type rel = Equal | SubsetEqual | SupersetEqual let string_of_rel = function Equal -> "=" | SubsetEqual -> "⊆" | SupersetEqual -> "⊇" (* operator *) type op = I | C | M let string_of_op = function I -> "i" | C -> "c" | M -> "-" (* compound operator *) type compound_operator = op list let string_of_cop op = if op = [] then "id" else String.concat "" (List.map string_of_op op) let dot_of_cop op = "\"" ^ string_of_cop op ^ "\"" let rec matita_of_cop v = function | [] -> v | I::tl -> "i (" ^ matita_of_cop v tl ^ ")" | C::tl -> "c (" ^ matita_of_cop v tl ^ ")" | M::tl -> "m (" ^ matita_of_cop v tl ^ ")" (* representative, other elements in the equivalence class, leq classes, geq classes *) type equivalence_class = compound_operator * compound_operator list * equivalence_class list ref * equivalence_class list ref let (===) (repr,_,_,_) (repr',_,_,_) = repr = repr';; let (<=>) (repr,_,_,_) (repr',_,_,_) = repr <> repr';; let string_of_equivalence_class (repr,others,leq,_) = String.concat " = " (List.map string_of_cop (repr::others)) ^ (if !leq <> [] then "\n" ^ String.concat "\n" (List.map (function (repr',_,_,_) -> string_of_cop repr ^ " ⊆ " ^ string_of_cop repr') !leq) else "") let dot_of_equivalence_class (repr,others,leq,_) = (if others <> [] then let eq = String.concat " = " (List.map string_of_cop (repr::others)) in dot_of_cop repr ^ "[label=\"" ^ eq ^ "\"];" ^ if !leq = [] then "" else "\n" else if !leq = [] then dot_of_cop repr ^ ";" else "") ^ String.concat "\n" (List.map (function (repr',_,_,_) -> dot_of_cop repr' ^ " -> " ^ dot_of_cop repr ^ ";") !leq) (* set of equivalence classes, infima, suprema *) type set = equivalence_class list * equivalence_class list * equivalence_class list let string_of_set (s,_,_) = String.concat "\n" (List.map string_of_equivalence_class s) let ps_of_set (to_be_considered,under_consideration,news) ?processing (s,inf,sup) = let ch = open_out "xxx.dot" in output_string ch "digraph G {\n"; (match under_consideration with None -> () | Some repr -> output_string ch (dot_of_cop repr ^ " [color=yellow];")); List.iter (function (repr,_,_,_) -> if List.exists (function (repr',_,_,_) -> repr=repr') sup then output_string ch (dot_of_cop repr ^ " [shape=Mdiamond];") else output_string ch (dot_of_cop repr ^ " [shape=diamond];") ) inf ; List.iter (function (repr,_,_,_) -> if not (List.exists (function (repr',_,_,_) -> repr=repr') inf) then output_string ch (dot_of_cop repr ^ " [shape=polygon];") ) sup ; List.iter (function repr -> output_string ch (dot_of_cop repr ^ " [color=green];") ) to_be_considered ; List.iter (function repr -> output_string ch (dot_of_cop repr ^ " [color=navy];") ) news ; output_string ch (String.concat "\n" (List.map dot_of_equivalence_class s)); output_string ch "\n"; (match processing with None -> () | Some (repr,rel,repr') -> output_string ch (dot_of_cop repr ^ " [color=red];"); let repr,repr' = match rel with SupersetEqual -> repr',repr | Equal | SubsetEqual -> repr,repr' in output_string ch (dot_of_cop repr' ^ " -> " ^ dot_of_cop repr ^ " [" ^ (match rel with Equal -> "arrowhead=none " | _ -> "") ^ "style=dashed];\n")); output_string ch "}\n"; close_out ch; (*ignore (Unix.system "tred xxx.dot > yyy.dot && dot -Tps yyy.dot > xxx.ps")*) ignore (Unix.system "dot -Tps xxx.dot > xxx.ps"); (*ignore (read_line ())*) ;; let test to_be_considered_and_now ((s,_,_) as set) rel candidate repr = ps_of_set to_be_considered_and_now ~processing:(candidate,rel,repr) set; print_string (string_of_cop candidate ^ " " ^ string_of_rel rel ^ " " ^ string_of_cop repr ^ "? "); flush stdout; assert (Unix.system "cp formal_topology.ma xxx.ma" = Unix.WEXITED 0); let ch = open_out_gen [Open_append] 0 "xxx.ma" in let i = ref 0 in List.iter (function (repr,others,leq,_) -> List.iter (function repr' -> incr i; output_string ch ("axiom ax" ^ string_of_int !i ^ ": \\forall A." ^ matita_of_cop "A" repr ^ " = " ^ matita_of_cop "A" repr' ^ ".\n"); ) others; List.iter (function (repr',_,_,_) -> incr i; output_string ch ("axiom ax" ^ string_of_int !i ^ ": \\forall A." ^ matita_of_cop "A" repr ^ " ⊆ " ^ matita_of_cop "A" repr' ^ ".\n"); ) !leq; ) s; let candidate',rel',repr' = match rel with SupersetEqual -> repr,SubsetEqual,candidate | Equal | SubsetEqual -> candidate,rel,repr in output_string ch ("theorem foo: \\forall A." ^ matita_of_cop "A" candidate' ^ " " ^ string_of_rel rel' ^ " " ^ matita_of_cop "A" repr' ^ ". intros; auto size=6 depth=4. qed.\n"); close_out ch; let res = (*Unix.system "../../../matitac.opt xxx.ma >> log 2>&1" = Unix.WEXITED 0*) Unix.system "../../../matitac.opt xxx.ma > /dev/null 2>&1" = Unix.WEXITED 0 in print_endline (if res then "y" else "n"); res let remove node = List.filter (fun node' -> node <=> node');; let add_leq_arc ((_,_,leq,_) as node) ((_,_,_,geq') as node') = leq := node' :: !leq; geq' := node :: !geq' ;; let add_geq_arc ((_,_,_,geq) as node) ((_,_,leq',_) as node') = geq := node' :: !geq; leq' := node :: !leq' ;; let remove_leq_arc ((_,_,leq,_) as node) ((_,_,_,geq') as node') = leq := remove node' !leq; geq' := remove node !geq' ;; let remove_geq_arc ((_,_,_,geq) as node) ((_,_,leq',_) as node') = geq := remove node' !geq; leq' := remove node !leq' ;; let leq_transitive_closure node node' = add_leq_arc node node'; let rec remove_transitive_arcs ((_,_,_,geq) as node) (_,_,leq',_) = let rec remove_arcs_to_ascendents = function [] -> () | (_,_,leq,_) as node'::tl -> remove_leq_arc node node'; remove_arcs_to_ascendents (!leq@tl) in remove_arcs_to_ascendents !leq'; List.iter (function son -> remove_transitive_arcs son node) !geq in remove_transitive_arcs node node' ;; let geq_transitive_closure node node' = add_geq_arc node node'; let rec remove_transitive_arcs ((_,_,leq,_) as node) (_,_,_,geq') = let rec remove_arcs_to_descendents = function [] -> () | (_,_,_,geq) as node'::tl -> remove_geq_arc node node'; remove_arcs_to_descendents (!geq@tl) in remove_arcs_to_descendents !geq'; List.iter (function father -> remove_transitive_arcs father node) !leq in remove_transitive_arcs node node' ;; let (@@) l1 n = if List.exists (function n' -> n===n') l1 then l1 else l1@[n] let rec leq_reachable node = function [] -> false | node'::_ when node === node' -> true | (_,_,leq,_)::tl -> leq_reachable node (!leq@tl) ;; let rec geq_reachable node = function [] -> false | node'::_ when node === node' -> true | (_,_,_,geq)::tl -> geq_reachable node (!geq@tl) ;; let locate_using_leq to_be_considered_and_now ((repr,_,leq,_) as node) ((_,_,sup) as set) = let rec aux is_sup ((nodes,inf,sup) as set) = function [] -> if is_sup then nodes,inf,sup@@node else set | (repr',_,_,geq') as node' :: tl -> if repr=repr' then aux is_sup set (!geq'@tl) else if leq_reachable node' !leq then aux is_sup set tl else if test to_be_considered_and_now set SubsetEqual repr repr' then begin let inf = if !geq' = [] then (remove node' inf)@@node else inf in leq_transitive_closure node node'; aux false (nodes,inf,sup) (!geq'@tl) end else aux is_sup set tl in prerr_endline ("SUP: " ^ String.concat "," (List.map (fun (x,_,_,_) -> string_of_cop x) sup)); aux true set sup ;; exception SameEquivalenceClass of equivalence_class * equivalence_class;; let locate_using_geq to_be_considered_and_now ((repr,_,leq,geq) as node) ((_,inf,_) as set) = let rec aux is_inf ((nodes,inf,sup) as set) = function [] -> if is_inf then nodes,inf@@node,sup else set | (repr',_,leq',_) as node' :: tl -> if repr=repr' then aux is_inf set (!leq'@tl) else if geq_reachable node' !geq then aux is_inf set tl else if test to_be_considered_and_now set SupersetEqual repr repr' then begin if List.exists (function n -> n===node') !leq then (* We have found two equal nodes! *) raise (SameEquivalenceClass (node,node')) else begin let sup = if !leq' = [] then (remove node' sup)@@node else sup in geq_transitive_closure node node'; aux false (nodes,inf,sup) (!leq'@tl) end end else aux is_inf set tl in prerr_endline ("INF: " ^ String.concat "," (List.map (fun (x,_,_,_) -> string_of_cop x) inf)); aux true set inf ;; let analyze_one to_be_considered repr hecandidate (news,((nodes,inf,sup) as set)) = let candidate = hecandidate::repr in if List.length (List.filter ((=) M) candidate) > 1 then news,set else try let leq = ref [] in let geq = ref [] in let node = candidate,[],leq,geq in let nodes = nodes@[node] in let set = nodes,inf,sup in let set = locate_using_leq (to_be_considered,Some repr,news) node set in let set = locate_using_geq (to_be_considered,Some repr,news) node set in news@[candidate],set with SameEquivalenceClass (node_to_be_deleted,node') -> let rec clean = function [] -> [] | (repr',others,leq,geq) as node::tl -> leq:= List.filter (function node -> node_to_be_deleted <=> node) !leq; geq:= List.filter (function node -> node_to_be_deleted <=> node) !geq; if node===node' then (repr',others@[candidate],leq,geq)::clean tl else node::clean tl in let nodes = clean nodes in news,(nodes,inf,sup) ;; let rec explore i (set:set) news = let rec aux news set = function [] -> news,set | repr::tl -> let news,set = List.fold_right (analyze_one tl repr) [I;C;M] (news,set) in aux news set tl in let news,set = aux [] set news in if news = [] then begin print_endline ("PUNTO FISSO RAGGIUNTO! i=" ^ string_of_int i); print_endline (string_of_set set ^ "\n----------------"); ps_of_set ([],None,[]) set end else begin print_endline ("NUOVA ITERAZIONE, i=" ^ string_of_int i); print_endline (string_of_set set ^ "\n----------------"); explore (i+1) set news end in let id = [] in let id_node = id,[],ref [], ref [] in let set = [id_node],[id_node],[id_node] in print_endline ("PRIMA ITERAZIONE, i=0, j=0"); print_endline (string_of_set set ^ "\n----------------"); (*ignore (Unix.system "rm -f log");*) ps_of_set ([id],None,[]) set; explore 1 set [id] ;;