverse (multiply ?34 (multiply ?35 ?36))) [36, 35, 34] by associator ?34 ?35 ?36 29762: Id : 15, {_}: commutator ?38 ?39 =<= add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39)) [39, 38] by commutator ?38 ?39 29762: Goal: 29762: Id : 1, {_}: add (add (add (add (add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) =>= additive_identity [] by prove_conjecture_3 29762: Order: 29762: nrkbo 29762: Leaf order: 29762: commutator 1 2 0 29762: additive_inverse 6 1 0 29762: additive_identity 9 0 1 3 29762: add 21 2 5 0,2 29762: multiply 30 2 12 0,1,1,1,1,1,2 29762: associator 19 3 18 0,1,1,1,1,1,1,2 29762: y 18 0 18 3,1,1,1,1,1,1,2 29762: x 36 0 36 1,1,1,1,1,1,1,2 NO CLASH, using fixed ground order 29763: Facts: 29763: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_for_addition ?2 ?3 29763: Id : 3, {_}: add ?5 (add ?6 ?7) =<= add (add ?5 ?6) ?7 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7 29763: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9 29763: Id : 5, {_}: add ?11 additive_identity =>= ?11 [11] by right_additive_identity ?11 29763: Id : 6, {_}: multiply additive_identity ?13 =>= additive_identity [13] by left_multiplicative_zero ?13 29763: Id : 7, {_}: multiply ?15 additive_identity =>= additive_identity [15] by right_multiplicative_zero ?15 29763: Id : 8, {_}: add (additive_inverse ?17) ?17 =>= additive_identity [17] by left_additive_inverse ?17 NO CLASH, using fixed ground order 29764: Facts: 29764: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_for_addition ?2 ?3 29764: Id : 3, {_}: add ?5 (add ?6 ?7) =<= add (add ?5 ?6) ?7 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7 29764: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9 29764: Id : 5, {_}: add ?11 additive_identity =>= ?11 [11] by right_additive_identity ?11 29764: Id : 6, {_}: multiply additive_identity ?13 =>= additive_identity [13] by left_multiplicative_zero ?13 29764: Id : 7, {_}: multiply ?15 additive_identity =>= additive_identity [15] by right_multiplicative_zero ?15 29764: Id : 8, {_}: add (additive_inverse ?17) ?17 =>= additive_identity [17] by left_additive_inverse ?17 29764: Id : 9, {_}: add ?19 (additive_inverse ?19) =>= additive_identity [19] by right_additive_inverse ?19 29764: Id : 10, {_}: multiply ?21 (add ?22 ?23) =>= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 29764: Id : 11, {_}: multiply (add ?25 ?26) ?27 =>= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 29764: Id : 12, {_}: additive_inverse (additive_inverse ?29) =>= ?29 [29] by additive_inverse_additive_inverse ?29 29764: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29764: Id : 14, {_}: associator ?34 ?35 ?36 =>= add (multiply (multiply ?34 ?35) ?36) (additive_inverse (multiply ?34 (multiply ?35 ?36))) [36, 35, 34] by associator ?34 ?35 ?36 29764: Id : 15, {_}: commutator ?38 ?39 =<= add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39)) [39, 38] by commutator ?38 ?39 29764: Goal: 29764: Id : 1, {_}: add (add (add (add (add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) =>= additive_identity [] by prove_conjecture_3 29764: Order: 29764: lpo 29764: Leaf order: 29764: commutator 1 2 0 29764: additive_inverse 6 1 0 29764: additive_identity 9 0 1 3 29764: add 21 2 5 0,2 29764: multiply 30 2 12 0,1,1,1,1,1,2 29764: associator 19 3 18 0,1,1,1,1,1,1,2 29764: y 18 0 18 3,1,1,1,1,1,1,2 29764: x 36 0 36 1,1,1,1,1,1,1,2 29763: Id : 9, {_}: add ?19 (additive_inverse ?19) =>= additive_identity [19] by right_additive_inverse ?19 29763: Id : 10, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 29763: Id : 11, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 29763: Id : 12, {_}: additive_inverse (additive_inverse ?29) =>= ?29 [29] by additive_inverse_additive_inverse ?29 29763: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29763: Id : 14, {_}: associator ?34 ?35 ?36 =<= add (multiply (multiply ?34 ?35) ?36) (additive_inverse (multiply ?34 (multiply ?35 ?36))) [36, 35, 34] by associator ?34 ?35 ?36 29763: Id : 15, {_}: commutator ?38 ?39 =<= add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39)) [39, 38] by commutator ?38 ?39 29763: Goal: 29763: Id : 1, {_}: add (add (add (add (add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) =>= additive_identity [] by prove_conjecture_3 29763: Order: 29763: kbo 29763: Leaf order: 29763: commutator 1 2 0 29763: additive_inverse 6 1 0 29763: additive_identity 9 0 1 3 29763: add 21 2 5 0,2 29763: multiply 30 2 12 0,1,1,1,1,1,2 29763: associator 19 3 18 0,1,1,1,1,1,1,2 29763: y 18 0 18 3,1,1,1,1,1,1,2 29763: x 36 0 36 1,1,1,1,1,1,1,2 % SZS status Timeout for RNG032-6.p NO CLASH, using fixed ground order 29792: Facts: 29792: Id : 2, {_}: multiply (additive_inverse ?2) (additive_inverse ?3) =>= multiply ?2 ?3 [3, 2] by product_of_inverses ?2 ?3 29792: Id : 3, {_}: multiply (additive_inverse ?5) ?6 =>= additive_inverse (multiply ?5 ?6) [6, 5] by inverse_product1 ?5 ?6 29792: Id : 4, {_}: multiply ?8 (additive_inverse ?9) =>= additive_inverse (multiply ?8 ?9) [9, 8] by inverse_product2 ?8 ?9 29792: Id : 5, {_}: multiply ?11 (add ?12 (additive_inverse ?13)) =<= add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13)) [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13 29792: Id : 6, {_}: multiply (add ?15 (additive_inverse ?16)) ?17 =<= add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17)) [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17 29792: Id : 7, {_}: multiply (additive_inverse ?19) (add ?20 ?21) =<= add (additive_inverse (multiply ?19 ?20)) (additive_inverse (multiply ?19 ?21)) [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21 29792: Id : 8, {_}: multiply (add ?23 ?24) (additive_inverse ?25) =<= add (additive_inverse (multiply ?23 ?25)) (additive_inverse (multiply ?24 ?25)) [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25 29792: Id : 9, {_}: add ?27 ?28 =?= add ?28 ?27 [28, 27] by commutativity_for_addition ?27 ?28 29792: Id : 10, {_}: add ?30 (add ?31 ?32) =?= add (add ?30 ?31) ?32 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32 29792: Id : 11, {_}: add additive_identity ?34 =>= ?34 [34] by left_additive_identity ?34 29792: Id : 12, {_}: add ?36 additive_identity =>= ?36 [36] by right_additive_identity ?36 29792: Id : 13, {_}: multiply additive_identity ?38 =>= additive_identity [38] by left_multiplicative_zero ?38 29792: Id : 14, {_}: multiply ?40 additive_identity =>= additive_identity [40] by right_multiplicative_zero ?40 29792: Id : 15, {_}: add (additive_inverse ?42) ?42 =>= additive_identity [42] by left_additive_inverse ?42 29792: Id : 16, {_}: add ?44 (additive_inverse ?44) =>= additive_identity [44] by right_additive_inverse ?44 29792: Id : 17, {_}: multiply ?46 (add ?47 ?48) =<= add (multiply ?46 ?47) (multiply ?46 ?48) [48, 47, 46] by distribute1 ?46 ?47 ?48 29792: Id : 18, {_}: multiply (add ?50 ?51) ?52 =<= add (multiply ?50 ?52) (multiply ?51 ?52) [52, 51, 50] by distribute2 ?50 ?51 ?52 29792: Id : 19, {_}: additive_inverse (additive_inverse ?54) =>= ?54 [54] by additive_inverse_additive_inverse ?54 29792: Id : 20, {_}: multiply (multiply ?56 ?57) ?57 =?= multiply ?56 (multiply ?57 ?57) [57, 56] by right_alternative ?56 ?57 29792: Id : 21, {_}: associator ?59 ?60 ?61 =<= add (multiply (multiply ?59 ?60) ?61) (additive_inverse (multiply ?59 (multiply ?60 ?61))) [61, 60, 59] by associator ?59 ?60 ?61 29792: Id : 22, {_}: commutator ?63 ?64 =<= add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64)) [64, 63] by commutator ?63 ?64 29792: Goal: 29792: Id : 1, {_}: add (add (add (add (add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) =>= additive_identity [] by prove_conjecture_3 29792: Order: 29792: nrkbo 29792: Leaf order: 29792: commutator 1 2 0 29792: additive_inverse 22 1 0 29792: additive_identity 9 0 1 3 29792: add 29 2 5 0,2 29792: multiply 48 2 12 0,1,1,1,1,1,2add 29792: associator 19 3 18 0,1,1,1,1,1,1,2 29792: y 18 0 18 3,1,1,1,1,1,1,2 29792: x 36 0 36 1,1,1,1,1,1,1,2 NO CLASH, using fixed ground order 29793: Facts: 29793: Id : 2, {_}: multiply (additive_inverse ?2) (additive_inverse ?3) =>= multiply ?2 ?3 [3, 2] by product_of_inverses ?2 ?3 29793: Id : 3, {_}: multiply (additive_inverse ?5) ?6 =>= additive_inverse (multiply ?5 ?6) [6, 5] by inverse_product1 ?5 ?6 29793: Id : 4, {_}: multiply ?8 (additive_inverse ?9) =>= additive_inverse (multiply ?8 ?9) [9, 8] by inverse_product2 ?8 ?9 29793: Id : 5, {_}: multiply ?11 (add ?12 (additive_inverse ?13)) =<= add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13)) [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13 29793: Id : 6, {_}: multiply (add ?15 (additive_inverse ?16)) ?17 =<= add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17)) [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17 29793: Id : 7, {_}: multiply (additive_inverse ?19) (add ?20 ?21) =<= add (additive_inverse (multiply ?19 ?20)) (additive_inverse (multiply ?19 ?21)) [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21 29793: Id : 8, {_}: multiply (add ?23 ?24) (additive_inverse ?25) =<= add (additive_inverse (multiply ?23 ?25)) (additive_inverse (multiply ?24 ?25)) [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25 29793: Id : 9, {_}: add ?27 ?28 =?= add ?28 ?27 [28, 27] by commutativity_for_addition ?27 ?28 29793: Id : 10, {_}: add ?30 (add ?31 ?32) =<= add (add ?30 ?31) ?32 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32 29793: Id : 11, {_}: add additive_identity ?34 =>= ?34 [34] by left_additive_identity ?34 29793: Id : 12, {_}: add ?36 additive_identity =>= ?36 [36] by right_additive_identity ?36 29793: Id : 13, {_}: multiply additive_identity ?38 =>= additive_identity [38] by left_multiplicative_zero ?38 29793: Id : 14, {_}: multiply ?40 additive_identity =>= additive_identity [40] by right_multiplicative_zero ?40 29793: Id : 15, {_}: add (additive_inverse ?42) ?42 =>= additive_identity [42] by left_additive_inverse ?42 29793: Id : 16, {_}: add ?44 (additive_inverse ?44) =>= additive_identity [44] by right_additive_inverse ?44 29793: Id : 17, {_}: multiply ?46 (add ?47 ?48) =<= add (multiply ?46 ?47) (multiply ?46 ?48) [48, 47, 46] by distribute1 ?46 ?47 ?48 29793: Id : 18, {_}: multiply (add ?50 ?51) ?52 =<= add (multiply ?50 ?52) (multiply ?51 ?52) [52, 51, 50] by distribute2 ?50 ?51 ?52 29793: Id : 19, {_}: additive_inverse (additive_inverse ?54) =>= ?54 [54] by additive_inverse_additive_inverse ?54 29793: Id : 20, {_}: multiply (multiply ?56 ?57) ?57 =>= multiply ?56 (multiply ?57 ?57) [57, 56] by right_alternative ?56 ?57 29793: Id : 21, {_}: associator ?59 ?60 ?61 =<= add (multiply (multiply ?59 ?60) ?61) (additive_inverse (multiply ?59 (multiply ?60 ?61))) [61, 60, 59] by associator ?59 ?60 ?61 29793: Id : 22, {_}: commutator ?63 ?64 =<= add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64)) [64, 63] by commutator ?63 ?64 29793: Goal: 29793: Id : 1, {_}: add (add (add (add (add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) =>= additive_identity [] by prove_conjecture_3 29793: Order: 29793: kbo 29793: Leaf order: 29793: commutator 1 2 0 29793: additive_inverse 22 1 0 29793: additive_identity 9 0 1 3 29793: add 29 2 5 0,2 29793: multiply 48 2 12 0,1,1,1,1,1,2add 29793: associator 19 3 18 0,1,1,1,1,1,1,2 29793: y 18 0 18 3,1,1,1,1,1,1,2 29793: x 36 0 36 1,1,1,1,1,1,1,2 NO CLASH, using fixed ground order 29794: Facts: 29794: Id : 2, {_}: multiply (additive_inverse ?2) (additive_inverse ?3) =>= multiply ?2 ?3 [3, 2] by product_of_inverses ?2 ?3 29794: Id : 3, {_}: multiply (additive_inverse ?5) ?6 =>= additive_inverse (multiply ?5 ?6) [6, 5] by inverse_product1 ?5 ?6 29794: Id : 4, {_}: multiply ?8 (additive_inverse ?9) =>= additive_inverse (multiply ?8 ?9) [9, 8] by inverse_product2 ?8 ?9 29794: Id : 5, {_}: multiply ?11 (add ?12 (additive_inverse ?13)) =>= add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13)) [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13 29794: Id : 6, {_}: multiply (add ?15 (additive_inverse ?16)) ?17 =>= add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17)) [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17 29794: Id : 7, {_}: multiply (additive_inverse ?19) (add ?20 ?21) =>= add (additive_inverse (multiply ?19 ?20)) (additive_inverse (multiply ?19 ?21)) [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21 29794: Id : 8, {_}: multiply (add ?23 ?24) (additive_inverse ?25) =>= add (additive_inverse (multiply ?23 ?25)) (additive_inverse (multiply ?24 ?25)) [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25 29794: Id : 9, {_}: add ?27 ?28 =?= add ?28 ?27 [28, 27] by commutativity_for_addition ?27 ?28 29794: Id : 10, {_}: add ?30 (add ?31 ?32) =<= add (add ?30 ?31) ?32 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32 29794: Id : 11, {_}: add additive_identity ?34 =>= ?34 [34] by left_additive_identity ?34 29794: Id : 12, {_}: add ?36 additive_identity =>= ?36 [36] by right_additive_identity ?36 29794: Id : 13, {_}: multiply additive_identity ?38 =>= additive_identity [38] by left_multiplicative_zero ?38 29794: Id : 14, {_}: multiply ?40 additive_identity =>= additive_identity [40] by right_multiplicative_zero ?40 29794: Id : 15, {_}: add (additive_inverse ?42) ?42 =>= additive_identity [42] by left_additive_inverse ?42 29794: Id : 16, {_}: add ?44 (additive_inverse ?44) =>= additive_identity [44] by right_additive_inverse ?44 29794: Id : 17, {_}: multiply ?46 (add ?47 ?48) =>= add (multiply ?46 ?47) (multiply ?46 ?48) [48, 47, 46] by distribute1 ?46 ?47 ?48 29794: Id : 18, {_}: multiply (add ?50 ?51) ?52 =>= add (multiply ?50 ?52) (multiply ?51 ?52) [52, 51, 50] by distribute2 ?50 ?51 ?52 29794: Id : 19, {_}: additive_inverse (additive_inverse ?54) =>= ?54 [54] by additive_inverse_additive_inverse ?54 29794: Id : 20, {_}: multiply (multiply ?56 ?57) ?57 =>= multiply ?56 (multiply ?57 ?57) [57, 56] by right_alternative ?56 ?57 29794: Id : 21, {_}: associator ?59 ?60 ?61 =>= add (multiply (multiply ?59 ?60) ?61) (additive_inverse (multiply ?59 (multiply ?60 ?61))) [61, 60, 59] by associator ?59 ?60 ?61 29794: Id : 22, {_}: commutator ?63 ?64 =<= add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64)) [64, 63] by commutator ?63 ?64 29794: Goal: 29794: Id : 1, {_}: add (add (add (add (add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) =>= additive_identity [] by prove_conjecture_3 29794: Order: 29794: lpo 29794: Leaf order: 29794: commutator 1 2 0 29794: additive_inverse 22 1 0 29794: additive_identity 9 0 1 3 29794: add 29 2 5 0,2 29794: multiply 48 2 12 0,1,1,1,1,1,2add 29794: associator 19 3 18 0,1,1,1,1,1,1,2 29794: y 18 0 18 3,1,1,1,1,1,1,2 29794: x 36 0 36 1,1,1,1,1,1,1,2 % SZS status Timeout for RNG032-7.p NO CLASH, using fixed ground order 29810: Facts: 29810: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29810: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29810: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 29810: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 29810: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 29810: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 29810: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 29810: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 29810: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 29810: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 29810: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 29810: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29810: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 29810: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 29810: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 29810: Goal: 29810: Id : 1, {_}: add (associator (multiply x y) z w) (associator x y (commutator z w)) =<= add (multiply x (associator y z w)) (multiply (associator x z w) y) [] by prove_challenge 29810: Order: 29810: nrkbo 29810: Leaf order: 29810: additive_inverse 6 1 0 29810: additive_identity 8 0 0 29810: add 18 2 2 0,2 29810: commutator 2 2 1 0,3,2,2 29810: associator 5 3 4 0,1,2 29810: w 4 0 4 3,1,2 29810: z 4 0 4 2,1,2 29810: multiply 25 2 3 0,1,1,2 29810: y 4 0 4 2,1,1,2 29810: x 4 0 4 1,1,1,2 NO CLASH, using fixed ground order 29811: Facts: 29811: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29811: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29811: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 29811: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 29811: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 29811: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 29811: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 29811: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 29811: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 29811: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 29811: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 29811: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29811: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 29811: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 29811: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 29811: Goal: 29811: Id : 1, {_}: add (associator (multiply x y) z w) (associator x y (commutator z w)) =<= add (multiply x (associator y z w)) (multiply (associator x z w) y) [] by prove_challenge 29811: Order: 29811: kbo 29811: Leaf order: 29811: additive_inverse 6 1 0 29811: additive_identity 8 0 0 29811: add 18 2 2 0,2 29811: commutator 2 2 1 0,3,2,2 29811: associator 5 3 4 0,1,2 29811: w 4 0 4 3,1,2 29811: z 4 0 4 2,1,2 29811: multiply 25 2 3 0,1,1,2 29811: y 4 0 4 2,1,1,2 29811: x 4 0 4 1,1,1,2 NO CLASH, using fixed ground order 29812: Facts: 29812: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29812: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29812: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 29812: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 29812: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 29812: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 29812: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 29812: Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 29812: Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 29812: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 29812: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 29812: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29812: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 29812: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 29812: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 29812: Goal: 29812: Id : 1, {_}: add (associator (multiply x y) z w) (associator x y (commutator z w)) =<= add (multiply x (associator y z w)) (multiply (associator x z w) y) [] by prove_challenge 29812: Order: 29812: lpo 29812: Leaf order: 29812: additive_inverse 6 1 0 29812: additive_identity 8 0 0 29812: add 18 2 2 0,2 29812: commutator 2 2 1 0,3,2,2 29812: associator 5 3 4 0,1,2 29812: w 4 0 4 3,1,2 29812: z 4 0 4 2,1,2 29812: multiply 25 2 3 0,1,1,2 29812: y 4 0 4 2,1,1,2 29812: x 4 0 4 1,1,1,2 % SZS status Timeout for RNG033-6.p NO CLASH, using fixed ground order 29844: Facts: 29844: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29844: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29844: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 29844: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 29844: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 29844: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 29844: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 29844: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 29844: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 29844: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 29844: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 29844: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29844: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 29844: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 29844: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 29844: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 29844: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 29844: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 29844: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 29844: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 29844: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 29844: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 29844: Goal: 29844: Id : 1, {_}: add (associator (multiply x y) z w) (associator x y (commutator z w)) =<= add (multiply x (associator y z w)) (multiply (associator x z w) y) [] by prove_challenge 29844: Order: 29844: nrkbo 29844: Leaf order: 29844: additive_inverse 22 1 0 29844: additive_identity 8 0 0 29844: add 26 2 2 0,2 29844: commutator 2 2 1 0,3,2,2 29844: associator 5 3 4 0,1,2 29844: w 4 0 4 3,1,2 29844: z 4 0 4 2,1,2 29844: multiply 43 2 3 0,1,1,2 29844: y 4 0 4 2,1,1,2 29844: x 4 0 4 1,1,1,2 NO CLASH, using fixed ground order 29846: Facts: 29846: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29846: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29846: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 29846: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 29846: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 29846: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 29846: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 29846: Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 29846: Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 29846: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 29846: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 29846: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29846: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 29846: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 29846: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 29846: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 29846: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 29846: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 29846: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =>= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 29846: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =>= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 29846: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =>= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 29846: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =>= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 29846: Goal: 29846: Id : 1, {_}: add (associator (multiply x y) z w) (associator x y (commutator z w)) =<= add (multiply x (associator y z w)) (multiply (associator x z w) y) [] by prove_challenge 29846: Order: 29846: lpo 29846: Leaf order: 29846: additive_inverse 22 1 0 29846: additive_identity 8 0 0 29846: add 26 2 2 0,2 29846: commutator 2 2 1 0,3,2,2 29846: associator 5 3 4 0,1,2 29846: w 4 0 4 3,1,2 29846: z 4 0 4 2,1,2 29846: multiply 43 2 3 0,1,1,2 29846: y 4 0 4 2,1,1,2 29846: x 4 0 4 1,1,1,2 NO CLASH, using fixed ground order 29845: Facts: 29845: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29845: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29845: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 29845: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 29845: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 29845: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 29845: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 29845: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 29845: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 29845: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 29845: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 29845: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29845: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 29845: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 29845: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 29845: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 29845: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 29845: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 29845: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 29845: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 29845: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 29845: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 29845: Goal: 29845: Id : 1, {_}: add (associator (multiply x y) z w) (associator x y (commutator z w)) =<= add (multiply x (associator y z w)) (multiply (associator x z w) y) [] by prove_challenge 29845: Order: 29845: kbo 29845: Leaf order: 29845: additive_inverse 22 1 0 29845: additive_identity 8 0 0 29845: add 26 2 2 0,2 29845: commutator 2 2 1 0,3,2,2 29845: associator 5 3 4 0,1,2 29845: w 4 0 4 3,1,2 29845: z 4 0 4 2,1,2 29845: multiply 43 2 3 0,1,1,2 29845: y 4 0 4 2,1,1,2 29845: x 4 0 4 1,1,1,2 % SZS status Timeout for RNG033-7.p NO CLASH, using fixed ground order 29862: Facts: 29862: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29862: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29862: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 29862: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 29862: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 29862: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 29862: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 29862: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 29862: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 29862: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 29862: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 29862: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29862: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 29862: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 29862: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 29862: Id : 17, {_}: multiply ?44 (multiply ?45 (multiply ?46 ?45)) =?= multiply (multiply (multiply ?44 ?45) ?46) ?45 [46, 45, 44] by right_moufang ?44 ?45 ?46 29862: Goal: 29862: Id : 1, {_}: add (associator (multiply x y) z w) (associator x y (commutator z w)) =<= add (multiply x (associator y z w)) (multiply (associator x z w) y) [] by prove_challenge 29862: Order: 29862: nrkbo 29862: Leaf order: 29862: additive_inverse 6 1 0 29862: additive_identity 8 0 0 29862: add 18 2 2 0,2 29862: commutator 2 2 1 0,3,2,2 29862: associator 5 3 4 0,1,2 29862: w 4 0 4 3,1,2 29862: z 4 0 4 2,1,2 29862: multiply 31 2 3 0,1,1,2 29862: y 4 0 4 2,1,1,2 29862: x 4 0 4 1,1,1,2 NO CLASH, using fixed ground order 29863: Facts: 29863: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29863: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29863: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 29863: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 29863: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 29863: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 29863: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 29863: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 29863: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 29863: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 29863: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 29863: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29863: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 29863: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 29863: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 29863: Id : 17, {_}: multiply ?44 (multiply ?45 (multiply ?46 ?45)) =<= multiply (multiply (multiply ?44 ?45) ?46) ?45 [46, 45, 44] by right_moufang ?44 ?45 ?46 29863: Goal: 29863: Id : 1, {_}: add (associator (multiply x y) z w) (associator x y (commutator z w)) =<= add (multiply x (associator y z w)) (multiply (associator x z w) y) [] by prove_challenge 29863: Order: 29863: kbo 29863: Leaf order: 29863: additive_inverse 6 1 0 29863: additive_identity 8 0 0 29863: add 18 2 2 0,2 29863: commutator 2 2 1 0,3,2,2 29863: associator 5 3 4 0,1,2 29863: w 4 0 4 3,1,2 29863: z 4 0 4 2,1,2 29863: multiply 31 2 3 0,1,1,2 29863: y 4 0 4 2,1,1,2 29863: x 4 0 4 1,1,1,2 NO CLASH, using fixed ground order 29864: Facts: 29864: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29864: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29864: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 29864: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 29864: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 29864: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 29864: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 29864: Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 29864: Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 29864: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 29864: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 29864: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29864: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 29864: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 29864: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 29864: Id : 17, {_}: multiply ?44 (multiply ?45 (multiply ?46 ?45)) =<= multiply (multiply (multiply ?44 ?45) ?46) ?45 [46, 45, 44] by right_moufang ?44 ?45 ?46 29864: Goal: 29864: Id : 1, {_}: add (associator (multiply x y) z w) (associator x y (commutator z w)) =<= add (multiply x (associator y z w)) (multiply (associator x z w) y) [] by prove_challenge 29864: Order: 29864: lpo 29864: Leaf order: 29864: additive_inverse 6 1 0 29864: additive_identity 8 0 0 29864: add 18 2 2 0,2 29864: commutator 2 2 1 0,3,2,2 29864: associator 5 3 4 0,1,2 29864: w 4 0 4 3,1,2 29864: z 4 0 4 2,1,2 29864: multiply 31 2 3 0,1,1,2 29864: y 4 0 4 2,1,1,2 29864: x 4 0 4 1,1,1,2 % SZS status Timeout for RNG033-8.p NO CLASH, using fixed ground order 29900: Facts: 29900: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29900: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29900: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 29900: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 29900: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 29900: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 29900: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 29900: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 29900: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 29900: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 29900: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 29900: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29900: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 29900: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 29900: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 29900: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 29900: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 29900: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 29900: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 29900: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 29900: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 29900: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 29900: Id : 24, {_}: multiply ?69 (multiply ?70 (multiply ?71 ?70)) =?= multiply (multiply (multiply ?69 ?70) ?71) ?70 [71, 70, 69] by right_moufang ?69 ?70 ?71 29900: Goal: 29900: Id : 1, {_}: add (associator (multiply x y) z w) (associator x y (commutator z w)) =<= add (multiply x (associator y z w)) (multiply (associator x z w) y) [] by prove_challenge 29900: Order: 29900: nrkbo 29900: Leaf order: 29900: additive_inverse 22 1 0 29900: additive_identity 8 0 0 29900: add 26 2 2 0,2 29900: commutator 2 2 1 0,3,2,2 29900: associator 5 3 4 0,1,2 29900: w 4 0 4 3,1,2 29900: z 4 0 4 2,1,2 29900: multiply 49 2 3 0,1,1,2 29900: y 4 0 4 2,1,1,2 29900: x 4 0 4 1,1,1,2 NO CLASH, using fixed ground order 29901: Facts: 29901: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29901: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29901: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 29901: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 29901: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 29901: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 29901: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 29901: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 29901: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 29901: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 29901: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 29901: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29901: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 29901: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 29901: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 29901: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 29901: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 29901: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 29901: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 29901: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 29901: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 29901: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 29901: Id : 24, {_}: multiply ?69 (multiply ?70 (multiply ?71 ?70)) =<= multiply (multiply (multiply ?69 ?70) ?71) ?70 [71, 70, 69] by right_moufang ?69 ?70 ?71 29901: Goal: 29901: Id : 1, {_}: add (associator (multiply x y) z w) (associator x y (commutator z w)) =<= add (multiply x (associator y z w)) (multiply (associator x z w) y) [] by prove_challenge 29901: Order: 29901: kbo 29901: Leaf order: 29901: additive_inverse 22 1 0 29901: additive_identity 8 0 0 29901: add 26 2 2 0,2 29901: commutator 2 2 1 0,3,2,2 29901: associator 5 3 4 0,1,2 29901: w 4 0 4 3,1,2 29901: z 4 0 4 2,1,2 29901: multiply 49 2 3 0,1,1,2 29901: y 4 0 4 2,1,1,2 29901: x 4 0 4 1,1,1,2 NO CLASH, using fixed ground order 29902: Facts: 29902: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29902: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29902: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 29902: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 29902: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 29902: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 29902: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 29902: Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 29902: Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 29902: Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 29902: Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 29902: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 29902: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 29902: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 29902: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 29902: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 29902: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 29902: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 29902: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =>= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 29902: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =>= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 29902: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =>= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 29902: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =>= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 29902: Id : 24, {_}: multiply ?69 (multiply ?70 (multiply ?71 ?70)) =<= multiply (multiply (multiply ?69 ?70) ?71) ?70 [71, 70, 69] by right_moufang ?69 ?70 ?71 29902: Goal: 29902: Id : 1, {_}: add (associator (multiply x y) z w) (associator x y (commutator z w)) =<= add (multiply x (associator y z w)) (multiply (associator x z w) y) [] by prove_challenge 29902: Order: 29902: lpo 29902: Leaf order: 29902: additive_inverse 22 1 0 29902: additive_identity 8 0 0 29902: add 26 2 2 0,2 29902: commutator 2 2 1 0,3,2,2 29902: associator 5 3 4 0,1,2 29902: w 4 0 4 3,1,2 29902: z 4 0 4 2,1,2 29902: multiply 49 2 3 0,1,1,2 29902: y 4 0 4 2,1,1,2 29902: x 4 0 4 1,1,1,2 % SZS status Timeout for RNG033-9.p NO CLASH, using fixed ground order 29918: Facts: 29918: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29918: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29918: Id : 4, {_}: add (additive_inverse ?6) ?6 =>= additive_identity [6] by left_additive_inverse ?6 29918: Id : 5, {_}: add ?8 (additive_inverse ?8) =>= additive_identity [8] by right_additive_inverse ?8 29918: Id : 6, {_}: add ?10 (add ?11 ?12) =?= add (add ?10 ?11) ?12 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12 29918: Id : 7, {_}: add ?14 ?15 =?= add ?15 ?14 [15, 14] by commutativity_for_addition ?14 ?15 29918: Id : 8, {_}: multiply ?17 (multiply ?18 ?19) =?= multiply (multiply ?17 ?18) ?19 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19 29918: Id : 9, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 29918: Id : 10, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 29918: Id : 11, {_}: multiply ?29 (multiply ?29 (multiply ?29 (multiply ?29 ?29))) =>= ?29 [29] by x_fifthed_is_x ?29 29918: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c 29918: Goal: 29918: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity 29918: Order: 29918: nrkbo 29918: Leaf order: 29918: additive_inverse 2 1 0 29918: add 14 2 0 29918: additive_identity 4 0 0 29918: c 2 0 1 3 29918: multiply 16 2 1 0,2 29918: a 2 0 1 2,2 29918: b 2 0 1 1,2 NO CLASH, using fixed ground order 29919: Facts: 29919: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29919: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29919: Id : 4, {_}: add (additive_inverse ?6) ?6 =>= additive_identity [6] by left_additive_inverse ?6 29919: Id : 5, {_}: add ?8 (additive_inverse ?8) =>= additive_identity [8] by right_additive_inverse ?8 29919: Id : 6, {_}: add ?10 (add ?11 ?12) =<= add (add ?10 ?11) ?12 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12 29919: Id : 7, {_}: add ?14 ?15 =?= add ?15 ?14 [15, 14] by commutativity_for_addition ?14 ?15 29919: Id : 8, {_}: multiply ?17 (multiply ?18 ?19) =<= multiply (multiply ?17 ?18) ?19 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19 29919: Id : 9, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 29919: Id : 10, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 29919: Id : 11, {_}: multiply ?29 (multiply ?29 (multiply ?29 (multiply ?29 ?29))) =>= ?29 [29] by x_fifthed_is_x ?29 29919: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c 29919: Goal: 29919: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity 29919: Order: 29919: kbo 29919: Leaf order: 29919: additive_inverse 2 1 0 29919: add 14 2 0 29919: additive_identity 4 0 0 NO CLASH, using fixed ground order 29920: Facts: 29920: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 29920: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 29920: Id : 4, {_}: add (additive_inverse ?6) ?6 =>= additive_identity [6] by left_additive_inverse ?6 29920: Id : 5, {_}: add ?8 (additive_inverse ?8) =>= additive_identity [8] by right_additive_inverse ?8 29920: Id : 6, {_}: add ?10 (add ?11 ?12) =<= add (add ?10 ?11) ?12 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12 29920: Id : 7, {_}: add ?14 ?15 =?= add ?15 ?14 [15, 14] by commutativity_for_addition ?14 ?15 29920: Id : 8, {_}: multiply ?17 (multiply ?18 ?19) =<= multiply (multiply ?17 ?18) ?19 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19 29920: Id : 9, {_}: multiply ?21 (add ?22 ?23) =>= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 29920: Id : 10, {_}: multiply (add ?25 ?26) ?27 =>= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 29920: Id : 11, {_}: multiply ?29 (multiply ?29 (multiply ?29 (multiply ?29 ?29))) =>= ?29 [29] by x_fifthed_is_x ?29 29920: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c 29920: Goal: 29920: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity 29920: Order: 29920: lpo 29920: Leaf order: 29920: additive_inverse 2 1 0 29920: add 14 2 0 29920: additive_identity 4 0 0 29920: c 2 0 1 3 29920: multiply 16 2 1 0,2 29920: a 2 0 1 2,2 29920: b 2 0 1 1,2 29919: c 2 0 1 3 29919: multiply 16 2 1 0,2 29919: a 2 0 1 2,2 29919: b 2 0 1 1,2 % SZS status Timeout for RNG036-7.p NO CLASH, using fixed ground order 29951: Facts: 29951: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 29951: Id : 3, {_}: add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 29951: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 29951: Goal: 29951: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 29951: Order: 29951: nrkbo 29951: Leaf order: 29951: add 12 2 3 0,2 29951: negate 9 1 5 0,1,2 29951: b 3 0 3 1,2,1,1,2 29951: a 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 29952: Facts: 29952: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 29952: Id : 3, {_}: add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 29952: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 29952: Goal: 29952: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 29952: Order: 29952: kbo 29952: Leaf order: 29952: add 12 2 3 0,2 29952: negate 9 1 5 0,1,2 29952: b 3 0 3 1,2,1,1,2 29952: a 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 29953: Facts: 29953: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 29953: Id : 3, {_}: add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 29953: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 29953: Goal: 29953: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 29953: Order: 29953: lpo 29953: Leaf order: 29953: add 12 2 3 0,2 29953: negate 9 1 5 0,1,2 29953: b 3 0 3 1,2,1,1,2 29953: a 2 0 2 1,1,1,2 % SZS status Timeout for ROB001-1.p NO CLASH, using fixed ground order 29969: Facts: 29969: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 29969: Id : 3, {_}: add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 29969: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 29969: Id : 5, {_}: negate (add a b) =>= negate b [] by condition 29969: Goal: 29969: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 29969: Order: 29969: nrkbo 29969: Leaf order: 29969: add 13 2 3 0,2 29969: negate 11 1 5 0,1,2 29969: b 5 0 3 1,2,1,1,2 29969: a 3 0 2 1,1,1,2 NO CLASH, using fixed ground order 29970: Facts: 29970: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 29970: Id : 3, {_}: add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 29970: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 29970: Id : 5, {_}: negate (add a b) =>= negate b [] by condition 29970: Goal: 29970: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 29970: Order: 29970: kbo 29970: Leaf order: 29970: add 13 2 3 0,2 29970: negate 11 1 5 0,1,2 29970: b 5 0 3 1,2,1,1,2 29970: a 3 0 2 1,1,1,2 NO CLASH, using fixed ground order 29971: Facts: 29971: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 29971: Id : 3, {_}: add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 29971: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 29971: Id : 5, {_}: negate (add a b) =>= negate b [] by condition 29971: Goal: 29971: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 29971: Order: 29971: lpo 29971: Leaf order: 29971: add 13 2 3 0,2 29971: negate 11 1 5 0,1,2 29971: b 5 0 3 1,2,1,1,2 29971: a 3 0 2 1,1,1,2 % SZS status Timeout for ROB007-1.p NO CLASH, using fixed ground order 29998: Facts: 29998: Id : 2, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4 29998: Id : 3, {_}: add (add ?6 ?7) ?8 =?= add ?6 (add ?7 ?8) [8, 7, 6] by associativity_of_add ?6 ?7 ?8 29998: Id : 4, {_}: negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11)))) =>= ?10 [11, 10] by robbins_axiom ?10 ?11 29998: Id : 5, {_}: negate (add a b) =>= negate b [] by condition 29998: Goal: 29998: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1 29998: Order: 29998: nrkbo 29998: Leaf order: 29998: b 2 0 0 29998: a 1 0 0 29998: negate 6 1 0 29998: add 11 2 1 0,2 NO CLASH, using fixed ground order 29999: Facts: 29999: Id : 2, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4 29999: Id : 3, {_}: add (add ?6 ?7) ?8 =>= add ?6 (add ?7 ?8) [8, 7, 6] by associativity_of_add ?6 ?7 ?8 29999: Id : 4, {_}: negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11)))) =>= ?10 [11, 10] by robbins_axiom ?10 ?11 29999: Id : 5, {_}: negate (add a b) =>= negate b [] by condition 29999: Goal: 29999: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1 29999: Order: 29999: kbo 29999: Leaf order: 29999: b 2 0 0 29999: a 1 0 0 29999: negate 6 1 0 29999: add 11 2 1 0,2 NO CLASH, using fixed ground order 30000: Facts: 30000: Id : 2, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4 30000: Id : 3, {_}: add (add ?6 ?7) ?8 =>= add ?6 (add ?7 ?8) [8, 7, 6] by associativity_of_add ?6 ?7 ?8 30000: Id : 4, {_}: negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11)))) =>= ?10 [11, 10] by robbins_axiom ?10 ?11 30000: Id : 5, {_}: negate (add a b) =>= negate b [] by condition 30000: Goal: 30000: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1 30000: Order: 30000: lpo 30000: Leaf order: 30000: b 2 0 0 30000: a 1 0 0 30000: negate 6 1 0 30000: add 11 2 1 0,2 % SZS status Timeout for ROB007-2.p NO CLASH, using fixed ground order 30074: Facts: 30074: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 NO CLASH, using fixed ground order 30075: Facts: 30075: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 30075: Id : 3, {_}: add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 30075: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 30075: Id : 5, {_}: negate (add a (negate b)) =>= b [] by condition1 30075: Goal: 30075: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 30075: Order: 30075: kbo 30075: Leaf order: 30075: add 13 2 3 0,2 30075: negate 11 1 5 0,1,2 30075: b 5 0 3 1,2,1,1,2 30075: a 3 0 2 1,1,1,2 30074: Id : 3, {_}: add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 30074: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 30074: Id : 5, {_}: negate (add a (negate b)) =>= b [] by condition1 30074: Goal: 30074: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 30074: Order: 30074: nrkbo 30074: Leaf order: 30074: add 13 2 3 0,2 30074: negate 11 1 5 0,1,2 30074: b 5 0 3 1,2,1,1,2 30074: a 3 0 2 1,1,1,2 NO CLASH, using fixed ground order 30076: Facts: 30076: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 30076: Id : 3, {_}: add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 30076: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 30076: Id : 5, {_}: negate (add a (negate b)) =>= b [] by condition1 30076: Goal: 30076: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 30076: Order: 30076: lpo 30076: Leaf order: 30076: add 13 2 3 0,2 30076: negate 11 1 5 0,1,2 30076: b 5 0 3 1,2,1,1,2 30076: a 3 0 2 1,1,1,2 % SZS status Timeout for ROB020-1.p NO CLASH, using fixed ground order 30104: Facts: 30104: Id : 2, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4 30104: Id : 3, {_}: add (add ?6 ?7) ?8 =?= add ?6 (add ?7 ?8) [8, 7, 6] by associativity_of_add ?6 ?7 ?8 30104: Id : 4, {_}: negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11)))) =>= ?10 [11, 10] by robbins_axiom ?10 ?11 30104: Id : 5, {_}: negate (add a (negate b)) =>= b [] by condition1 30104: Goal: 30104: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1 30104: Order: 30104: nrkbo 30104: Leaf order: 30104: b 2 0 0 30104: a 1 0 0 30104: negate 6 1 0 30104: add 11 2 1 0,2 NO CLASH, using fixed ground order 30105: Facts: 30105: Id : 2, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4 30105: Id : 3, {_}: add (add ?6 ?7) ?8 =>= add ?6 (add ?7 ?8) [8, 7, 6] by associativity_of_add ?6 ?7 ?8 30105: Id : 4, {_}: negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11)))) =>= ?10 [11, 10] by robbins_axiom ?10 ?11 30105: Id : 5, {_}: negate (add a (negate b)) =>= b [] by condition1 30105: Goal: 30105: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1 30105: Order: 30105: kbo 30105: Leaf order: 30105: b 2 0 0 30105: a 1 0 0 30105: negate 6 1 0 30105: add 11 2 1 0,2 NO CLASH, using fixed ground order 30106: Facts: 30106: Id : 2, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4 30106: Id : 3, {_}: add (add ?6 ?7) ?8 =>= add ?6 (add ?7 ?8) [8, 7, 6] by associativity_of_add ?6 ?7 ?8 30106: Id : 4, {_}: negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11)))) =>= ?10 [11, 10] by robbins_axiom ?10 ?11 30106: Id : 5, {_}: negate (add a (negate b)) =>= b [] by condition1 30106: Goal: 30106: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1 30106: Order: 30106: lpo 30106: Leaf order: 30106: b 2 0 0 30106: a 1 0 0 30106: negate 6 1 0 30106: add 11 2 1 0,2 % SZS status Timeout for ROB020-2.p NO CLASH, using fixed ground order 30123: Facts: 30123: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 30123: Id : 3, {_}: add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 30123: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 30123: Id : 5, {_}: negate (add (negate (add a (add a b))) (negate (add a (negate b)))) =>= a [] by the_condition 30123: Goal: 30123: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 30123: Order: 30123: nrkbo 30123: Leaf order: 30123: add 16 2 3 0,2 30123: negate 13 1 5 0,1,2 30123: b 5 0 3 1,2,1,1,2 30123: a 6 0 2 1,1,1,2 NO CLASH, using fixed ground order 30124: Facts: 30124: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 30124: Id : 3, {_}: add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 30124: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 30124: Id : 5, {_}: negate (add (negate (add a (add a b))) (negate (add a (negate b)))) =>= a [] by the_condition 30124: Goal: 30124: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 30124: Order: 30124: kbo 30124: Leaf order: 30124: add 16 2 3 0,2 30124: negate 13 1 5 0,1,2 30124: b 5 0 3 1,2,1,1,2 30124: a 6 0 2 1,1,1,2 NO CLASH, using fixed ground order 30125: Facts: 30125: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 30125: Id : 3, {_}: add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 30125: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 30125: Id : 5, {_}: negate (add (negate (add a (add a b))) (negate (add a (negate b)))) =>= a [] by the_condition 30125: Goal: 30125: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 30125: Order: 30125: lpo 30125: Leaf order: 30125: add 16 2 3 0,2 30125: negate 13 1 5 0,1,2 30125: b 5 0 3 1,2,1,1,2 30125: a 6 0 2 1,1,1,2 % SZS status Timeout for ROB024-1.p NO CLASH, using fixed ground order 30152: Facts: 30152: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 30152: Id : 3, {_}: add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 30152: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 30152: Id : 5, {_}: negate (negate c) =>= c [] by double_negation 30152: Goal: 30152: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 30152: Order: 30152: nrkbo 30152: Leaf order: 30152: c 2 0 0 30152: add 12 2 3 0,2 30152: negate 11 1 5 0,1,2 30152: b 3 0 3 1,2,1,1,2 30152: a 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 30153: Facts: 30153: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 30153: Id : 3, {_}: add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 30153: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 30153: Id : 5, {_}: negate (negate c) =>= c [] by double_negation 30153: Goal: 30153: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 30153: Order: 30153: kbo 30153: Leaf order: 30153: c 2 0 0 30153: add 12 2 3 0,2 30153: negate 11 1 5 0,1,2 30153: b 3 0 3 1,2,1,1,2 30153: a 2 0 2 1,1,1,2 NO CLASH, using fixed ground order 30154: Facts: 30154: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 30154: Id : 3, {_}: add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 30154: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 30154: Id : 5, {_}: negate (negate c) =>= c [] by double_negation 30154: Goal: 30154: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom 30154: Order: 30154: lpo 30154: Leaf order: 30154: c 2 0 0 30154: add 12 2 3 0,2 30154: negate 11 1 5 0,1,2 30154: b 3 0 3 1,2,1,1,2 30154: a 2 0 2 1,1,1,2 % SZS status Timeout for ROB027-1.p NO CLASH, using fixed ground order 30170: Facts: 30170: Id : 2, {_}: add ?4 ?5 =?= add ?5 ?4 [5, 4] by commutativity_of_add ?4 ?5 30170: Id : 3, {_}: add (add ?7 ?8) ?9 =?= add ?7 (add ?8 ?9) [9, 8, 7] by associativity_of_add ?7 ?8 ?9 30170: Id : 4, {_}: negate (add (negate (add ?11 ?12)) (negate (add ?11 (negate ?12)))) =>= ?11 [12, 11] by robbins_axiom ?11 ?12 30170: Goal: 30170: Id : 1, {_}: negate (add ?1 ?2) =>= negate ?2 [2, 1] by prove_absorption_within_negation ?1 ?2 30170: Order: 30170: nrkbo 30170: Leaf order: 30170: negate 6 1 2 0,2 30170: add 10 2 1 0,1,2 NO CLASH, using fixed ground order 30171: Facts: 30171: Id : 2, {_}: add ?4 ?5 =?= add ?5 ?4 [5, 4] by commutativity_of_add ?4 ?5 30171: Id : 3, {_}: add (add ?7 ?8) ?9 =>= add ?7 (add ?8 ?9) [9, 8, 7] by associativity_of_add ?7 ?8 ?9 30171: Id : 4, {_}: negate (add (negate (add ?11 ?12)) (negate (add ?11 (negate ?12)))) =>= ?11 [12, 11] by robbins_axiom ?11 ?12 30171: Goal: 30171: Id : 1, {_}: negate (add ?1 ?2) =>= negate ?2 [2, 1] by prove_absorption_within_negation ?1 ?2 30171: Order: 30171: kbo 30171: Leaf order: 30171: negate 6 1 2 0,2 30171: add 10 2 1 0,1,2 NO CLASH, using fixed ground order 30172: Facts: 30172: Id : 2, {_}: add ?4 ?5 =?= add ?5 ?4 [5, 4] by commutativity_of_add ?4 ?5 30172: Id : 3, {_}: add (add ?7 ?8) ?9 =>= add ?7 (add ?8 ?9) [9, 8, 7] by associativity_of_add ?7 ?8 ?9 30172: Id : 4, {_}: negate (add (negate (add ?11 ?12)) (negate (add ?11 (negate ?12)))) =>= ?11 [12, 11] by robbins_axiom ?11 ?12 30172: Goal: 30172: Id : 1, {_}: negate (add ?1 ?2) =>= negate ?2 [2, 1] by prove_absorption_within_negation ?1 ?2 30172: Order: 30172: lpo 30172: Leaf order: 30172: negate 6 1 2 0,2 30172: add 10 2 1 0,1,2 % SZS status Timeout for ROB031-1.p NO CLASH, using fixed ground order 30204: Facts: 30204: Id : 2, {_}: add ?4 ?5 =?= add ?5 ?4 [5, 4] by commutativity_of_add ?4 ?5 NO CLASH, using fixed ground order 30205: Facts: 30205: Id : 2, {_}: add ?4 ?5 =?= add ?5 ?4 [5, 4] by commutativity_of_add ?4 ?5 30205: Id : 3, {_}: add (add ?7 ?8) ?9 =>= add ?7 (add ?8 ?9) [9, 8, 7] by associativity_of_add ?7 ?8 ?9 30205: Id : 4, {_}: negate (add (negate (add ?11 ?12)) (negate (add ?11 (negate ?12)))) =>= ?11 [12, 11] by robbins_axiom ?11 ?12 30205: Goal: 30205: Id : 1, {_}: add ?1 ?2 =>= ?2 [2, 1] by prove_absorbtion ?1 ?2 30205: Order: 30205: kbo 30205: Leaf order: 30205: negate 4 1 0 30205: add 10 2 1 0,2 30204: Id : 3, {_}: add (add ?7 ?8) ?9 =?= add ?7 (add ?8 ?9) [9, 8, 7] by associativity_of_add ?7 ?8 ?9 30204: Id : 4, {_}: negate (add (negate (add ?11 ?12)) (negate (add ?11 (negate ?12)))) =>= ?11 [12, 11] by robbins_axiom ?11 ?12 30204: Goal: 30204: Id : 1, {_}: add ?1 ?2 =>= ?2 [2, 1] by prove_absorbtion ?1 ?2 30204: Order: 30204: nrkbo 30204: Leaf order: 30204: negate 4 1 0 30204: add 10 2 1 0,2 NO CLASH, using fixed ground order 30206: Facts: 30206: Id : 2, {_}: add ?4 ?5 =?= add ?5 ?4 [5, 4] by commutativity_of_add ?4 ?5 30206: Id : 3, {_}: add (add ?7 ?8) ?9 =>= add ?7 (add ?8 ?9) [9, 8, 7] by associativity_of_add ?7 ?8 ?9 30206: Id : 4, {_}: negate (add (negate (add ?11 ?12)) (negate (add ?11 (negate ?12)))) =>= ?11 [12, 11] by robbins_axiom ?11 ?12 30206: Goal: 30206: Id : 1, {_}: add ?1 ?2 =>= ?2 [2, 1] by prove_absorbtion ?1 ?2 30206: Order: 30206: lpo 30206: Leaf order: 30206: negate 4 1 0 30206: add 10 2 1 0,2 % SZS status Timeout for ROB032-1.p