
An Efficient Validation Procedure
for the Formal System λδ

Ferruccio Guidi?

Department of Computer Science
Mura Anteo Zamboni 7, 40127 Bologna, ITALY.

fguidi@cs.unibo.it

Abstract We take the opportunity of presenting a rigorous validation
procedure for a version of the system λδ, to propose some improvements
on the PTS-oriented type synthesizers based on the Constructive Engine.

1 Introduction

The formal system λδ [9,8] is a typed λ-calculus inspired by Λ∞ [13] (a formal
language of the Automath family), that we are developing in the context of the
HELM project [1]. As a framework for encoding formal mathematics, our calculus
defines a structure, that we call an environment, in which a mathematical theory
can be represented. The syntactic correctness of such a structure, that we call
the validity of an environment, is also defined and is decidable. Not surprisingly,
this notion of validity is related to the fact that the λδ-terms appearing in an
environment are typable. This is to say that validity is related to type inference.

In this paper, we are concerned with an efficient procedure for the validation
of a λδ-environment. To this aim, we observe that even if λδ is not a Pure Type
System (PTS) [3], it resembles a PTS enough to address the problem of efficient
type inference as in a PTS. So, we are naturally led to base our procedure on
a suitable version of the Constructive Engine [11] as implemented by the latest
type synthesizers [2,4] for the Calculus of Inductive Constructions (CIC).

Generally speaking, the type inference algorithm of this engine synthesizes a
type incrementally by recurring on the structure of the given term. This means
that the algorithm operates on a closure, i.e., a context and a possibly open
term that refers to it. Moreover, it requires two operations that are crucial with
respect to its efficiency: asserting the convertibility of two types, and asserting
the applicability of two terms. In the latest versions of the engine, convertibility
is asserted with an efficient algorithm that operates on two types closed in a
common context, using a fast reduction machine (typically, a variant of the K
machine [5]) for computing the weak head normal form (w.h.n.f.) of a term.

On the other hand, we see some inefficiency as to asserting applicability in
that the w.h.n.f. of the type of the function is extracted from the reduction

? Partially supported by the Strategic Project DAMA (Dimostrazione Assistita per la
Matematica e l’Apprendimento) of the University of Bologna.

machine that computed it in order to obtain the expected type of the function
argument. Normally, the extraction of a w.h.n.f. resulting from the computa-
tion of a reduction machine requires a decompilation of the machine, during
which the contents of the machine registers undergo time-consuming operations
such as substitutions and relocations. As a possible way out, it was proposed
to delay such substitutions and relocations by adopting explicit substitutions
[4]. Nevertheless, λδ would require an unplanned extension to support explicit
substitutions, so this solution seems inconvenient to us in the present case.

Schematically, the solution we are proposing in this article is as follows.
Firstly, we allow the convertibility checker to operate on two closures rather
than on two terms closed in a common context. Secondly, we use reduction en-
gines rather than closures throughout the type synthesizer and the convertibility
checker. By so doing, we can assert applicability without extracting the w.h.n.f.
of the type of the function from the reduction machine that computed it.

In particular, our solution avoids the distinction made in [2,4] between a
context and an environment of a reduction machine, which makes the machine
less efficient when reducing a term that refers to the context with respect to
reducing a term that refers just to the machine environment.

In this article, we propose a complete procedure that includes a reduction
machine, a convertibility controller, a type synthesizer and a validity controller.
Contrary to [8], such procedure is specified rigorously, but no proof of its correct-
ness is given. In our opinion, such a proof would be carried out most naturally by
representing a state of the reduction machine with a λδ-closure, but we believe
that the calculus needs further development, both on the practical and on the
theoretical side, before this representation is possible. The problem being to sup-
port a term construction for representing closures. Nevertheless, we implemented
this procedure as a part of the HELM software and we have evidence (see [8])
that it correctly validates a naive translation of the “Grundlagen der Analysis”
[12], i.e., the only development finalized in a language of the Automath family.

For the reader’s convenience, we end this section including a summary of
λδ consisting of its syntax (Figure 1), its reduction rules (Figure 2), its type
assignment rules (Figure 7), and its validity rules (Figure 4) taken essentially
from [8]. In these figures, ↑i is the “relocation function”, |L2| is the “length” of
L2 i.e., the number of binders in L2, while x /∈ G2 means that there is no binder
named x in G2. The judgement G,L ` U1 ↔∗ U2 asserts the convertibility of the
terms U1 and U2 in the environments G and L. Moreover, the type assignment
depends on the parameter h, which is a function from the natural numbers to
themselves that can be chosen at will as long as l < h(l) for every l. The available
space forces us to delegate any comment on the calculus to [9,8], where we explain
it and motivate it at our best. We just want to remark the improvements of the
system χλδ “brg”[8], that we consider here, over its stable version [9].

In χλδ “brg”we removed the level indication from the environment’s bottom
sort. We also removed the application and the type annotation from the envi-
ronment’s constructors. Moreover we split the environment into a local part and
a global part, providing a differentiated way for accessing the binders in each
part, i.e., by position and by name. We also stress that the reduction schemes

are substitution-free. More interestingly, we added the “pure” type assignment
rule for function application, Figure 7(pure), motivated in [6]. This rule enables
functions accepting arguments whose degree is greater than 3 according to de
Bruijn’s hierarchy, so it is not applicable in a PTS. Nevertheless, following the
approach of Vera [14] (the first validator for Automath), our procedure handles
this rule in the reduction machine, so the type synthesizer is not affected.

2 The Reduction Machine

In this section we give a formal presentation of the reduction and typing machine
(λδ-RTM) [8] for computing the higher-order deep w.h.n.f. in χλδ “brg”.

To this aim, we recall that a term is in w.h.n.f. of depth or level n, when
it has the form λW1. · · · .λWn.U where n ≥ 0 and U is in w.h.n.f.. Then we
define recursively an iterated type of a term T as a type of T or an iterated type
of a type of T . Moreover, we define a higher-order w.h.n.f. of T as a w.h.n.f.
of an iterated type of T (both concepts apply to any typed λ-calculus). These
definitions allow to reduce the applicability condition of λδ to that of a PTS
in that a term of χλδ “brg” has a function type when it admits a higher-order
w.h.n.f. that is a λ-abstraction. The same concept applies to a PTS and is stated
thus: a term of a PTS has a function type when it admits a higher-order w.h.n.f.
that is a Π-abstraction. This observation makes it possible to use, for χλδ “brg”,
a type synthesis algorithm for a PTS even if the “pure” type rule is in effect.

Essentially, the RTM (Figure 5) adapts the KN machine [5] to χλδ “brg”
without implementing the support for the evaluation of the stack contents, but
implementing the support for computing higher-order normal forms.

In particular, the RTM is thought for reducing a term in the context of a
validation algorithm and thus it presupposes an external controller that takes
charge of evaluating the stack contents when necessary, whereas the KN machine
is thought for the stand-alone computation of the normal form of a term.

The following is a description of the RTM that refers to Figure 5.
Structure of the machine. The RTM (M) is organized as a KN machine and

has five registers: an accumulator (a) holding the depth of the w.h.n.f. to be
computed; a read-only global environment (G) used to resolve global references;
a local environment (E) of closures, in which we distinguish three kinds of entries
(in particular a λa entry corresponds to a V (a + 1) entry of the KN machine);
a stack (S) of closures storing function arguments; the code (T) to be reduced.

As regards the local environment, we stress that the δ-entries correspond to
the “non-special” environment entries of the KN machine, while the χ-entries
are introduced to support the exclusion binder featured by χλδ “brg”[9].

Construction and projection. As the KN machine, the RTM does not require
a dedicated encoding for the terms (contrary to the Symbolic Machine of [7]), so
the terms must not be compiled or decompiled when the registers are initialized
or read by the external controller of the machine.

Transition rules. The transitions (T1), (T2), (T4), (T6), (T7), and mainly
(T13) come from the KN machine; the transitions (T5), (T8) and (T10) are

typical in the machines of the K family for the calculi featuring explicit type an-
notations, abbreviations, and references to a global environment (see for instance
[2]); the transitions (T3) and (T9) are specific to χλδ “brg” and handle the exclu-
sion binder following the pattern of (T2) and (T8) respectively; the transitions
from (T14) to (T20) are invoked by the functions P, D and R explained below.

The transitions (T11) and (T12) enable the computation of a higher-order
w.h.n.f. when the “standard” w.h.n.f. does not start with a sort or with a λ-
abstraction (to assert the applicability condition). In particular, it follows from
Figure 7 that if a typed term T has the form X.#i (where X denotes a term
segment) and if #i refers to a λ-abstraction of type W , then U ≡ X.↑i+1W is a
type for T . Now suppose that the RTM is started on T and has already scanned
the segment X of it, so that #i is in the code register, and suppose that in this
situation a higher-order w.h.n.f. of T is required, then the RTM must compute
a w.h.n.f. of U . As the segment X has been scanned already, what remains to
do, is to continue the computation with W in the code register, and that is what
the transition (T12) does. Finally we note that the transitions (T11) and (T12)
follow the pattern of the transitions (T10) and (T4) respectively.

Transition functions. The RTM can be started in different modes, each en-
abling a subset of transitions, and we represent such modes with functions re-
turning the final state of a computation started in the corresponding mode.

The convertibility controller (Section 3) applies H (head) and X (expand) to
obtain the w.h.n.f. of a type; the type synthesizer (Section 4) applies F (function)
to obtain the (possibly higher-order) w.h.n.f. of a type to assert the applicability
condition; this controller also invokes R (resolve) to perform a look-up operation
on the local environment; both controllers apply P (push) to place a binder in
the environment, and D (drop) to deconstruct the contents of the code register.
The reader should note that a λ-entry can be pushed on the local environment
only if the stack is empty. Unfortunately, the available space does not allow us
to present the final states of the RTM explicitly.

3 The Convertibility Controller

Our algorithm follows the pattern of the latest PTS-oriented convertibility con-
trollers [2,4] and is presented in Figure 6 by means of syntax-oriented rules with
non-commutable premises (note the semicolon after them). The main judgement
is M1 ⇔si M2, introduced by the rule “ac” (are convertible), which asserts the
convertibility of the terms C(M1) and C(M2) applied to the arguments on the
respective machine stacks and closed in the respective machine environments. A
key feature of our convertibility controller is that it operates on two machines,
rather than on two terms closed in a common context, like the one of [2].

Note that two references to local declarations are compared by de Bruijn’s
level rather than de Bruijn’s index (rule “lref”) so to avoid the need to relocate
these references in a common context before the comparison. Also note that age-
based global δ-expansion is supported as in [2,14] (rules “def-≥” and “def-<”).

We stress that the accumulators (Section 2) of the machines given to the
controller should not differ (two w.h.n.f.s of different depths are not convertible).
Moreover the controller maintains this invariant throughout execution.

The controller can assert two kinds of convertibility: standard (i.e., predicate
M1 ⇔ M2) and up to sort inclusion (i.e., predicate M1 ⇔si M2). In the latter
case, the machine M2 must represent a synthesized type and the machine M1

must represent the corresponding expected type. This means that the predicate
M1 ⇔M2 is symmetric, while the predicate M1 ⇔si M2 is not.

Sort inclusion is a subtyping mechanism that is missing in χλδ “brg”because
of its incompatibility with β-reduction, but that is needed to process the exam-
ples on which our validation procedure was tested (see Section 1). Our support
for this feature follows the approach of the system Vera [14] in that the λ-
abstractions forming the “spine” [5] of a synthesized type that are not β-reduced
in the convertibility tests, are eligible for the reduction in Figure 3.

4 The Type Synthesizer

In principle, our synthesizer implements a standard algorithm [2,4], presented in
Figure 8 by means of syntax-oriented rules with non-commutable premises.

The main judgement is h ` M ::si U asserting that the term U is the type
inferred for the term C(M) applied to the arguments on M ’s stack, with respect
to the sort hierarchy parameter h (see Section 1).

The distinguishing feature of our controller concerns the validation of the
applicability condition, performed by the last two premises of the rule “appl”.

Once we understand that the term T inhabits a function type, by finding
the abstraction λW2.U2 as the result of a (possibly deep) w.h.n.f., we com-
pare the type W2 and type W1 of the argument V , by passing them directly to
the convertibility controller with their respective machines. We stress that we
can perform this operation without decompiling the machine resulting from the
w.h.n.f. computation because our convertibility controller operates on machines
and can accept two machines (these features are crucial here).

These two machines may have different local environments in general, but
their accumulators do not differ because the computation of a (deep) w.h.n.f.
does not involve the transition (T13) of Figure 5, which is the only one that
modifies the machine accumulator. This is to say that the invariant under which
the convertibility controller works (Section 3) is maintained.

In our opinion, it should be possible to improve this synthesizer so to avoid
the relocation function invoked by the rules “ldecl” and “ldef”.

5 The Validity Controller

Our controller simply validates all entries of a global environment by calling itself
recursively. Its rules are presented in Figure 9 following the style of Figure 6 and
Figure 8. The main judgement is h `si G and asserts the validity of the global
environment G with respect to the sort hierarchy parameter h (Section 1).

We implemented this controller as a part of the HELM software [1] and
we tested it on a two-steps naive mechanical translation of the “Grundlagen der
Analysis” [12] into χλδ “brg”[8]. Figure 10 shows some statistical data about the
performance of our implementation, which includes both the validator and the
translation. Unfortunately, the only competing validator for the “Grundlagen”
is written in C rather than in Caml, so a comparison would not be fare.

References

1. A. Asperti, L. Padovani, C. Sacerdoti Coen, F. Guidi, and I. Schena. Mathe-
matical Knowledge Management in HELM. Annals of Mathematics and Artificial
Intelligence, 38(1):27–46, May 2003.

2. A. Asperti, W. Ricciotti, C. Sacerdoti Coen, and E. Tassi. A compact kernel
for the calculus of inductive constructions. SĀDHANĀ Academy Proceedings in
Engineering Sciences, 34(1):71–144, February 2009. Special Issue on Interactive
Theorem Proving and Verification.

3. H.P. Barendregt. Lambda Calculi with Types. Osborne Handbooks of Logic in
Computer Science, 2:117–309, 1993.

4. B. Barras. Auto-validation d’un système de preuves avec familles inductives.
Thése de doctorat, spécialité informatique fondamentale, Université Paris 7, Paris,
France, November 1989.

5. P. Crégut. Strongly reducing variants of the Krivine abstract machine. Higher-
Order and Symbolic Computation, 20(3):209–230, September 2007.

6. N.G. de Bruijn. A plea for weaker frameworks. In Logical Frameworks, pages
40–67. Cambridge University Press, Cambridge, UK, 1991.

7. B. Grégoire. Compilation des termes de preuves: un (nouveau) mariage entre Coq
et Ocaml. Thése de doctorat, spécialité informatique, Université Paris 7, École
Polytechnique, France, December 2003.

8. F. Guidi. Landau’s “Grundlagen der Analysis” from Automath to lambda-delta.
Technical Report UBLCS 2009-16, University of Bologna, Bologna, Italy, Septem-
ber 2009.

9. F. Guidi. The Formal System λδ. Transactions on Computational Logic, 11(1):Ar-
ticle No. 5, October 2009.

10. F. Guidi. Procedural Representation of CIC Proof Terms. Journal of Automated
Reasoning, 44(1-2):53–78, February 2010. Special Issue on Programming Lan-
guages and Mechanized Mathematics Systems.

11. G. Huet. The Constructive Engine. In R. Narasimhan, editor, A Perspective in
Theoretical Computer Science, volume 16 of Series in Computer Science, pages
38–69. World Scientific Publishing, Singapore, 1989. Commemorative volume for
Gift Siromoney.

12. L.S. van Benthem Jutting. Checking Landau’s “Grundlagen” in the automath
system, volume 83 of Mathematical Centre Tracts. Mathematisch Centrum, Am-
sterdam, The Netherlands, 1979.

13. L.S. van Benthem Jutting. The language theory of λ∞, a typed λ-calculus where
terms are types. In Selected Papers on Automath, pages 655–683. North-Holland
Pub. Co., Amsterdam, The Netherlands, 1994.

14. I. Zandleven. A Verifying Program for Automath. In Selected Papers on Au-
tomath, pages 783–804. North-Holland Pub. Co., Amsterdam, The Netherlands,
1994.

i,l,x ::= natural numbers starting at 0
T ,U ,V ,W ::= terms

| ∗l sort of level l
| #i reference to the i-th local binder
| $x reference to the global binder x
| 〈U〉.T annotation of T with its type U
| (V).T application of T to the argument V
| λW.T local abstraction over the type W in T
| δV.T local abbreviation of V in T
| χ.T local binder exclusion in T

L ::= local environment
| ∗ environment bottom
| L.λW declaration of type W
| L.δV abbreviation of V
| L.χ binder exclusion

G ::= global environment
| ∗ environment bottom
| G.λxW declaration of type W
| G.δxV abbreviation of V

Figure 1. Abstract syntax of χλδ “brg”.

scheme environment redex reduct

β-contraction G,L ` (V).λW.T → δV.T

local δ-expansion G,L1.δV.L2 ` #i → ↑i+1V if i = |L2|
global δ-expansion G1.δxV.G2, L ` $x → V if x /∈ G2

ζ-contraction for δ G,L ` δV.↑1T → T

ζ-contraction for χ G,L ` χ.↑1T → T

υ-swap for δ G,L ` (V1).δV2.T → δV2.(↑1V1).T

υ-swap for χ G,L ` (V1).χ.T → χ.(↑1V1).T

τ -contraction G,L ` 〈U〉.T → T

Figure 2. Reduction steps of χλδ “brg”.

scheme environment redex reduct

sort inclusion G,L ` λW.∗l → ∗l

Figure 3. Sort inclusion for χλδ “brg”in the style of the system Vera.

wfh(∗) sort
wfh(G) G, ∗ `h W : V

wfh(G.λW)
abst

wfh(G) G, ∗ `h V : W

wfh(G.δV)
abbr

Figure 4. Validity rules of χλδ “brg”.

Structure:
M ::= (a,G,E, S, T) machine state
a, b ::= natural number de Bruijn’s level
G ::= see Figure 1 global environment

E,F ::= ∗ | E.λaC | E.δC | E.χ local environment
S ::= ∗ | S.C stack

T,U, V,W ::= see Figure 1 code
C ::= (E, T) closure
x ::= see Figure 1 global name

Construction:
I(G,T) ≡ (0, G, ∗, ∗, T) initial state

(a,G,E, S, T)← V ≡ (a,G,E, ∗, V) update code
(a,G,E, S, T)← (F, V) ≡ (a,G, F, ∗, V) update closure

Transition rules:

(a,G,E.λbC, S,#(i+ 1)) →r (a,G,E, S,#i) (T1)
(a,G,E.δC, S,#(i+ 1)) →r (a,G,E, S,#i) (T2)

(a,G,E.χ, S,#(i+ 1)) →r (a,G,E, S,#i) (T3)
(a,G,E.δ(F, V), S,#0) → (a,G, F, S, V) (T4)

(a,G,E, S, 〈U〉.T) →τ (a,G,E, S, T) (T5)
(a,G,E, S, (V).T) → (a,G,E, S.(E, V), T) (T6)

(a,G,E, S.(E, V), λW.T) → (a,G,E.δ(E, V), S, T) (T7)
(a,G,E, S, δV.T) →s (a,G,E.δ(E, V), S, T) (T8)
(a,G,E, S, χ.T) →s (a,G,E.χ, S, T) (T9)

(a,G1.δxV.G2, E, S, $x) →x (a,G1.δxV.G2, E, S, V) (T10)
(a,G1.λxW.G2, E, S, $x) →t (a,G1.λxW.G2, E, S,W) (T11)

(a,G,E.λb(F,W), S,#0) →t (a,G, F, S,W) (T12)
(a,G,E, ∗, λW.T) →p (a+ 1, G,E.λa(E,W), S, T) (T13)
(a,G,E, S, (V).T) →a (a,G,E, S, T) (T14)
(a,G,E, S, 〈U〉.T) →d (a,G,E, S, U) (T15)
(a,G,E, S, (V).T) →d (a,G,E, S, V) (T16)
(a,G,E, S, λW.T) →d (a,G,E, S,W) (T17)
(a,G,E, S, δV.T) →d (a,G,E, S, V) (T18)

(a,G,E.δ(F, V), S,#0) →c (a,G,E.δ(F, V), S, F.δV) (T19)
(a,G,E.λa(F,W), S,#0) →c (a,G,E.λa(F,W), S, F.λW) (T20)

Transition functions:
H(M) ≡ final state from M with all rules except: x, t, p, a, d, c
F(M) ≡ final state from M with all rules except: p, a, d,c
P(M) ≡ one transition τ , s, p or a from M , or else the identity
D(M) ≡ one transition d from M , or else the identity
X (M) ≡ one transition x from M , or else the identity
R(M) ≡ final state from M with the rules: r and c

Projection:
G(a,G1.λxW.G2, E, S, $x) ≡ G1.λxW get global abstraction
G(a,G1.δxV.G2, E, S, $x) ≡ G1.δxV get global abbreviation

L(a,G,E.λbC, S,#0) ≡ b get reference level
S(a,G,E, S, T) ≡ S get stack
C(a,G,E, S, T) ≡ T get code

Figure 5. The reduction and typing machine for χλδ “brg”.

C(M1) = C(M2) = ∗l
M1 ⇔si

whnf M2
sort

C(M1) = λW1.T1; C(M2) = λW2.T2;
D(M1)⇔ D(M2); P(M1)⇔si P(M2)

M1 ⇔si
whnf M2

abst

C(M1) = C(M2) = #0; L(M1) = L(M2); M1 ⇔args M2

M1 ⇔si
whnf M2

lref

C(M1) = C(M2) = $x; G(M1) = G.λxW ; M1 ⇔args M2

M1 ⇔si
whnf M2

decl

C(M1) = C(M2) = $x; G(M1) = G.δxV ; M1 ⇔args M2

M1 ⇔si
whnf M2

def

C(M1) = $x1; C(M2) = $x2; G(M1) = G1.δx1V1; G(M2) = G2.δx2V2;
|G1| ≥ |G2|; H(X (M1))⇔si

whnf M2

M1 ⇔si
whnf M2

def−≥

C(M1) = $x1; C(M2) = $x2; G(M1) = G1.δx1V1; G(M2) = G2.δx2V2;
|G1| < |G2|; M1 ⇔si

whnf H(X (M2))

M1 ⇔si
whnf M2

def−<

C(M1) = $x; G(M1) = G.δxV ; H(X (M1))⇔si
whnf M2

M1 ⇔si
whnf M2

def−sx

C(M2) = $x; G(M2) = G.δxV ; M1 ⇔si
whnf H(X (M2))

M1 ⇔si
whnf M2

def−dx

C(M1) = ∗l; C(M2) = λW2.T2; P(M1← λW2.∗l)⇔si P(M2)

M1 ⇔si
whnf M2

si

(M1, ∗)⇔rec
args (M2, ∗)

null
(M1, S1)⇔rec

args (M2, S2); (M1← C1)⇔ (M2← C2)

(M1, S1.C1)⇔rec
args (M2, S2.C2)

cons

(M1,S(M1))⇔rec
args (M2,S(M1))

M1 ⇔args M2
acs

H(M1)⇔si
whnf H(M2)

M1 ⇔si M2
ac

The rules are listed in decreasing order of precedence.
The label “si” (sort inclusion) is uniformly optional in all rules except for rule “si”.

Figure 6. The convertibility controller for χλδ “brg”.

G1, ∗ `h V : W x /∈ G2

G1.δxV.G2, L `h $x : W
g−def

G1.∗ `h W : V x /∈ G2

G1.λxW.G2, L `h $x : W
g−decl

G,L1 `h V : W i = |L2|
G,L1.δV.L2 `h #i : ↑i+1W

l−def
G,L1 `h W : V i = |L2|
G,L1.λW.L2 `h #i : ↑i+1W

l−decl

G,L `h ∗l : ∗h(l)
sort

G,L `h T : U G,L `h U : V

G,L `h 〈U〉.T : 〈V 〉.U cast
G,L.χ `h T : U

G,L `h χ.T : χ.U
void

G,L `h V : W G,L.δV `h T : U

G,L `h δV.T : δV.U
abbr

G,L `h W : V G,L.λW `h T : U

G,L `h λW.T : λW.U
abst

G,L `h V : W G,L `h T : λW.U

G,L `h (V).T : (V).λW.U
appl

G,L `h T : U G,L `h (V).U : W

G,L `h (V).T : (V).U
pure

G,L `h U2 : V G,L `h T : U1 G,L ` U1 ↔∗ U2

G,L `h T : U2
conv

Figure 7. Type assignment rules of χλδ “brg”.

C(M) = $x; G(M) = G.λxW

h `M ::si W
gdecl

C(M) = $x; G(M) = G.δx〈W 〉.V
h `M ::si W

gdef

C(M) = #i; C(R(M)) = L.λW

h `M ::si ↑i+1W
ldecl

C(M) = #i; C(R(M)) = L.δ〈W 〉.V
h `M ::si ↑i+1W

ldef

C(M) = ∗l
h `M ::si ∗h(l)

sort
C(M) = λW.T ; h ` D(M) ::si V h ` P(M) ::si U

h `M ::si λW.U
abst

C(M) = δV.〈U〉.T ; h ` D(M) ::si W h ` P(M) ::si U

h `M ::si δV.U
abbr1

C(M) = δV.T ; h ` D(M) ::si W h ` P(M ← δ〈W 〉.V .T) ::si U

h `M ::si δV.U
abbr2

C(M) = χ.T ; h ` P(M) ::si U

h `M ::si χ.U
void

C(M) = (V).T ; h ` D(M) ::si W1; h ` P(M) ::si U1;
C(F(P(M))) = λW2.U2; D(F(P(M)))⇔si (M ←W1)

h `M ::si (V).U1

appl

C(M) = 〈W 〉.T ; h ` D(M) ::si V ; h ` P(M) ::si U ; D(M)⇔si (M ← U)

h `M ::si W
cast

The rules are listed in decreasing order of precedence.
The label “si” (sort inclusion) is uniformly optional in all rules.
The rule “appl” is better implemented by sharing the result of F(P(M)).

Figure 8. The type synthesizer for χλδ “brg”.

h ` G1 ‖si G2

h `si G1
wf

h ` ∗ ‖si ∗ null
h ` G1 ‖si G2; h ` I(G2, 〈W 〉.V) ::si W

h ` G1.δx〈W 〉.V ‖si G2.δx〈W 〉.V
abbr1

h ` G1 ‖si G2; h ` I(G2, V) ::si W

h ` G1.δxV ‖si G2.δx〈W 〉.V
abbr2

h ` G1 ‖si G2; h ` I(G2,W) ::si V

h ` G1.λxW ‖si G2.λxW
abst

The rules are listed in decreasing order of precedence.
The label “si” (sort inclusion) is uniformly optional in all rules.

Figure 9. The validity controller for χλδ “brg”.

Size of the “Grundlagen”

Language Int. complexity

Aut−QE 319706

intermediate 754578

λδ “brg” 998232

Performance of the validator

Phase Run time fraction Run time

parsing 10% 0.7s

translation 25% 1.7s

validation 65% 4.4s

Relocated data

terms 295202

int. complexity 1252256

the relocations are due
to the “l-decl” type rule

Reductions

β 1034626 τ 17166

local δ 494271 transition (T11) 0

global δ 17166 transition (T12) 1

υ 2040476 sort inclusion 904

The “intrinsic complexity” [10] approximates the number of nodes in the tree
representation of the data thought as a single λ-term.
The validator was run on the HELM server (2 × AMD Athlon MP 1800+, 1.53
GHz, 256 KB L2 cache) and operated for 6.8s on average.

Figure 10. Some statistics on our validation of the “Grundlagen”.

