module Ref = NReference type ctx = | Ce of (NCic.hypothesis * NCic.obj list) Lazy.t | Fix of (Ref.reference * string * NCic.term) Lazy.t let strictify = function Ce l -> `Ce (Lazy.force l) | Fix l -> `Fix (Lazy.force l) ;; (***** A function to restrict the context of a term getting rid of unsed variables *******) let restrict octx ctx ot = let odummy = Cic.Implicit None in let dummy = NCic.Meta (~-1,(0,NCic.Irl 0)) in let rec aux m acc ot t = function [],[] -> (ot,t),acc | ohe::otl as octx,he::tl -> if CicTypeChecker.does_not_occur octx 0 1 ot then aux (m+1) acc (CicSubstitution.subst odummy ot) (NCicSubstitution.subst dummy t) (otl,tl) else (match ohe,strictify he with None,_ -> assert false | Some (name,Cic.Decl oty),`Ce ((name', NCic.Decl ty),objs) -> aux (m+1) ((m+1,objs,None)::acc) (Cic.Lambda (name,oty,ot)) (NCic.Lambda (name',ty,t)) (otl,tl) | Some (name,Cic.Decl oty),`Fix (ref,name',ty) -> aux (m+1) ((m+1,[],Some ref)::acc) (Cic.Lambda (name,oty,ot)) (NCic.Lambda (name',ty,t)) (otl,tl) | Some (name,Cic.Def (obo,oty)),`Ce ((name', NCic.Def (bo,ty)),objs) -> aux (m+1) ((m+1,objs,None)::acc) (Cic.LetIn (name,obo,oty,ot)) (NCic.LetIn (name',bo,ty,t)) (otl,tl) | _,_ -> assert false) | _,_ -> assert false in let rec split_lambdas_and_letins octx ctx infos (ote,te) = match infos, ote, te with ([], _, _) -> octx,ctx,ote | ((_,objs,None)::tl, Cic.Lambda(name,oso,ota), NCic.Lambda(name',so,ta)) -> split_lambdas_and_letins ((Some(name,(Cic.Decl oso)))::octx) (Ce (lazy ((name',NCic.Decl so),objs))::ctx) tl (ota,ta) | ((_,objs,Some r)::tl,Cic.Lambda(name,oso,ota),NCic.Lambda(name',so,ta)) -> split_lambdas_and_letins ((Some(name,(Cic.Decl oso)))::octx) (Fix (lazy (r,name',so))::ctx) tl (ota,ta) | ((_,objs,None)::tl,Cic.LetIn(name,obo,oty,ota),NCic.LetIn(nam',bo,ty,ta))-> split_lambdas_and_letins ((Some (name,(Cic.Def (obo,oty))))::octx) (Ce (lazy ((nam',NCic.Def (bo,ty)),objs))::ctx) tl (ota,ta) | (_, _, _) -> assert false in let long_t,infos = aux 0 [] ot dummy (octx,ctx) in let clean_octx,clean_ctx,clean_ot= split_lambdas_and_letins [] [] infos long_t in (*prerr_endline ("RESTRICT PRIMA: " ^ CicPp.pp ot (List.map (function None -> None | Some (name,_) -> Some name) octx)); prerr_endline ("RESTRICT DOPO: " ^ CicPp.pp clean_ot (List.map (function None -> None | Some (name,_) -> Some name) clean_octx)); *) clean_octx,clean_ctx,clean_ot, List.map (fun (rel,_,_) -> rel) infos ;; (**** The translation itself ****) let cn_to_s = function | Cic.Anonymous -> "_" | Cic.Name s -> s ;; let splat mk_pi ctx t = List.fold_left (fun (t,l) c -> match strictify c with | `Ce ((name, NCic.Def (bo,ty)),l') -> NCic.LetIn (name, ty, bo, t),l@l' | `Ce ((name, NCic.Decl ty),l') when mk_pi -> NCic.Prod (name, ty, t),l@l' | `Ce ((name, NCic.Decl ty),l') -> NCic.Lambda (name, ty, t),l@l' | `Fix (_,name,ty) when mk_pi -> NCic.Prod (name, ty, t),l | `Fix (_,name,ty) -> NCic.Lambda (name,ty,t),l) (t,[]) ctx ;; let context_tassonomy ctx = let rec split inner acc acc1 = function | Ce _ :: tl when inner -> split inner (acc+1) (acc1+1) tl | Fix _ ::tl -> split false acc (acc1+1) tl | _ as l -> let only_decl () = List.filter (function Ce _ as ce -> (match strictify ce with `Ce ((_, NCic.Decl _),_) -> true | _ -> false) | Fix _ -> true) l in acc, List.length l, lazy (List.length (only_decl ())), acc1 in split true 0 1 ctx ;; let splat_args_for_rel ctx t ?rels n_fix = let rels = match rels with Some rels -> rels | None -> let rec mk_irl = function 0 -> [] | n -> n::mk_irl (n - 1) in mk_irl (List.length ctx) in let bound, free, _, primo_ce_dopo_fix = context_tassonomy ctx in if free = 0 then t else let rec aux = function | n,_ when n = bound + n_fix -> [] | n,he::tl -> (match strictify (List.nth ctx (n-1)) with | `Fix (refe, _, _) when n < primo_ce_dopo_fix -> NCic.Const refe :: aux (n-1,tl) | `Fix _ | `Ce ((_, NCic.Decl _),_) -> NCic.Rel (he - n_fix)::aux(n-1,tl) | `Ce ((_, NCic.Def _),_) -> aux (n-1,tl)) | _,_ -> assert false in NCic.Appl (t:: aux (List.length ctx,rels)) ;; let splat_args ctx t n_fix rels = let bound, free, _, primo_ce_dopo_fix = context_tassonomy ctx in if ctx = [] then t else let rec aux = function | 0,[] -> [] | n,he::tl -> (match strictify (List.nth ctx (n-1)) with | `Ce ((_, NCic.Decl _),_) when n <= bound -> NCic.Rel he:: aux (n-1,tl) | `Fix (refe, _, _) when n < primo_ce_dopo_fix -> splat_args_for_rel ctx (NCic.Const refe) ~rels n_fix :: aux (n-1,tl) | `Fix _ | `Ce((_, NCic.Decl _),_)-> NCic.Rel (he - n_fix)::aux(n-1,tl) | `Ce ((_, NCic.Def _),_) -> aux (n - 1,tl) ) | _,_ -> assert false in NCic.Appl (t:: aux ((List.length ctx,rels))) ;; exception Nothing_to_do;; let fix_outty curi tyno t context outty = let leftno,rightno = match fst (CicEnvironment.get_obj CicUniv.oblivion_ugraph curi) with Cic.InductiveDefinition (tyl,_,leftno,_) -> let _,_,arity,_ = List.nth tyl tyno in let rec count_prods leftno context arity = match leftno, CicReduction.whd context arity with 0, Cic.Sort _ -> 0 | 0, Cic.Prod (name,so,ty) -> 1 + count_prods 0 (Some (name, Cic.Decl so)::context) ty | n, Cic.Prod (name,so,ty) -> count_prods (leftno - 1) (Some (name, Cic.Decl so)::context) ty | _,_ -> assert false in (*prerr_endline (UriManager.string_of_uri curi); prerr_endline ("LEFTNO: " ^ string_of_int leftno ^ " " ^ CicPp.ppterm arity);*) leftno, count_prods leftno [] arity | _ -> assert false in let ens,args = let tty,_= CicTypeChecker.type_of_aux' [] context t CicUniv.oblivion_ugraph in match CicReduction.whd context tty with Cic.MutInd (_,_,ens) -> ens,[] | Cic.Appl (Cic.MutInd (_,_,ens)::args) -> ens,fst (HExtlib.split_nth leftno args) | _ -> assert false in let rec aux n irl context outsort = match n, CicReduction.whd context outsort with 0, Cic.Prod _ -> raise Nothing_to_do | 0, _ -> let irl = List.rev irl in let ty = CicSubstitution.lift rightno (Cic.MutInd (curi,tyno,ens)) in let ty = if args = [] && irl = [] then ty else Cic.Appl (ty::(List.map (CicSubstitution.lift rightno) args)@irl) in let he = CicSubstitution.lift (rightno + 1) outty in let t = if irl = [] then he else Cic.Appl (he::List.map (CicSubstitution.lift 1) irl) in Cic.Lambda (Cic.Anonymous, ty, t) | n, Cic.Prod (name,so,ty) -> let ty' = aux (n - 1) (Cic.Rel n::irl) (Some (name, Cic.Decl so)::context) ty in Cic.Lambda (name,so,ty') | _,_ -> assert false in (*prerr_endline ("RIGHTNO = " ^ string_of_int rightno ^ " OUTTY = " ^ CicPp.ppterm outty);*) let outsort = fst (CicTypeChecker.type_of_aux' [] context outty CicUniv.oblivion_ugraph) in try aux rightno [] context outsort with Nothing_to_do -> outty (*prerr_endline (CicPp.ppterm outty ^ " <==> " ^ CicPp.ppterm outty');*) ;; let fix_outtype t = let module C = Cic in let rec aux context = function C.Rel _ as t -> t | C.Var (uri,exp_named_subst) -> let exp_named_subst' = List.map (function i,t -> i, (aux context t)) exp_named_subst in C.Var (uri,exp_named_subst') | C.Implicit _ | C.Meta _ -> assert false | C.Sort _ as t -> t | C.Cast (v,t) -> C.Cast (aux context v, aux context t) | C.Prod (n,s,t) -> C.Prod (n, aux context s, aux ((Some (n, C.Decl s))::context) t) | C.Lambda (n,s,t) -> C.Lambda (n, aux context s, aux ((Some (n, C.Decl s))::context) t) | C.LetIn (n,s,ty,t) -> C.LetIn (n, aux context s, aux context ty, aux ((Some (n, C.Def(s,ty)))::context) t) | C.Appl l -> C.Appl (List.map (aux context) l) | C.Const (uri,exp_named_subst) -> let exp_named_subst' = List.map (function i,t -> i, (aux context t)) exp_named_subst in C.Const (uri,exp_named_subst') | C.MutInd (uri,tyno,exp_named_subst) -> let exp_named_subst' = List.map (function i,t -> i, (aux context t)) exp_named_subst in C.MutInd (uri, tyno, exp_named_subst') | C.MutConstruct (uri,tyno,consno,exp_named_subst) -> let exp_named_subst' = List.map (function i,t -> i, (aux context t)) exp_named_subst in C.MutConstruct (uri, tyno, consno, exp_named_subst') | C.MutCase (uri, tyno, outty, term, patterns) -> let outty = fix_outty uri tyno term context outty in C.MutCase (uri, tyno, aux context outty, aux context term, List.map (aux context) patterns) | C.Fix (funno, funs) -> let tys,_ = List.fold_left (fun (types,len) (n,_,ty,_) -> ((Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))))::types, len+1 ) ([],0) funs in C.Fix (funno, List.map (fun (name, indidx, ty, bo) -> (name, indidx, aux context ty, aux (tys@context) bo) ) funs ) | C.CoFix (funno, funs) -> let tys,_ = List.fold_left (fun (types,len) (n,ty,_) -> ((Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))))::types, len+1 ) ([],0) funs in C.CoFix (funno, List.map (fun (name, ty, bo) -> (name, aux context ty, aux (tys@context) bo) ) funs ) in aux [] t ;; let get_fresh,reset_seed = let seed = ref 0 in (function () -> incr seed; string_of_int !seed), (function () -> seed := 0) ;; exception NotSimilar let alpha t1 t2 ref ref' = let rec aux t1 t2 = match t1,t2 with | NCic.Rel n, NCic.Rel m when n=m -> () | NCic.Appl l1, NCic.Appl l2 -> List.iter2 aux l1 l2 | NCic.Lambda (_,s1,t1), NCic.Lambda (_,s2,t2) | NCic.Prod (_,s1,t1), NCic.Prod (_,s2,t2) -> aux s1 s2; aux t1 t2 | NCic.LetIn (_,s1,ty1,t1), NCic.LetIn (_,s2,ty2,t2) -> aux s1 s2; aux ty1 ty2; aux t1 t2 | NCic.Const (NReference.Ref (_,uu1,xp1)), NCic.Const (NReference.Ref (_,uu2,xp2)) when let NReference.Ref (_,u1,_) = ref in let NReference.Ref (_,u2,_) = ref' in NUri.eq uu1 u1 && NUri.eq uu2 u2 && xp1 = xp2 -> () | NCic.Const r1, NCic.Const r2 when NReference.eq r1 r2 -> () | NCic.Meta _,NCic.Meta _ -> () | NCic.Implicit _,NCic.Implicit _ -> () | NCic.Sort x,NCic.Sort y when x=y -> () | NCic.Match (_,t1,t11,tl1), NCic.Match (_,t2,t22,tl2) -> aux t1 t2;aux t11 t22;List.iter2 aux tl1 tl2 | _-> raise NotSimilar in try aux t1 t2; true with NotSimilar -> false ;; exception Found of NReference.reference;; let cache = Hashtbl.create 313;; let same_obj ref ref' = function | (_,_,_,_,NCic.Fixpoint (_,l1,_)), (_,_,_,_,NCic.Fixpoint (_,l2,_)) when List.for_all2 (fun (_,_,_,ty1,bo1) (_,_,_,ty2,bo2) -> alpha ty1 ty2 ref ref' && alpha bo1 bo2 ref ref') l1 l2 -> true | _ -> false ;; let find_in_cache name obj ref = try List.iter (function (ref',obj') -> let recno, fixno = match ref with NReference.Ref (_,_,NReference.Fix (fixno,recno)) -> recno,fixno | _ -> assert false in let recno',fixno' = match ref' with NReference.Ref (_,_,NReference.Fix (fixno',recno)) -> recno,fixno' | _ -> assert false in if recno = recno' && fixno = fixno' && same_obj ref ref' (obj,obj') then ( (* prerr_endline ("!!!!!!!!!!! CACHE HIT !!!!!!!!!!\n" ^ NReference.string_of_reference ref ^ "\n" ^ NReference.string_of_reference ref' ^ "\n"); *) raise (Found ref')); (* prerr_endline ("CACHE SAME NAME: " ^ NReference.string_of_reference ref ^ " <==> " ^ NReference.string_of_reference ref'); *) ) (Hashtbl.find_all cache name); (* prerr_endline "<<< CACHE MISS >>>"; *) begin match obj, ref with | (_,_,_,_,NCic.Fixpoint (true,fl,_)) , NReference.Ref (x,y,NReference.Fix _) -> ignore(List.fold_left (fun i (_,name,rno,_,_) -> let ref = NReference.mk_fix i rno ref in Hashtbl.add cache name (ref,obj); i+1 ) 0 fl) | _ -> assert false end; None with Found ref -> Some ref ;; (* we are lambda-lifting also variables that do not occur *) (* ctx does not distinguish successive blocks of cofix, since there may be no * lambda separating them *) let convert_term uri t = (* k=true if we are converting a term to be pushed in a ctx or if we are converting the type of a fix; k=false if we are converting a term to be put in the body of a fix; in the latter case, we must permute Rels since the Fix abstraction will preceed its lefts parameters; in the former case, there is nothing to permute *) let rec aux k octx (ctx : ctx list) n_fix uri = function | Cic.CoFix _ as cofix -> let octx,ctx,fix,rels = restrict octx ctx cofix in let cofixno,fl = match fix with Cic.CoFix (cofixno,fl)->cofixno,fl | _-> assert false in let buri = UriManager.uri_of_string (UriManager.buri_of_uri uri^"/"^ UriManager.name_of_uri uri ^ "___" ^ get_fresh () ^ ".con") in let bctx, fixpoints_tys, tys, _ = List.fold_right (fun (name,ty,_) (bctx, fixpoints, tys, idx) -> let ty, fixpoints_ty = aux true octx ctx n_fix uri ty in let r = Ref.reference_of_ouri buri(Ref.CoFix idx) in bctx @ [Fix (lazy (r,name,ty))], fixpoints_ty @ fixpoints,ty::tys,idx-1) fl ([], [], [], List.length fl-1) in let bctx = bctx @ ctx in let n_fl = List.length fl in let boctx,_ = List.fold_left (fun (types,len) (n,ty,_) -> (Some (Cic.Name n,(Cic.Decl (CicSubstitution.lift len ty)))::types, len+1)) (octx,0) fl in let fl, fixpoints = List.fold_right2 (fun (name,_,bo) ty (l,fixpoints) -> let bo, fixpoints_bo = aux false boctx bctx n_fl buri bo in let splty,fixpoints_splty = splat true ctx ty in let splbo,fixpoints_splbo = splat false ctx bo in (([],name,~-1,splty,splbo)::l), fixpoints_bo @ fixpoints_splty @ fixpoints_splbo @ fixpoints) fl tys ([],fixpoints_tys) in let obj = NUri.nuri_of_ouri buri,0,[],[], NCic.Fixpoint (false, fl, (`Generated, `Definition)) in splat_args ctx (NCic.Const (Ref.reference_of_ouri buri (Ref.CoFix cofixno))) n_fix rels, fixpoints @ [obj] | Cic.Fix _ as fix -> let octx,ctx,fix,rels = restrict octx ctx fix in let fixno,fl = match fix with Cic.Fix (fixno,fl) -> fixno,fl | _ -> assert false in let buri = UriManager.uri_of_string (UriManager.buri_of_uri uri^"/"^ UriManager.name_of_uri uri ^ "___" ^ get_fresh () ^ ".con") in let bad_bctx, fixpoints_tys, tys, _ = List.fold_right (fun (name,recno,ty,_) (bctx, fixpoints, tys, idx) -> let ty, fixpoints_ty = aux true octx ctx n_fix uri ty in let r = (* recno is dummy here, must be lifted by the ctx len *) Ref.reference_of_ouri buri (Ref.Fix (idx,recno)) in bctx @ [Fix (lazy (r,name,ty))], fixpoints_ty@fixpoints,ty::tys,idx-1) fl ([], [], [], List.length fl-1) in let _, _, free_decls, _ = context_tassonomy (bad_bctx @ ctx) in let free_decls = Lazy.force free_decls in let bctx = List.map (function ce -> match strictify ce with | `Fix (Ref.Ref (_,_,Ref.Fix (idx, recno)),name, ty) -> Fix (lazy (Ref.reference_of_ouri buri (Ref.Fix (idx,recno+free_decls)),name,ty)) | _ -> assert false) bad_bctx @ ctx in let n_fl = List.length fl in let boctx,_ = List.fold_left (fun (types,len) (n,_,ty,_) -> (Some (Cic.Name n,(Cic.Decl (CicSubstitution.lift len ty)))::types, len+1)) (octx,0) fl in let rno_fixno = ref 0 in let fl, fixpoints,_ = List.fold_right2 (fun (name,rno,_,bo) ty (l,fixpoints,idx) -> let bo, fixpoints_bo = aux false boctx bctx n_fl buri bo in let splty,fixpoints_splty = splat true ctx ty in let splbo,fixpoints_splbo = splat false ctx bo in let rno = rno + free_decls in if idx = fixno then rno_fixno := rno; (([],name,rno,splty,splbo)::l), fixpoints_bo@fixpoints_splty@fixpoints_splbo@fixpoints,idx+1) fl tys ([],fixpoints_tys,0) in let obj = NUri.nuri_of_ouri buri,max_int,[],[], NCic.Fixpoint (true, fl, (`Generated, `Definition)) in let r = Ref.reference_of_ouri buri (Ref.Fix (fixno,!rno_fixno)) in let obj,r = let _,name,_,_,_ = List.nth fl fixno in match find_in_cache name obj r with Some r' -> [],r' | None -> [obj],r in splat_args ctx (NCic.Const r) n_fix rels, fixpoints @ obj | Cic.Rel n -> let bound, _, _, primo_ce_dopo_fix = context_tassonomy ctx in (match List.nth ctx (n-1) with | Fix l when n < primo_ce_dopo_fix -> let r,_,_ = Lazy.force l in splat_args_for_rel ctx (NCic.Const r) n_fix, [] | Ce _ when n <= bound -> NCic.Rel n, [] | Fix _ when n <= bound -> assert false | Fix _ | Ce _ when k = true -> NCic.Rel n, [] | Fix _ | Ce _ -> NCic.Rel (n-n_fix), []) | Cic.Lambda (name, (s as old_s), t) -> let s, fixpoints_s = aux k octx ctx n_fix uri s in let s'_and_fixpoints_s' = lazy (aux true octx ctx n_fix uri old_s) in let ctx = Ce (lazy let s',fixpoints_s' = Lazy.force s'_and_fixpoints_s' in ((cn_to_s name, NCic.Decl s'),fixpoints_s'))::ctx in let octx = Some (name, Cic.Decl old_s) :: octx in let t, fixpoints_t = aux k octx ctx n_fix uri t in NCic.Lambda (cn_to_s name, s, t), fixpoints_s @ fixpoints_t | Cic.Prod (name, (s as old_s), t) -> let s, fixpoints_s = aux k octx ctx n_fix uri s in let s'_and_fixpoints_s' = lazy (aux true octx ctx n_fix uri old_s) in let ctx = Ce (lazy let s',fixpoints_s' = Lazy.force s'_and_fixpoints_s' in ((cn_to_s name, NCic.Decl s'),fixpoints_s'))::ctx in let octx = Some (name, Cic.Decl old_s) :: octx in let t, fixpoints_t = aux k octx ctx n_fix uri t in NCic.Prod (cn_to_s name, s, t), fixpoints_s @ fixpoints_t | Cic.LetIn (name, (te as old_te), (ty as old_ty), t) -> let te, fixpoints_s = aux k octx ctx n_fix uri te in let te_and_fixpoints_s' = lazy (aux true octx ctx n_fix uri old_te) in let ty, fixpoints_ty = aux k octx ctx n_fix uri ty in let ty_and_fixpoints_ty' = lazy (aux true octx ctx n_fix uri old_ty) in let ctx = Ce (lazy let te',fixpoints_s' = Lazy.force te_and_fixpoints_s' in let ty',fixpoints_ty' = Lazy.force ty_and_fixpoints_ty' in let fixpoints' = fixpoints_s' @ fixpoints_ty' in ((cn_to_s name, NCic.Def (te', ty')),fixpoints'))::ctx in let octx = Some (name, Cic.Def (old_te, old_ty)) :: octx in let t, fixpoints_t = aux k octx ctx n_fix uri t in NCic.LetIn (cn_to_s name, ty, te, t), fixpoints_s @ fixpoints_t @ fixpoints_ty | Cic.Cast (t,ty) -> let t, fixpoints_t = aux k octx ctx n_fix uri t in let ty, fixpoints_ty = aux k octx ctx n_fix uri ty in NCic.LetIn ("cast", ty, t, NCic.Rel 1), fixpoints_t @ fixpoints_ty | Cic.Sort Cic.Prop -> NCic.Sort NCic.Prop,[] | Cic.Sort Cic.CProp -> NCic.Sort NCic.CProp,[] | Cic.Sort (Cic.Type u) -> NCic.Sort (NCic.Type (CicUniv.get_rank u)),[] | Cic.Sort Cic.Set -> NCic.Sort (NCic.Type 0),[] (* calculate depth in the univ_graph*) | Cic.Appl l -> let l, fixpoints = List.fold_right (fun t (l,acc) -> let t, fixpoints = aux k octx ctx n_fix uri t in (t::l,fixpoints@acc)) l ([],[]) in (match l with | (NCic.Appl l1)::l2 -> NCic.Appl (l1@l2), fixpoints | _ -> NCic.Appl l, fixpoints) | Cic.Const (curi, ens) -> aux_ens k curi octx ctx n_fix uri ens (match fst(CicEnvironment.get_obj CicUniv.oblivion_ugraph curi) with | Cic.Constant (_,Some _,_,_,_) -> NCic.Const (Ref.reference_of_ouri curi Ref.Def) | Cic.Constant (_,None,_,_,_) -> NCic.Const (Ref.reference_of_ouri curi Ref.Decl) | _ -> assert false) | Cic.MutInd (curi, tyno, ens) -> aux_ens k curi octx ctx n_fix uri ens (NCic.Const (Ref.reference_of_ouri curi (Ref.Ind tyno))) | Cic.MutConstruct (curi, tyno, consno, ens) -> aux_ens k curi octx ctx n_fix uri ens (NCic.Const (Ref.reference_of_ouri curi (Ref.Con (tyno,consno)))) | Cic.Var (curi, ens) -> (match fst (CicEnvironment.get_obj CicUniv.oblivion_ugraph curi) with Cic.Variable (_,Some bo,_,_,_) -> aux k octx ctx n_fix uri (CicSubstitution.subst_vars ens bo) | _ -> assert false) | Cic.MutCase (curi, tyno, outty, t, branches) -> let r = Ref.reference_of_ouri curi (Ref.Ind tyno) in let outty, fixpoints_outty = aux k octx ctx n_fix uri outty in let t, fixpoints_t = aux k octx ctx n_fix uri t in let branches, fixpoints = List.fold_right (fun t (l,acc) -> let t, fixpoints = aux k octx ctx n_fix uri t in (t::l,fixpoints@acc)) branches ([],[]) in NCic.Match (r,outty,t,branches), fixpoints_outty@fixpoints_t@fixpoints | Cic.Implicit _ | Cic.Meta _ -> assert false and aux_ens k curi octx ctx n_fix uri ens he = match ens with [] -> he,[] | _::_ -> let params = match fst (CicEnvironment.get_obj CicUniv.oblivion_ugraph curi) with Cic.Constant (_,_,_,params,_) | Cic.InductiveDefinition (_,params,_,_) -> params | Cic.Variable _ | Cic.CurrentProof _ -> assert false in let ens,objs = List.fold_right (fun luri (l,objs) -> match fst (CicEnvironment.get_obj CicUniv.oblivion_ugraph luri) with Cic.Variable (_,Some _,_,_,_) -> l, objs | Cic.Variable (_,None,_,_,_) -> let t = List.assoc luri ens in let t,o = aux k octx ctx n_fix uri t in t::l, o@objs | _ -> assert false ) params ([],[]) in NCic.Appl (he::ens),objs in aux false [] [] 0 uri t ;; let cook mode vars t = let t = fix_outtype t in let varsno = List.length vars in let t = CicSubstitution.lift varsno t in let rec aux n acc l = let subst = snd(List.fold_left (fun (i,res) uri -> i+1,(uri,Cic.Rel i)::res) (1,[]) acc) in match l with [] -> CicSubstitution.subst_vars subst t | uri::uris -> let bo,ty = match fst (CicEnvironment.get_obj CicUniv.oblivion_ugraph uri) with Cic.Variable (_,bo,ty,_,_) -> HExtlib.map_option fix_outtype bo, fix_outtype ty | _ -> assert false in let ty = CicSubstitution.subst_vars subst ty in let bo = HExtlib.map_option (CicSubstitution.subst_vars subst) bo in let id = Cic.Name (UriManager.name_of_uri uri) in let t = aux (n-1) (uri::acc) uris in match bo,ty,mode with None,ty,`Lambda -> Cic.Lambda (id,ty,t) | None,ty,`Pi -> Cic.Prod (id,ty,t) | Some bo,ty,_ -> Cic.LetIn (id,bo,ty,t) in aux varsno [] vars ;; let convert_obj_aux uri = function | Cic.Constant (name, None, ty, vars, _) -> let ty = cook `Pi vars ty in let nty, fixpoints = convert_term uri ty in assert(fixpoints = []); NCic.Constant ([], name, None, nty, (`Provided,`Theorem,`Regular)), fixpoints | Cic.Constant (name, Some bo, ty, vars, _) -> let bo = cook `Lambda vars bo in let ty = cook `Pi vars ty in let nbo, fixpoints_bo = convert_term uri bo in let nty, fixpoints_ty = convert_term uri ty in assert(fixpoints_ty = []); NCic.Constant ([], name, Some nbo, nty, (`Provided,`Theorem,`Regular)), fixpoints_bo @ fixpoints_ty | Cic.InductiveDefinition (itl,vars,leftno,_) -> let ind = let _,x,_,_ = List.hd itl in x in let itl, fix_itl = List.fold_right (fun (name, _, ty, cl) (itl,acc) -> let ty = cook `Pi vars ty in let ty, fix_ty = convert_term uri ty in let cl, fix_cl = List.fold_right (fun (name, ty) (cl,acc) -> let ty = cook `Pi vars ty in let ty, fix_ty = convert_term uri ty in ([], name, ty)::cl, acc @ fix_ty) cl ([],[]) in ([], name, ty, cl)::itl, fix_ty @ fix_cl @ acc) itl ([],[]) in NCic.Inductive(ind, leftno + List.length (List.filter (fun v -> match fst (CicEnvironment.get_obj CicUniv.oblivion_ugraph v) with Cic.Variable (_,Some _,_,_,_) -> false | Cic.Variable (_,None,_,_,_) -> true | _ -> assert false) vars) , itl, (`Provided, `Regular)), fix_itl | Cic.Variable _ | Cic.CurrentProof _ -> assert false ;; let convert_obj uri obj = reset_seed (); let o, fixpoints = convert_obj_aux uri obj in let obj = NUri.nuri_of_ouri uri,max_int, [], [], o in fixpoints @ [obj] ;;