(* ||M|| This file is part of HELM, an Hypertextual, Electronic ||A|| Library of Mathematics, developed at the Computer Science ||T|| Department, University of Bologna, Italy. ||I|| ||T|| HELM is free software; you can redistribute it and/or ||A|| modify it under the terms of the GNU General Public License \ / version 2 or (at your option) any later version. \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) (* $Id: index.mli 9822 2009-06-03 15:37:06Z tassi $ *) module Superposition (B : Terms.Blob) = struct module IDX = Index.Index(B) module Unif = FoUnif.Founif(B) module Subst = FoSubst.Subst(B) module Order = Orderings.Orderings(B) module Utils = FoUtils.Utils(B) module Pp = Pp.Pp(B) let rec list_first f = function | [] -> None | x::tl -> match f x with Some _ as x -> x | _ -> list_first f tl ;; let first_position pos ctx t f = let rec aux pos ctx = function | Terms.Leaf _ as t -> f t pos ctx | Terms.Var _ -> None | Terms.Node l as t-> match f t pos ctx with | Some _ as x -> x | None -> let rec first pre post = function | [] -> None | t :: tl -> let newctx = fun x -> ctx (Terms.Node (pre@[x]@post)) in match aux (List.length pre :: pos) newctx t with | Some _ as x -> x | None -> if post = [] then None (* tl is also empty *) else first (pre @ [t]) (List.tl post) tl in first [] (List.tl l) l in aux pos ctx t ;; let all_positions pos ctx t f = let rec aux pos ctx = function | Terms.Leaf _ as t -> f t pos ctx | Terms.Var _ -> [] | Terms.Node l as t-> let acc, _, _ = List.fold_left (fun (acc,pre,post) t -> (* Invariant: pre @ [t] @ post = l *) let newctx = fun x -> ctx (Terms.Node (pre@[x]@post)) in let acc = aux (List.length pre :: pos) newctx t @ acc in if post = [] then acc, l, [] else acc, pre @ [t], List.tl post) (f t pos ctx, [], List.tl l) l in acc in aux pos ctx t ;; let build_clause bag filter rule t subst vl id id2 pos dir = let proof = Terms.Step(rule,id,id2,dir,pos,subst) in let t = Subst.apply_subst subst t in if filter t then let literal = match t with | Terms.Node [ Terms.Leaf eq ; ty; l; r ] when B.eq B.eqP eq -> let o = Order.compare_terms l r in Terms.Equation (l, r, ty, o) | t -> Terms.Predicate t in let bag, uc = Utils.add_to_bag bag (0, literal, vl, proof) in Some (bag, uc) else ((*prerr_endline ("Filtering: " ^ Pp.pp_foterm t);*)None) ;; (* ============ simplification ================= *) let demod table varlist subterm pos context = let cands = IDX.DT.retrieve_generalizations table subterm in list_first (fun (dir, (id,lit,vl,_)) -> match lit with | Terms.Predicate _ -> assert false | Terms.Equation (l,r,_,o) -> let side, newside = if dir=Terms.Left2Right then l,r else r,l in try let subst, varlist = Unif.unification (varlist@vl) varlist subterm side in if o = Terms.Incomparable then let side = Subst.apply_subst subst side in let newside = Subst.apply_subst subst newside in let o = Order.compare_terms side newside in (* Riazanov, pp. 45 (ii) *) if o = Terms.Lt then Some (context newside, subst, varlist, id, pos, dir) else ((*prerr_endline ("Filtering: " ^ Pp.pp_foterm side ^ " =(< || =)" ^ Pp.pp_foterm newside ^ " coming from " ^ Pp.pp_unit_clause uc );*)None) else Some (context newside, subst, varlist, id, pos, dir) with FoUnif.UnificationFailure _ -> None) (IDX.ClauseSet.elements cands) ;; (* XXX: possible optimization, if the literal has a "side" already * in normal form we should not traverse it again *) let demodulate_once bag (id, literal, vl, _) table = let t = match literal with | Terms.Predicate t -> t | Terms.Equation (l,r,ty,_) -> Terms.Node [ Terms.Leaf B.eqP; ty; l; r ] in match first_position [] (fun x -> x) t (demod table vl) with | None -> None | Some (newt, subst, varlist, id2, pos, dir) -> build_clause bag (fun _ -> true) Terms.Demodulation newt subst varlist id id2 pos dir ;; let rec demodulate bag clause table = match demodulate_once bag clause table with | None -> bag, clause | Some (bag, clause) -> demodulate bag clause table ;; (* move away *) let is_identity_clause = function | _, Terms.Equation (_,_,_,Terms.Eq), _, _ -> true | _, Terms.Predicate _, _, _ -> assert false | _ -> false ;; let is_subsumed (id, lit, vl, _) table = match lit with | Terms.Predicate _ -> assert false | Terms.Equation (l,r,ty,_) -> let lcands = IDX.DT.retrieve_generalizations table l in let rcands = IDX.DT.retrieve_generalizations table l in let f b c = let dir, l, r, vl = match c with | (d, (_,Terms.Equation (l,r,ty,_),vl,_))-> d, l, r, vl |_ -> assert false in let l, r = if (dir = Terms.Left2Right) = b then l,r else r,l in Terms.Node [ Terms.Leaf B.eqP; ty; l; r ], vl in let cands1 = List.map (f true) (IDX.ClauseSet.elements lcands) in let cands2 = List.map (f false) (IDX.ClauseSet.elements rcands) in let t = Terms.Node [ Terms.Leaf B.eqP; ty; l; r ] in List.exists (fun (c, vl1) -> try ignore(Unif.unification (vl@vl1) vl c t); true with FoUnif.UnificationFailure _ -> false) (cands1 @ cands2) ;; (* demodulate and check for subsumption *) let forward_simplify table bag clause = let bag, clause = demodulate bag clause table in if is_identity_clause clause then None else if is_subsumed clause table then None else Some (bag, clause) ;; (* =================== inference ===================== *) let superposition_right table varlist subterm pos context = let cands = IDX.DT.retrieve_unifiables table subterm in HExtlib.filter_map (fun (dir, (id,lit,vl,_ (*as uc*))) -> match lit with | Terms.Predicate _ -> assert false | Terms.Equation (l,r,_,o) -> let side, newside = if dir=Terms.Left2Right then l,r else r,l in try let subst, varlist = Unif.unification (varlist@vl) [] subterm side in if o = Terms.Incomparable then let side = Subst.apply_subst subst side in let newside = Subst.apply_subst subst newside in let o = Order.compare_terms side newside in (* XXX: check Riazanov p. 33 (iii) *) if o <> Terms.Lt && o <> Terms.Eq then Some (context newside, subst, varlist, id, pos, dir) else ((*prerr_endline ("Filtering: " ^ Pp.pp_foterm side ^ " =(< || =)" ^ Pp.pp_foterm newside ^ " coming from " ^ Pp.pp_unit_clause uc );*)None) else Some (context newside, subst, varlist, id, pos, dir) with FoUnif.UnificationFailure _ -> None) (IDX.ClauseSet.elements cands) ;; let build_new_clause bag maxvar filter rule t subst vl id id2 pos dir = let maxvar, vl, relocsubst = Utils.relocate maxvar vl in let subst = Subst.concat relocsubst subst in match build_clause bag filter rule t subst vl id id2 pos dir with | Some (bag, c) -> Some ((bag, maxvar), c) | None -> None ;; let fold_build_new_clause bag maxvar id rule filter res = let (bag, maxvar), res = HExtlib.filter_map_acc (fun (bag, maxvar) (t,subst,vl,id2,pos,dir) -> build_new_clause bag maxvar filter rule t subst vl id id2 pos dir) (bag, maxvar) res in bag, maxvar, res ;; let superposition_right_with_table bag maxvar (id,selected,vl,_) table = match selected with | Terms.Predicate _ -> assert false | Terms.Equation (l,r,ty,Terms.Lt) -> fold_build_new_clause bag maxvar id Terms.SuperpositionRight (fun _ -> true) (all_positions [3] (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; l; x ]) r (superposition_right table vl)) | Terms.Equation (l,r,ty,Terms.Gt) -> fold_build_new_clause bag maxvar id Terms.SuperpositionRight (fun _ -> true) (all_positions [2] (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; x; r ]) l (superposition_right table vl)) | Terms.Equation (l,r,ty,Terms.Incomparable) -> fold_build_new_clause bag maxvar id Terms.SuperpositionRight (function (* Riazanov: p.33 condition (iv) *) | Terms.Node [Terms.Leaf eq; ty; l; r ] when B.eq B.eqP eq -> Order.compare_terms l r <> Terms.Eq | _ -> assert false) ((all_positions [3] (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; l; x ]) r (superposition_right table vl)) @ (all_positions [2] (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; x; r ]) l (superposition_right table vl))) | _ -> assert false ;; (* the current equation is normal w.r.t. demodulation with atable * (and is not the identity) *) let infer_right bag maxvar current (alist,atable) = let ctable = IDX.index_unit_clause IDX.DT.empty current in let bag, maxvar, new_clauses = List.fold_left (fun (bag, maxvar, acc) active -> let bag, maxvar, newc = superposition_right_with_table bag maxvar active ctable in bag, maxvar, newc @ acc) (bag, maxvar, []) alist in let alist, atable = current :: alist, IDX.index_unit_clause atable current in let fresh_current, maxvar = Utils.fresh_unit_clause maxvar current in let bag, maxvar, additional_new_clauses = superposition_right_with_table bag maxvar fresh_current atable in let new_clauses = new_clauses @ additional_new_clauses in let bag, new_clauses = HExtlib.filter_map_acc (forward_simplify atable) bag new_clauses in bag, maxvar, (alist, atable), new_clauses ;; end