(* ||M|| This file is part of HELM, an Hypertextual, Electronic ||A|| Library of Mathematics, developed at the Computer Science ||T|| Department, University of Bologna, Italy. ||I|| ||T|| HELM is free software; you can redistribute it and/or ||A|| modify it under the terms of the GNU General Public License \ / version 2 or (at your option) any later version. \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) module U = NUri module C = Cps module S = Share module L = Log module Y = Entity module P = Output module B = Brg module O = BrgOutput module E = BrgEnvironment type kam = { c: B.lenv; s: (B.lenv * B.term) list; i: int } (* Internal functions *******************************************************) let level = 5 let log1 s c t = let sc, st = s ^ " in the environment", "the term" in L.log O.specs level (L.et_items1 sc c st t) let log2 s cu u ct t = let s1, s2, s3 = s ^ " in the environment", "the term", "and in the environment" in L.log O.specs level (L.et_items2 s1 cu s2 u ~sc2:s3 ~c2:ct s2 t) let are_alpha_convertible err f t1 t2 = let rec aux f = function | B.Sort (_, p1), B.Sort (_, p2) | B.LRef (_, p1), B.LRef (_, p2) -> if p1 = p2 then f () else err () | B.GRef (_, u1), B.GRef (_, u2) -> if U.eq u1 u2 then f () else err () | B.Cast (_, v1, t1), B.Cast (_, v2, t2) | B.Appl (_, v1, t1), B.Appl (_, v2, t2) -> let f _ = aux f (t1, t2) in aux f (v1, v2) | B.Bind (b1, t1), B.Bind (b2, t2) -> let f _ = aux f (t1, t2) in aux_bind f (b1, b2) | _ -> err () and aux_bind f = function | B.Abbr (_, v1), B.Abbr (_, v2) | B.Abst (_, v1), B.Abst (_, v2) -> aux f (v1, v2) | B.Void _, B.Void _ -> f () | _ -> err () in if S.eq t1 t2 then f () else aux f (t1, t2) let get err f m i = B.get err f m.c i (* to share *) let rec step f ?(delta=false) ?(rt=false) m x = (* L.warn "entering R.step"; *) match x with | B.Sort _ -> f m None x | B.GRef (_, uri) -> let f = function | _, _, Y.Abbr v when delta -> P.add ~gdelta:1 (); step f ~delta ~rt m v | _, _, Y.Abst w when rt -> P.add ~grt:1 (); step f ~delta ~rt m w | a, _, Y.Abbr v -> let f e = f m (Some (e, B.Abbr (a, v))) x in Y.apix C.err f a | a, _, Y.Abst w -> let f e = f m (Some (e, B.Abst (a, w))) x in Y.apix C.err f a in E.get_entity C.err f uri | B.LRef (_, i) -> let f c = function | B.Abbr (_, v) -> P.add ~ldelta:1 (); step f ~delta ~rt {m with c = c} v | B.Abst (_, w) when rt -> P.add ~lrt:1 (); step f ~delta ~rt {m with c = c} w | B.Void _ -> assert false | B.Abst (a, _) as b -> let f e = f {m with c = c} (Some (e, b)) x in Y.apix C.err f a in get C.err f m i | B.Cast (_, _, t) -> P.add ~tau:1 (); step f ~delta ~rt m t | B.Appl (_, v, t) -> step f ~delta ~rt {m with s = (m.c, v) :: m.s} t | B.Bind (B.Abst (a, w), t) -> begin match m.s with | [] -> f m None x | (c, v) :: s -> P.add ~beta:1 ~upsilon:(List.length s) (); let f c = step f ~delta ~rt {m with c = c; s = s} t in B.push f m.c ~c (B.abbr a v) (* (B.Cast ([], w, v)) *) end | B.Bind (b, t) -> P.add ~upsilon:(List.length m.s) (); let f c = step f ~delta ~rt {m with c = c} t in B.push f m.c ~c:m.c b let push f m b = assert (m.s = []); let b, i = match b with | B.Abst (a, w) -> B.abst (Y.Apix m.i :: a) w, succ m.i | b -> b, m.i in let f c = f {m with c = c; i = i} in B.push f m.c ~c:m.c b let rec ac_nfs err f ~si m1 a1 u m2 a2 t = log2 "Now converting nfs" m1.c u m2.c t; match a1, u, a2, t with | _, B.Sort (_, h1), _, B.Sort (_, h2) -> if h1 = h2 then f () else err () | Some (e1, B.Abst _), _, Some (e2, B.Abst _), _ -> if e1 = e2 then ac_stacks err f m1 m2 else err () | Some (e1, B.Abbr (_, v1)), _, Some (e2, B.Abbr (_, v2)), _ -> if e1 = e2 then let err _ = P.add ~gdelta:2 (); ac err f ~si m1 v1 m2 v2 in ac_stacks err f m1 m2 else if e1 < e2 then begin P.add ~gdelta:1 (); step (ac_nfs err f ~si m1 a1 u) m2 v2 end else begin P.add ~gdelta:1 (); step (ac_nfs_rev err f ~si m2 a2 t) m1 v1 end | _, _, Some (_, B.Abbr (_, v2)), _ -> P.add ~gdelta:1 (); step (ac_nfs err f ~si m1 a1 u) m2 v2 | Some (_, B.Abbr (_, v1)), _, _, _ -> P.add ~gdelta:1 (); step (ac_nfs_rev err f ~si m2 a2 t) m1 v1 | _, B.Bind ((B.Abst (_, w1) as b1), t1), _, B.Bind ((B.Abst (_, w2) as b2), t2) -> let f m1 m2 = ac err f ~si m1 t1 m2 t2 in let f m1 = push (f m1) m2 b2 in let f _ = push f m1 b1 in ac err f ~si:false m1 w1 m2 w2 | _, B.Sort _, _, B.Bind (b, t) when si -> P.add ~si:1 (); let f m1 m2 = ac err f ~si m1 u m2 t in let f m1 = push (f m1) m2 b in push f m1 b | _ -> err () and ac_nfs_rev err f ~si m2 a2 t m1 a1 u = ac_nfs err f ~si m1 a1 u m2 a2 t and ac err f ~si m1 t1 m2 t2 = (* L.warn "entering R.are_convertible"; *) let f m1 a1 t1 = step (ac_nfs err f ~si m1 a1 t1) m2 t2 in step f m1 t1 and ac_stacks err f m1 m2 = (* L.warn "entering R.are_convertible_stacks"; *) if List.length m1.s <> List.length m2.s then err () else let map f (c1, v1) (c2, v2) = let m1, m2 = {m1 with c = c1; s = []}, {m2 with c = c2; s = []} in ac err f ~si:false m1 v1 m2 v2 in C.list_iter2 f map m1.s m2.s (* Interface functions ******************************************************) let empty_kam = { c = B.empty_lenv; s = []; i = 0 } let get err f m i = assert (m.s = []); let f c = f in get err f m i let xwhd f m t = L.box level; log1 "Now scanning" m.c t; let f m _ t = L.unbox level; f m t in step f ~delta:true ~rt:true m t let are_convertible err f ?(si=false) mu u mw w = L.box level; log2 "Now converting" mu.c u mw.c w; let f x = L.unbox level; f x in let err _ = ac err f ~si mu u mw w in (* if S.eq mu mw then are_alpha_convertible err f u w else *) err () (* error reporting **********************************************************) let pp_term m frm t = O.specs.L.pp_term m.c frm t let pp_lenv frm m = O.specs.L.pp_lenv frm m.c let specs = { L.pp_term = pp_term; L.pp_lenv = pp_lenv }