(* ||M|| This file is part of HELM, an Hypertextual, Electronic ||A|| Library of Mathematics, developed at the Computer Science ||T|| Department, University of Bologna, Italy. ||I|| ||T|| HELM is free software; you can redistribute it and/or ||A|| modify it under the terms of the GNU General Public License \ / version 2 or (at your option) any later version. \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) (* $Id: index.mli 9822 2009-06-03 15:37:06Z tassi $ *) module Superposition (B : Terms.Blob) = struct module IDX = Index.Index(B) module Unif = FoUnif.Founif(B) module Subst = FoSubst.Subst(B) module Order = Orderings.Orderings(B) module Utils = FoUtils.Utils(B) module Pp = Pp.Pp(B) exception Success of B.t Terms.bag * int * B.t Terms.unit_clause let debug s = ()(* prerr_endline s *) ;; let rec list_first f = function | [] -> None | x::tl -> match f x with Some _ as x -> x | _ -> list_first f tl ;; let first_position pos ctx t f = let rec aux pos ctx = function | Terms.Leaf _ as t -> f t pos ctx | Terms.Var _ -> None | Terms.Node l as t-> match f t pos ctx with | Some _ as x -> x | None -> let rec first pre post = function | [] -> None | t :: tl -> let newctx = fun x -> ctx (Terms.Node (pre@[x]@post)) in match aux (List.length pre :: pos) newctx t with | Some _ as x -> x | None -> if post = [] then None (* tl is also empty *) else first (pre @ [t]) (List.tl post) tl in first [] (List.tl l) l in aux pos ctx t ;; let all_positions pos ctx t f = let rec aux pos ctx = function | Terms.Leaf _ as t -> f t pos ctx | Terms.Var _ -> [] | Terms.Node l as t-> let acc, _, _ = List.fold_left (fun (acc,pre,post) t -> (* Invariant: pre @ [t] @ post = l *) let newctx = fun x -> ctx (Terms.Node (pre@[x]@post)) in let acc = aux (List.length pre :: pos) newctx t @ acc in if post = [] then acc, l, [] else acc, pre @ [t], List.tl post) (f t pos ctx, [], List.tl l) l in acc in aux pos ctx t ;; let build_clause bag filter rule t subst vl id id2 pos dir = let proof = Terms.Step(rule,id,id2,dir,pos,subst) in let t = Subst.apply_subst subst t in if filter t then let literal = match t with | Terms.Node [ Terms.Leaf eq ; ty; l; r ] when B.eq B.eqP eq -> let o = Order.compare_terms l r in Terms.Equation (l, r, ty, o) | t -> Terms.Predicate t in let bag, uc = Utils.add_to_bag bag (0, literal, vl, proof) in Some (bag, uc) else ((*prerr_endline ("Filtering: " ^ Pp.pp_foterm t);*)None) ;; (* ============ simplification ================= *) let demod table varlist subterm pos context = let cands = IDX.DT.retrieve_generalizations table subterm in list_first (fun (dir, (id,lit,vl,_)) -> match lit with | Terms.Predicate _ -> assert false | Terms.Equation (l,r,_,o) -> let side, newside = if dir=Terms.Left2Right then l,r else r,l in try let subst, varlist = Unif.unification (varlist@vl) varlist subterm side in if o = Terms.Incomparable then let side = Subst.apply_subst subst side in let newside = Subst.apply_subst subst newside in let o = Order.compare_terms newside side in (* Riazanov, pp. 45 (ii) *) if o = Terms.Lt then Some (context newside, subst, varlist, id, pos, dir) else ((*prerr_endline ("Filtering: " ^ Pp.pp_foterm side ^ " =(< || =)" ^ Pp.pp_foterm newside ^ " coming from " ^ Pp.pp_unit_clause uc );*)None) else Some (context newside, subst, varlist, id, pos, dir) with FoUnif.UnificationFailure _ -> None) (IDX.ClauseSet.elements cands) ;; (* XXX: possible optimization, if the literal has a "side" already * in normal form we should not traverse it again *) let demodulate_once bag (id, literal, vl, pr) table = debug ("Demodulating : " ^ (Pp.pp_unit_clause (id, literal, vl, pr))); let t = match literal with | Terms.Predicate t -> t | Terms.Equation (l,r,ty,_) -> Terms.Node [ Terms.Leaf B.eqP; ty; l; r ] in match first_position [] (fun x -> x) t (demod table vl) with | None -> None | Some (newt, subst, varlist, id2, pos, dir) -> build_clause bag (fun _ -> true) Terms.Demodulation newt subst varlist id id2 pos dir ;; let rec demodulate bag clause table = match demodulate_once bag clause table with | None -> bag, clause | Some (bag, clause) -> demodulate bag clause table ;; (* move away *) let is_identity_clause = function | _, Terms.Equation (_,_,_,Terms.Eq), _, _ -> true | _, Terms.Predicate _, _, _ -> assert false | _ -> false ;; let is_subsumed ~unify (id, lit, vl, _) table = match lit with | Terms.Predicate _ -> assert false | Terms.Equation (l,r,ty,_) -> let retrieve = if unify then IDX.DT.retrieve_unifiables else IDX.DT.retrieve_generalizations in let lcands = retrieve table l in let rcands = retrieve table r in let f b c = let dir, l, r, vl = match c with | (d, (_,Terms.Equation (l,r,ty,_),vl,_))-> d, l, r, vl |_ -> assert false in let l, r = if (dir = Terms.Left2Right) = b then l,r else r,l in Terms.Node [ Terms.Leaf B.eqP; ty; l; r ], vl in let cands1 = List.map (f true) (IDX.ClauseSet.elements lcands) in let cands2 = List.map (f false) (IDX.ClauseSet.elements rcands) in let t = Terms.Node [ Terms.Leaf B.eqP; ty; l; r ] in let locked_vars = if unify then [] else vl in List.exists (fun (c, vl1) -> try ignore(Unif.unification (vl@vl1) locked_vars c t); true with FoUnif.UnificationFailure _ -> false) (cands1 @ cands2) ;; (* demodulate and check for subsumption *) let simplify table bag clause = let bag, clause = demodulate bag clause table in if is_identity_clause clause then None else if is_subsumed ~unify:false clause table then None else Some (bag, clause) ;; let simplification_step ~new_cl cl (alist,atable) bag new_clause = let atable1 = if new_cl then atable else IDX.index_unit_clause atable cl in match simplify atable1 bag new_clause with | None -> (Some cl, None) | Some (bag, clause) -> let ctable = IDX.index_unit_clause IDX.DT.empty clause in let bag, newa, alist, atable = List.fold_left (fun (bag, newa, alist, atable as acc) c -> match simplify ctable bag c with |None -> acc |Some (bag, c1) -> if (c1 == c) then bag, newa, c :: alist, IDX.index_unit_clause atable c else bag, c1 :: newa, alist, atable) (bag,[],[],IDX.DT.empty) alist in if new_cl then (Some cl, Some (clause, (alist,atable), newa, bag)) else match simplify ctable bag cl with | None -> (None, Some (clause, (alist,atable), newa, bag)) | Some (bag,cl1) -> (Some cl1, Some (clause, (alist,atable), newa, bag)) ;; let keep_simplified cl (alist,atable) bag = let rec keep_simplified_aux ~new_cl cl (alist,atable) bag newc = if new_cl then match simplification_step ~new_cl cl (alist,atable) bag cl with | (None, _) -> assert false | (Some _, None) -> None | (Some _, Some (clause, (alist,atable), newa, bag)) -> keep_simplified_aux ~new_cl:(cl!=clause) clause (alist,atable) bag (newa@newc) else match newc with | [] -> Some (cl, bag, (alist,atable)) | hd::tl -> match simplification_step ~new_cl cl (alist,atable) bag hd with | (None,None) -> assert false | (Some _,None) -> keep_simplified_aux ~new_cl cl (alist,atable) bag tl | (None, Some _) -> None | (Some cl1, Some (clause, (alist,atable), newa, bag)) -> let alist,atable = (clause::alist, IDX.index_unit_clause atable clause) in keep_simplified_aux ~new_cl:(cl!=cl1) cl1 (alist,atable) bag (newa@tl) in keep_simplified_aux ~new_cl:true cl (alist,atable) bag [] ;; (* this is like simplify but raises Success *) let simplify_goal maxvar table bag clause = let bag, clause = demodulate bag clause table in if (is_identity_clause clause) || (is_subsumed ~unify:true clause table) then raise (Success (bag, maxvar, clause)) else bag, clause ;; (* =================== inference ===================== *) (* this is OK for both the sup_left and sup_right inference steps *) let superposition table varlist subterm pos context = let cands = IDX.DT.retrieve_unifiables table subterm in HExtlib.filter_map (fun (dir, (id,lit,vl,_ (*as uc*))) -> match lit with | Terms.Predicate _ -> assert false | Terms.Equation (l,r,_,o) -> let side, newside = if dir=Terms.Left2Right then l,r else r,l in try let subst, varlist = Unif.unification (varlist@vl) [] subterm side in if o = Terms.Incomparable then let side = Subst.apply_subst subst side in let newside = Subst.apply_subst subst newside in let o = Order.compare_terms side newside in (* XXX: check Riazanov p. 33 (iii) *) if o <> Terms.Lt && o <> Terms.Eq then Some (context newside, subst, varlist, id, pos, dir) else ((*prerr_endline ("Filtering: " ^ Pp.pp_foterm side ^ " =(< || =)" ^ Pp.pp_foterm newside ^ " coming from " ^ Pp.pp_unit_clause uc );*)None) else Some (context newside, subst, varlist, id, pos, dir) with FoUnif.UnificationFailure _ -> None) (IDX.ClauseSet.elements cands) ;; let build_new_clause bag maxvar filter rule t subst vl id id2 pos dir = let maxvar, vl, relocsubst = Utils.relocate maxvar vl in let subst = Subst.concat relocsubst subst in match build_clause bag filter rule t subst vl id id2 pos dir with | Some (bag, c) -> Some ((bag, maxvar), c) | None -> None ;; let fold_build_new_clause bag maxvar id rule filter res = let (bag, maxvar), res = HExtlib.filter_map_acc (fun (bag, maxvar) (t,subst,vl,id2,pos,dir) -> build_new_clause bag maxvar filter rule t subst vl id id2 pos dir) (bag, maxvar) res in bag, maxvar, res ;; (* Superposes selected equation with equalities in table *) let superposition_with_table bag maxvar (id,selected,vl,_) table = match selected with | Terms.Predicate _ -> assert false | Terms.Equation (l,r,ty,Terms.Lt) -> fold_build_new_clause bag maxvar id Terms.Superposition (fun _ -> true) (all_positions [3] (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; l; x ]) r (superposition table vl)) | Terms.Equation (l,r,ty,Terms.Gt) -> fold_build_new_clause bag maxvar id Terms.Superposition (fun _ -> true) (all_positions [2] (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; x; r ]) l (superposition table vl)) | Terms.Equation (l,r,ty,Terms.Incomparable) -> fold_build_new_clause bag maxvar id Terms.Superposition (function (* Riazanov: p.33 condition (iv) *) | Terms.Node [Terms.Leaf eq; ty; l; r ] when B.eq B.eqP eq -> Order.compare_terms l r <> Terms.Eq | _ -> assert false) ((all_positions [3] (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; l; x ]) r (superposition table vl)) @ (all_positions [2] (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; x; r ]) l (superposition table vl))) | _ -> assert false ;; (* the current equation is normal w.r.t. demodulation with atable * (and is not the identity) *) let infer_right bag maxvar current (alist,atable) = (* We demodulate actives clause with current until all * * active clauses are reduced w.r.t each other *) (* let bag, (alist,atable) = keep_simplified (alist,atable) bag [current] in *) let ctable = IDX.index_unit_clause IDX.DT.empty current in (* let bag, (alist, atable) = let bag, alist = HExtlib.filter_map_acc (simplify ctable) bag alist in bag, (alist, List.fold_left IDX.index_unit_clause IDX.DT.empty alist) in*) debug "Simplified active clauses with fact"; (* We superpose active clauses with current *) let bag, maxvar, new_clauses = List.fold_left (fun (bag, maxvar, acc) active -> let bag, maxvar, newc = superposition_with_table bag maxvar active ctable in bag, maxvar, newc @ acc) (bag, maxvar, []) alist in debug "First superpositions"; (* We add current to active clauses so that it can be * * superposed with itself *) let alist, atable = current :: alist, IDX.index_unit_clause atable current in debug "Indexed"; let fresh_current, maxvar = Utils.fresh_unit_clause maxvar current in (* We need to put fresh_current into the bag so that all * * variables clauses refer to are known. *) let bag, fresh_current = Utils.add_to_bag bag fresh_current in (* We superpose current with active clauses *) let bag, maxvar, additional_new_clauses = superposition_with_table bag maxvar fresh_current atable in debug "Another superposition"; let new_clauses = new_clauses @ additional_new_clauses in let bag, new_clauses = HExtlib.filter_map_acc (simplify atable) bag new_clauses in debug "Demodulated new clauses"; bag, maxvar, (alist, atable), new_clauses ;; let infer_left bag maxvar goal (_alist, atable) = (* We superpose the goal with active clauses *) let bag, maxvar, new_goals = superposition_with_table bag maxvar goal atable in (* We demodulate the goal with active clauses *) let bag, new_goals = List.fold_left (fun (bag, acc) g -> let bag, g = demodulate bag g atable in bag, g :: acc) (bag, []) new_goals in bag, maxvar, List.rev new_goals ;; end