(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "formal_topology/relations.ma". include "datatypes/categories.ma". include "formal_topology/saturations_reductions.ma". record basic_topology: Type ≝ { carrbt:> REL; A: unary_morphism (Ω \sup carrbt) (Ω \sup carrbt); J: unary_morphism (Ω \sup carrbt) (Ω \sup carrbt); A_is_saturation: is_saturation ? A; J_is_reduction: is_reduction ? J; compatibility: ∀U,V. (A U ≬ J V) = (U ≬ J V) }. record continuous_relation (S,T: basic_topology) : Type ≝ { cont_rel:> arrows1 ? S T; reduced: ∀U. U = J ? U → image ?? cont_rel U = J ? (image ?? cont_rel U); saturated: ∀U. U = A ? U → minus_star_image ?? cont_rel U = A ? (minus_star_image ?? cont_rel U) }. definition continuous_relation_setoid: basic_topology → basic_topology → setoid1. intros (S T); constructor 1; [ apply (continuous_relation S T) | constructor 1; [ apply (λr,s:continuous_relation S T.∀b. A ? (ext ?? r b) = A ? (ext ?? s b)); | simplify; intros; apply refl1; | simplify; intros; apply sym1; apply H | simplify; intros; apply trans1; [2: apply H |3: apply H1; |1: skip]]] qed. definition cont_rel': ∀S,T: basic_topology. continuous_relation_setoid S T → arrows1 ? S T ≝ cont_rel. coercion cont_rel'. definition cont_rel'': ∀S,T: basic_topology. continuous_relation_setoid S T → binary_relation S T ≝ cont_rel. coercion cont_rel''. theorem continuous_relation_eq': ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2. a = a' → ∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X). intros; split; intro; unfold minus_star_image; simplify; intros; [ cut (ext ?? a a1 ⊆ A ? X); [2: intros 2; apply (H1 a2); cases f1; assumption;] lapply (if ?? (A_is_saturation ???) Hcut); clear Hcut; cut (A ? (ext ?? a' a1) ⊆ A ? X); [2: apply (. (H ?)‡#); assumption] lapply (fi ?? (A_is_saturation ???) Hcut); apply (Hletin1 x); change with (x ∈ ext ?? a' a1); split; simplify; [ apply I | assumption ] | cut (ext ?? a' a1 ⊆ A ? X); [2: intros 2; apply (H1 a2); cases f1; assumption;] lapply (if ?? (A_is_saturation ???) Hcut); clear Hcut; cut (A ? (ext ?? a a1) ⊆ A ? X); [2: apply (. (H ?)\sup -1‡#); assumption] lapply (fi ?? (A_is_saturation ???) Hcut); apply (Hletin1 x); change with (x ∈ ext ?? a a1); split; simplify; [ apply I | assumption ]] qed. theorem continuous_relation_eq_inv': ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2. (∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X)) → a=a'. intros 6; cut (∀a,a': continuous_relation_setoid o1 o2. (∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X)) → ∀V:o2. A ? (ext ?? a' V) ⊆ A ? (ext ?? a V)); [2: clear b H a' a; intros; lapply depth=0 (λV.saturation_expansive ??? (extS ?? a V)); [2: apply A_is_saturation;|skip] (* fundamental adjunction here! to be taken out *) cut (∀V:Ω \sup o2.V ⊆ minus_star_image ?? a (A ? (extS ?? a V))); [2: intro; intros 2; unfold minus_star_image; simplify; intros; apply (Hletin V1 x); whd; split; [ exact I | exists; [apply a1] split; assumption]] clear Hletin; cut (∀V:Ω \sup o2.V ⊆ minus_star_image ?? a' (A ? (extS ?? a V))); [2: intro; apply (. #‡(H ?)); apply Hcut] clear H Hcut; (* second half of the fundamental adjunction here! to be taken out too *) intro; lapply (Hcut1 (singleton ? V)); clear Hcut1; unfold minus_star_image in Hletin; unfold singleton in Hletin; simplify in Hletin; whd in Hletin; whd in Hletin:(?→?→%); simplify in Hletin; apply (if ?? (A_is_saturation ???)); intros 2 (x H); lapply (Hletin V ? x ?); [ apply refl | cases H; assumption; ] change with (x ∈ A ? (ext ?? a V)); apply (. #‡(†(extS_singleton ????))); assumption;] split; apply Hcut; [2: assumption | intro; apply sym1; apply H] qed. definition continuous_relation_comp: ∀o1,o2,o3. continuous_relation_setoid o1 o2 → continuous_relation_setoid o2 o3 → continuous_relation_setoid o1 o3. intros (o1 o2 o3 r s); constructor 1; [ apply (s ∘ r) | intros; apply sym1; apply (.= †(image_comp ??????)); apply (.= (reduced ?????)\sup -1); [ apply (.= (reduced ?????)); [ assumption | apply refl1 ] | apply (.= (image_comp ??????)\sup -1); apply refl1] | intros; apply sym1; apply (.= †(minus_star_image_comp ??????)); apply (.= (saturated ?????)\sup -1); [ apply (.= (saturated ?????)); [ assumption | apply refl1 ] | apply (.= (minus_star_image_comp ??????)\sup -1); apply refl1]] qed. definition BTop: category1. constructor 1; [ apply basic_topology | apply continuous_relation_setoid | intro; constructor 1; [ apply id1 | intros; apply (.= (image_id ??)); apply sym1; apply (.= †(image_id ??)); apply sym1; assumption | intros; apply (.= (minus_star_image_id ??)); apply sym1; apply (.= †(minus_star_image_id ??)); apply sym1; assumption] | intros; constructor 1; [ apply continuous_relation_comp; | intros; simplify; intro x; simplify; lapply depth=0 (continuous_relation_eq' ???? H) as H'; lapply depth=0 (continuous_relation_eq' ???? H1) as H1'; letin K ≝ (λX.H1' (minus_star_image ?? a (A ? X))); clearbody K; cut (∀X:Ω \sup o1. minus_star_image o2 o3 b (A o2 (minus_star_image o1 o2 a (A o1 X))) = minus_star_image o2 o3 b' (A o2 (minus_star_image o1 o2 a' (A o1 X)))); [2: intro; apply sym1; apply (.= #‡(†((H' ?)\sup -1))); apply sym1; apply (K X);] clear K H' H1'; cut (∀X:Ω \sup o1. minus_star_image o1 o3 (b ∘ a) (A o1 X) = minus_star_image o1 o3 (b'∘a') (A o1 X)); [2: intro; apply (.= (minus_star_image_comp ??????)); apply (.= #‡(saturated ?????)); [ apply ((saturation_idempotent ????) \sup -1); apply A_is_saturation ] apply sym1; apply (.= (minus_star_image_comp ??????)); apply (.= #‡(saturated ?????)); [ apply ((saturation_idempotent ????) \sup -1); apply A_is_saturation ] apply ((Hcut X) \sup -1)] clear Hcut; generalize in match x; clear x; apply (continuous_relation_eq_inv'); apply Hcut1;] | intros; simplify; intro; do 2 (unfold continuous_relation_comp); simplify; apply (.= †(ASSOC1‡#)); apply refl1 | intros; simplify; intro; unfold continuous_relation_comp; simplify; apply (.= †((id_neutral_right1 ????)‡#)); apply refl1 | intros; simplify; intro; simplify; apply (.= †((id_neutral_left1 ????)‡#)); apply refl1] qed. (*CSC: unused! *) (* this proof is more logic-oriented than set/lattice oriented *) theorem continuous_relation_eqS: ∀o1,o2:basic_topology.∀a,a': continuous_relation_setoid o1 o2. a = a' → ∀X. A ? (extS ?? a X) = A ? (extS ?? a' X). intros; cut (∀a: arrows1 ? o1 ?.∀x. x ∈ extS ?? a X → ∃y:o2.y ∈ X ∧ x ∈ ext ?? a y); [2: intros; cases f; clear f; cases H1; exists [apply w] cases x1; split; try assumption; split; assumption] cut (∀a,a':continuous_relation_setoid o1 o2.eq1 ? a a' → ∀x. x ∈ extS ?? a X → ∃y:o2. y ∈ X ∧ x ∈ A ? (ext ?? a' y)); [2: intros; cases (Hcut ?? f); exists; [apply w] cases x1; split; try assumption; apply (. #‡(H1 ?)); apply (saturation_expansive ?? (A_is_saturation o1) (ext ?? a1 w) x); assumption;] clear Hcut; split; apply (if ?? (A_is_saturation ???)); intros 2; [lapply (Hcut1 a a' H a1 f) | lapply (Hcut1 a' a (H \sup -1) a1 f)] cases Hletin; clear Hletin; cases x; clear x; cut (∀a: arrows1 ? o1 ?. ext ?? a w ⊆ extS ?? a X); [2,4: intros 3; cases f3; clear f3; simplify in f5; split; try assumption; exists [1,3: apply w] split; assumption;] cut (∀a. A ? (ext o1 o2 a w) ⊆ A ? (extS o1 o2 a X)); [2,4: intros; apply saturation_monotone; try (apply A_is_saturation); apply Hcut;] apply Hcut2; assumption. qed.