(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "formal_topology/relations.ma". include "datatypes/categories.ma". record basic_pair: Type ≝ { concr: REL; form: REL; rel: arrows1 ? concr form }. notation "x ⊩ y" with precedence 45 for @{'Vdash2 $x $y}. notation "⊩" with precedence 60 for @{'Vdash}. interpretation "basic pair relation" 'Vdash2 x y = (rel _ x y). interpretation "basic pair relation (non applied)" 'Vdash = (rel _). record relation_pair (BP1,BP2: basic_pair): Type ≝ { concr_rel: arrows1 ? (concr BP1) (concr BP2); form_rel: arrows1 ? (form BP1) (form BP2); commute: ⊩ ∘ concr_rel = form_rel ∘ ⊩ }. notation "hvbox (r \sub \c)" with precedence 90 for @{'concr_rel $r}. notation "hvbox (r \sub \f)" with precedence 90 for @{'form_rel $r}. interpretation "concrete relation" 'concr_rel r = (concr_rel __ r). interpretation "formal relation" 'form_rel r = (form_rel __ r). definition relation_pair_equality: ∀o1,o2. equivalence_relation1 (relation_pair o1 o2). intros; constructor 1; [ apply (λr,r'. ⊩ ∘ r \sub\c = ⊩ ∘ r' \sub\c); | simplify; intros; apply refl1; | simplify; intros 2; apply sym1; | simplify; intros 3; apply trans1; ] qed. definition relation_pair_setoid: basic_pair → basic_pair → setoid1. intros; constructor 1; [ apply (relation_pair b b1) | apply relation_pair_equality ] qed. lemma eq_to_eq': ∀o1,o2.∀r,r': relation_pair_setoid o1 o2. r=r' → r \sub\f ∘ ⊩ = r'\sub\f ∘ ⊩. intros 7 (o1 o2 r r' H c1 f2); split; intro H1; [ lapply (fi ?? (commute ?? r c1 f2) H1) as H2; lapply (if ?? (H c1 f2) H2) as H3; apply (if ?? (commute ?? r' c1 f2) H3); | lapply (fi ?? (commute ?? r' c1 f2) H1) as H2; lapply (fi ?? (H c1 f2) H2) as H3; apply (if ?? (commute ?? r c1 f2) H3); ] qed. definition id_relation_pair: ∀o:basic_pair. relation_pair o o. intro; constructor 1; [1,2: apply id1; | lapply (id_neutral_right1 ? (concr o) ? (⊩)) as H; lapply (id_neutral_left1 ?? (form o) (⊩)) as H1; apply (.= H); apply (H1 \sup -1);] qed. definition relation_pair_composition: ∀o1,o2,o3. binary_morphism1 (relation_pair_setoid o1 o2) (relation_pair_setoid o2 o3) (relation_pair_setoid o1 o3). intros; constructor 1; [ intros (r r1); constructor 1; [ apply (r1 \sub\c ∘ r \sub\c) | apply (r1 \sub\f ∘ r \sub\f) | lapply (commute ?? r) as H; lapply (commute ?? r1) as H1; apply (.= ASSOC1); apply (.= #‡H1); apply (.= ASSOC1\sup -1); apply (.= H‡#); apply ASSOC1] | intros; change with (⊩ ∘ (b\sub\c ∘ a\sub\c) = ⊩ ∘ (b'\sub\c ∘ a'\sub\c)); change in H with (⊩ ∘ a \sub\c = ⊩ ∘ a' \sub\c); change in H1 with (⊩ ∘ b \sub\c = ⊩ ∘ b' \sub\c); apply (.= ASSOC1); apply (.= #‡H1); apply (.= #‡(commute ?? b')); apply (.= ASSOC1 \sup -1); apply (.= H‡#); apply (.= ASSOC1); apply (.= #‡(commute ?? b')\sup -1); apply (ASSOC1 \sup -1)] qed. definition BP: category1. constructor 1; [ apply basic_pair | apply relation_pair_setoid | apply id_relation_pair | apply relation_pair_composition | intros; change with (⊩ ∘ (a34\sub\c ∘ (a23\sub\c ∘ a12\sub\c)) = ⊩ ∘ ((a34\sub\c ∘ a23\sub\c) ∘ a12\sub\c)); apply (ASSOC1‡#); | intros; change with (⊩ ∘ (a\sub\c ∘ (id_relation_pair o1)\sub\c) = ⊩ ∘ a\sub\c); apply ((id_neutral_right1 ????)‡#); | intros; change with (⊩ ∘ ((id_relation_pair o2)\sub\c ∘ a\sub\c) = ⊩ ∘ a\sub\c); apply ((id_neutral_left1 ????)‡#);] qed. definition BPext: ∀o: BP. form o ⇒ Ω \sup (concr o). intros; constructor 1; [ apply (ext ? ? (rel o)); | intros; apply (.= #‡H); apply refl1] qed. definition BPextS: ∀o: BP. Ω \sup (form o) ⇒ Ω \sup (concr o) ≝ λo.extS ?? (rel o). definition fintersects: ∀o: BP. binary_morphism1 (form o) (form o) (Ω \sup (form o)). intros (o); constructor 1; [ apply (λa,b: form o.{c | BPext o c ⊆ BPext o a ∩ BPext o b }); intros; simplify; apply (.= (†H)‡#); apply refl1 | intros; split; simplify; intros; [ apply (. #‡((†H)‡(†H1))); assumption | apply (. #‡((†H\sup -1)‡(†H1\sup -1))); assumption]] qed. interpretation "fintersects" 'fintersects U V = (fun1 ___ (fintersects _) U V). definition fintersectsS: ∀o:BP. binary_morphism1 (Ω \sup (form o)) (Ω \sup (form o)) (Ω \sup (form o)). intros (o); constructor 1; [ apply (λo: basic_pair.λa,b: Ω \sup (form o).{c | BPext o c ⊆ BPextS o a ∩ BPextS o b }); intros; simplify; apply (.= (†H)‡#); apply refl1 | intros; split; simplify; intros; [ apply (. #‡((†H)‡(†H1))); assumption | apply (. #‡((†H\sup -1)‡(†H1\sup -1))); assumption]] qed. interpretation "fintersectsS" 'fintersects U V = (fun1 ___ (fintersectsS _) U V). definition relS: ∀o: BP. binary_morphism1 (concr o) (Ω \sup (form o)) CPROP. intros (o); constructor 1; [ apply (λx:concr o.λS: Ω \sup (form o).∃y: form o.y ∈ S ∧ x ⊩ y); | intros; split; intros; cases H2; exists [1,3: apply w] [ apply (. (#‡H1)‡(H‡#)); assumption | apply (. (#‡H1 \sup -1)‡(H \sup -1‡#)); assumption]] qed. interpretation "basic pair relation for subsets" 'Vdash2 x y = (fun1 (concr _) __ (relS _) x y). interpretation "basic pair relation for subsets (non applied)" 'Vdash = (fun1 ___ (relS _)).