(**************************************************************************)
(* ___ *)
(* ||M|| *)
(* ||A|| A project by Andrea Asperti *)
(* ||T|| *)
(* ||I|| Developers: *)
(* ||T|| The HELM team. *)
(* ||A|| http://helm.cs.unibo.it *)
(* \ / *)
(* \ / This file is distributed under the terms of the *)
(* v GNU General Public License Version 2 *)
(* *)
(**************************************************************************)
(* This file was automatically generated: do not edit *********************)
include "CoRN.ma".
(* $Id: TaylorLemma.v,v 1.8 2004/04/23 10:01:01 lcf Exp $ *)
include "ftc/Rolle.ma".
(* UNEXPORTED
Opaque Min.
*)
(* UNEXPORTED
Section Taylor_Defs
*)
(*#* *Taylor's Theorem
We now prove Taylor's theorem for the remainder of the Taylor
series. This proof is done in two steps: first, we prove the lemma
for a proper compact interval; next we generalize the result to two
arbitrary (eventually equal) points in a proper interval.
** First case
We assume two different points [a] and [b] in the domain of [F] and
define the nth order derivative of [F] in the interval
[[Min(a,b),Max(a,b)]].
*)
(* UNEXPORTED
cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/a.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/b.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/Hap.var
*)
(* begin hide *)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/Hab'.con" "Taylor_Defs__" as definition.
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/Hab.con" "Taylor_Defs__" as definition.
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/I.con" "Taylor_Defs__" as definition.
(* end hide *)
(* UNEXPORTED
cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/F.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/Ha.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/Hb.var
*)
(* begin show *)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/fi.con" "Taylor_Defs__" as definition.
(* end show *)
(*#*
This last local definition is simply:
$f_i=f^{(i)}$#fi=f(i)#.
*)
(* begin hide *)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma1.con" as lemma.
(* end hide *)
(*#*
Now we can define the Taylor sequence around [a]. The auxiliary
definition gives, for any [i], the function expressed by the rule
%\[g(x)=\frac{f^{(i)}
(a)}{i!}*(x-a)^i.\]%#g(x)=f(i)(a)/i!*(x-a)i.#
We denote by [A] and [B] the elements of [[Min(a,b),Max(a,b)]]
corresponding to [a] and [b].
*)
(* begin hide *)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/TL_compact_a.con" "Taylor_Defs__" as definition.
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/TL_compact_b.con" "Taylor_Defs__" as definition.
(* NOTATION
Notation A := (Build_subcsetoid_crr IR _ _ TL_compact_a).
*)
(* NOTATION
Notation B := (Build_subcsetoid_crr IR _ _ TL_compact_b).
*)
(* end hide *)
(* begin show *)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/funct_i.con" "Taylor_Defs__" as definition.
(* end show *)
(* begin hide *)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/funct_i'.con" "Taylor_Defs__" as definition.
inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_a_i.con" as lemma.
inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_b_i.con" as lemma.
inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_x_i.con" as lemma.
inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_a_i'.con" as lemma.
inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_b_i'.con" as lemma.
inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_x_i'.con" as lemma.
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma2.con" as lemma.
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma2'.con" as lemma.
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma3.con" as lemma.
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma3'.con" as lemma.
(* end hide *)
(*#*
Adding the previous expressions up to a given bound [n] gives us the
Taylor sum of order [n].
*)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_seq'.con" as definition.
(* begin hide *)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/Taylor_seq'_aux.con" "Taylor_Defs__" as definition.
inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_lemma_a.con" as lemma.
(* end hide *)
(*#*
It is easy to show that [b] is in the domain of this series, which allows us to write down the Taylor remainder around [b].
*)
inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_lemma_b.con" as lemma.
(* begin hide *)
inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_lemma_a'.con" as lemma.
inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_lemma_b'.con" as lemma.
(* end hide *)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_rem.con" as definition.
(* begin hide *)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/g.con" "Taylor_Defs__" as definition.
(* UNEXPORTED
Opaque Taylor_seq'_aux Taylor_rem.
*)
(* UNEXPORTED
Transparent Taylor_rem.
*)
(* UNEXPORTED
Opaque Taylor_seq'.
*)
(* UNEXPORTED
Transparent Taylor_seq' Taylor_seq'_aux.
*)
(* UNEXPORTED
Opaque funct_i'.
*)
(* UNEXPORTED
Opaque funct_i.
*)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma4.con" as lemma.
(* UNEXPORTED
Transparent funct_i funct_i'.
*)
(* UNEXPORTED
Opaque Taylor_seq'_aux.
*)
(* UNEXPORTED
Transparent Taylor_seq'_aux.
*)
(* UNEXPORTED
Opaque FSumx.
*)
(* UNEXPORTED
Opaque funct_i'.
*)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma5.con" as lemma.
(* UNEXPORTED
Transparent funct_i' FSumx.
*)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/funct_aux.con" "Taylor_Defs__" as definition.
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma6.con" as lemma.
(* UNEXPORTED
Ltac Lazy_Included :=
repeat first
[ apply included_IR
| apply included_FPlus
| apply included_FInv
| apply included_FMinus
| apply included_FMult
| apply included_FNth
| apply included_refl ].
*)
(* UNEXPORTED
Ltac Lazy_Eq :=
repeat first
[ apply bin_op_wd_unfolded
| apply un_op_wd_unfolded
| apply cg_minus_wd
| apply div_wd
| apply csf_wd_unfolded ]; Algebra.
*)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma7.con" as lemma.
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma8.con" as lemma.
(* UNEXPORTED
Opaque funct_aux.
*)
(* UNEXPORTED
Transparent funct_aux.
*)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma9.con" as lemma.
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/g'.con" "Taylor_Defs__" as definition.
(* UNEXPORTED
Opaque Taylor_rem funct_aux.
*)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma10.con" as lemma.
(* UNEXPORTED
Transparent Taylor_rem funct_aux.
*)
(* end hide *)
(*#*
Now Taylor's theorem.
%\begin{convention}% Let [e] be a positive real number.
%\end{convention}%
*)
(* UNEXPORTED
cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/e.var
*)
(* UNEXPORTED
cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/He.var
*)
(* begin hide *)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma11.con" as lemma.
(* end hide *)
(* begin show *)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/deriv_Sn'.con" "Taylor_Defs__" as definition.
(* end show *)
(* begin hide *)
inline procedural "cic:/CoRN/ftc/TaylorLemma/TLH.con" as lemma.
(* end hide *)
(* UNEXPORTED
Opaque funct_aux.
*)
(* UNEXPORTED
Opaque Taylor_rem.
*)
(* UNEXPORTED
Transparent Taylor_rem funct_aux.
*)
inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma.con" as lemma.
(* UNEXPORTED
End Taylor_Defs
*)