(* Copyright (C) 2005, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://helm.cs.unibo.it/ *) (* $Id: termAcicContent.ml 9304 2008-12-05 23:12:39Z sacerdot $ *) open Printf module Ast = CicNotationPt let debug = false let debug_print s = if debug then prerr_endline (Lazy.force s) else () (* type interpretation_id = int let idref id t = Ast.AttributedTerm (`IdRef id, t) type term_info = { sort: (Cic.id, Ast.sort_kind) Hashtbl.t; uri: (Cic.id, UriManager.uri) Hashtbl.t; } let get_types uri = let o,_ = CicEnvironment.get_obj CicUniv.oblivion_ugraph uri in match o with | Cic.InductiveDefinition (l,_,lpsno,_) -> l, lpsno | _ -> assert false let name_of_inductive_type uri i = let types, _ = get_types uri in let (name, _, _, _) = try List.nth types i with Not_found -> assert false in name (* returns pairs *) let constructors_of_inductive_type uri i = let types, _ = get_types uri in let (_, _, _, constructors) = try List.nth types i with Not_found -> assert false in constructors (* returns name only *) let constructor_of_inductive_type uri i j = (try fst (List.nth (constructors_of_inductive_type uri i) (j-1)) with Not_found -> assert false) (* returns the number of left parameters *) let left_params_no_of_inductive_type uri = snd (get_types uri) *) (* CODICE c&p da NCicPp *) let nast_of_cic ~subst ~context = let rec k ctx = function | NCic.Rel n -> (try let name,_ = List.nth ctx (n-1) in let name = if name = "_" then "__"^string_of_int n else name in Ast.Ident (name,None) with Failure "nth" | Invalid_argument "List.nth" -> Ast.Ident ("-" ^ string_of_int (n - List.length ctx),None)) | NCic.Const r -> Ast.Ident (NCicPp.r2s false r, None) | NCic.Meta (n,lc) when List.mem_assoc n subst -> let _,_,t,_ = List.assoc n subst in k ctx (NCicSubstitution.subst_meta lc t) | NCic.Meta (n,(s,l)) -> (* CSC: qua non dovremmo espandere *) let l = NCicUtils.expand_local_context l in Ast.Meta (n, List.map (fun x -> Some (k ctx (NCicSubstitution.lift s x))) l) | NCic.Sort NCic.Prop -> Ast.Sort `Prop | NCic.Sort NCic.Type _ -> Ast.Sort `Set (* CSC: | C.Sort (C.Type []) -> F.fprintf f "Type0" | C.Sort (C.Type [false, u]) -> F.fprintf f "%s" (NUri.name_of_uri u) | C.Sort (C.Type [true, u]) -> F.fprintf f "S(%s)" (NUri.name_of_uri u) | C.Sort (C.Type l) -> F.fprintf f "Max("; aux ctx (C.Sort (C.Type [List.hd l])); List.iter (fun x -> F.fprintf f ",";aux ctx (C.Sort (C.Type [x]))) (List.tl l); F.fprintf f ")"*) (* CSC: qua siamo grezzi *) | NCic.Implicit `Hole -> Ast.UserInput | NCic.Implicit _ -> Ast.Implicit | NCic.Prod (n,s,t) -> let binder_kind = `Forall in Ast.Binder (binder_kind, (Ast.Ident (n,None), Some (k ctx s)), k ((n,NCic.Decl s)::ctx) t) | NCic.Lambda (n,s,t) -> Ast.Binder (`Lambda,(Ast.Ident (n,None), Some (k ctx s)), k ((n,NCic.Decl s)::ctx) t) | NCic.LetIn (n,s,ty,t) -> Ast.LetIn ((Ast.Ident (n,None), Some (k ctx ty)), k ctx s, k ((n,NCic.Decl s)::ctx) t) | NCic.Appl (NCic.Meta (n,lc) :: args) when List.mem_assoc n subst -> let _,_,t,_ = List.assoc n subst in let hd = NCicSubstitution.subst_meta lc t in k ctx (NCicReduction.head_beta_reduce ~upto:(List.length args) (match hd with | NCic.Appl l -> NCic.Appl (l@args) | _ -> NCic.Appl (hd :: args))) | NCic.Appl args -> Ast.Appl (List.map (k ctx) args) | NCic.Match (uri,ty,te,patterns) -> (* let name = NReference.name_of_reference uri in let uri_str = UriManager.string_of_uri uri in let puri_str = sprintf "%s#xpointer(1/%d)" uri_str (typeno+1) in let ctor_puri j = UriManager.uri_of_string (sprintf "%s#xpointer(1/%d/%d)" uri_str (typeno+1) j) in let case_indty = name, Some (UriManager.uri_of_string puri_str) in let constructors = constructors_of_inductive_type uri typeno in let lpsno = left_params_no_of_inductive_type uri in let rec eat_branch n ty pat = match (ty, pat) with | NCic.Prod (_, _, t), _ when n > 0 -> eat_branch (pred n) t pat | NCic.Prod (_, _, t), NCic.ALambda (_, name, s, t') -> let (cv, rhs) = eat_branch 0 t t' in (CicNotationUtil.name_of_cic_name name, Some (k s)) :: cv, rhs | _, _ -> [], k pat in let j = ref 0 in let patterns = try List.map2 (fun (name, ty) pat -> incr j; let name,(capture_variables,rhs) = match output_type with `Term -> name, eat_branch lpsno ty pat | `Pattern -> "_", ([], k pat) in Ast.Pattern (name, Some (ctor_puri !j), capture_variables), rhs ) constructors patterns with Invalid_argument _ -> assert false in let indty = match output_type with `Pattern -> None | `Term -> Some case_indty in idref id (Ast.Case (k te, indty, Some (k ty), patterns)) *) assert false in k context ;; let nmap_sequent ~subst (i,(n,context,ty):int * NCic.conjecture) = let module K = Content in let context',_ = List.fold_right (fun item (res,context) -> match item with | name,NCic.Decl t -> Some (* We should call build_decl_item, but we have not computed *) (* the inner-types ==> we always produce a declaration *) (`Declaration { K.dec_name = (Some name); K.dec_id = "-1"; K.dec_inductive = false; K.dec_aref = "-1"; K.dec_type = nast_of_cic ~subst ~context t })::res,item::context | name,NCic.Def (t,ty) -> Some (* We should call build_def_item, but we have not computed *) (* the inner-types ==> we always produce a declaration *) (`Definition { K.def_name = (Some name); K.def_id = "-1"; K.def_aref = "-1"; K.def_term = nast_of_cic ~subst ~context t; K.def_type = nast_of_cic ~subst ~context ty })::res,item::context ) context ([],[]) in "-1",i,context',nast_of_cic ~subst ~context ty ;; (* (* persistent state *) let initial_level2_patterns32 () = Hashtbl.create 211 let initial_interpretations () = Hashtbl.create 211 let level2_patterns32 = ref (initial_level2_patterns32 ()) (* symb -> id list ref *) let interpretations = ref (initial_interpretations ()) let compiled32 = ref None let pattern32_matrix = ref [] let counter = ref ~-1 let stack = ref [] let push () = stack := (!counter,!level2_patterns32,!interpretations,!compiled32,!pattern32_matrix)::!stack; counter := ~-1; level2_patterns32 := initial_level2_patterns32 (); interpretations := initial_interpretations (); compiled32 := None; pattern32_matrix := [] ;; let pop () = match !stack with [] -> assert false | (ocounter,olevel2_patterns32,ointerpretations,ocompiled32,opattern32_matrix)::old -> stack := old; counter := ocounter; level2_patterns32 := olevel2_patterns32; interpretations := ointerpretations; compiled32 := ocompiled32; pattern32_matrix := opattern32_matrix ;; let get_compiled32 () = match !compiled32 with | None -> assert false | Some f -> Lazy.force f let set_compiled32 f = compiled32 := Some f let add_idrefs = List.fold_right (fun idref t -> Ast.AttributedTerm (`IdRef idref, t)) let instantiate32 term_info idrefs env symbol args = let rec instantiate_arg = function | Ast.IdentArg (n, name) -> let t = try List.assoc name env with Not_found -> prerr_endline ("name not found in env: "^name); assert false in let rec count_lambda = function | Ast.AttributedTerm (_, t) -> count_lambda t | Ast.Binder (`Lambda, _, body) -> 1 + count_lambda body | _ -> 0 in let rec add_lambda t n = if n > 0 then let name = CicNotationUtil.fresh_name () in Ast.Binder (`Lambda, (Ast.Ident (name, None), None), Ast.Appl [add_lambda t (n - 1); Ast.Ident (name, None)]) else t in add_lambda t (n - count_lambda t) in let head = let symbol = Ast.Symbol (symbol, 0) in add_idrefs idrefs symbol in if args = [] then head else Ast.Appl (head :: List.map instantiate_arg args) let rec ast_of_acic1 ~output_type term_info annterm = let id_to_uris = term_info.uri in let register_uri id uri = Hashtbl.add id_to_uris id uri in match (get_compiled32 ()) annterm with | None -> ast_of_acic0 ~output_type term_info annterm (ast_of_acic1 ~output_type) | Some (env, ctors, pid) -> let idrefs = List.map (fun annterm -> let idref = CicUtil.id_of_annterm annterm in (try register_uri idref (CicUtil.uri_of_term (Deannotate.deannotate_term annterm)) with Invalid_argument _ -> ()); idref) ctors in let env' = List.map (fun (name, term) -> name, ast_of_acic1 ~output_type term_info term) env in let _, symbol, args, _ = try Hashtbl.find !level2_patterns32 pid with Not_found -> assert false in let ast = instantiate32 term_info idrefs env' symbol args in Ast.AttributedTerm (`IdRef (CicUtil.id_of_annterm annterm), ast) let load_patterns32 t = let t = HExtlib.filter_map (function (true, ap, id) -> Some (ap, id) | _ -> None) t in set_compiled32 (lazy (Acic2astMatcher.Matcher32.compiler t)) let ast_of_acic ~output_type id_to_sort annterm = debug_print (lazy ("ast_of_acic <- " ^ CicPp.ppterm (Deannotate.deannotate_term annterm))); let term_info = { sort = id_to_sort; uri = Hashtbl.create 211 } in let ast = ast_of_acic1 ~output_type term_info annterm in debug_print (lazy ("ast_of_acic -> " ^ CicNotationPp.pp_term ast)); ast, term_info.uri let fresh_id = fun () -> incr counter; !counter let add_interpretation dsc (symbol, args) appl_pattern = let id = fresh_id () in Hashtbl.add !level2_patterns32 id (dsc, symbol, args, appl_pattern); pattern32_matrix := (true, appl_pattern, id) :: !pattern32_matrix; load_patterns32 !pattern32_matrix; (try let ids = Hashtbl.find !interpretations symbol in ids := id :: !ids with Not_found -> Hashtbl.add !interpretations symbol (ref [id])); id let get_all_interpretations () = List.map (function (_, _, id) -> let (dsc, _, _, _) = try Hashtbl.find !level2_patterns32 id with Not_found -> assert false in (id, dsc)) !pattern32_matrix let get_active_interpretations () = HExtlib.filter_map (function (true, _, id) -> Some id | _ -> None) !pattern32_matrix let set_active_interpretations ids = let pattern32_matrix' = List.map (function | (_, ap, id) when List.mem id ids -> (true, ap, id) | (_, ap, id) -> (false, ap, id)) !pattern32_matrix in pattern32_matrix := pattern32_matrix'; load_patterns32 !pattern32_matrix exception Interpretation_not_found let lookup_interpretations symbol = try HExtlib.list_uniq (List.sort Pervasives.compare (List.map (fun id -> let (dsc, _, args, appl_pattern) = try Hashtbl.find !level2_patterns32 id with Not_found -> assert false in dsc, args, appl_pattern) !(Hashtbl.find !interpretations symbol))) with Not_found -> raise Interpretation_not_found let remove_interpretation id = (try let dsc, symbol, _, _ = Hashtbl.find !level2_patterns32 id in let ids = Hashtbl.find !interpretations symbol in ids := List.filter ((<>) id) !ids; Hashtbl.remove !level2_patterns32 id; with Not_found -> raise Interpretation_not_found); pattern32_matrix := List.filter (fun (_, _, id') -> id <> id') !pattern32_matrix; load_patterns32 !pattern32_matrix let _ = load_patterns32 [] let instantiate_appl_pattern ~mk_appl ~mk_implicit ~term_of_uri env appl_pattern = let lookup name = try List.assoc name env with Not_found -> prerr_endline (sprintf "Name %s not found" name); assert false in let rec aux = function | Ast.UriPattern uri -> term_of_uri uri | Ast.ImplicitPattern -> mk_implicit false | Ast.VarPattern name -> lookup name | Ast.ApplPattern terms -> mk_appl (List.map aux terms) in aux appl_pattern *)