(* Copyright (C) 2003-2005, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) module C = Cic module L = CicClassify module P = ProceduralTypes module D = Deannotate module DTI = DoubleTypeInference module TC = CicTypeChecker module U = CicUniv module UM = UriManager module Obj = LibraryObjects module HObj = HelmLibraryObjects module A = Cic2acic module T = CicUtil type status = { sorts : (C.id, Cic2acic.sort_kind) Hashtbl.t; types : (C.id, A.anntypes) Hashtbl.t; prefix: string; max_depth: int option; depth: int; entries: C.context; intros: string list } (* helpers ******************************************************************) let cic = D.deannotate_term let split2_last l1 l2 = try let n = pred (List.length l1) in let before1, after1 = P.list_split n l1 in let before2, after2 = P.list_split n l2 in before1, before2, List.hd after1, List.hd after2 with Invalid_argument _ -> failwith "A2P.split2_last" let string_of_head = function | C.ASort _ -> "sort" | C.AConst _ -> "const" | C.AMutInd _ -> "mutind" | C.AMutConstruct _ -> "mutconstruct" | C.AVar _ -> "var" | C.ARel _ -> "rel" | C.AProd _ -> "prod" | C.ALambda _ -> "lambda" | C.ALetIn _ -> "letin" | C.AFix _ -> "fix" | C.ACoFix _ -> "cofix" | C.AAppl _ -> "appl" | C.ACast _ -> "cast" | C.AMutCase _ -> "mutcase" | C.AMeta _ -> "meta" | C.AImplicit _ -> "implict" let next st = {st with depth = succ st.depth; intros = []} let add st entry intro = {st with entries = entry :: st.entries; intros = intro :: st.intros} let test_depth st = try let msg = Printf.sprintf "Depth %u: " st.depth in match st.max_depth with | None -> true, "" | Some d -> if st.depth < d then true, msg else false, "DEPTH EXCEDED" with Invalid_argument _ -> failwith "A2P.test_depth" let get_itype st v = try let id = T.id_of_annterm v in try Some ((Hashtbl.find st.types id).A.annsynthesized) with Not_found -> None with Invalid_argument _ -> failwith "A2P.get_itype" (* proof construction *******************************************************) let unused_premise = "UNUSED" let get_intro name t = try match name with | C.Anonymous -> unused_premise | C.Name s -> if DTI.does_not_occur 1 (cic t) then unused_premise else s with Invalid_argument _ -> failwith "A2P.get_intro" let mk_intros st script = try if st.intros = [] then script else let count = List.length st.intros in P.Intros (Some count, List.rev st.intros, "") :: script with Invalid_argument _ -> failwith "A2P.mk_intros" let is_rewrite_right = function | C.AConst (_, uri, []) -> UM.eq uri HObj.Logic.eq_ind_r_URI || Obj.is_eq_ind_r_URI uri | _ -> false let is_rewrite_left = function | C.AConst (_, uri, []) -> UM.eq uri HObj.Logic.eq_ind_URI || Obj.is_eq_ind_URI uri | _ -> false let mk_premise = function | C.ARel (_, _, _, binder) -> binder | C.AVar (_, uri, _) | C.AConst (_, uri, _) -> UM.name_of_uri uri | C.ASort (_, sort) -> assert false | C.AMutInd (_, uri, tno, _) -> assert false | C.AMutConstruct (_, uri, tno, cno, _) -> assert false | _ -> assert false let rec mk_fwd_proof st dtext name = function | C.AAppl (_, hd :: tl) as v -> if is_rewrite_right hd then let what, where = List.nth tl 5, List.nth tl 3 in let premise = mk_premise where in [P.Rewrite (true, what, Some (premise, name), dtext)] else if is_rewrite_left hd then let what, where = List.nth tl 5, List.nth tl 3 in let premise = mk_premise where in [P.Rewrite (false, what, Some (premise, name), dtext)] else begin match get_itype st v with | Some ty -> let qs = [[P.Id ""]; mk_proof (next st) v] in [P.Branch (qs, ""); P.Cut (name, ty, dtext)] | None -> let ty, _ = TC.type_of_aux' [] st.entries (cic hd) U.empty_ugraph in let (classes, rc) as h = L.classify ty in let text = Printf.sprintf "%u %s" (List.length classes) (L.to_string h) in [P.LetIn (name, v, dtext ^ text)] end | v -> [P.LetIn (name, v, dtext)] and mk_proof st = function | C.ALambda (_, name, v, t) -> let entry = Some (name, C.Decl (cic v)) in let intro = get_intro name t in mk_proof (add st entry intro) t | C.ALetIn (_, name, v, t) as what -> let proceed, dtext = test_depth st in let script = if proceed then let entry = Some (name, C.Def (cic v, None)) in let intro = get_intro name t in let q = mk_proof (next (add st entry intro)) t in List.rev_append (mk_fwd_proof st dtext intro v) q else [P.Apply (what, dtext)] in mk_intros st script | C.ARel _ as what -> let _, dtext = test_depth st in let script = [P.Apply (what, dtext)] in mk_intros st script | C.AAppl (_, hd :: tl) as t -> let proceed, dtext = test_depth st in let script = if proceed then let ty, _ = TC.type_of_aux' [] st.entries (cic hd) U.empty_ugraph in let (classes, rc) as h = L.classify ty in let synth = L.S.singleton 0 in let text = Printf.sprintf "%u %s" (List.length classes) (L.to_string h) in match rc with | Some (i, j) when i > 1 -> let classes, tl, _, what = split2_last classes tl in let synth = L.S.add 1 synth in let qs = mk_bkd_proofs (next st) synth classes tl in if is_rewrite_right hd then [P.Rewrite (false, what, None, dtext); P.Branch (qs, "")] else if is_rewrite_left hd then [P.Rewrite (true, what, None, dtext); P.Branch (qs, "")] else let using = Some hd in [P.Elim (what, using, dtext ^ text); P.Branch (qs, "")] | _ -> let qs = mk_bkd_proofs (next st) synth classes tl in [P.Apply (hd, dtext ^ text); P.Branch (qs, "")] else [P.Apply (t, dtext)] in mk_intros st script | t -> let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head t) in let script = [P.Note text] in mk_intros st script and mk_bkd_proofs st synth classes ts = try let _, dtext = test_depth st in let aux inv v = if L.overlaps synth inv then None else if L.S.is_empty inv then Some (mk_proof st v) else Some [P.Apply (v, dtext ^ "dependent")] in let l1, l2 = List.length classes, List.length ts in if l1 > l2 then failwith "partial application" else if l1 < l2 then failwith "too many arguments" else P.list_map2_filter aux classes ts with Invalid_argument _ -> failwith "A2P.mk_bkd_proofs" (* object costruction *******************************************************) let is_theorem pars = List.mem (`Flavour `Theorem) pars || List.mem (`Flavour `Fact) pars || List.mem (`Flavour `Remark) pars || List.mem (`Flavour `Lemma) pars let mk_obj st = function | C.AConstant (_, _, s, Some v, t, [], pars) when is_theorem pars -> let ast = mk_proof st v in let count = P.count_steps 0 ast in let text = Printf.sprintf "tactics: %u" count in P.Theorem (s, t, text) :: ast @ [P.Qed ""] | _ -> failwith "not a theorem" (* interface functions ******************************************************) let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types prefix aobj = let st = { sorts = ids_to_inner_sorts; types = ids_to_inner_types; prefix = prefix; max_depth = None; depth = 0; entries = []; intros = [] } in prerr_endline "Level 2 transformation"; let steps = mk_obj st aobj in prerr_endline "grafite rendering"; List.rev (P.render_steps [] steps)