(**************************************************************************)
(* ___ *)
(* ||M|| *)
(* ||A|| A project by Andrea Asperti *)
(* ||T|| *)
(* ||I|| Developers: *)
(* ||T|| The HELM team. *)
(* ||A|| http://helm.cs.unibo.it *)
(* \ / *)
(* \ / This file is distributed under the terms of the *)
(* v GNU General Public License Version 2 *)
(* *)
(**************************************************************************)
(* This file was automatically generated: do not edit *********************)
include "CoRN.ma".
(* $Id: FunctSeries.v,v 1.6 2004/04/23 10:00:58 lcf Exp $ *)
include "ftc/FunctSequence.ma".
include "reals/Series.ma".
(*#* printing fun_seq_part_sum %\ensuremath{\sum^n}% #∑n# *)
(*#* printing Fun_Series_Sum %\ensuremath{\sum_0^{\infty}}% #∑0∞# *)
(* UNEXPORTED
Section Definitions
*)
(*#* *Series of Functions
We now turn our attention to series of functions. Like it was already
the case for sequences, we will mainly rewrite the results we proved
for series of real numbers in a different way.
%\begin{convention}% Throughout this section:
- [a] and [b] will be real numbers and the interval [[a,b]] will be denoted
by [I];
- [f, g] and [h] will denote sequences of continuous functions;
- [F, G] and [H] will denote continuous functions.
%\end{convention}%
** Definitions
As before, we will consider only sequences of continuous functions
defined in a compact interval. For this, partial sums are defined and
convergence is simply the convergence of the sequence of partial sums.
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Definitions/a.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Definitions/b.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Definitions/Hab.var
*)
(* begin hide *)
inline procedural "cic:/CoRN/ftc/FunctSeries/Definitions/I.con" "Definitions__" as definition.
(* end hide *)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Definitions/f.var
*)
inline procedural "cic:/CoRN/ftc/FunctSeries/fun_seq_part_sum.con" as definition.
inline procedural "cic:/CoRN/ftc/FunctSeries/fun_seq_part_sum_cont.con" as lemma.
inline procedural "cic:/CoRN/ftc/FunctSeries/fun_series_convergent.con" as definition.
(*#*
For what comes up next we need to know that the convergence of a
series of functions implies pointwise convergence of the corresponding
real number series.
*)
inline procedural "cic:/CoRN/ftc/FunctSeries/fun_series_conv_imp_conv.con" as lemma.
(*#* We then define the sum of the series as being the pointwise sum of
the corresponding series.
*)
(* begin show *)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Definitions/H.var
*)
(* end show *)
(* begin hide *)
inline procedural "cic:/CoRN/ftc/FunctSeries/Definitions/contf.con" "Definitions__" as definition.
inline procedural "cic:/CoRN/ftc/FunctSeries/Definitions/incf.con" "Definitions__" as definition.
(* end hide *)
inline procedural "cic:/CoRN/ftc/FunctSeries/Fun_Series_Sum_strext.con" as lemma.
inline procedural "cic:/CoRN/ftc/FunctSeries/Fun_Series_Sum.con" as definition.
(* UNEXPORTED
End Definitions
*)
(* UNEXPORTED
Implicit Arguments Fun_Series_Sum [a b Hab f].
*)
(* UNEXPORTED
Hint Resolve fun_seq_part_sum_cont: continuous.
*)
(* UNEXPORTED
Section More_Definitions
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/More_Definitions/a.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/More_Definitions/b.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/More_Definitions/Hab.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/More_Definitions/f.var
*)
(*#* A series can also be absolutely convergent. *)
inline procedural "cic:/CoRN/ftc/FunctSeries/fun_series_abs_convergent.con" as definition.
(* UNEXPORTED
End More_Definitions
*)
(* UNEXPORTED
Section Operations
*)
(* **Algebraic Properties
All of these are analogous to the properties for series of real numbers, so we won't comment much about them.
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Operations/a.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Operations/b.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Operations/Hab.var
*)
(* begin hide *)
inline procedural "cic:/CoRN/ftc/FunctSeries/Operations/I.con" "Operations__" as definition.
(* end hide *)
inline procedural "cic:/CoRN/ftc/FunctSeries/fun_seq_part_sum_n.con" as lemma.
inline procedural "cic:/CoRN/ftc/FunctSeries/conv_fun_const_series.con" as lemma.
inline procedural "cic:/CoRN/ftc/FunctSeries/fun_const_series_sum.con" as lemma.
inline procedural "cic:/CoRN/ftc/FunctSeries/conv_zero_fun_series.con" as lemma.
inline procedural "cic:/CoRN/ftc/FunctSeries/Fun_Series_Sum_zero.con" as lemma.
(* begin show *)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Operations/f.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Operations/g.var
*)
(* end show *)
inline procedural "cic:/CoRN/ftc/FunctSeries/fun_series_convergent_wd.con" as lemma.
(* begin show *)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Operations/convF.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Operations/convG.var
*)
(* end show *)
inline procedural "cic:/CoRN/ftc/FunctSeries/Fun_Series_Sum_wd'.con" as lemma.
inline procedural "cic:/CoRN/ftc/FunctSeries/conv_fun_series_plus.con" as lemma.
inline procedural "cic:/CoRN/ftc/FunctSeries/Fun_Series_Sum_plus.con" as lemma.
inline procedural "cic:/CoRN/ftc/FunctSeries/conv_fun_series_minus.con" as lemma.
inline procedural "cic:/CoRN/ftc/FunctSeries/Fun_Series_Sum_min.con" as lemma.
(*#*
%\begin{convention}% Let [c:IR].
%\end{convention}%
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Operations/c.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Operations/H.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Operations/contH.var
*)
inline procedural "cic:/CoRN/ftc/FunctSeries/conv_fun_series_scal.con" as lemma.
inline procedural "cic:/CoRN/ftc/FunctSeries/Fun_Series_Sum_scal.con" as lemma.
(* UNEXPORTED
End Operations
*)
(* UNEXPORTED
Section More_Operations
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/More_Operations/a.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/More_Operations/b.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/More_Operations/Hab.var
*)
(* begin hide *)
inline procedural "cic:/CoRN/ftc/FunctSeries/More_Operations/I.con" "More_Operations__" as definition.
(* end hide *)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/More_Operations/f.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/More_Operations/convF.var
*)
inline procedural "cic:/CoRN/ftc/FunctSeries/conv_fun_series_inv.con" as lemma.
inline procedural "cic:/CoRN/ftc/FunctSeries/Fun_Series_Sum_inv.con" as lemma.
(* UNEXPORTED
End More_Operations
*)
(* UNEXPORTED
Section Other_Results
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Other_Results/a.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Other_Results/b.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Other_Results/Hab.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Other_Results/f.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Other_Results/convF.var
*)
(*#*
The following relate the sum series with the limit of the sequence of
partial sums; as a corollary we get the continuity of the sum of the
series.
*)
inline procedural "cic:/CoRN/ftc/FunctSeries/Fun_Series_Sum_char'.con" as lemma.
inline procedural "cic:/CoRN/ftc/FunctSeries/fun_series_conv.con" as lemma.
inline procedural "cic:/CoRN/ftc/FunctSeries/Fun_Series_Sum_cont.con" as lemma.
inline procedural "cic:/CoRN/ftc/FunctSeries/Fun_Series_Sum_char.con" as lemma.
inline procedural "cic:/CoRN/ftc/FunctSeries/Fun_Series_Sum_as_Lim.con" as lemma.
(* UNEXPORTED
End Other_Results
*)
(* UNEXPORTED
Hint Resolve Fun_Series_Sum_cont: continuous.
*)
(* UNEXPORTED
Section Convergence_Criteria
*)
(*#* **Convergence Criteria
Most of the convergence criteria for series of real numbers carry over to series of real-valued functions, so again we just present them without comments.
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Convergence_Criteria/a.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Convergence_Criteria/b.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Convergence_Criteria/Hab.var
*)
(* begin hide *)
inline procedural "cic:/CoRN/ftc/FunctSeries/Convergence_Criteria/I.con" "Convergence_Criteria__" as definition.
(* end hide *)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Convergence_Criteria/f.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/FunctSeries/Convergence_Criteria/contF.var
*)
(* UNEXPORTED
Opaque Frestr.
*)
(* UNEXPORTED
Transparent Frestr.
*)
(* UNEXPORTED
Opaque FAbs.
*)
(* UNEXPORTED
Transparent FAbs.
*)
(* UNEXPORTED
Opaque fun_seq_part_sum.
*)
(* UNEXPORTED
Opaque FAbs.
*)
(* UNEXPORTED
Transparent FAbs.
*)
(* UNEXPORTED
Opaque FAbs.
*)
(* UNEXPORTED
Transparent fun_seq_part_sum.
*)
(* UNEXPORTED
Opaque fun_seq_part_sum.
*)
inline procedural "cic:/CoRN/ftc/FunctSeries/fun_str_comparison.con" as lemma.
(* UNEXPORTED
Transparent FAbs.
*)
inline procedural "cic:/CoRN/ftc/FunctSeries/fun_comparison.con" as lemma.
inline procedural "cic:/CoRN/ftc/FunctSeries/abs_imp_conv.con" as lemma.
(* UNEXPORTED
Opaque FAbs.
*)
inline procedural "cic:/CoRN/ftc/FunctSeries/fun_ratio_test_conv.con" as lemma.
(* UNEXPORTED
End Convergence_Criteria
*)