(* 0: 7 4 1: 29 6 2: 120 10 3: > 327 >9 4: > 657 >9 5: > 526 >8 6: > 529 >8 7: > 529 >8 8: > 529 >8 *) type t = M | I | C type w = t list type eqclass = w list type dir = Le | Ge let rules = [ [I], Le, []; [C], Ge, []; [I;I], Ge, [I]; [C;C], Le, [C]; [I], Le, [I]; [I], Ge, [I]; [C], Le, [C]; [C], Ge, [C]; [C;M], Le, [M;I]; [C;M;I], Le, [M;I]; (* ??? *) [I;M], Le, [M;C]; [I;M;C], Ge, [I;M]; (* ??? *) [M;M;M], Ge, [M]; [M;M], Ge, []; [M], Le, [M]; [M], Ge, [M]; (* classical [M;M], Le, []; [C;M], Ge, [M;I]; *) ] ;; let inject = function w -> let rec aux acc = function [] -> acc | he::tl -> aux (4 * acc + (match he with I -> 1 | C -> 2 | M -> 3)) tl in 0, aux 0 w, w ;; module V = struct type t = int * int * w let compare (h1,l1,_) (h2,l2,_) = compare (h1,l1) (h2,l2) let hash (_,l,_) = l let equal ((h1 : int),(l1 : int),_) (h2,l2,_) = l1=l2 && h1=h2 end module G = Graph.Imperative.Digraph.Concrete(V);; module VL = struct type t = eqclass let compare = compare let hash = Hashtbl.hash let equal = (=) end module GL = Graph.Imperative.Digraph.Concrete(VL);; let swap = function Le -> Ge | Ge -> Le;; let rec new_dir dir = function [] -> dir | M::tl -> new_dir (swap dir) tl | (C|I)::tl -> new_dir dir tl ;; let string_of_w w = let s = String.concat "" (List.map (function I -> "i" | C -> "c" | M -> "-") w) in if s = "" then "." else s ;; let string_of_w' w = let s = String.concat "" (List.map (function I -> "i" | C -> "c" | M -> "m") w) in if s = "" then "E" else s ;; let string_of_eqclass l = String.concat "=" (List.map string_of_w l);; let name_of_eqclass l = String.concat "_" (List.map string_of_w' l);; exception NoMatch;; let (@@) l1 ll2 = List.map (function l2 -> l1 @ l2) ll2;; let uniq l = let rec aux acc = function | [] -> acc | h::[] -> h::acc | h1::h2::tl when h1=h2 -> aux (h2::acc) tl | h1::tl (* when h1 <> h2 *) -> aux (h1::acc) tl in List.rev (aux [] (List.sort compare l)) ;; let rec apply_rule_at_beginning (lhs,dir',rhs) (w,dir) = if dir <> dir' then raise NoMatch else let rec aux = function [],w -> w | x::lhs,x'::w when x = x' -> aux (lhs,w) | _,_ -> raise NoMatch in let w' = aux (lhs,w) in if List.length rhs < List.length lhs then rhs @@ [w'] else rhs @@ apply_rules (aux (lhs,w),new_dir dir lhs) and apply_rules (w,_ as w_and_dir) = if w = [] then [[]] else let rec aux = function [] -> [] | rule::tl -> (try apply_rule_at_beginning rule w_and_dir with NoMatch -> []) @ aux tl in aux rules ;; let apply_rules (w,dir as w_and_dir) = List.map (fun w' -> w,dir,w') (uniq (apply_rules w_and_dir)) ;; let step (l : w list) = uniq (List.flatten (List.map (function w -> List.map (fun x -> x@w) (if List.length (List.filter (fun w -> w = M) w) >= 1 then [[I];[C]] else [[I];[C];[M]]) ) l)) ;; let mapi f l = let rec aux acc i = function [] -> acc | he::tl -> if i mod 1000 = 0 then begin print_string ("@" ^ string_of_int i ^ " "); flush stdout; end; aux (f he :: acc) (i+1) tl in let res = List.rev (aux [] 1 l) in print_newline (); res ;; let iteri f l = let rec aux i = function [] -> () | he::tl -> if i mod 1000 = 0 then begin print_string ("@" ^ string_of_int i ^ " "); flush stdout; end; f he; aux (i+1) tl in aux 1 l; print_newline (); ;; let normalize (l : w list) = print_endline (string_of_int (List.length l) ^ " nodes to be normalized"); let rels = List.flatten (mapi (fun x -> apply_rules (x,Le) @ apply_rules (x,Ge)) l) in let arcs = mapi (function (x,rel,y) -> let x = inject x in let y = inject y in match rel with Le -> x,y | Ge -> y,x) rels in uniq arcs ;; let visualize graph = let module GL = struct include GL;; let edge_attributes _ = [] let default_edge_attributes _ = [] let get_subgraph _ = None let vertex_attributes v = [`Label (string_of_eqclass (GL.V.label v))] let vertex_name v = name_of_eqclass (GL.V.label v) let default_vertex_attributes _ = [] let graph_attributes _ = [] end in let module D = Graph.Graphviz.Dot(GL) in let ch = open_out "/tmp/comb.dot" in D.output_graph ch graph; close_out ch; ignore (Unix.system ("tred /tmp/comb.dot > /tmp/red.dot")); ignore (Unix.system ("dot -Tps /tmp/red.dot > /tmp/red.ps")); (*Unix.system ("ggv /tmp/red.ps");*) ;; let w_compare s1 s2 = let c = compare (List.length s1) (List.length s2) in if c = 0 then compare s1 s2 else c ;; let normalize_and_describe norm = let cache = Hashtbl.create 5393 in let canonicals = Hashtbl.create 5393 in let descriptions = Hashtbl.create 5393 in (function v -> let normalized = norm v in let _,_,dsc = G.V.label v in if not (List.mem dsc (Hashtbl.find_all cache normalized)) then Hashtbl.add cache normalized dsc; normalized), (function () -> let vertexes = uniq (Hashtbl.fold (fun k _ l -> k::l) cache []) in let xx = mapi (fun v -> v, List.sort w_compare (Hashtbl.find_all cache v)) vertexes in iteri (function (_,w::_) -> Hashtbl.add canonicals w () | _ -> ()) xx; let is_not_redundant = function [] | [_] -> true | _::w -> try Hashtbl.find canonicals w; true with Not_found -> false in iteri (function (v,x) -> Hashtbl.add descriptions v ((List.filter is_not_redundant x) : eqclass)) xx), Hashtbl.find descriptions ;; let classify arcs = print_endline (string_of_int (List.length arcs) ^ " arcs to be classified"); let graph = G.create () in iteri (fun (x,y) -> G.add_edge graph x y) arcs; print_endline (""); let classes,norm = let module SCC = Graph.Components.Make(G) in SCC.scc graph in print_endline (string_of_int classes ^ " classes"); print_endline ("-----"); norm,arcs ;; let analyze (norm,arcs) = print_endline ("building class graph (" ^ string_of_int (List.length arcs) ^ ")"); let normalize,finish,describe = normalize_and_describe norm in let arcs = uniq (mapi (fun (x,y) -> normalize x,normalize y) arcs) in print_endline "finish"; finish (); print_endline ("collapse " ^ string_of_int (List.length arcs) ^ " arcs"); let arcs = uniq (mapi (function (x,y) -> describe x,describe y) arcs) in print_endline ("build (" ^ string_of_int (List.length arcs) ^ " arcs)"); let cgraph = GL.create () in iteri (function (x,y) -> if x <> y then GL.add_edge cgraph x y) arcs; print_endline "visualize"; visualize cgraph; print_endline ("/////"); ;; let rec iter n nodes old_arcs = print_endline ("STEP " ^ string_of_int n); let arcs = old_arcs @ normalize nodes in let pkg = classify arcs in if n > 0 then iter (n - 1) (step nodes) arcs else analyze pkg in iter 7 [[]] [] ;;