Spurious Disambiguation Error Detection

Claudio Sacerdoti Coen* and Stefano Zacchiroli*

Department of Computer Science, University of Bologna
sacerdot@cs.unibo.it zacchiro@cs.unibo.it

Abstract. The disambiguation approach to the input of formulae en-
ables the user to type correct formulae in a terse syntax close to the usual
ambiguous mathematical notation. When it comes to incorrect formulae
we want to present only errors related to the interpretation meant by
the user, hiding errors related to other interpretations (spurious errors).
We propose a heuristic to recognize spurious errors, which has been in-
tegrated with the disambiguation algorithm of [6].

1 Introduction

In [6] we proposed an efficient algorithm for parsing and semantic analysis of am-
biguous mathematical formulae. The topic is particularly relevant for the Mathe-
matical Knowledge Management community since every mathematical assistant
sooner or later faces the need of letting its user type formulae. When the user
is not acquainted with a system or its library—as it happens when using math-
ematical search engines [II3[7]—we cannot assume the knowledge of a language
other than the usual corpus of ambiguous mathematical notation.

Our algorithm mimics a mathematician behavior of disambiguating a for-
mula by choosing the only possible interpretation that has a meaning in the
current context. However when a formula is not correct, every interpretation is
“equally” meaningless. Nevertheless, a mathematician seems to be able to un-
derstand which interpretation is more likely, spotting the genuine errors in the
formula.

Example 1. If f is known to be a real-valued function on vectors, the formula
flarz+B-y+2)=a- f(x)+ - f(y) + 2 is not correct and a mathematician
would probably assert that z is not used properly in the right hand side of the
equation. Instead, the algorithm of [6] would return several alternative error
messages such as: in "f(a . x? .. ?z) =...": x is a vector, but is used
as a scalar.

A possible way out is designing a disambiguation algorithm able to rate
the possible interpretations so that the one expected by a mathematician ranks
first. Also in those cases were several possible interpretations are meaningful,
this approach is necessary to choose automatically among them or to ask the

* Partially supported by the Strategic Project “DAMA: Dimostrazione Assistita per
la Matematica e I’Apprendimento” of the University of Bologna

2 Claudio Sacerdoti Coen and Stefano Zacchiroli

user providing a sensible default. In [2] we proposed such an algorithm that was
designed to tackle the case of correct formulae with multiple interpretations. In
this paper we address the case of formulae for which no correct interpretation
can be found.

Consider again Example [1] We need to find a criterion to identify the given
error message as spurious, i.e. as an error relative to an interpretation that is
not the one expected by the user. Note that a formula can contain more than
one genuine error: they are all the errors in the expected interpretation of the
formula. The heuristic criterion we propose is the following.

Criterion 1 (Spurious error detection). An error is spurious when it is
localized in a sub-formula F such that there is an alternative interpretation of
the whole formula such that no error is localized in F.

Intuitively an error is spurious when no genuine error is spatially co-located
with it, i.e. genuine errors are to be found elsewhere. In Example|l|if we interpret
all the operators in the left hand side as operations on vectors we do not obtain
any error message in the left hand side. Hence the genuine error must be in the
right hand side.

The main goal of this paper is the integration of spurious error detection in
the efficient algorithm proposed in [6]. We proceed as follows. In Section [2| we
formalize the specification of the class of disambiguation algorithms. In Section[3]
we provide an improved description of the algorithm proposed in [6], proving
that it is a member of the disambiguation algorithm class, while in Section [4] we
extend the algorithm with spurious error detection.

2 Disambiguation Algorithm Specification

Traditionally semantic analysis maps an abstract syntax tree (AST) of a formula
to a term—its semantics—in some calculus. In an ambiguous setting, semantic
analysis rather maps an AST to a set of terms; the set can then be rated accord-
ing to some criterion to identify the best semantics. To represent in a concise way
a set of terms sharing a common structure, we use a term containing non linear
placeholders in the spirit of [45]. We say that a term ¢’ is an instantiation of t
if it is obtained filling zero or more of its placeholders. For instance 7; =75+75
represents the set of terms {t; =t + 3 | t1,t2 terms}; 71 =04+ 0and 0 =040
are two instances belonging to that set.

Lemma 1. If t; is an instance of ta then the set of instances of t1 is a subset
of the set of instances of ts.

Proof. By definition of instantiation. a

Among all the terms that are semantics of a given AST, we are interested only
in those that are well-typed. Thus, we are interested in terms with placeholders
only when they denote non-empty sets of well-typed instantiations. We assume
the existence of a refiner R(-), that is a function from terms to outcomes. An

Spurious Disambiguation Error Detection 3

outcome is either the distinguished symbol v or an informative error message.
The latter is returned when the set of well-typed instantiations of the input term
is (known to be) empty. For instance R(f(?1) = 1) = v whereas R(f(?1) =
f+1)="f is a function, but is used as a scalar". In the latter case
the error message is relevant to every possible instantiation; in the former there
is no guarantee that every possible instantiation is well-typed. Still, the following
lemma holds.

Lemma 2. A term t without placeholders is well-typed iff R(t) = v

Proof. t is the only instance of itself thus, by definition of R(-), R(t) # v iff ¢ is
not well-typed. a

We are now ready to describe the specification of a disambiguation algorithm
for an AST ¢. Let Dom(t) be the set of occurrences of overloaded symbols in t.
For each s € Dom(t), let Dy be the set of possible choices for s.

An interpretation ¢ for t is a partial function Dom(t) > s — us € Ds.
Intuitively a (partial) interpretation restricts the set of semantics of ¢ resolving
the overloading for the occurrences in the domain of ¢. When an interpretation
is a total function a unique semantics is determined. To formalize this intuition
we associate to a partial interpretation ¢ a term with placeholders [t]4, where
all (applications of) occurrences of symbols not in the domain of ¢ have been
interpreted as fresh placeholders. For instance, when ¢ = [+ — point-wise sum],
[(£+g) (x)=f (x)+g(x)]4 denotes (f+g)(z) =71. Note that the arguments of the
second occurrence of plus have been omitted.

We denote with @, the set of all (partial) interpretations for ¢ and with &,
the set of all total interpretations. We call L the function everywhere undefined
and we denote as ¢[s — wu] the function that maps s to u and behaves as ¢
elsewhere. The set of interpretations is ordered by the usual order on partial
functions: ¢1 C ¢ iff Vs, ¢1(s) = u = ¢2(s) = u. The minimum of @ according
toCis L.

Lemma 3. ¢1 C ¢2 iff [t]4, s an instance of [t]s, -

Proof. By structural induction on ¢ and by cases on the definition of [-]. Since,
for the sake of brevity, we omitted its definition, the present lemma can be seen
as a required property of []. O

Together with Lemma Lemma [3| confirms the intuition that the more
overloading is resolved, the smaller the set of semantics.

A disambiguation algorithm partitions the set of semantics of an AST into
classes of well-typed terms and classes of terms characterized by the same typing
error. Since Lemma [2] holds only for placeholder-free terms, all terms in the well-
typed class must have no placeholders. We will use the notion of cover to grasp
partitions at the interpretation level, and the notion of typing cover to grasp
well-typedness.

We say that a set of interpretations S covers a set of interpretations T,
written S > T, when V¢ € T,3l¢’ € S, ¢’ C ¢.

4 Claudio Sacerdoti Coen and Stefano Zacchiroli

Lemma 4. If ST then for each ¢1 € T there exists an unique ¢po € S such
that [t]e, is an instance of [t] e,

Proof. By Lemma [3] and the definition of cover. O

Corollary 1. If S>®;, and ¢1, s € S, ¢y # ¢o then the set of instances of [t] e,
is disjoint from the set of instances of [t]g,.

Proof. Suppose per absurdum that u is an instance of both [t]4, and [¢]4,. Let
u’ € @; be an instance of u. By Lemma [4 ¢; = ¢2, but by hypothesis we know

1 # P2 0

Theorem 1. S > &, iff {{u | u is an instance of [t]4} | ¢ € S} is a partition
of {u| 3¢ € &y, u = [t]} (i-e. the set of all semantics of t).

Proof. The forward implication is by Lemma[4 and porollary For the converse
implication consider an arbitrary but fixed ¢ € &;. By hypothesis there is a
unique ¢’ € S such that u = [t], is an instance of [¢]4. Thus S > &;. O

We say that a set of interpretations A’ is a refinement of a set of interpre-
tations A, written ACA’ when A > A’ and for all u € &, such that there is a
¢ € A such that u is an instance of [t]4 there exists a unique ¢’ € A’ such that
u is an instance of [t] 4.

Theorem 2. If ANB =0, AUB> &, and ADA’, then A’ U B> &,.

Proof. By Theorem || {{u | u is an instance of [t]4} | ¢ € AU B} partitions the
set of all semantics of ¢. {{u | u is an instance of [t]s} | ¢ € A’ U B} partitions
the same set by definition of AC>A’, where the requirement A A’ is fundamental
to avoid interference with B. Hence the thesis by Theorem a

A set S of interpretations is said to be typing when for all ¢ € Sif R([t]s) = v
then ¢ € &,. In particular a typing cover is a cover S > &, that is also typing. In-
tuitively a disambiguation algorithm returns a typing cover equipped with rating
information for its interpretations (that will be called classification).

Theorem 3. For each typing cover S and for each term u in the set of all
semantics of t, u is well-typed iff R([t]s) = v where ¢ is the only interpretation
in S such that u is an instance of [t]s.

Proof. If R([t]y) # v by definition of R(-). Otherwise by Lemmaand definition
of typing cover. O

We also expect something more that cannot be grasped formally: if u is not
well-typed then the error message for R([t],) should also be relevant for w. This
property is inherited from the refiner.

Lemma 5. {1} > ®,. It is typing iff R([t] L) # v or Dom(t) = 0.

Spurious Disambiguation Error Detection 5

Proof. Trivial by definition of @; and R(-). O

To rate covers, we assume that to each interpretation ¢ is associated a rate
p(9). A rate is an element of a partially ordered set (4, <), such that p(¢1) <
p(¢2) iff [t]4, is more likely to be the intended meaning of ¢ than [t],.

Formally, a disambiguation algorithm takes as input an AST ¢ and returns a
typing and covering classification X. A classification X is a set of tuples (¢, 0,r)
such that:

1. for all (¢,0,7) € X, 0 =R([t]s), and r belongs to some partially ordered set
(B, =);
2. for all <¢1,01,T1>, <¢)2,02,’I‘2> S 2, if ¢1 = ¢2 then 01 = 02 and L =T9.

A classification X' is a covering classification if Sx, = {¢ | (¢,0,7) € X} is a
cover; it is a typing classification when Sy is typing.

We choose for B the set {s, 4, l} x A ordered lexicographically by the orders:
s<ié<land <.

Every classification can be partitioned into the set of (so far) successful and
the set of failing interpretations as follows:

() ={{¢,0,r) e X | 0=}
() =2\ (XY

Ezample 2 (Naive Disambiguation Algorithm). The naive disambiguation algo-
rithm (NDA for short) is the disambiguation algorithm that, when applied to
an AST ¢, computes the typing and covering classification X' = {(¢,0,7r) | ¢ €
@;, 0=R([t]), ™= p'(0,¢)} where:

o.0) = 4 p(@) o=V
plo.9) {(i,p((b)) otherwise

The rating function p'(-,-) gives priority to successes over failures; outcomes
being equal, it falls back to the interpretation rating.

~ We call this algorithm “naive” since its computes the typing cover Sy =
&>, of maximum cardinality. Its execution is computationally expensive since
it invokes the refiner |Ss| = || = [c pom 1) [Ds| times.

Ezample 3 (NDA execution). Consider the (non-typable) AST corresponding to
fla-x+0-y+2z)=a-£(x)+ 0 £(y)+ z, where + is left-associative, x,y,z are
globally declared as real vectors, «, 3 are reals, and f is a real-valued function
on vectors. The symbol “+4” is overloaded on scalar and vector sums; “” is
overloaded on scalar and external products.

NDA returns a classification consisting of 2% error messages (not necessarily
unique), where 2 are the possible choices for each occurrence of overload symbols
and 8 is the number of occurrences of “-” and “+”. The “expected” error message
"z is a vector, but is used as a scalar" is drowned in a sea of errors like
(re-ordered here for reader’s sake):

6 Claudio Sacerdoti Coen and Stefano Zacchiroli

"x is a vector, but is used as a scalar"
— "y is a vector, but is used as a scalar"
"z is a vector, but is used as a scalar"
— "a-x is a vector, but is used as a scalar"
— "ﬁ~y is a vector, but is used as a scalar"
— "a~x+ﬂ-y is a vector, but is used as a scalar"

— "f(x) is a scalar, but is here used as a vector"
— "f(y) is a scalar, but is here used as a vector"

We can only hope that p(-) does a great job ranking first the expected in-
terpretation. In practice we are not aware of any rating function that performs
well looking only at the interpretations.

3 An Efficient Disambiguation Algorithm

In terms of efficiency we can do better than NDA. The key observation for
improvement is that a single invocation of the refiner on a term with placeholders
can rule out the whole set of its instances. More precisely, if the refinement of
such a term fails, all of its instances are not well-typed (and will fail in the
same way). Thus, it is not necessary to compute the largest typing and covering
classification as NDA does: intuitively, the smaller the classification, the more
efficient the algorithm.

A typing and covering classification can be built incrementally starting from
a covering classification. Indeed if a covering classification X' is not typing it
must contain a partial interpretation ¢ € S(x)s. A more precise classification
can be obtained replacing the interpretation ¢ with a set of more instantiated
interpretations S such that S > {¢}. Since ¢; C ¢ for each ¢; € S, the domain
of ¢1 (a subset of Dom(t)) is bigger than the domain of ¢. Thus the refinement
process ends in a finite number of steps since Dom (t) is finite; moreover it yields
a typing classification.

To increase efficiency, we can enforce the invariant that all interpretations ¢ €
S(x)s share a common domain. Thus at each step we have to extend at once the
domain shared by all ¢s. Let X' be a classification such that the interpretations
in Sy are defined on the same domain and let s € Dom(t). We define:

Zs={(¢,0,7) | 3¢' € Sx,Fu€ D5, ¢ = ¢'[s = u],0=R([t]y),r = p'(0,)}

Lemma 6. Let X be a classification such that the interpretations in Sy are
defined on the same domain and let s € Dom/(t). X <X.

Proof. By construction of X and definition of <. a

The refinement process outlined above can now be formally described. At
the n-th step we have the covering (not typing) classification X,,. Choosing s
outside the domain of the ¢s in S5,)-, we obtain the next covering classification

Spurious Disambiguation Error Detection 7

Ynt1 = ((¥n)")s U (Xy,)". Since the functions in Sy,)~ are more defined that
those in S5,), the most natural choice for the initial covering classification is
Xy = {<J-707 T> | 0= R([[t]]L)vT = pl(oa J—)>}

Ezample 4 (Refinement process). Consider the AST of Example [2| Picking oc-
currences s € Dom(t) according to the pre-visit order of the AST, the first steps
of the refinement process yield the following covering classifications (where for
the sake of brevity errors have been substituted by X):

2o = {<¢1"/7 <17 p(¢1)>>} where [[t]]dh :f(?l) =72 and (bl =1

2= {<¢11,/, <l,p(¢11) >7 Ht]]d)ll :f(?11)2) =75
(@12, X, (3, p(012)))} [tlg. =/f(7142) =72

S = {({p11, v, & p(¢111))), [ps =F(HF 727 2) =23
(D112, %, (b, p(¢112))), [161s = F(71+72F 2) =73
<¢127Xa <‘7p(¢12)>>} [[t]]tl)w :f(71 + Z) =73

X3 = {<¢11117‘/a <}7P(¢1111)>>7 Ht]]tﬁnn :f(a—hx??liz) :?2
<¢11127X7 <‘7 p(¢1112)>>’ [[tﬂ¢1112 :f(a : 171)?11)2) :?2
(D112, X, (4 p(6112))), [61s = F(T1+22F2) =23
(P12, X, (4, p(12))) } [t]g. =f(7142) =2

Theorem 4 (Correctness of the Refinement Process). The above refine-
ment process implements a disambiguation algorithm, i.e. for each AST t,
Y\ pom(t)| 18 a covering and typing classification.

Proof. By induction on |Dom(t)| we prove that Yo, 4 is covering.
Base case. By Lemmal5] Xy is a covering classification.
Inductive case. Let X, be a covering classification per inductive hypothesis. By
definition X, 11 = ((X)")s U (XZ,)*. By Theorem [2[and Lemma @ Y1 s
covering.

To prove that X p,pm (1)) is typing the reader can prove by induction that all
the ¢s in S5,) are defined on a subset of Dom(t) of cardinality n. The thesis
follows trivially. O

The above refinement process is parametric in how the next symbol s €
Dom(t) is chosen at each step. In [6] we discussed the implication of such a choice
on the computational complexity in terms of numbers of refiner invocations. The
best choice corresponds to a pre-visit of the abstract syntax tree t.

We now present the efficient disambiguation algorithm (EDA for short) of [6].
It proceeds by recursion on Dom™*5*(t), which is the list of overloaded symbol
occurrences in t obtained in a pre-visit traversal.

=z it =
f(Z,l) = {f((ZS)/,tl)U(Es)X ifl=s:tl

EDA(t) = f((Z0)’, Dom™**(t)) U (2o)"

8 Claudio Sacerdoti Coen and Stefano Zacchiroli
Theorem 5 (Correctness of EDA). EDA implements a disambiguation al-
gorithm.

Proof. By Theorem 4] it is sufficient to prove that the classification returned by
EDA is the same returned by the refinement process. We observe that

))sn U ((Zn2))sn_y) U (Zna)” (1)

= (- ((((Fo))or) Jsa)+)) U (1
(G- ((CZ0))s1))s2)” s) U= U (((Z0))sy)" U (Z0)
where (}) is justified by the two identities ((X)*)” = 0 and ((X)*)* = (X)*. The
reader can verify that the pseudo-code of EDA is a recursive formulation of (1)
for n = |Dom(t)|. O

Ezample 5 (EDA execution). Consider the AST of Example [2| EDA yields a

smaller classification, containing “just” 6 error messages:

1. "in £(?; 4+ z) =75: z is a vector, but is used as a scalar"

2. "in f(?l—&—?Q?z) =73: 74+75 is a scalar, but is used as a vector"

3. "in f(a~x¢)?14_r>z) =7,: x is a vector, but is used as a scalar"

4. "in f(a_fx?ﬂy?z) =?;: y is a vector, but is used as a scalar"

5. "in f(a~xFf~y+z) =71 +2z: z is a vector, but is used as a
scalar"

6. "in f(a~xFfyfz) =?Fz: 7y +z is a vector, but is used as a
scalar"

where (5) is the expected one, while the other errors are spurious. The rating of
errors is unchanged with respect to Example

4 A Humane Disambiguation Algorithm

We look for a restriction of Criterion [1| which can be integrated in EDA. The
characteristic of EDA (with respect to the general refinement process) is the
pre-visit ordering of Dom (t). This implies that:

a. to interpret an occurrence s, every occurrence s’ that precedes s in pre-order
must be interpreted too;

b. when an interpretation ¢ yields an error, every occurrence s’ that follows
in pre-order the last occurrence s added to the domain of ¢ will not be
interpreted by any interpretation ¢’ 3 ¢.

Together, (a) and (b) imply that not every sub-formula F will be interpreted
in any possible way. Actually, (b) is a consequence of (a). This imposes a non
negligible restriction of Criterion [I] for efficiency reasons, yielding:

Spurious Disambiguation Error Detection 9

Criterion 2 (Efficient spurious error detection). An error message relative
to an interpretation ¢ of an AST t is spurious iff there exists an occurrence
s € Dom(t) and an interpretation ¢’ such that:

1. ¢(s) # ¢'(s);

2. ¢'(s") = ¢(s') for all s’ that precedes s in pre-order;

3. ¢ is total on the occurrences of overloaded symbols occurring in the sub-tree
rooted at s;

4. R([tlg) = v

Dropping (2)—imposed by (a)—from the conditions above we obtain a more
formal writing of Criterion [I] We now address the issue of integrating Criterion[2]
in EDA.

f(X,1), the core of EDA, does not work directly on ¢, but rather on the list
[, which is an abstraction of the occurrences of overload symbols in ¢. In [the
tree-structure of ¢ has been lost. As a consequence, without changing its input,
we cannot make f recognize spurious errors using Criterion [2] As a solution we
could make f work by recursion on t by integrating in f a pre-visit traversal.
Still, we prefer to avoid binding f to the data type of AST of formulae and to
keep separate the construction of Dom(t) from the actual disambiguation.

Therefore we introduce the new Dom***®(t) datatype which is a tree represen-
tation of Dom (t). Dom**®®(t) is a tree which contains only the nodes s € Dom(t)
and preserves the ancestor-descendent relation of t. As a concrete representation
of Dom***°(t) we adopt the well-known first-child/next-sibling representation.
This representation allows to implement straightforwardly a pre-visit of the tree
recognizing when all children of a given node have been traversed. Note that the
pre-visit order is imposed by the efficiency analysis given in [6] and recognizing
the end of children traversal is necessary for Criterion [2}

We call the algorithm that recognizes spurious errors the humane disam-
biguation algorithm (HDA for short). It proceeds by recursion on Dom® ()
and, at the end of children traversal, lowers the rate of spurious errors. The
pseudo code of HDA is given below:

b if t = nal
95,0 = g U By) ire=]

where X} = g((X5)",¢)

Yerr if Yop = 0

p(Eok,Eerr) = {{<¢,0, 7,> | <¢’0’ <m,p>> € X7 = <¢,p>} if Yo 7é 1]

HDA(t) = (X7)” Up((2)7, (X')* U (20))
where X' = g((X)”, Dom*™°(t))

g has the same role f had in EDA, while p(-, -) (mnemonic for “prioritize”) lowers
the rate of spurious errors to s, which is the lowest rating.

10 Claudio Sacerdoti Coen and Stefano Zacchiroli

Theorem 6 (Correctness of HDA).

1. HDA implements a disambiguation algorithm.
2. An error in a classification returned by HDA is spurious according to Crite-
rz’on@ iff it is rated (s, p()).

Proof. We just give a sketch of the proof, which is involved due to the complexity
of the code.

(1) By Theorem [5| it is sufficient to prove that the classification returned
by HDA is equal to the classification returned by EDA up to rates. Since both
algorithms perform a pre-visit of the input tree, we can consider “parallel” exe-
cutions of them. At the nth step EDA is called on the list s,, :: t/ while HDA is

Sn

called on the tree | . The nodes that EDA will encounter processing tl are
c

the same (and in the same order) of those HDA will encounter processing c at
first and then b. The thesis is reduced to a proof by induction on the length of
tl that f((Xs,)7,) is equal to (g((Xs,)", ¢))*Ug(g((Xs,)”",¢)”,b) up to rates.

(2) Recursion is never performed on elements of the current classification
corresponding to errors. Thus once an error has been down-rated by p(-,-) its
rating will never be raised again.

Suppose that at a given iteration p(-,-) lowers the rating of an error € relative
to an interpretation ¢ € (X5)* U (9((Xs)7,¢))*. We interpret that as e being

$ -
located in |. The set S = S((x,),c)) is not empty since € has been down-
c

rated.

We consider now two cases: either there exists ¢/ € S such that ¢(s) # ¢/ (s)
or not. In the former case s and ¢’ Satlsfy all the requirements of Criterion [2] I
In the latter case let ¢’ € S. Let s’ € ¢ be the last occurrence that follows s

=
in pre-order such that ¢(s") # ¢’(s’). Consider now the recursive call on |,
¢

and iterate the above reasoning. Since this time ¢(s") # ¢'(s’), € is now properly
down-rated according to Criterion [2l When the recursive call on ¢ returns e is

still correctly down-rated and p(-,-) leaves its rate unchanged. O
Example 6 (HDA execution). Consider again the AST of Examples [2|and [5] The

, b
first recursive invocation is g(¥,7) where: X = {(L, v, (4, p(L)))} and 7 = l_> .
c

g computes

ES = {<¢1la‘/7 <lv p(¢11)>>a where [[t]]¢11 = f(?li Z) :?2
(P12, X, (& p(¢12))) } [t = f(71+2) =72

and then calls itself recursively on (Xs)” and ¢ yielding

21 = {{p11111,v <l p(d11111))), where [t]g,,,,, = f(a™ x+ﬁ_’y+z) =7
(11112, X, (8, p(P11112))), [tlg11100 = fla™ MG y——|—>z) =7
(P1112, ,< p(o1112))), [tlg111o = f(cx- x+71+2) =79
(P112, X, (8, p(P112))) } o, =F(71472F2) =

Spurious Disambiguation Error Detection 11

Since (X1)” is not empty, all the errors in (X)* and (X7)* are recognized as
spurious and their rating is lowered to . In particular the new rating for the
error associated to ¢12 will remain the same in the final classification returned
by HDA. Errors coming from (X7)* were already recognized as spurious; this is
not always the case.

Eventually HDA yields the same errors of Example [5] but rated differently:
the expected one—error (5)—is rated (4, p(¢5)) (ranking first) while the remain-
ing spurious errors are rated (s, p(¢;)).

5 Conclusions

In this paper we proposed a heuristic criterion to detect spurious errors in am-
biguous formulae. An error is spurious when it is not relative to the formula
interpretation expected by the user. We integrated the criterion in the efficient
disambiguation algorithm of [@].

We also believe that the specification of a disambiguation algorithm (Sec-
tion [2)) and the description of our efficient disambiguation algorithm (Section
are an improvement over previous descriptions in the literature.

We have implemented the proposed algorithm in the Matita proof assis-
tant [2] and experimented with it in an ongoing formal development of Lebesgue’s
dominated convergence theorem in an abstract setting. Actually this formaliza-
tion effort has motivated the study of spurious error identification since in the
abstract setting there are plenty of overloaded operators and it was not unusual
to be faced with too many error messages to be useful. In the current implemen-
tation in Matita we have decided to hide spurious errors from the user, unless
explicitly asked for. This choice has decreased dramatically the amount of error
messages, but in the general case is still possible to be faced with more than 1
genuine (i.e. not spurious) error. The problem of how effectively present mul-
tiple error messages to the user belongs to the user-interface field and will be
discussed in a forthcoming paper.

For efficiency reasons, the criterion implemented in Matita is Criterion
that is a restriction of Criterion[I} There are cases of undetected spurious errors
in Matita that would have been caught by the more general criterion. Consider
for instance the right hand side of the formula given in Example [1| According
to Criterion [I the only two genuine errors are:

— "in ?y +z: z is a vector, but is used as a scalar"
— "in ?4+7,+z: ?;+75 is a scalar, but is used as a vector"

however, according to Criterion [2} we also get the errors:

— "in a-f(x)£?Fz: a-f(x) is a scalar, but is used as a vector"
— "in o f(x)¥?Fz: £f(x) is a scalar, but is used as a vector"

Moreover Criterion [I]is debatable itself: are both the above “genuine” errors
really genuine? Would mathematicians agree that the second error is spurious

12 Claudio Sacerdoti Coen and Stefano Zacchiroli

since the number of scalars is greater than the number of vectors in the sum?
What if there were two scalars and two vectors in the same sum? Or does the
order matter? Does the first addend determines the signature of the sum?

Unable to convince ourselves that a general answer to the above questions
exists, we claim that Criterion [1}is widely acceptable and never gives false posi-
tives. Whether the gap between the two criteria can be reduced without loosing
efficiency is an open research direction.

References

1. Andrea Asperti, Ferruccio Guidi, Claudio Sacerdoti Coen, Enrico Tassi, and Stefano
Zacchiroli. A content based mathematical search engine: Whelp. In Post-proceedings
of the Types 2004 International Conference, volume 3839 of Lecture Notes in Com-
puter Science, pages 17-32. Springer-Verlag, 2004.

2. Andrea Asperti, Claudio Sacerdoti Coen, Enrico Tassi, and Stefano Zacchiroli. User
interaction with the Matita proof assistant. Journal of Automated Reasoning, 2007.
Special Issue on User Interface for Theorem Proving. To appear.

3. G. Bancerek and P. Rudnicki. Information retrieval in MML. In Andrea Asperti,
Bruno Buchberger, and James H. Davenport, editors, Proceedings of the Second
International Conference on Mathematical Knowledge Management, MKM 20083,
volume 2594 of Lecture Notes in Computer Science. Springer-Verlag, 2003.

4. Herman Geuvers and Gueorgui I. Jojgov. Open proofs and open terms: A basis for
interactive logic. In J. Bradfield, editor, Computer Science Logic: 16th International
Workshop, CSL 2002, volume 2471 of Lecture Notes in Computer Science, pages
537-552. Springer-Verlag, January 2002.

5. César Mufioz. A Calculus of Substitutions for Incomplete-Proof Representation in
Type Theory. PhD thesis, INRIA, November 1997.

6. Claudio Sacerdoti Coen and Stefano Zacchiroli. Efficient ambiguous parsing of math-
ematical formulae. In Andrea Asperti, Grzegorz Bancerek, and Andrzej Trybulec,
editors, Proceedings of Mathematical Knowledge Management 2004, volume 3119 of
Lecture Notes in Computer Science, pages 347—-362. Springer-Verlag, 2004.

7. Zentralblatt MATH. http://www.emis.de/ZMATH/.

http://www.emis.de/ZMATH/

	Spurious Disambiguation Error Detection
	Claudio Sacerdoti Coen and Stefano Zacchiroli

