(* ||M|| This file is part of HELM, an Hypertextual, Electronic ||A|| Library of Mathematics, developed at the Computer Science ||T|| Department, University of Bologna, Italy. ||I|| ||T|| HELM is free software; you can redistribute it and/or ||A|| modify it under the terms of the GNU General Public License \ / version 2 or (at your option) any later version. \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) (* $Id: terms.ml 9836 2009-06-05 15:33:35Z denes $ *) module type Blob = sig include Orderings.Blob end module Clauses (B : Orderings.Blob) = struct module Order = B;; module Utils = FoUtils.Utils(B) module Unif = FoUnif.FoUnif(B) let eq_clause (id1,_,_,_,_) (id2,_,_,_,_) = id1 = id2 let compare_clause (id1,_,_,_,_) (id2,_,_,_,_) = Pervasives.compare id1 id2 let fresh_clause maxvar ?(subst=FoSubst.id_subst) (id, nlit, plit, varlist, proof) = let maxvar, varlist, subst = Utils.relocate maxvar varlist subst in let apply_subst_on_lit = function | Terms.Equation (l,r,ty,o) -> let l = FoSubst.apply_subst subst l in let r = FoSubst.apply_subst subst r in let ty = FoSubst.apply_subst subst ty in Terms.Equation (l,r,ty,o) | Terms.Predicate p -> let p = FoSubst.apply_subst subst p in Terms.Predicate p in let nlit = List.map (fun (l,s) -> (apply_subst_on_lit l,s)) nlit in let plit = List.map (fun (l,s) -> (apply_subst_on_lit l,s)) plit in let proof = match proof with | Terms.Exact t -> Terms.Exact (FoSubst.apply_subst subst t) | Terms.Step (rule,c1,c2,dir,pos,s) -> Terms.Step(rule,c1,c2,dir,pos,FoSubst.concat subst s) in (id, nlit, plit, varlist, proof), maxvar ;; (* may be moved inside the bag *) let mk_clause maxvar nlit plit proofterm = let foterm_to_lit (acc,literals) ty = let vars = Terms.vars_of_term ~start_acc:acc ty in match ty with | Terms.Node [ Terms.Leaf eq ; ty; l; r ] when B.eq B.eqP eq -> let o = Order.compare_terms l r in (vars,(Terms.Equation (l, r, ty, o),true)::literals) | _ -> (vars,(Terms.Predicate ty,true)::literals) in let varlist = Terms.vars_of_term proofterm in let (varlist,nlit) = List.fold_left foterm_to_lit (varlist,[]) nlit in let (varlist,plit) = List.fold_left foterm_to_lit (varlist,[]) plit in let proof = Terms.Exact proofterm in fresh_clause maxvar (0, nlit, plit, varlist, proof) ;; let mk_passive_clause cl = (Order.compute_clause_weight cl, cl) ;; let mk_passive_goal g = (Order.compute_clause_weight g, g) ;; let compare_passive_clauses_weight (w1,(id1,_,_,_,_)) (w2,(id2,_,_,_,_)) = if w1 = w2 then id1 - id2 else w1 - w2 ;; let compare_passive_clauses_age (_,(id1,_,_,_,_)) (_,(id2,_,_,_,_)) = id1 - id2 ;; let are_alpha_eq_cl cl1 cl2 = let (_,nlit1,plit1,_,_) = cl1 in let (_,nlit2,plit2,_,_) = cl2 in let alpha_eq (lit1,_) (lit2,_) = let get_term lit = match lit with | Terms.Predicate _ -> assert false | Terms.Equation (l,r,ty,_) -> Terms.Node [Terms.Leaf B.eqP; ty; l ; r] in try ignore(Unif.alpha_eq (get_term lit1) (get_term lit2)) ; true with FoUnif.UnificationFailure _ -> false in try (List.for_all2 alpha_eq nlit1 nlit2 && List.for_all2 alpha_eq plit1 plit2) with Invalid_argument _ -> false ;; let vars_of_clause (id,nlit,plit,_,pr) = let vars_of_lit acc lit = match lit with | (Terms.Predicate t,_) -> Terms.vars_of_term ~start_acc:acc t | (Terms.Equation (l,r,ty,o),_) -> Terms.vars_of_term ~start_acc:(Terms.vars_of_term ~start_acc:acc l) r in List.fold_left vars_of_lit [] (nlit@plit) ;; end