(* Copyright (C) 2005, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) (* let _profiler = <:profiler<_profiler>>;; *) (* $Id$ *) (* set to false to disable paramodulation inside auto_tac *) let fst3 a,_,_ = a;; let last _,_,a = a;; let connect_to_auto = true;; let debug_print = Utils.debug_print;; (* profiling statistics... *) let infer_time = ref 0.;; let forward_simpl_time = ref 0.;; let forward_simpl_new_time = ref 0.;; let backward_simpl_time = ref 0.;; let passive_maintainance_time = ref 0.;; (* limited-resource-strategy related globals *) let processed_clauses = ref 0;; (* number of equalities selected so far... *) let time_limit = ref 0.;; (* in seconds, settable by the user... *) let start_time = ref 0.;; (* time at which the execution started *) let elapsed_time = ref 0.;; (* let maximal_weight = ref None;; *) let maximal_retained_equality = ref None;; (* equality-selection related globals *) let use_fullred = ref true;; let weight_age_ratio = ref 6 (* 5 *);; (* settable by the user *) let weight_age_counter = ref !weight_age_ratio ;; let symbols_ratio = ref 0 (* 3 *);; let symbols_counter = ref 0;; (* non-recursive Knuth-Bendix term ordering by default *) (* Utils.compare_terms := Utils.rpo;; *) (* Utils.compare_terms := Utils.nonrec_kbo;; *) (* Utils.compare_terms := Utils.ao;; *) (* statistics... *) let derived_clauses = ref 0;; let kept_clauses = ref 0;; (* varbiables controlling the search-space *) let maxdepth = ref 3;; let maxwidth = ref 3;; type theorem = Cic.term * Cic.term * Cic.metasenv;; let symbols_of_equality equality = let (_, _, (_, left, right, _), _,_) = Equality.open_equality equality in let m1 = Utils.symbols_of_term left in let m = Utils.TermMap.fold (fun k v res -> try let c = Utils.TermMap.find k res in Utils.TermMap.add k (c+v) res with Not_found -> Utils.TermMap.add k v res) (Utils.symbols_of_term right) m1 in m ;; (* griggio *) module OrderedEquality = struct type t = Equality.equality let compare eq1 eq2 = match Equality.meta_convertibility_eq eq1 eq2 with | true -> 0 | false -> let w1, _, (ty,left, right, _), m1,_ = Equality.open_equality eq1 in let w2, _, (ty',left', right', _), m2,_ = Equality.open_equality eq2 in match Pervasives.compare w1 w2 with | 0 -> let res = (List.length m1) - (List.length m2) in if res <> 0 then res else Equality.compare eq1 eq2 | res -> res end module EqualitySet = Set.Make(OrderedEquality);; type passive_table = Equality.equality list * EqualitySet.t * Indexing.Index.t type active_table = Equality.equality list * Indexing.Index.t type new_proof = Equality.goal_proof * Equality.proof * int * Subst.substitution * Cic.metasenv type result = | ParamodulationFailure of string * active_table * passive_table * Equality.equality_bag | ParamodulationSuccess of new_proof * active_table * passive_table * Equality.equality_bag ;; let list_of_passive (l,_,_) = l ;; let list_of_active (l,_) = l ;; let make_passive eq_list = let set = List.fold_left (fun s e -> EqualitySet.add e s) EqualitySet.empty eq_list in (* we have the invariant that the list and the set have the same * cardinality *) EqualitySet.elements set, set, List.fold_left Indexing.index Indexing.empty eq_list ;; let make_empty_active () = [], Indexing.empty ;; let make_active eq_list = eq_list, List.fold_left Indexing.index Indexing.empty eq_list ;; let size_of_passive (passive_list, _,_) = List.length passive_list;; let size_of_active (active_list, _) = List.length active_list;; let passive_is_empty = function | [], s , _ when EqualitySet.is_empty s -> true | [], s ,_ -> assert false (* the set and the list should be in sync *) | _ -> false ;; type goals = Equality.goal list * Equality.goal list let no_more_passive_goals g = match g with | _,[] -> true | _ -> false;; let age_factor = 0.01;; (** selects one equality from passive. The selection strategy is a combination of weight, age and goal-similarity *) let rec select env g passive = processed_clauses := !processed_clauses + 1; (* let goal = match (List.rev goals) with goal::_ -> goal | _ -> assert false in *) let pos_list, pos_set, pos_table = passive in let remove eq l = List.filter (fun e -> Equality.compare e eq <> 0) l in if !weight_age_ratio > 0 then weight_age_counter := !weight_age_counter - 1; match !weight_age_counter with | 0 -> ( weight_age_counter := !weight_age_ratio; let skip_giant pos_list pos_set pos_table = match pos_list with | (hd:EqualitySet.elt)::tl -> let w,_,_,_,_ = Equality.open_equality hd in if w < 30 then hd, (tl, EqualitySet.remove hd pos_set, Indexing.remove_index pos_table hd) else (* (prerr_endline ("+++ skipping giant of size "^string_of_int w^" +++"); *) select env g (tl@[hd],pos_set,pos_table) | _ -> assert false in skip_giant pos_list pos_set pos_table) (* let rec skip_giant pos_list pos_set = match pos_list with | (hd:EqualitySet.elt)::tl -> let w,_,_,_,_ = Equality.open_equality hd in let pos_set = EqualitySet.remove hd pos_set in if w < 30 then hd, (tl, pos_set) else (prerr_endline ("+++ skipping giant of size "^string_of_int w^" +++"); skip_giant tl pos_set) | _ -> assert false in skip_giant pos_list pos_set) *) (* | _ when (!symbols_counter > 0) -> (symbols_counter := !symbols_counter - 1; let cardinality map = Utils.TermMap.fold (fun k v res -> res + v) map 0 in let symbols = let _, _, term = goal in Utils.symbols_of_term term in let card = cardinality symbols in let foldfun k v (r1, r2) = if Utils.TermMap.mem k symbols then let c = Utils.TermMap.find k symbols in let c1 = abs (c - v) in let c2 = v - c1 in r1 + c2, r2 + c1 else r1, r2 + v in let f equality (i, e) = let common, others = Utils.TermMap.fold foldfun (symbols_of_equality equality) (0, 0) in let c = others + (abs (common - card)) in if c < i then (c, equality) else (i, e) in let e1 = EqualitySet.min_elt pos_set in let initial = let common, others = Utils.TermMap.fold foldfun (symbols_of_equality e1) (0, 0) in (others + (abs (common - card))), e1 in let _, current = EqualitySet.fold f pos_set initial in current, (remove current pos_list, EqualitySet.remove current pos_set)) *) | _ -> symbols_counter := !symbols_ratio; let my_min e1 e2 = let w1,_,_,_,_ = Equality.open_equality e1 in let w2,_,_,_,_ = Equality.open_equality e2 in if w1 < w2 then e1 else e2 in let rec my_min_elt min = function | [] -> min | hd::tl -> my_min_elt (my_min hd min) tl in (* let current = EqualitySet.min_elt pos_set in *) let current = my_min_elt (List.hd pos_list) (List.tl pos_list) in current,(remove current pos_list, EqualitySet.remove current pos_set, Indexing.remove_index pos_table current) ;; let filter_dependent bag passive id = let pos_list, pos_set, pos_table = passive in let passive,no_pruned = List.fold_right (fun eq ((list,set,table),no) -> if Equality.depend bag eq id then (list, EqualitySet.remove eq set,Indexing.remove_index table eq), no + 1 else (eq::list,set,table), no) pos_list (([],pos_set,pos_table),0) in (* if no_pruned > 0 then prerr_endline ("+++ pruning "^ string_of_int no_pruned ^" passives +++"); *) passive ;; (* adds to passive a list of equalities new_pos *) let add_to_passive passive new_pos preferred = let pos_list, pos_set , pos_table = passive in let ok set equality = not (EqualitySet.mem equality set) in let pos = List.filter (ok pos_set) new_pos in let add set equalities = List.fold_left (fun s e -> EqualitySet.add e s) set equalities in let pos_head, pos_tail = List.partition (fun e -> List.exists (fun x -> Equality.compare x e = 0) preferred) pos in pos_head @ pos_list @ pos_tail, add pos_set pos, List.fold_left Indexing.index pos_table pos ;; (* TODO *) (* removes from passive equalities that are estimated impossible to activate within the current time limit *) let prune_passive howmany (active, _) passive = let (pl, ps), tbl = passive in let howmany = float_of_int howmany and ratio = float_of_int !weight_age_ratio in let round v = let t = ceil v in int_of_float (if t -. v < 0.5 then t else v) in let in_weight = round (howmany *. ratio /. (ratio +. 1.)) and in_age = round (howmany /. (ratio +. 1.)) in Utils.debug_print (lazy (Printf.sprintf "in_weight: %d, in_age: %d\n" in_weight in_age)); let counter = ref !symbols_ratio in let rec pickw w ps = if w > 0 then if !counter > 0 then let _ = counter := !counter - 1; if !counter = 0 then counter := !symbols_ratio in let e = EqualitySet.min_elt ps in let ps' = pickw (w-1) (EqualitySet.remove e ps) in EqualitySet.add e ps' else let e = EqualitySet.min_elt ps in let ps' = pickw (w-1) (EqualitySet.remove e ps) in EqualitySet.add e ps' else EqualitySet.empty in let ps = pickw in_weight ps in let rec picka w s l = if w > 0 then match l with | [] -> w, s, [] | hd::tl when not (EqualitySet.mem hd s) -> let w, s, l = picka (w-1) s tl in w, EqualitySet.add hd s, hd::l | hd::tl -> let w, s, l = picka w s tl in w, s, hd::l else 0, s, l in let _, ps, pl = picka in_age ps pl in if not (EqualitySet.is_empty ps) then maximal_retained_equality := Some (EqualitySet.max_elt ps); let tbl = EqualitySet.fold (fun e tbl -> Indexing.index tbl e) ps Indexing.empty in (pl, ps), tbl ;; (** inference of new equalities between current and some in active *) let infer bag eq_uri env current (active_list, active_table) = let (_,c,_) = env in if Utils.debug_metas then (ignore(Indexing.check_target bag c current "infer1"); ignore(List.map (function current -> Indexing.check_target bag c current "infer2") active_list)); let bag, new_pos = let bag, copy_of_current = Equality.fix_metas bag current in let active_table = Indexing.index active_table copy_of_current in (* let _ = <:start> in *) let bag, res = Indexing.superposition_right bag eq_uri env active_table current in (* let _ = <:stop> in *) if Utils.debug_metas then ignore(List.map (function current -> Indexing.check_target bag c current "sup0") res); let rec infer_positive bag table = function | [] -> bag, [] | equality::tl -> let bag, res = Indexing.superposition_right bag ~subterms_only:true eq_uri env table equality in if Utils.debug_metas then ignore (List.map (function current -> Indexing.check_target bag c current "sup2") res); let bag, pos = infer_positive bag table tl in bag, res @ pos in let curr_table = Indexing.index Indexing.empty current in let bag, pos = infer_positive bag curr_table ((*copy_of_current::*)active_list) in if Utils.debug_metas then ignore(List.map (function current -> Indexing.check_target bag c current "sup3") pos); bag, res @ pos in derived_clauses := !derived_clauses + (List.length new_pos); match !maximal_retained_equality with | None -> bag, new_pos | Some eq -> ignore(assert false); (* if we have a maximal_retained_equality, we can discard all equalities "greater" than it, as they will never be reached... An equality is greater than maximal_retained_equality if it is bigger wrt. OrderedEquality.compare and it is less similar than maximal_retained_equality to the current goal *) bag, List.filter (fun e -> OrderedEquality.compare e eq <= 0) new_pos ;; let check_for_deep_subsumption env active_table eq = let _,_,(eq_ty, left, right, order),metas,id = Equality.open_equality eq in let check_subsumed deep l r = let eqtmp = Equality.mk_tmp_equality(0,(eq_ty,l,r,Utils.Incomparable),metas)in match Indexing.subsumption env active_table eqtmp with | None -> false | Some _ -> true in let rec aux b (ok_so_far, subsumption_used) t1 t2 = match t1,t2 with | t1, t2 when not ok_so_far -> ok_so_far, subsumption_used | t1, t2 when subsumption_used -> t1 = t2, subsumption_used | Cic.Appl (h1::l),Cic.Appl (h2::l') -> let rc = check_subsumed b t1 t2 in if rc then true, true else if h1 = h2 then (try List.fold_left2 (fun (ok_so_far, subsumption_used) t t' -> aux true (ok_so_far, subsumption_used) t t') (ok_so_far, subsumption_used) l l' with Invalid_argument _ -> false,subsumption_used) else false, subsumption_used | _ -> false, subsumption_used in fst (aux false (true,false) left right) ;; (** simplifies current using active and passive *) let forward_simplify bag eq_uri env current (active_list, active_table) = let _, context, _ = env in let demodulate bag table current = let bag, newcurrent = Indexing.demodulation_equality bag eq_uri env table current in bag, if Equality.is_identity env newcurrent then None else Some newcurrent in let demod bag current = if Utils.debug_metas then ignore (Indexing.check_target bag context current "demod0"); let bag, res = demodulate bag active_table current in if Utils.debug_metas then ignore ((function None -> () | Some x -> ignore (Indexing.check_target bag context x "demod1");()) res); bag, res in let bag, res = demod bag current in match res with | None -> bag, None | Some c -> if Indexing.in_index active_table c || check_for_deep_subsumption env active_table c then bag, None else bag, res ;; (** simplifies new using active and passive *) let forward_simplify_new bag eq_uri env new_pos active = if Utils.debug_metas then begin let m,c,u = env in ignore(List.map (fun current -> Indexing.check_target bag c current "forward new pos") new_pos;) end; let active_list, active_table = active in let demodulate bag table target = let bag, newtarget = Indexing.demodulation_equality bag eq_uri env table target in bag, newtarget in (* we could also demodulate using passive. Currently we don't *) let bag, new_pos = List.fold_right (fun x (bag,acc) -> let bag, y = demodulate bag active_table x in bag, y::acc) new_pos (bag,[]) in let new_pos_set = List.fold_left (fun s e -> if not (Equality.is_identity env e) then EqualitySet.add e s else s) EqualitySet.empty new_pos in let new_pos = EqualitySet.elements new_pos_set in let subs e = Indexing.subsumption env active_table e = None in let is_duplicate e = not (Indexing.in_index active_table e) in bag, List.filter subs (List.filter is_duplicate new_pos) ;; (** simplifies a goal with equalities in active and passive *) let rec simplify_goal bag env goal (active_list, active_table) = let demodulate table goal = Indexing.demodulation_goal bag env table goal in let changed, goal = demodulate active_table goal in changed, if not changed then goal else snd (simplify_goal bag env goal (active_list, active_table)) ;; let simplify_goals bag env goals active = let a_goals, p_goals = goals in let p_goals = List.map (fun g -> snd (simplify_goal bag env g active)) p_goals in let a_goals = List.map (fun g -> snd (simplify_goal bag env g active)) a_goals in a_goals, p_goals ;; (** simplifies active usign new *) let backward_simplify_active bag eq_uri env new_pos new_table min_weight active = let active_list, active_table = active in let bag, active_list, newa, pruned = List.fold_right (fun equality (bag, res, newn,pruned) -> let ew, _, _, _,id = Equality.open_equality equality in if ew < min_weight then bag, equality::res, newn,pruned else match forward_simplify bag eq_uri env equality (new_pos, new_table) with | bag, None -> bag, res, newn, id::pruned | bag, Some e -> if Equality.compare equality e = 0 then bag, e::res, newn, pruned else bag, res, e::newn, pruned) active_list (bag, [], [],[]) in let find eq1 where = List.exists (Equality.meta_convertibility_eq eq1) where in let id_of_eq eq = let _, _, _, _,id = Equality.open_equality eq in id in let ((active1,pruned),tbl), newa = List.fold_right (fun eq ((res,pruned), tbl) -> if List.mem eq res then (res, (id_of_eq eq)::pruned),tbl else if (Equality.is_identity env eq) || (find eq res) then ( (res, (id_of_eq eq)::pruned),tbl ) else (eq::res,pruned), Indexing.index tbl eq) active_list (([],pruned), Indexing.empty), List.fold_right (fun eq p -> if (Equality.is_identity env eq) then p else eq::p) newa [] in match newa with | [] -> bag, (active1,tbl), None, pruned | _ -> bag, (active1,tbl), Some newa, pruned ;; (** simplifies passive using new *) let backward_simplify_passive bag eq_uri env new_pos new_table min_weight passive = let (pl, ps), passive_table = passive in let f bag equality (resl, ress, newn) = let ew, _, _, _ , _ = Equality.open_equality equality in if ew < min_weight then bag, (equality::resl, ress, newn) else match forward_simplify bag eq_uri env equality (new_pos, new_table) with | bag, None -> bag, (resl, EqualitySet.remove equality ress, newn) | bag, Some e -> if equality = e then bag, (equality::resl, ress, newn) else let ress = EqualitySet.remove equality ress in bag, (resl, ress, e::newn) in let bag, (pl, ps, newp) = List.fold_right (fun x (bag,acc) -> f bag x acc) pl (bag,([], ps, [])) in let passive_table = List.fold_left (fun tbl e -> Indexing.index tbl e) Indexing.empty pl in match newp with | [] -> bag, ((pl, ps), passive_table), None | _ -> bag, ((pl, ps), passive_table), Some (newp) ;; let build_table equations = List.fold_left (fun (l, t, w) e -> let ew, _, _, _ , _ = Equality.open_equality e in e::l, Indexing.index t e, min ew w) ([], Indexing.empty, 1000000) equations ;; let backward_simplify bag eq_uri env new' active = let new_pos, new_table, min_weight = build_table new' in let bag, active, newa, pruned = backward_simplify_active bag eq_uri env new_pos new_table min_weight active in bag, active, newa, pruned ;; let close bag eq_uri env new' given = let new_pos, new_table, min_weight = List.fold_left (fun (l, t, w) e -> let ew, _, _, _ , _ = Equality.open_equality e in e::l, Indexing.index t e, min ew w) ([], Indexing.empty, 1000000) (snd new') in List.fold_left (fun (bag,p) c -> let bag, pos = infer bag eq_uri env c (new_pos,new_table) in bag, pos@p) (bag,[]) given ;; let is_commutative_law eq = let w, proof, (eq_ty, left, right, order), metas , _ = Equality.open_equality eq in match left,right with Cic.Appl[f1;Cic.Meta _ as a1;Cic.Meta _ as b1], Cic.Appl[f2;Cic.Meta _ as a2;Cic.Meta _ as b2] -> f1 = f2 && a1 = b2 && a2 = b1 | _ -> false ;; let prova bag eq_uri env new' active = let given = List.filter is_commutative_law (fst active) in let _ = Utils.debug_print (lazy (Printf.sprintf "symmetric:\n%s\n" (String.concat "\n" (List.map (fun e -> Equality.string_of_equality ~env e) given)))) in close bag eq_uri env new' given ;; (* returns an estimation of how many equalities in passive can be activated within the current time limit *) let get_selection_estimate () = elapsed_time := (Unix.gettimeofday ()) -. !start_time; (* !processed_clauses * (int_of_float (!time_limit /. !elapsed_time)) *) int_of_float ( ceil ((float_of_int !processed_clauses) *. ((!time_limit (* *. 2. *)) /. !elapsed_time -. 1.))) ;; (** initializes the set of goals *) let make_goals goal = let active = [] and passive = [0, [goal]] in active, passive ;; let make_goal_set goal = ([],[goal]) ;; (** initializes the set of theorems *) let make_theorems theorems = theorems, [] ;; let activate_goal (active, passive) = if active = [] then match passive with | goal_conj::tl -> true, (goal_conj::active, tl) | [] -> false, (active, passive) else true, (active,passive) ;; let activate_theorem (active, passive) = match passive with | theorem::tl -> true, (theorem::active, tl) | [] -> false, (active, passive) ;; let rec simpl bag eq_uri env e others others_simpl = let active = others @ others_simpl in let tbl = List.fold_left (fun t e -> if Equality.is_identity env e then t else Indexing.index t e) Indexing.empty active in let bag, res = forward_simplify bag eq_uri env e (active, tbl) in match others with | hd::tl -> ( match res with | None -> simpl bag eq_uri env hd tl others_simpl | Some e -> simpl bag eq_uri env hd tl (e::others_simpl) ) | [] -> ( match res with | None -> bag, others_simpl | Some e -> bag, e::others_simpl ) ;; let simplify_equalities bag eq_uri env equalities = Utils.debug_print (lazy (Printf.sprintf "equalities:\n%s\n" (String.concat "\n" (List.map Equality.string_of_equality equalities)))); Utils.debug_print (lazy "SIMPLYFYING EQUALITIES..."); match equalities with | [] -> bag, [] | hd::tl -> let bag, res = simpl bag eq_uri env hd tl [] in let res = List.rev res in Utils.debug_print (lazy (Printf.sprintf "equalities AFTER:\n%s\n" (String.concat "\n" (List.map Equality.string_of_equality res)))); bag, res ;; let print_goals goals = (String.concat "\n" (List.map (fun (d, gl) -> let gl' = List.map (fun (p, _, t) -> (* (string_of_proof p) ^ ", " ^ *) (CicPp.ppterm t)) gl in Printf.sprintf "%d: %s" d (String.concat "; " gl')) goals)) ;; let pp_goal_set msg goals names = let active_goals, passive_goals = goals in debug_print (lazy ("////" ^ msg)); debug_print (lazy ("ACTIVE G: " ^ (String.concat "\n " (List.map (fun (_,_,g) -> CicPp.pp g names) active_goals)))); debug_print (lazy ("PASSIVE G: " ^ (String.concat "\n " (List.map (fun (_,_,g) -> CicPp.pp g names) passive_goals)))) ;; let check_if_goal_is_subsumed bag ((_,ctx,_) as env) table (goalproof,menv,ty) = (* let names = Utils.names_of_context ctx in *) match ty with | Cic.Appl[Cic.MutInd(uri,_,_);eq_ty;left;right] when LibraryObjects.is_eq_URI uri -> (let bag, goal_equation = Equality.mk_equality bag (0,Equality.Exact (Cic.Implicit None),(eq_ty,left,right,Utils.Eq),menv) in (* match Indexing.subsumption env table goal_equation with *) match Indexing.unification env table goal_equation with | Some (subst, equality, swapped ) -> (* prerr_endline ("GOAL SUBSUMED IS: "^Equality.string_of_equality goal_equation ~env); prerr_endline ("GOAL IS SUBSUMED BY: "^Equality.string_of_equality equality ~env); prerr_endline ("SUBST:"^Subst.ppsubst ~names subst); *) let (_,p,(ty,l,r,_),m,id) = Equality.open_equality equality in let cicmenv = Subst.apply_subst_metasenv subst (m @ menv) in let bag, p = if swapped then Equality.symmetric bag eq_ty l id uri m else bag, p in bag, Some (goalproof, p, id, subst, cicmenv) | None -> bag, None) | _ -> bag, None ;; let find_all_subsumed bag env table (goalproof,menv,ty) = match ty with | Cic.Appl[Cic.MutInd(uri,_,_);eq_ty;left;right] when LibraryObjects.is_eq_URI uri -> let bag, goal_equation = (Equality.mk_equality bag (0,Equality.Exact (Cic.Implicit None),(eq_ty,left,right,Utils.Eq),menv)) in List.fold_right (fun (subst, equality, swapped) (bag,acc) -> let (_,p,(ty,l,r,_),m,id) = Equality.open_equality equality in let cicmenv = Subst.apply_subst_metasenv subst (m @ menv) in if Utils.debug_metas then Indexing.check_for_duplicates cicmenv "from subsumption"; let bag, p = if swapped then Equality.symmetric bag eq_ty l id uri m else bag, p in bag, (goalproof, p, id, subst, cicmenv)::acc) (Indexing.subsumption_all env table goal_equation) (bag,[]) (* (Indexing.unification_all env table goal_equation) *) | _ -> assert false ;; let check_if_goal_is_identity env = function | (goalproof,m,Cic.Appl[Cic.MutInd(uri,_,ens);eq_ty;left;right]) when left = right && LibraryObjects.is_eq_URI uri -> let reflproof = Equality.Exact (Equality.refl_proof uri eq_ty left) in Some (goalproof, reflproof, 0, Subst.empty_subst,m) | (goalproof,m,Cic.Appl[Cic.MutInd(uri,_,ens);eq_ty;left;right]) when LibraryObjects.is_eq_URI uri -> (let _,context,_ = env in try let s,m,_ = Founif.unification [] m context left right CicUniv.empty_ugraph in let reflproof = Equality.Exact (Equality.refl_proof uri eq_ty left) in let m = Subst.apply_subst_metasenv s m in Some (goalproof, reflproof, 0, s,m) with CicUnification.UnificationFailure _ -> None) | _ -> None ;; let rec check b goal = function | [] -> b, None | f::tl -> match f b goal with | b, None -> check b goal tl | b, (Some _ as ok) -> b, ok ;; let simplify_goal_set bag env goals active = let active_goals, passive_goals = goals in let find (_,_,g) where = List.exists (fun (_,_,g1) -> Equality.meta_convertibility g g1) where in (* prova:tengo le passive semplificate let passive_goals = List.map (fun g -> snd (simplify_goal env g active)) passive_goals in *) List.fold_left (fun (acc_a,acc_p) goal -> match simplify_goal bag env goal active with | changed, g -> if changed then if find g acc_p then acc_a,acc_p else acc_a,g::acc_p else if find g acc_a then acc_a,acc_p else g::acc_a,acc_p) ([],passive_goals) active_goals ;; let check_if_goals_set_is_solved bag env active passive goals = let active_goals, passive_goals = goals in List.fold_left (fun (bag, proof) goal -> match proof with | Some p -> bag, proof | None -> check bag goal [ (fun b x -> b, check_if_goal_is_identity env x); (fun bag -> check_if_goal_is_subsumed bag env (snd active)); (fun bag -> check_if_goal_is_subsumed bag env (last passive)) ]) (bag,None) (active_goals @ passive_goals) ;; let infer_goal_set bag env active goals = let active_goals, passive_goals = goals in let rec aux bag = function | [] -> bag, (active_goals, []) | hd::tl -> let changed, selected = simplify_goal bag env hd active in let (_,m1,t1) = selected in let already_in = List.exists (fun (_,_,t) -> Equality.meta_convertibility t t1) active_goals in if already_in then aux bag tl else let passive_goals = tl in let bag, new_passive_goals = if Utils.metas_of_term t1 = [] then bag, passive_goals else let bag, new' = Indexing.superposition_left bag env (snd active) selected in bag, passive_goals @ new' in bag, (selected::active_goals, new_passive_goals) in aux bag passive_goals ;; let infer_goal_set_with_current bag env current goals active = let active_goals, passive_goals = simplify_goal_set bag env goals active in let l,table,_ = build_table [current] in let bag, passive_goals = List.fold_left (fun (bag, acc) g -> let bag, new' = Indexing.superposition_left bag env table g in bag, acc @ new') (bag, passive_goals) active_goals in bag, active_goals, passive_goals ;; let ids_of_goal g = let p,_,_ = g in let ids = List.map (fun _,_,i,_,_ -> i) p in ids ;; let ids_of_goal_set (ga,gp) = List.flatten (List.map ids_of_goal ga) @ List.flatten (List.map ids_of_goal gp) ;; let size_of_goal_set_a (l,_) = List.length l;; let size_of_goal_set_p (_,l) = List.length l;; let pp_goals label goals context = let names = Utils.names_of_context context in List.iter (fun _,_,g -> debug_print (lazy (Printf.sprintf "Current goal: %s = %s\n" label (CicPp.pp g names)))) (fst goals); List.iter (fun _,_,g -> debug_print (lazy (Printf.sprintf "PASSIVE goal: %s = %s\n" label (CicPp.pp g names)))) (snd goals); ;; let print_status iterno goals active passive = debug_print (lazy (Printf.sprintf "\n%d #ACTIVES: %d #PASSIVES: %d #GOALSET: %d(%d)" iterno (size_of_active active) (size_of_passive passive) (size_of_goal_set_a goals) (size_of_goal_set_p goals))) ;; let add_to_active_aux bag active passive env eq_uri current = debug_print (lazy ("Adding to actives : " ^ Equality.string_of_equality ~env current)); match forward_simplify bag eq_uri env current active with | bag, None -> None, active, passive, bag | bag, Some current -> let bag, new' = infer bag eq_uri env current active in let active = let al, tbl = active in al @ [current], Indexing.index tbl current in let rec simplify bag new' active passive = let bag, new' = forward_simplify_new bag eq_uri env new' active in let bag, active, newa, pruned = backward_simplify bag eq_uri env new' active in let passive = List.fold_left (filter_dependent bag) passive pruned in match newa with | None -> bag, active, passive, new' | Some p -> simplify bag (new' @ p) active passive in let bag, active, passive, new' = simplify bag new' active passive in let passive = add_to_passive passive new' [] in Some new', active, passive, bag ;; (** given-clause algorithm with full reduction strategy: NEW implementation *) (* here goals is a set of goals in OR *) let given_clause bag eq_uri ((_,context,_) as env) goals passive active goal_steps saturation_steps max_time = let initial_time = Unix.gettimeofday () in let iterations_left iterno = let now = Unix.gettimeofday () in let time_left = max_time -. now in let time_spent_until_now = now -. initial_time in let iteration_medium_cost = time_spent_until_now /. (float_of_int iterno) in let iterations_left = time_left /. iteration_medium_cost in int_of_float iterations_left in let rec step bag goals passive active g_iterno s_iterno = if g_iterno > goal_steps && s_iterno > saturation_steps then (ParamodulationFailure ("No more iterations to spend",active,passive,bag)) else if Unix.gettimeofday () > max_time then (ParamodulationFailure ("No more time to spend",active,passive,bag)) else let _ = print_status (max g_iterno s_iterno) goals active passive (* Printf.eprintf ".%!"; *) in (* PRUNING OF PASSIVE THAT WILL NEVER BE PROCESSED *) let passive = let selection_estimate = iterations_left (max g_iterno s_iterno) in let kept = size_of_passive passive in if kept > selection_estimate then begin (*Printf.eprintf "Too many passive equalities: pruning..."; prune_passive selection_estimate active*) passive end else passive in kept_clauses := (size_of_passive passive) + (size_of_active active); let bag, goals = if g_iterno < goal_steps then infer_goal_set bag env active goals else bag, goals in match check_if_goals_set_is_solved bag env active passive goals with | bag, Some p -> debug_print (lazy (Printf.sprintf "\nFound a proof in: %f\n" (Unix.gettimeofday() -. initial_time))); ParamodulationSuccess (p,active,passive,bag) | bag, None -> (* SELECTION *) if passive_is_empty passive then if no_more_passive_goals goals then ParamodulationFailure ("No more passive equations/goals",active,passive,bag) (*maybe this is a success! *) else step bag goals passive active (g_iterno+1) (s_iterno+1) else begin (* COLLECTION OF GARBAGED EQUALITIES *) let bag = if max g_iterno s_iterno mod 40 = 0 then (print_status (max g_iterno s_iterno) goals active passive; let active = List.map Equality.id_of (fst active) in let passive = List.map Equality.id_of (fst3 passive) in let goal = ids_of_goal_set goals in Equality.collect bag active passive goal) else bag in if s_iterno > saturation_steps then step bag goals passive active (g_iterno+1) (s_iterno+1) (* ParamodulationFailure ("max saturation steps",active,passive,bag) *) else let current, passive = select env goals passive in match add_to_active_aux bag active passive env eq_uri current with | None, active, passive, bag -> step bag goals passive active (g_iterno+1) (s_iterno+1) | Some new', active, passive, bag -> let bag, active_goals, passive_goals = infer_goal_set_with_current bag env current goals active in let goals = let a,b,_ = build_table new' in let rc = simplify_goal_set bag env (active_goals,passive_goals) (a,b) in rc in step bag goals passive active (g_iterno+1) (s_iterno+1) end in step bag goals passive active 0 0 ;; let rec saturate_equations bag eq_uri env goal accept_fun passive active = elapsed_time := Unix.gettimeofday () -. !start_time; if !elapsed_time > !time_limit then bag, active, passive else let current, passive = select env ([goal],[]) passive in let bag, res = forward_simplify bag eq_uri env current active in match res with | None -> saturate_equations bag eq_uri env goal accept_fun passive active | Some current -> Utils.debug_print (lazy (Printf.sprintf "selected: %s" (Equality.string_of_equality ~env current))); let bag, new' = infer bag eq_uri env current active in let active = if Equality.is_identity env current then active else let al, tbl = active in al @ [current], Indexing.index tbl current in (* alla fine new' contiene anche le attive semplificate! * quindi le aggiungo alle passive insieme alle new *) let rec simplify bag new' active passive = let bag, new' = forward_simplify_new bag eq_uri env new' active in let bag, active, newa, pruned = backward_simplify bag eq_uri env new' active in let passive = List.fold_left (filter_dependent bag) passive pruned in match newa with | None -> bag, active, passive, new' | Some p -> simplify bag (new' @ p) active passive in let bag, active, passive, new' = simplify bag new' active passive in let _ = Utils.debug_print (lazy (Printf.sprintf "active:\n%s\n" (String.concat "\n" (List.map (fun e -> Equality.string_of_equality ~env e) (fst active))))) in let _ = Utils.debug_print (lazy (Printf.sprintf "new':\n%s\n" (String.concat "\n" (List.map (fun e -> "Negative " ^ (Equality.string_of_equality ~env e)) new')))) in let new' = List.filter accept_fun new' in let passive = add_to_passive passive new' [] in saturate_equations bag eq_uri env goal accept_fun passive active ;; let default_depth = !maxdepth and default_width = !maxwidth;; let reset_refs () = symbols_counter := 0; weight_age_counter := !weight_age_ratio; processed_clauses := 0; start_time := 0.; elapsed_time := 0.; maximal_retained_equality := None; infer_time := 0.; forward_simpl_time := 0.; forward_simpl_new_time := 0.; backward_simpl_time := 0.; passive_maintainance_time := 0.; derived_clauses := 0; kept_clauses := 0; ;; let add_to_active bag active passive env ty term newmetas = reset_refs (); match LibraryObjects.eq_URI () with | None -> active, passive, bag | Some eq_uri -> try let bag, current = Equality.equality_of_term bag term ty newmetas in let w,_,_,_,_ = Equality.open_equality current in if w > 100 then (HLog.debug ("skipping giant " ^ CicPp.ppterm term ^ " of weight " ^ string_of_int w); active, passive, bag) else let bag, current = Equality.fix_metas bag current in match add_to_active_aux bag active passive env eq_uri current with | _,a,p,b -> a,p,b with | Equality.TermIsNotAnEquality -> active, passive, bag ;; let eq_of_goal = function | Cic.Appl [Cic.MutInd(uri,0,_);_;_;_] when LibraryObjects.is_eq_URI uri -> uri | _ -> raise (ProofEngineTypes.Fail (lazy ("The goal is not an equality "))) ;; let eq_and_ty_of_goal = function | Cic.Appl [Cic.MutInd(uri,0,_);t;_;_] when LibraryObjects.is_eq_URI uri -> uri,t | _ -> raise (ProofEngineTypes.Fail (lazy ("The goal is not an equality "))) ;; (* fix proof takes in input a term and try to build a metasenv for it *) let fix_proof metasenv context all_implicits p = let rec aux metasenv n p = match p with | Cic.Meta (i,_) -> if all_implicits then metasenv,Cic.Implicit None else let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in let meta = CicSubstitution.lift n (Cic.Meta (i,irl)) in let metasenv = try let _ = CicUtil.lookup_meta i metasenv in metasenv with CicUtil.Meta_not_found _ -> debug_print (lazy ("not found: "^(string_of_int i))); let metasenv,j = CicMkImplicit.mk_implicit_type metasenv [] context in (i,context,Cic.Meta(j,irl))::metasenv in metasenv,meta | Cic.Appl l -> let metasenv,l= List.fold_right (fun a (metasenv,l) -> let metasenv,a' = aux metasenv n a in metasenv,a'::l) l (metasenv,[]) in metasenv,Cic.Appl l | Cic.Lambda(name,s,t) -> let metasenv,s = aux metasenv n s in let metasenv,t = aux metasenv (n+1) t in metasenv,Cic.Lambda(name,s,t) | Cic.Prod(name,s,t) -> let metasenv,s = aux metasenv n s in let metasenv,t = aux metasenv (n+1) t in metasenv,Cic.Prod(name,s,t) | Cic.LetIn(name,s,ty,t) -> let metasenv,s = aux metasenv n s in let metasenv,ty = aux metasenv n ty in let metasenv,t = aux metasenv (n+1) t in metasenv,Cic.LetIn(name,s,ty,t) | Cic.Const(uri,ens) -> let metasenv,ens = List.fold_right (fun (v,a) (metasenv,ens) -> let metasenv,a' = aux metasenv n a in metasenv,(v,a')::ens) ens (metasenv,[]) in metasenv,Cic.Const(uri,ens) | t -> metasenv,t in aux metasenv 0 p ;; let fix_metasenv context metasenv = List.fold_left (fun m (i,c,t) -> let m,t = fix_proof m context false t in let m = List.filter (fun (j,_,_) -> j<>i) m in (i,context,t)::m) metasenv metasenv ;; (* status: input proof status * goalproof: forward steps on goal * newproof: backward steps * subsumption_id: the equation used if goal is closed by subsumption * (0 if not closed by subsumption) (DEBUGGING: can be safely removed) * subsumption_subst: subst to make newproof and goalproof match * proof_menv: final metasenv *) let build_proof bag status goalproof newproof subsumption_id subsumption_subst proof_menv = if proof_menv = [] then debug_print (lazy "+++++++++++++++VUOTA") else debug_print (lazy (CicMetaSubst.ppmetasenv [] proof_menv)); let proof, goalno = status in let uri, metasenv, _subst, meta_proof, term_to_prove, attrs = proof in let _, context, type_of_goal = CicUtil.lookup_meta goalno metasenv in let eq_uri = eq_of_goal type_of_goal in let names = Utils.names_of_context context in debug_print (lazy "Proof:"); debug_print (lazy (Equality.pp_proof bag names goalproof newproof subsumption_subst subsumption_id type_of_goal)); (* prerr_endline ("max weight: " ^ (string_of_int (Equality.max_weight goalproof newproof))); *) (* generation of the CIC proof *) (* let metasenv' = List.filter (fun i,_,_ -> i<>goalno) metasenv in *) let side_effects = List.filter (fun i -> i <> goalno) (ProofEngineHelpers.compare_metasenvs ~newmetasenv:metasenv ~oldmetasenv:proof_menv) in let goal_proof, side_effects_t = let initial = Equality.add_subst subsumption_subst newproof in Equality.build_goal_proof bag eq_uri goalproof initial type_of_goal side_effects context proof_menv in (* Equality.draw_proof bag names goalproof newproof subsumption_id; *) let goal_proof = Subst.apply_subst subsumption_subst goal_proof in (* assert (metasenv=[]); *) let real_menv = fix_metasenv context (proof_menv@metasenv) in let real_menv,goal_proof = fix_proof real_menv context false goal_proof in (* let real_menv,fixed_proof = fix_proof proof_menv context false goal_proof in (* prerr_endline ("PROOF: " ^ CicPp.pp goal_proof names); *) *) let pp_error goal_proof names error exn = prerr_endline "THE PROOF DOES NOT TYPECHECK! "; prerr_endline (CicPp.pp goal_proof names); prerr_endline "THE PROOF DOES NOT TYPECHECK!"; prerr_endline error; prerr_endline "THE PROOF DOES NOT TYPECHECK! "; raise exn in let old_insert_coercions = !CicRefine.insert_coercions in let goal_proof,goal_ty,real_menv,_ = (* prerr_endline ("parte la refine per: " ^ (CicPp.pp goal_proof names)); *) try debug_print (lazy (CicPp.ppterm goal_proof)); CicRefine.insert_coercions := false; let res = CicRefine.type_of_aux' real_menv context goal_proof CicUniv.empty_ugraph in CicRefine.insert_coercions := old_insert_coercions; res with | CicRefine.RefineFailure s | CicRefine.Uncertain s | CicRefine.AssertFailure s as exn -> CicRefine.insert_coercions := old_insert_coercions; pp_error goal_proof names (Lazy.force s) exn | CicUtil.Meta_not_found i as exn -> CicRefine.insert_coercions := old_insert_coercions; pp_error goal_proof names ("META NOT FOUND: "^string_of_int i) exn | Invalid_argument "list_fold_left2" as exn -> CicRefine.insert_coercions := old_insert_coercions; pp_error goal_proof names "Invalid_argument: list_fold_left2" exn | exn -> CicRefine.insert_coercions := old_insert_coercions; raise exn in let subst_side_effects,real_menv,_ = try CicUnification.fo_unif_subst [] context real_menv goal_ty type_of_goal CicUniv.empty_ugraph with | CicUnification.UnificationFailure s | CicUnification.Uncertain s | CicUnification.AssertFailure s -> assert false (* fail "Maybe the local context of metas in the goal was not an IRL" s *) in Utils.debug_print (lazy "+++++++++++++ FINE UNIF"); let final_subst = (goalno,(context,goal_proof,type_of_goal))::subst_side_effects in (* let metas_of_proof = Utils.metas_of_term goal_proof in *) let proof, real_metasenv = ProofEngineHelpers.subst_meta_and_metasenv_in_proof proof goalno final_subst (List.filter (fun i,_,_ -> i<>goalno ) real_menv) in let open_goals = (ProofEngineHelpers.compare_metasenvs ~oldmetasenv:metasenv ~newmetasenv:real_metasenv) in (* let open_goals = List.map (fun i,_,_ -> i) real_metasenv in *) final_subst, proof, open_goals (* let metas_still_open_in_proof = Utils.metas_of_term goal_proof in (* prerr_endline (CicPp.pp goal_proof names); *) let goal_proof = (* Subst.apply_subst subsumption_subst *) goal_proof in let side_effects_t = List.map (Subst.apply_subst subsumption_subst) side_effects_t in (* replacing fake mets with real ones *) (* prerr_endline "replacing metas..."; *) let irl=CicMkImplicit.identity_relocation_list_for_metavariable context in CicMetaSubst.ppmetasenv [] proof_menv; let what, with_what = List.fold_left (fun (acc1,acc2) i -> (Cic.Meta(i,[]))::acc1, (Cic.Implicit None)::acc2) ([],[]) metas_still_open_in_proof (* (List.filter (fun (i,_,_) -> List.mem i metas_still_open_in_proof (*&& not(List.mem i metas_still_open_in_goal)*)) proof_menv) *) in let goal_proof_menv = List.filter (fun (i,_,_) -> List.mem i metas_still_open_in_proof) proof_menv in let replace where = (* we need this fake equality since the metas of the hypothesis may be * with a real local context *) ProofEngineReduction.replace_lifting ~equality:(fun x y -> match x,y with Cic.Meta(i,_),Cic.Meta(j,_) -> i=j | _-> false) ~what ~with_what ~where in let goal_proof = replace goal_proof in (* ok per le meta libere... ma per quelle che c'erano e sono rimaste? * what mi pare buono, sostituisce solo le meta farlocche *) let side_effects_t = List.map replace side_effects_t in let free_metas = List.filter (fun i -> i <> goalno) (ProofEngineHelpers.compare_metasenvs ~oldmetasenv:metasenv ~newmetasenv:goal_proof_menv) in (* prerr_endline * ("freemetas: " ^ * String.concat "," (List.map string_of_int free_metas) ); *) (* check/refine/... build the new proof *) let replaced_goal = ProofEngineReduction.replace ~what:side_effects ~with_what:side_effects_t ~equality:(fun i t -> match t with Cic.Meta(j,_)->j=i|_->false) ~where:type_of_goal in let goal_proof,goal_ty,real_menv,_ = try CicRefine.type_of_aux' metasenv context goal_proof CicUniv.empty_ugraph with | CicUtil.Meta_not_found _ | CicRefine.RefineFailure _ | CicRefine.Uncertain _ | CicRefine.AssertFailure _ | Invalid_argument "list_fold_left2" as exn -> prerr_endline "THE PROOF DOES NOT TYPECHECK!"; prerr_endline (CicPp.pp goal_proof names); prerr_endline "THE PROOF DOES NOT TYPECHECK!"; raise exn in prerr_endline "+++++++++++++ METASENV"; prerr_endline (CicMetaSubst.ppmetasenv [] real_menv); let subst_side_effects,real_menv,_ = (* prerr_endline ("XX type_of_goal " ^ CicPp.ppterm type_of_goal); prerr_endline ("XX replaced_goal " ^ CicPp.ppterm replaced_goal); prerr_endline ("XX metasenv " ^ CicMetaSubst.ppmetasenv [] (metasenv @ free_metas_menv)); *) try CicUnification.fo_unif_subst [] context real_menv goal_ty type_of_goal CicUniv.empty_ugraph with | CicUnification.UnificationFailure s | CicUnification.Uncertain s | CicUnification.AssertFailure s -> assert false (* fail "Maybe the local context of metas in the goal was not an IRL" s *) in let final_subst = (goalno,(context,goal_proof,type_of_goal))::subst_side_effects in (* let metas_of_proof = Utils.metas_of_term goal_proof in *) let proof, real_metasenv = ProofEngineHelpers.subst_meta_and_metasenv_in_proof proof goalno (CicMetaSubst.apply_subst final_subst) (List.filter (fun i,_,_ -> i<>goalno ) real_menv) in let open_goals = List.map (fun i,_,_ -> i) real_metasenv in (* HExtlib.list_uniq (List.sort Pervasives.compare metas_of_proof) in *) (* match free_meta with Some(Cic.Meta(m,_)) when m<>goalno ->[m] | _ ->[] in *) (* Printf.eprintf "GOALS APERTI: %s\nMETASENV PRIMA:\n%s\nMETASENV DOPO:\n%s\n" (String.concat ", " (List.map string_of_int open_goals)) (CicMetaSubst.ppmetasenv [] metasenv) (CicMetaSubst.ppmetasenv [] real_metasenv); *) final_subst, proof, open_goals ;; *) (* **************** HERE ENDS THE PARAMODULATION STUFF ******************** *) (* exported functions *) let pump_actives context bag active passive saturation_steps max_time = reset_refs(); (* let max_l l = List.fold_left (fun acc e -> let _,_,_,menv,_ = Equality.open_equality e in List.fold_left (fun acc (i,_,_) -> max i acc) acc menv) 0 l in *) (* let active_l = fst active in *) (* let passive_l = fst passive in *) (* let ma = max_l active_l in *) (* let mp = max_l passive_l in *) match LibraryObjects.eq_URI () with | None -> active, passive, bag | Some eq_uri -> let env = [],context,CicUniv.empty_ugraph in (match given_clause bag eq_uri env ([],[]) passive active 0 saturation_steps max_time with | ParamodulationFailure (_,a,p,b) -> a, p, b | ParamodulationSuccess _ -> assert false) ;; let all_subsumed bag status active passive = let proof, goalno = status in let uri, metasenv, _subst, meta_proof, term_to_prove, attrs = proof in let _, context, type_of_goal = CicUtil.lookup_meta goalno metasenv in let env = metasenv,context,CicUniv.empty_ugraph in let cleaned_goal = Utils.remove_local_context type_of_goal in let canonical_menv,other_menv = List.partition (fun (_,c,_) -> c = context) metasenv in (* prerr_endline ("other menv = " ^ (CicMetaSubst.ppmetasenv [] other_menv)); *) let metasenv = List.map (fun (i,_,ty)-> (i,[],ty)) canonical_menv in let goal = [], List.filter (fun (i,_,_)->i<>goalno) metasenv, cleaned_goal in debug_print (lazy (string_of_int (List.length (fst active)))); (* we simplify using both actives passives *) let table = List.fold_left (fun (l,tbl) eq -> eq::l,(Indexing.index tbl eq)) active (list_of_passive passive) in let (_,_,ty) = goal in debug_print (lazy ("prima " ^ CicPp.ppterm ty)); let _,goal = simplify_goal bag env goal table in let (_,_,ty) = goal in debug_print (lazy ("in mezzo " ^ CicPp.ppterm ty)); let bag, subsumed = find_all_subsumed bag env (snd table) goal in debug_print (lazy ("dopo " ^ CicPp.ppterm ty)); let subsumed_or_id = match (check_if_goal_is_identity env goal) with None -> subsumed | Some id -> id::subsumed in debug_print (lazy "dopo subsumed"); let res = List.map (fun (goalproof,newproof,subsumption_id,subsumption_subst, proof_menv) -> let subst, proof, gl = build_proof bag status goalproof newproof subsumption_id subsumption_subst proof_menv in let uri, metasenv, subst, meta_proof, term_to_prove, attrs = proof in let newmetasenv = other_menv @ List.filter (fun x,_,_ -> not (List.exists (fun y,_,_ -> x=y) other_menv)) metasenv in let proof = uri, newmetasenv, subst, meta_proof, term_to_prove, attrs in (subst, proof,gl)) subsumed_or_id in res ;; let given_clause bag status active passive goal_steps saturation_steps max_time = reset_refs(); let active_l = fst active in let proof, goalno = status in let uri, metasenv, _subst, meta_proof, term_to_prove, attrs = proof in let _, context, type_of_goal = CicUtil.lookup_meta goalno metasenv in let eq_uri = eq_of_goal type_of_goal in let cleaned_goal = Utils.remove_local_context type_of_goal in let metas_occurring_in_goal = CicUtil.metas_of_term cleaned_goal in let canonical_menv,other_menv = List.partition (fun (_,c,_) -> c = context) metasenv in Utils.set_goal_symbols cleaned_goal; (* DISACTIVATED *) let canonical_menv = List.map (fun (i,_,ty)-> (i,[],Utils.remove_local_context ty)) canonical_menv in let metasenv' = List.filter (fun (i,_,_)-> i<>goalno && List.mem_assoc i metas_occurring_in_goal) canonical_menv in let goal = [], metasenv', cleaned_goal in let env = metasenv,context,CicUniv.empty_ugraph in debug_print (lazy ">>>>>> ACTIVES >>>>>>>>"); List.iter (fun e -> debug_print (lazy (Equality.string_of_equality ~env e))) active_l; debug_print (lazy ">>>>>>>>>>>>>>"); let goals = make_goal_set goal in match given_clause bag eq_uri env goals passive active goal_steps saturation_steps max_time with | ParamodulationFailure (msg,a,p,b) -> if Utils.debug then prerr_endline msg; None, a, p, b | ParamodulationSuccess ((goalproof,newproof,subsumption_id,subsumption_subst, proof_menv),a,p,b) -> let subst, proof, gl = build_proof b status goalproof newproof subsumption_id subsumption_subst proof_menv in let uri, metasenv, subst, meta_proof, term_to_prove, attrs = proof in let proof = uri, other_menv@metasenv, subst, meta_proof, term_to_prove, attrs in Some (subst, proof,gl),a,p, b ;; let solve_narrowing bag status active passive goal_steps = let proof, goalno = status in let uri, metasenv, _subst, meta_proof, term_to_prove, attrs = proof in let _, context, type_of_goal = CicUtil.lookup_meta goalno metasenv in let cleaned_goal = Utils.remove_local_context type_of_goal in let metas_occurring_in_goal = CicUtil.metas_of_term cleaned_goal in let canonical_menv,other_menv = List.partition (fun (_,c,_) -> c = context) metasenv in let canonical_menv = List.map (fun (i,_,ty)-> (i,[],Utils.remove_local_context ty)) canonical_menv in let metasenv' = List.filter (fun (i,_,_)-> i<>goalno && List.mem_assoc i metas_occurring_in_goal) canonical_menv in let goal = [], metasenv', cleaned_goal in let env = metasenv,context,CicUniv.empty_ugraph in let goals = let table = List.fold_left Indexing.index (last passive) (fst active) in goal :: Indexing.demodulation_all_goal bag env table goal 4 in let rec aux newactives newpassives bag = function | [] -> bag, (newactives, newpassives) | hd::tl -> let selected = hd in let (_,m1,t1) = selected in let already_in = List.exists (fun (_,_,t) -> Equality.meta_convertibility t t1) newactives in if already_in then aux newactives newpassives bag tl else let bag, newpassives = if Utils.metas_of_term t1 = [] then bag, newpassives else let bag, new' = Indexing.superposition_left bag env (snd active) selected in let new' = List.map (fun x -> let b, x = simplify_goal bag env x active in x) new' in bag, newpassives @ new' in aux (selected::newactives) newpassives bag tl in let rec do_n bag ag pg = function | 0 -> None, active, passive, bag | n -> let bag, (ag, pg) = aux [] [] bag (ag @ pg) in match check_if_goals_set_is_solved bag env active passive (ag,pg) with | bag, None -> do_n bag ag pg (n-1) | bag, Some (gproof,newproof,subsumption_id,subsumption_subst,pmenv)-> let subst, proof, gl = build_proof bag status gproof newproof subsumption_id subsumption_subst pmenv in let uri,metasenv,subst,meta_proof,term_to_prove,attrs = proof in let proof = uri, other_menv@metasenv, subst, meta_proof, term_to_prove, attrs in Some (subst, proof,gl),active,passive, bag in do_n bag [] goals goal_steps ;; let add_to_passive eql passives = add_to_passive passives eql eql ;;