let convert_term = Obj.magic;; let cn_to_s = function | Cic.Anonymous -> "_" | Cic.Name s -> s ;; type ctx = | Ce of NCic.hypothesis | Fix of NReference.reference * string * NCic.term let splat mk_pi ctx t = List.fold_left (fun t c -> match c with | Ce (name, NCic.Def (bo,ty)) -> NCic.LetIn (name, ty, bo, t) | Ce (name, NCic.Decl ty) when mk_pi -> NCic.Prod (name, ty, t) | Ce (name, NCic.Decl ty) -> NCic.Lambda (name, ty, t) | Fix (_,name,ty) when mk_pi -> NCic.Prod (name, ty, t) | Fix (_,name,ty) -> NCic.Lambda (name,ty,t)) t ctx ;; let context_tassonomy ctx = let rec split inner acc acc1 = function | Ce _ :: tl when inner -> split inner (acc+1) (acc1+1) tl | Fix _ ::tl -> split false acc (acc1+1) tl | _ as l -> acc, List.length l, acc1 in split true 0 1 ctx ;; let splat_args_for_rel ctx t = let bound, free, primo_ce_dopo_fix = context_tassonomy ctx in if free = 0 then t else let rec aux = function | 0 -> [] | n -> (match List.nth ctx (n+bound) with | Fix (refe, _, _) when (n+bound) < primo_ce_dopo_fix -> NCic.Const refe | Fix _ | Ce _ -> NCic.Rel (n+bound)) :: aux (n-1) in NCic.Appl (t:: aux free) ;; let splat_args ctx t n_fix = let bound, free, primo_ce_dopo_fix = context_tassonomy ctx in let rec aux = function | 0 -> [] | n -> (match List.nth ctx (n-1) with | Ce _ when n <= bound -> NCic.Rel n | Fix (refe, _, _) when n < primo_ce_dopo_fix -> splat_args_for_rel ctx (NCic.Const refe) | Fix _ | Ce _ -> NCic.Rel (n - n_fix) ) :: aux (n-1) in NCic.Appl (t:: aux (List.length ctx)) ;; (* we are lambda-lifting also variables that do not occur *) (* ctx does not distinguish successive blocks of cofix, since there may be no * lambda separating them *) let convert_term uri t = let rec aux octx (ctx : ctx list) n_fix uri = function | Cic.CoFix (k, fl) -> let buri = UriManager.uri_of_string (UriManager.buri_of_uri uri^"/"^ UriManager.name_of_uri uri ^ string_of_int (List.length ctx)^".con") in let bctx, fixpoints_tys, tys, _ = List.fold_right (fun (name,ty,_) (ctx, fixpoints, tys, idx) -> let ty, fixpoints_ty = aux octx ctx n_fix uri ty in let r = NReference.reference_of_ouri buri(NReference.CoFix idx) in ctx @ [Fix (r,name,ty)], fixpoints_ty @ fixpoints,ty::tys,idx+1) fl ([], [], [], 0) in let bctx = bctx @ ctx in let n_fl = List.length fl in let boctx,_ = List.fold_left (fun (types,len) (n,ty,_) -> (Some (Cic.Name n,(Cic.Decl (CicSubstitution.lift len ty)))::types, len+1)) (octx,0) fl in let fl, fixpoints = List.fold_right2 (fun (name,_,bo) ty (l,fixpoints) -> let bo, fixpoints_bo = aux boctx bctx n_fl buri bo in (([],name,~-1,splat true ctx ty, splat false ctx bo)::l), fixpoints_bo @ fixpoints) fl tys ([],fixpoints_tys) in let obj = NUri.nuri_of_ouri buri,0,[],[], NCic.Fixpoint (false, fl, (`Generated, `Definition)) in splat_args ctx (NCic.Const (NReference.reference_of_ouri buri (NReference.CoFix k))) n_fix, fixpoints @ [obj] | Cic.Fix (k, fl) -> let buri = UriManager.uri_of_string (UriManager.buri_of_uri uri^"/"^ UriManager.name_of_uri uri ^ string_of_int (List.length ctx)^".con") in let rno = ref 0 in let bctx, fixpoints_tys, tys, _ = List.fold_right (fun (name,recno,ty,_) (ctx, fixpoints, tys, idx) -> let ty, fixpoints_ty = aux octx ctx n_fix uri ty in if idx = k then rno := recno; let r = NReference.reference_of_ouri buri (NReference.Fix (idx,recno)) in ctx @ [Fix (r,name,ty)], fixpoints_ty@fixpoints,ty::tys,idx+1) fl ([], [], [], 0) in let bctx = bctx @ ctx in let n_fl = List.length fl in let boctx,_ = List.fold_left (fun (types,len) (n,_,ty,_) -> (Some (Cic.Name n,(Cic.Decl (CicSubstitution.lift len ty)))::types, len+1)) (octx,0) fl in let fl, fixpoints = List.fold_right2 (fun (name,rno,_,bo) ty (l,fixpoints) -> let bo, fixpoints_bo = aux boctx bctx n_fl buri bo in let _, free, _ = context_tassonomy bctx in let rno = rno + free in (([],name,rno,splat true ctx ty, splat false ctx bo)::l), fixpoints_bo @ fixpoints) fl tys ([],fixpoints_tys) in let obj = NUri.nuri_of_ouri buri,0,[],[], NCic.Fixpoint (true, fl, (`Generated, `Definition)) in splat_args ctx (NCic.Const (NReference.reference_of_ouri buri (NReference.Fix (k,!rno)))) n_fix, fixpoints @ [obj] | Cic.Rel n -> let bound, _, primo_ce_dopo_fix = context_tassonomy ctx in (match List.nth ctx (n-1) with | Fix (r,_,_) when n < primo_ce_dopo_fix -> splat_args_for_rel ctx (NCic.Const r), [] | Ce _ when n <= bound -> NCic.Rel n, [] | Fix _ (* BUG 3 fix nested *) | Ce _ -> NCic.Rel (n-n_fix), []) | Cic.Lambda (name, (s as old_s), t) -> let s, fixpoints_s = aux octx ctx n_fix uri s in let ctx = Ce (cn_to_s name, NCic.Decl s) :: ctx in let octx = Some (name, Cic.Decl old_s) :: octx in let t, fixpoints_t = aux octx ctx n_fix uri t in NCic.Lambda (cn_to_s name, s, t), fixpoints_s @ fixpoints_t | Cic.Prod (name, (s as old_s), t) -> let s, fixpoints_s = aux octx ctx n_fix uri s in let ctx = Ce (cn_to_s name, NCic.Decl s) :: ctx in let octx = Some (name, Cic.Decl old_s) :: octx in let t, fixpoints_t = aux octx ctx n_fix uri t in NCic.Prod (cn_to_s name, s, t), fixpoints_s @ fixpoints_t | Cic.LetIn (name, (s as old_s), t) -> let s, fixpoints_s = aux octx ctx n_fix uri s in let old_ty,_ = CicTypeChecker.type_of_aux' [] octx old_s CicUniv.oblivion_ugraph in let ty, fixpoints_ty = aux octx ctx n_fix uri old_ty in let ctx = Ce (cn_to_s name, NCic.Def (s, ty)) :: ctx in let octx = Some (name, Cic.Def (old_s, Some old_ty)) :: octx in let t, fixpoints_t = aux octx ctx n_fix uri t in NCic.LetIn (cn_to_s name, ty, s, t), fixpoints_s @ fixpoints_t @ fixpoints_ty | Cic.Cast (t,ty) -> let t, fixpoints_t = aux octx ctx n_fix uri t in let ty, fixpoints_ty = aux octx ctx n_fix uri ty in NCic.LetIn ("cast", ty, t, NCic.Rel 1), fixpoints_t @ fixpoints_ty | Cic.Sort Cic.Prop -> NCic.Sort NCic.Prop,[] | Cic.Sort Cic.Set -> NCic.Sort NCic.Set,[] | Cic.Sort Cic.CProp -> NCic.Sort NCic.CProp,[] | Cic.Sort (Cic.Type _) -> NCic.Sort (NCic.Type 0),[] (* calculate depth in the univ_graph*) | Cic.Appl l -> let l, fixpoints = List.fold_right (fun t (l,acc) -> let t, fixpoints = aux octx ctx n_fix uri t in (t::l,fixpoints@acc)) l ([],[]) in (match l with | (NCic.Appl l1)::l2 -> NCic.Appl (l1@l2), fixpoints | _ -> NCic.Appl l, fixpoints) | Cic.Const (curi, _) -> NCic.Const (NReference.reference_of_ouri curi NReference.Def),[] | Cic.MutInd (curi, tyno, _) -> NCic.Const (NReference.reference_of_ouri curi (NReference.Ind tyno)),[] | Cic.MutConstruct (curi, tyno, consno, _) -> NCic.Const (NReference.reference_of_ouri curi (NReference.Con (tyno,consno))),[] | Cic.MutCase (curi, tyno, oty, t, branches) -> let r = NReference.reference_of_ouri curi (NReference.Ind tyno) in let oty, fixpoints_oty = aux octx ctx n_fix uri oty in let t, fixpoints_t = aux octx ctx n_fix uri t in let branches, fixpoints = List.fold_right (fun t (l,acc) -> let t, fixpoints = aux octx ctx n_fix uri t in (t::l,fixpoints@acc)) branches ([],[]) in NCic.Match (r,oty,t,branches), fixpoints_oty @ fixpoints_t @ fixpoints | Cic.Implicit _ | Cic.Meta _ | Cic.Var _ -> assert false in aux [] [] 0 uri t ;; let convert_obj_aux uri = function | Cic.Constant (name, None, ty, _, _) -> let nty, fixpoints = convert_term uri ty in assert(fixpoints = []); NCic.Constant ([], name, None, nty, (`Provided,`Theorem,`Regular)), fixpoints | Cic.Constant (name, Some bo, ty, _, _) -> let nbo, fixpoints_bo = convert_term uri bo in let nty, fixpoints_ty = convert_term uri ty in assert(fixpoints_ty = []); NCic.Constant ([], name, Some nbo, nty, (`Provided,`Theorem,`Regular)), fixpoints_bo @ fixpoints_ty | Cic.InductiveDefinition (_,_,_,_) -> assert false (* let ind = let _,x,_,_ = List.hd itl in x in let itl = List.map (fun name, _, ty, cl -> [], name, convert_term ty, List.map (fun name, ty -> [], name, convert_term ty) cl) itl in NCic.Inductive (ind, leftno, itl, (`Provided, `Regular)) *) | Cic.Variable _ | Cic.CurrentProof _ -> assert false ;; let convert_obj uri obj = let o, fixpoints = convert_obj_aux uri obj in let obj = NUri.nuri_of_ouri uri,0, [], [], o in fixpoints @ [obj] ;;