(* ||M|| This file is part of HELM, an Hypertextual, Electronic ||A|| Library of Mathematics, developed at the Computer Science ||T|| Department, University of Bologna, Italy. ||I|| ||T|| HELM is free software; you can redistribute it and/or ||A|| modify it under the terms of the GNU General Public License \ / version 2 or (at your option) any later version. \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) module U = NUri module H = U.UriHash module C = Cps module E = Entity module A = Aut module D = Drg (* qualified identifier: uri, name, qualifiers *) type qid = D.uri * D.id * D.id list type environment = D.lenv H.t type context_node = qid option (* context node: None = root *) type 'b status = { henv: environment; (* optimized global environment *) path: D.id list; (* current section path *) hcnt: environment; (* optimized context *) node: context_node; (* current context node *) nodes: context_node list; (* context node list *) line: int; (* line number *) mk_uri:'b E.uri_generator (* uri generator *) } type resolver = Local of int | Global of D.lenv let hsize = 7000 (* hash tables initial size *) (* Internal functions *******************************************************) let initial_status size mk_uri = { path = []; node = None; nodes = []; line = 1; mk_uri = mk_uri; henv = H.create size; hcnt = H.create size } let mk_lref f i = f (D.LRef ([], i)) let mk_abst id w = D.Abst ([D.Name (id, true)], w) let id_of_name (id, _, _) = id let mk_qid f st id path = let str = String.concat "/" path in let str = Filename.concat str id in let f str = f (U.uri_of_string str, id, path) in st.mk_uri f str let uri_of_qid (uri, _, _) = uri let complete_qid f st (id, is_local, qs) = let f path = C.list_rev_append (mk_qid f st id) path ~tail:qs in let rec skip f = function | phd :: ptl, qshd :: _ when phd = qshd -> f ptl | _ :: ptl, _ :: _ -> skip f (ptl, qs) | _ -> f [] in if is_local then f st.path else skip f (st.path, qs) let relax_qid f st (_, id, path) = let f = function | _ :: tl -> C.list_rev (mk_qid f st id) tl | [] -> assert false in C.list_rev f path let relax_opt_qid f st = function | None -> f None | Some qid -> let f qid = f (Some qid) in relax_qid f st qid let resolve_gref err f st qid = try let cnt = H.find st.henv (uri_of_qid qid) in f qid cnt with Not_found -> err () let resolve_gref_relaxed f st qid = let rec err () = relax_qid (resolve_gref err f st) st qid in resolve_gref err f st qid let get_cnt err f st = function | None -> f [] | Some qid as node -> try let cnt = H.find st.hcnt (uri_of_qid qid) in f cnt with Not_found -> err node let get_cnt_relaxed f st = let rec err node = relax_opt_qid (get_cnt err f st) st node in get_cnt err f st st.node let rec xlate_term f st lenv = function | A.Sort s -> let f h = f (D.Sort ([], h)) in if s then f 0 else f 1 | A.Appl (v, t) -> let f vv tt = f (D.Appl ([], [vv], tt)) in let f vv = xlate_term (f vv) st lenv t in xlate_term f st lenv v | A.Abst (name, w, t) -> let f ww = let b = mk_abst name ww in let f tt = f (D.Bind (b, tt)) in xlate_term f st (b :: lenv) t in xlate_term f st lenv w | A.GRef (name, args) -> let g qid cnt = let map1 f = xlate_term f st lenv in let map2 f b = let f id _ = D.resolve_lref Cps.err (mk_lref f) id lenv in D.name_of_binder C.err f b in let f tail = let f args = f (D.Appl ([], args, D.GRef ([], uri_of_qid qid))) in let f cnt = C.list_rev_map_append f map2 cnt ~tail in C.list_sub_strict f cnt args in C.list_map f map1 args in let g qid = resolve_gref_relaxed g st qid in let err () = complete_qid g st name in D.resolve_lref err (mk_lref f) (id_of_name name) lenv let xlate_entity f st = function | A.Section (Some (_, name)) -> f {st with path = name :: st.path; nodes = st.node :: st.nodes} None | A.Section None -> begin match st.path, st.nodes with | _ :: ptl, nhd :: ntl -> f {st with path = ptl; node = nhd; nodes = ntl} None | _ -> assert false end | A.Context None -> f {st with node = None} None | A.Context (Some name) -> let f name = f {st with node = Some name} None in complete_qid f st name | A.Block (name, w) -> let f qid = let f cnt = let f ww = H.add st.hcnt (uri_of_qid qid) (mk_abst name ww :: cnt); f {st with node = Some qid} None in xlate_term f st cnt w in get_cnt_relaxed f st in complete_qid f st (name, true, []) | A.Decl (name, w) -> let f cnt = let f qid = let f ww = let b = D.Abst ([], D.Proj ([], cnt, ww)) in let entry = st.line, uri_of_qid qid, b in H.add st.henv (uri_of_qid qid) cnt; f {st with line = succ st.line} (Some entry) in xlate_term f st cnt w in complete_qid f st (name, true, []) in get_cnt_relaxed f st | A.Def (name, w, trans, v) -> let f cnt = let f qid = let f ww vv = let a = if trans then [] else [D.Priv] in let b = D.Abbr (a, D.Proj ([], cnt, D.Cast ([], ww, vv))) in let entry = st.line, uri_of_qid qid, b in H.add st.henv (uri_of_qid qid) cnt; f {st with line = succ st.line} (Some entry) in let f ww = xlate_term (f ww) st cnt v in xlate_term f st cnt w in complete_qid f st (name, true, []) in get_cnt_relaxed f st (* Interface functions ******************************************************) let initial_status mk_uri = initial_status hsize mk_uri let drg_of_aut = xlate_entity