(* ||M|| This file is part of HELM, an Hypertextual, Electronic ||A|| Library of Mathematics, developed at the Computer Science ||T|| Department, University of Bologna, Italy. ||I|| ||T|| HELM is free software; you can redistribute it and/or ||A|| modify it under the terms of the GNU General Public License \ / version 2 or (at your option) any later version. \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) (* $Id: nCic.ml 9058 2008-10-13 17:42:30Z tassi $ *) open Printf let debug = true let debug_print s = if debug then prerr_endline (Lazy.force s) else () open Continuationals.Stack open NTacStatus let dot_tac status = let new_gstatus = match status.gstatus with | [] -> assert false | ([], _, [], _) :: _ as stack -> (* backward compatibility: do-nothing-dot *) stack | (g, t, k, tag) :: s -> match filter_open g, k with | loc :: loc_tl, _ -> (([ loc ], t, loc_tl @+ k, tag) :: s) | [], loc :: k -> assert (is_open loc); (([ loc ], t, k, tag) :: s) | _ -> fail (lazy "can't use \".\" here") in { status with gstatus = new_gstatus } ;; let branch_tac status = let new_gstatus = match status.gstatus with | [] -> assert false | (g, t, k, tag) :: s -> match init_pos g with (* TODO *) | [] | [ _ ] -> fail (lazy "too few goals to branch"); | loc :: loc_tl -> ([ loc ], [], [], `BranchTag) :: (loc_tl, t, k, tag) :: s in { status with gstatus = new_gstatus } ;; let shift_tac status = let new_gstatus = match status.gstatus with | (g, t, k, `BranchTag) :: (g', t', k', tag) :: s -> (match g' with | [] -> fail (lazy "no more goals to shift") | loc :: loc_tl -> (([ loc ], t @+ filter_open g @+ k, [],`BranchTag) :: (loc_tl, t', k', tag) :: s)) | _ -> fail (lazy "can't shift goals here") in { status with gstatus = new_gstatus } ;; let pos_tac i_s status = let new_gstatus = match status.gstatus with | [] -> assert false | ([ loc ], t, [],`BranchTag) :: (g', t', k', tag) :: s when is_fresh loc -> let l_js = List.filter (fun (i, _) -> List.mem i i_s) ([loc] @+ g') in ((l_js, t , [],`BranchTag) :: (([ loc ] @+ g') @- l_js, t', k', tag) :: s) | _ -> fail (lazy "can't use relative positioning here") in { status with gstatus = new_gstatus } ;; let wildcard_tac status = let new_gstatus = match status.gstatus with | [] -> assert false | ([ loc ] , t, [], `BranchTag) :: (g', t', k', tag) :: s when is_fresh loc -> (([loc] @+ g', t, [], `BranchTag) :: ([], t', k', tag) :: s) | _ -> fail (lazy "can't use wildcard here") in { status with gstatus = new_gstatus } ;; let merge_tac status = let new_gstatus = match status.gstatus with | [] -> assert false | (g, t, k,`BranchTag) :: (g', t', k', tag) :: s -> ((t @+ filter_open g @+ g' @+ k, t', k', tag) :: s) | _ -> fail (lazy "can't merge goals here") in { status with gstatus = new_gstatus } ;; let focus_tac gs status = let new_gstatus = match status.gstatus with | [] -> assert false | s -> assert(gs <> []); let stack_locs = let add_l acc _ _ l = if is_open l then l :: acc else acc in fold ~env:add_l ~cont:add_l ~todo:add_l [] s in List.iter (fun g -> if not (List.exists (fun l -> goal_of_loc l = g) stack_locs) then fail (lazy (sprintf "goal %d not found (or closed)" g))) gs; (zero_pos gs, [], [], `FocusTag) :: deep_close gs s in { status with gstatus = new_gstatus } ;; let unfocus_tac status = let new_gstatus = match status.gstatus with | [] -> assert false | ([], [], [], `FocusTag) :: s -> s | _ -> fail (lazy "can't unfocus, some goals are still open") in { status with gstatus = new_gstatus } ;; let skip_tac status = let new_gstatus = match status.gstatus with | [] -> assert false | (gl, t, k, tag) :: s -> let gl = List.map switch_of_loc gl in if List.exists (function Open _ -> true | Closed _ -> false) gl then fail (lazy "cannot skip an open goal") else ([],t,k,tag) :: s in { status with gstatus = new_gstatus } ;; let block_tac l status = List.fold_left (fun status tac -> tac status) status l ;; let compare_statuses ~past ~present = let _,_,past,_,_ = past.pstatus in let _,_,present,_,_ = present.pstatus in List.map fst (List.filter (fun (i,_) -> not (List.mem_assoc i past)) present), List.map fst (List.filter (fun (i,_) -> not (List.mem_assoc i present)) past) ;; (* Exec and distribute_tac form a retraction pair: 1) exec (distribute_tac low_tac) (s,i) = low_tac (s,i) 2) tac [s]::G = G1::...::Gn::G' && G' is G with some goals closed => distribute_tac (exec tac) [s]::G = (G1@...Gn)::G' 3) tac G = distribute_tac (exec tac) G if tac = distribute_tac lowtac Note that executing an high tactic on a set of goals may be stronger than executing the same tactic on those goals, but once at a time (e.g. the tactic could perform a global analysis of the set of goals) *) let exec tac low_status g = let stack = [ [0,Open g], [], [], `NoTag ] in let status = tac { gstatus = stack ; istatus = low_status } in status.istatus ;; let distribute_tac tac status = match status.gstatus with | [] -> assert false | (g, t, k, tag) :: s -> debug_print (lazy ("context length " ^string_of_int (List.length g))); let rec aux s go gc = function | [] -> s, go, gc | loc :: loc_tl -> debug_print (lazy "inner eval tactical"); let s, go, gc = if List.exists ((=) (goal_of_loc loc)) gc then s, go, gc else match switch_of_loc loc with | Closed _ -> fail (lazy "cannot apply to a Closed goal") | Open n -> let sn = tac s n in let go', gc' = compare_statuses ~past:s ~present:sn in sn, (go @- gc') @+ go', gc @+ gc' in aux s go gc loc_tl in let s0, go0, gc0 = status.istatus, [], [] in let sn, gon, gcn = aux s0 go0 gc0 g in debug_print (lazy ("opened: " ^ String.concat " " (List.map string_of_int gon))); debug_print (lazy ("closed: " ^ String.concat " " (List.map string_of_int gcn))); let stack = (zero_pos gon, t @~- gcn, k @~- gcn, tag) :: deep_close gcn s in { gstatus = stack; istatus = sn } ;; let select ~where status goal = let goalty = get_goalty status goal in let (wanted,_,where) = GrafiteDisambiguate.disambiguate_npattern where in let path = match where with None -> NCic.Implicit `Term | Some where -> where in let status, newgoalty = select_term status goalty (wanted,path) in let status, instance = mk_meta status (ctx_of newgoalty) (`Decl newgoalty) in instantiate status goal instance ;; let select_tac ~where = distribute_tac (select ~where) ;; let exact t status goal = let goalty = get_goalty status goal in let status, t = disambiguate status t (Some goalty) (ctx_of goalty) in instantiate status goal t ;; let exact_tac t = distribute_tac (exact t) ;; let reopen status = let n,h,metasenv,subst,o = status.pstatus in let subst, newm = List.partition (function (_,(Some tag,_,_,_)) -> tag <> NCicMetaSubst.in_scope_tag && not (NCicMetaSubst.is_out_scope_tag tag) | _ -> true) subst in let in_m, out_m = List.partition (function (_,(Some tag,_,_,_)) -> tag = NCicMetaSubst.in_scope_tag | _ -> assert false) newm in let metasenv = List.map (fun (i,(_,c,_,t)) -> i,(None,c,t)) in_m @ metasenv in let in_m = List.map fst in_m in let out_m = match out_m with [i] -> i | _ -> assert false in { status with pstatus = n,h,metasenv,subst,o }, in_m, out_m ;; let change ~where ~with_what status goal = let goalty = get_goalty status goal in let (wanted,_,where) = GrafiteDisambiguate.disambiguate_npattern where in let path = match where with None -> NCic.Implicit `Term | Some where -> where in let status, newgoalty = select_term status goalty (wanted,path) in let status, in_scope, out_scope = reopen status in let status = List.fold_left (exact with_what) status in_scope in let j,(n,cctx,bo,_) = out_scope in let _ = typeof status (ctx_of goalty) (Obj.magic (n,cctx,bo)) in let n,h,metasenv,subst,o = status.pstatus in let subst = out_scope :: subst in let status = { status with pstatus = n,h,metasenv,subst,o } in let status, instance = mk_meta status (ctx_of newgoalty) (`Decl newgoalty) in instantiate status goal instance ;; let apply t status goal = exact t status goal;; let apply_tac t = distribute_tac (apply t) ;; let change_tac ~where ~with_what = distribute_tac (change ~where ~with_what) ;; let elim_tac ~what ~where status = block_tac [ select_tac ~where; distribute_tac (fun status goal -> let goalty = get_goalty status goal in let _,_,w = what in let status, what = disambiguate status what None (ctx_of goalty) in let _ty_what = typeof status (ctx_of what) what in (* check inductive... find eliminator *) let holes = [ CicNotationPt.Implicit;CicNotationPt.Implicit;CicNotationPt.Implicit] in let eliminator = CicNotationPt.Appl(CicNotationPt.Ident("nat_ind",None)::holes @ [ w ]) in exec (apply_tac ("",0,eliminator)) status goal) ] status ;; let intro_tac name = exact_tac ("",0,(CicNotationPt.Binder (`Lambda, (CicNotationPt.Ident (name,None),None),CicNotationPt.Implicit))) ;; let cases ~what status goal = let gty = get_goalty status goal in let status, what = disambiguate status what None (ctx_of gty) in let ty = typeof status (ctx_of what) what in let ref, consno, left, right = analyse_indty status ty in let t = NCic.Match (ref,NCic.Implicit `Term, term_of_cic_term what (ctx_of gty), HExtlib.mk_list (NCic.Implicit `Term) consno) in let ctx = ctx_of gty in let status,t,ty = refine status ctx (mk_cic_term ctx t) (Some gty) in instantiate status goal t ;; let cases_tac ~what ~where = block_tac [ select_tac ~where ; distribute_tac (cases ~what) ] ;; let case1_tac name = block_tac [ intro_tac name; cases_tac ~where:("",0,(None,[],None)) ~what:("",0,CicNotationPt.Ident (name,None)) ] ;;