(* ||M|| This file is part of HELM, an Hypertextual, Electronic ||A|| Library of Mathematics, developed at the Computer Science ||T|| Department, University of Bologna, Italy. ||I|| ||T|| HELM is free software; you can redistribute it and/or ||A|| modify it under the terms of the GNU General Public License \ / version 2 or (at your option) any later version. \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) (* $Id$ *) type 'a foterm = | Leaf of 'a | Var of int | Node of ('a foterm) list type 'a substitution = (int * 'a foterm) list type comparison = Lt | Eq | Gt | Incomparable type rule = SuperpositionRight | SuperpositionLeft | Demodulation type direction = Left2Right | Right2Left | Nodir type position = int list type 'a proof = | Exact of 'a | Step of rule * int * int * direction * position * 'a substitution (* rule, eq1, eq2, direction of eq2, position, substitution *) type 'a literal = | Equation of 'a foterm (* lhs *) * 'a foterm (* rhs *) * 'a foterm (* type *) * comparison (* orientation *) | Predicate of 'a foterm type varlist = int list type 'a unit_clause = int (* ID *) * 'a literal * varlist (* variable list *) * 'a proof (* proof *) type 'a passive_clause = int * 'a unit_clause (* weight * equation *) module OT = struct type t = int let compare = Pervasives.compare end module M : Map.S with type key = int = Map.Make(OT) type 'a bag = 'a unit_clause M.t module type Blob = sig type t val eq : t -> t -> bool val compare : t -> t -> int val pp : t -> string end module Utils (B : Blob) = struct let rec eq_foterm x y = x == y || match x, y with | Leaf t1, Leaf t2 -> B.eq t1 t2 | Var i, Var j -> i = j | Node l1, Node l2 -> List.for_all2 eq_foterm l1 l2 | _ -> false ;; let rec lexicograph f l1 l2 = match l1, l2 with | [], [] -> 0 | x::xs, y::ys -> let c = f x y in if c <> 0 then c else lexicograph f xs ys | [],_ -> ~-1 | _,[] -> 1 ;; let rec compare_foterm x y = match x, y with | Leaf t1, Leaf t2 -> B.compare t1 t2 | Var i, Var j -> i - j | Node l1, Node l2 -> lexicograph compare_foterm l1 l2 | Leaf _, ( Node _ | Var _ ) -> ~-1 | Node _, Leaf _ -> 1 | Node _, Var _ -> ~-1 | Var _, _ -> 1 ;; let eq_literal l1 l2 = match l1, l2 with | Predicate p1, Predicate p2 -> eq_foterm p1 p2 | Equation (l1,r1,ty1,o1), Equation (l2,r2,ty2,o2) -> o1 = o2 && eq_foterm l1 l2 && eq_foterm r1 r2 && eq_foterm ty1 ty2 | _ -> false ;; let compare_literal l1 l2 = match l1, l2 with | Predicate p1, Predicate p2 -> compare_foterm p1 p2 | Equation (l1,r1,ty1,o1), Equation (l2,r2,ty2,o2) -> let c = Pervasives.compare o1 o2 in if c <> 0 then c else let c = compare_foterm l1 l2 in if c <> 0 then c else let c = compare_foterm r1 r2 in if c <> 0 then c else compare_foterm ty1 ty2 | Predicate _, Equation _ -> ~-1 | Equation _, Predicate _ -> 1 ;; let eq_unit_clause (id1,_,_,_) (id2,_,_,_) = id1 = id2 let compare_unit_clause (id1,_,_,_) (id2,_,_,_) = Pervasives.compare id1 id2 end