(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "datatypes/subsets.ma". record binary_relation (A,B: setoid) : Type ≝ { satisfy:> binary_morphism1 A B CPROP }. notation < "hvbox (x \nbsp \natur term 90 r \nbsp y)" with precedence 45 for @{'satisfy $r $x $y}. notation > "hvbox (x \natur term 90 r y)" with precedence 45 for @{'satisfy $r $x $y}. interpretation "relation applied" 'satisfy r x y = (fun1 ___ (satisfy __ r) x y). definition binary_relation_setoid: setoid → setoid → setoid1. intros (A B); constructor 1; [ apply (binary_relation A B) | constructor 1; [ apply (λA,B.λr,r': binary_relation A B. ∀x,y. r x y ↔ r' x y) | simplify; intros 3; split; intro; assumption | simplify; intros 5; split; intro; [ apply (fi ?? (H ??)) | apply (if ?? (H ??))] assumption | simplify; intros 7; split; intro; [ apply (if ?? (H1 ??)) | apply (fi ?? (H ??)) ] [ apply (if ?? (H ??)) | apply (fi ?? (H1 ??)) ] assumption]] qed. definition composition: ∀A,B,C. binary_morphism1 (binary_relation_setoid A B) (binary_relation_setoid B C) (binary_relation_setoid A C). intros; constructor 1; [ intros (R12 R23); constructor 1; constructor 1; [ apply (λs1:A.λs3:C.∃s2:B. s1 ♮R12 s2 ∧ s2 ♮R23 s3); | intros; split; intro; cases H2 (w H3); clear H2; exists; [1,3: apply w ] [ apply (. (H‡#)‡(#‡H1)); assumption | apply (. ((H \sup -1)‡#)‡(#‡(H1 \sup -1))); assumption]] | intros 8; split; intro H2; simplify in H2 ⊢ %; cases H2 (w H3); clear H2; exists [1,3: apply w] cases H3 (H2 H4); clear H3; [ lapply (if ?? (H x w) H2) | lapply (fi ?? (H x w) H2) ] [ lapply (if ?? (H1 w y) H4)| lapply (fi ?? (H1 w y) H4) ] exists; try assumption; split; assumption] qed. definition REL: category1. constructor 1; [ apply setoid | intros (T T1); apply (binary_relation_setoid T T1) | intros; constructor 1; constructor 1; unfold setoid1_of_setoid; simplify; [ intros; apply (c = c1) | intros; split; intro; [ apply (trans ????? (H \sup -1)); apply (trans ????? H2); apply H1 | apply (trans ????? H); apply (trans ????? H2); apply (H1 \sup -1)]] | apply composition | intros 9; split; intro; cases f (w H); clear f; cases H; clear H; [cases f (w1 H); clear f | cases f1 (w1 H); clear f1] cases H; clear H; exists; try assumption; split; try assumption; exists; try assumption; split; assumption |6,7: intros 5; unfold composition; simplify; split; intro; unfold setoid1_of_setoid in x y; simplify in x y; [1,3: cases H (w H1); clear H; cases H1; clear H1; unfold; [ apply (. (H \sup -1 : eq1 ? w x)‡#); assumption | apply (. #‡(H : eq1 ? w y)); assumption] |2,4: exists; try assumption; split; first [apply refl | assumption]]] qed. definition full_subset: ∀s:REL. Ω \sup s. apply (λs.{x | True}); intros; simplify; split; intro; assumption. qed. coercion full_subset. definition setoid1_of_REL: REL → setoid ≝ λS. S. coercion setoid1_of_REL. definition comprehension: ∀b:REL. (b ⇒ CPROP) → Ω \sup b. apply (λb:REL. λP: b ⇒ CPROP. {x | x ∈ b ∧ P x}); intros; simplify; apply (.= (H‡#)‡(†H)); apply refl1. qed. interpretation "subset comprehension" 'comprehension s p = (comprehension s (mk_unary_morphism __ p _)). definition ext: ∀X,S:REL. binary_morphism1 (arrows1 ? X S) S (Ω \sup X). apply (λX,S.mk_binary_morphism1 ??? (λr:arrows1 ? X S.λf:S.{x ∈ X | x ♮r f}) ?); [ intros; simplify; apply (.= (H‡#)); apply refl1 | intros; simplify; split; intros; simplify; intros; cases f; split; try assumption; [ apply (. (#‡H1)); whd in H; apply (if ?? (H ??)); assumption | apply (. (#‡H1\sup -1)); whd in H; apply (fi ?? (H ??));assumption]] qed. definition extS: ∀X,S:REL. ∀r: arrows1 ? X S. Ω \sup S ⇒ Ω \sup X. (* ∃ is not yet a morphism apply (λX,S,r,F.{x ∈ X | ∃a. a ∈ F ∧ x ♮r a});*) intros (X S r); constructor 1; [ intro F; constructor 1; constructor 1; [ apply (λx. x ∈ X ∧ ∃a:S. a ∈ F ∧ x ♮r a); | intros; split; intro; cases f (H1 H2); clear f; split; [ apply (. (H‡#)); assumption |3: apply (. (H\sup -1‡#)); assumption |2,4: cases H2 (w H3); exists; [1,3: apply w] [ apply (. (#‡(H‡#))); assumption | apply (. (#‡(H \sup -1‡#))); assumption]]] | intros; split; simplify; intros; cases f; cases H1; split; [1,3: assumption |2,4: exists; [1,3: apply w] [ apply (. (#‡H)‡#); assumption | apply (. (#‡H\sup -1)‡#); assumption]]] qed. lemma equalset_extS_id_X_X: ∀o:REL.∀X.extS ?? (id1 ? o) X = X. intros; unfold extS; simplify; split; simplify; [ intros 2; change with (a ∈ X); cases f; clear f; cases H; clear H; cases x; clear x; change in f2 with (eq1 ? a w); apply (. (f2\sup -1‡#)); assumption | intros 2; change in f with (a ∈ X); split; [ whd; exact I | exists; [ apply a ] split; [ assumption | change with (a = a); apply refl]]] qed. lemma extS_com: ∀o1,o2,o3,c1,c2,S. extS o1 o3 (c2 ∘ c1) S = extS o1 o2 c1 (extS o2 o3 c2 S). intros; unfold extS; simplify; split; intros; simplify; intros; [ cases f (H1 H2); cases H2 (w H3); clear f H2; split; [assumption] cases H3 (H4 H5); cases H5 (w1 H6); clear H3 H5; cases H6 (H7 H8); clear H6; exists; [apply w1] split [2: assumption] constructor 1; [assumption] exists; [apply w] split; assumption | cases f (H1 H2); cases H2 (w H3); clear f H2; split; [assumption] cases H3 (H4 H5); cases H4 (w1 H6); clear H3 H4; cases H6 (w2 H7); clear H6; cases H7; clear H7; exists; [apply w2] split; [assumption] exists [apply w] split; assumption] qed. (* the same as ⋄ for a basic pair *) definition image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V). intros; constructor 1; [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∃x:U. x ♮r y ∧ x ∈ S}); intros; simplify; split; intro; cases H1; exists [1,3: apply w] [ apply (. (#‡H)‡#); assumption | apply (. (#‡H \sup -1)‡#); assumption] | intros; split; simplify; intros; cases H2; exists [1,3: apply w] [ apply (. #‡(#‡H1)); cases x; split; try assumption; apply (if ?? (H ??)); assumption | apply (. #‡(#‡H1 \sup -1)); cases x; split; try assumption; apply (if ?? (H \sup -1 ??)); assumption]] qed. (* the same as □ for a basic pair *) definition minus_star_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V). intros; constructor 1; [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∀x:U. x ♮r y → x ∈ S}); intros; simplify; split; intros; apply H1; [ apply (. #‡H \sup -1); assumption | apply (. #‡H); assumption] | intros; split; simplify; intros; [ apply (. #‡H1); | apply (. #‡H1 \sup -1)] apply H2; [ apply (if ?? (H \sup -1 ??)); | apply (if ?? (H ??)) ] assumption] qed. (* minus_image is the same as ext *) theorem image_id: ∀o,U. image o o (id1 REL o) U = U. intros; unfold image; simplify; split; simplify; intros; [ change with (a ∈ U); cases H; cases x; change in f with (eq1 ? w a); apply (. f‡#); assumption | change in f with (a ∈ U); exists; [apply a] split; [ change with (a = a); apply refl | assumption]] qed. theorem minus_star_image_id: ∀o,U. minus_star_image o o (id1 REL o) U = U. intros; unfold minus_star_image; simplify; split; simplify; intros; [ change with (a ∈ U); apply H; change with (a=a); apply refl | change in f1 with (eq1 ? x a); apply (. f1 \sup -1‡#); apply f] qed. theorem image_comp: ∀A,B,C,r,s,X. image A C (r ∘ s) X = image B C r (image A B s X). intros; unfold image; simplify; split; simplify; intros; cases H; clear H; cases x; clear x; [ cases f; clear f; | cases f1; clear f1 ] exists; try assumption; cases x; clear x; split; try assumption; exists; try assumption; split; assumption. qed. theorem minus_star_image_comp: ∀A,B,C,r,s,X. minus_star_image A C (r ∘ s) X = minus_star_image B C r (minus_star_image A B s X). intros; unfold minus_star_image; simplify; split; simplify; intros; whd; intros; [ apply H; exists; try assumption; split; assumption | change with (x ∈ X); cases f; cases x1; apply H; assumption] qed. (*CSC: unused! *) theorem ext_comp: ∀o1,o2,o3: REL. ∀a: arrows1 ? o1 o2. ∀b: arrows1 ? o2 o3. ∀x. ext ?? (b∘a) x = extS ?? a (ext ?? b x). intros; unfold ext; unfold extS; simplify; split; intro; simplify; intros; cases f; clear f; split; try assumption; [ cases f2; clear f2; cases x1; clear x1; exists; [apply w] split; [1: split] assumption; | cases H; clear H; cases x1; clear x1; exists [apply w]; split; [2: cases f] assumption] qed. theorem extS_singleton: ∀o1,o2.∀a:arrows1 ? o1 o2.∀x.extS o1 o2 a (singleton o2 x) = ext o1 o2 a x. intros; unfold extS; unfold ext; unfold singleton; simplify; split; intros 2; simplify; cases f; split; try assumption; [ cases H; cases x1; change in f2 with (eq1 ? x w); apply (. #‡f2 \sup -1); assumption | exists; try assumption; split; try assumption; change with (x = x); apply refl] qed.