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“We are nearly bug-free” – CSC, Oct 2005

1. Introduction

Matita is the interactive theorem prover under development by the
Helm team [3] at the University of Bologna, under the direction of
Prof. Asperti. Matita (that means pencil in Italian) is free software
and implemented in OCaml. The source code is available for download
at http://matita.cs.unibo.it.

The main concern of this paper is presenting the user interaction
with Matita. Before dwelling into this, we give in this section a prelim-
inary idea of the system considering its foundations, proof language,
and interaction paradigm.

Foundations Matita is based on the Calculus of Inductive Construc-
tions (CIC) [36]. Proof terms are represented as λ-terms of the calculus.
Proof checking is implemented by the system kernel that is a CIC
type-checker. Metavariables can occur in terms to represent incomplete
proofs and missing sub-terms.

Terms are not conceived as proof records kept by the system for
efficiency reasons, but become part of a distributed library of mathe-
matical concepts (encoded in a XML dialect). Hence terms are meant
as the primary data type for long-term storage and communication.
The relevance we give to the library influences most aspects of Matita.

The competing Coq system is an alternative implementation of CIC,
allowing for a direct and for obvious reasons privileged comparison
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Figure 1. Authoring interface of Matita.

with Matita. The two systems are compatible at the proof term level:
mathematical concepts can be exported from Coq in XML to become
part of the library of Matita.

Proof language Matita adopts a procedural proof language, following
the approach dating back to the LCF theorem prover [17] and char-
acteristic of many other successful tools like Coq, NuPRL, PVS, and
Isabelle (the latter also supporting a declarative proof language).

The statements of the language are called tactics and are collected
in textual scripts that are interpreted one statement at a time. Struc-
tured scripts can be obtained forming new tactics from existing tactics
and tacticals. In Matita structured scripts do not force atomic execu-
tion of such new tactics, resulting in a very valuable support towards
structured editing of proof scripts (see Section 3.4).

Proof terms generated by tactics can be rendered in pseudo-natural
language (see Figure 2). The natural language is precise enough to be
currently used as an executable declarative language for Matita.

Interaction paradigm All the user interfaces currently adopted by
proof assistants have been influenced by the CtCoq pioneering sys-
tem [11] and are traditionally organized in three windows: one for script
editing, one for the open goals (or sequents) that need to be proved,
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Figure 2. Browsing a proof in pseudo natural language.

and one for messages. A particularly successful incarnation of those
ideas is the Proof General generic interface [8], that has set a sort of
standard interaction paradigm between the user and the system. The
authoring interface of Matita (shown in Figure 1) adopts the same
interaction paradigm and essentially offers the same functionalities of
Proof General.

We sensibly differ from other user interfaces in the sequents window,
where we focus on a high-quality and hypertextual rendering of math-
ematical expressions (see Section 3.1). In Matita, the sequents window
is based on a MathML-compliant GTK+ widget, originally conceived
and developed within the Helm-team to be used in Matita, and then
evolved into an independent and successful component of many well
known applications (such as AbiWord).

Structure of this paper We present the user interaction with Matita
from two different angles. In Section 2 we describe the philosophical
approach of Matita to library management and its practical conse-
quences on user interaction: searching (Section 2.1), preservation of
library consistency (Section 2.2), automation (Section 2.3), and concept
naming (Section 2.4). In Section 3 we move to the concrete interaction
level presenting the authoring interface of our system, emphasizing its
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most innovative aspects: direct manipulation of terms and its textual
representation (Sections 3.1 and 3.2), disambiguation of formulae (Sec-
tion 3.3) and step by step tacticals (Section 3.4). Section 4 concludes the
paper with a historical presentation of Matita (Section 4.1), some soft-
ware engineering considerations based on our development experience
(Sections 4.2 and 4.3) and our present plans (Section 4.4).

2. Library management

The Matita system is meant to be first of all an interface between the
user and the mathematical library; this makes a clear methodological
difference between Matita and most of the current tool for the inter-
active support to formal reasoning, whose emphasis is traditionally on
different aspects, such as authoring or proof checking.

The library of Matita comprises mathematical concepts (theorems,
axioms, definitions) and notation. The concepts are authored sequen-
tially using scripts in a procedural style. Once concepts are produced
we store them independently in the library; as soon as a new concept
is defined it becomes visible and will remain so upon re-entering the
system, with no need of explicitly requiring or including portions of
the library. The only relation implicitly kept between concepts are the
logical, acyclic dependencies among them. This way the library forms
a global (potentially distributed) hypertext.

2.1. Indexing and searching

In order to support efficient search and retrieving of mathematical no-
tions Matita uses a sophisticated indexing mechanism for mathematical
concepts, based on a rich metadata set that has been tuned along
the European project MoWGLI. The metadata set, and the searching
facilities built on top of them—collected in the so called Whelp search
engine—have been extensively described in [4]. Let us just recall here
that the Whelp metadata model is essentially based on a single ternary
relation Ref p(s, t) stating that a concept s refers a concept t at a given
position p, where the position specifies the place of the occurrence of t
inside s (we currently work with a fixed set of positions, discriminating
the hypothesis from the conclusion and outermost form innermost oc-
currences). This approach is extremely flexible, since extending the set
of positions we may improve the granularity and the precision of our
indexing technique, with no additional architectural impact.

Every time a new mathematical concept is created and saved by the
user it gets indexed, and becomes immediately visible in the library.
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Several interesting and innovative features of Matita described in the
following sections rely in a direct or indirect way on the global manage-
ment of the library, its metadata system, and the search functionalities;
most notably the disambiguation technique (Section 3.3), made even
more impelling by the “global” visibility policy of Matita, and the
support for automatic theorem proving (Section 2.3).

2.1.1. Related work
To our best knowledge these facilities are peculiarities of Matita, other
systems offer to the user less expressive or less integrated querying facil-
ities. Both Isabelle and Coq for instance offer searching facilities only on
the explicitly loaded parts of the library, and offer more coarse grained
queries, like finding theorems whose statement refer to some constant
(with no distinction on where the constant occurs). These techniques,
unlike ours, are unlikely to scale if applied to large distributed libraries.

The Mizar Mathematical Library (MML) can be searched with a
search engine which indexes the whole library [10]. When a declarative
script is executed by Mizar, metadata are collected in special files used
by the search engine. This solution is in principle more inefficient when
compared with ours that stores metadata in a relational database;
however so far performances are good. As for the previous systems,
no distinction can be done in Mizar’s queries on the positions where
constants occur. In spite of that, queries can be quite precise due to the
great flexibility provided by chaining of queries to refine search results.

Automation in Matita is heavily based on the search engine. On the
contrary, in Mizar the search engine is an external tool and automation
can not rely on it. The main justification for the different choices is
to be found in the role of automation in the two systems. In Mizar
automation is used to fill the gaps in the user provided declarative
proofs, and its main role is to justify proof steps considered trivial by
the human being. In Matita automation can also be used for larger
proofs, making the system closer to an automatic theorem prover.

2.2. Invalidation and regeneration

In this section we will focus on how Matita ensures the library consis-
tency during the formalization of a mathematical theory, giving the user
the freedom of adding, removing, modifying mathematical concepts
without loosing the feeling of an always visible and browsable library.

The two mechanisms employed are invalidation and regeneration. A
mathematical concept and those depending on it are invalidated when
the concept is changed or removed and need to be regenerated to verify
if they are still valid.
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Invalidation is implemented in two phases. The former computes all
the concepts that recursively depend on those we are invalidating. It
can be performed using the metadata stored in the relational database.
The latter phase removes all the results of the generation, metadata
included. To regenerate an invalidated part of the library Matita re-
executes the scripts that produced the invalidated concepts.

2.2.1. Related work
Every system that remembers already checked concepts to avoid dupli-
cated work must implement some form of invalidation and regeneration.
The peculiarity of Matita, having an always visible and browsable li-
brary, imposes the need of hiding concepts as soon as they become
invalid. In other systems invalidation can be postponed: in Coq, for
instance, a checksum is computed on scripts when they are executed
and an error is reported only when the user tries to include a script
with an unexpected checksum.

In [18] and subsequent works Hutter describes a framework for main-
taining logical consistency in a distributed library. The framework is
based on invalidation and regeneration, but also adds the orthogonal
notion of modularization via hierarchically structured developments.
Moreover, a notion of refinement between developments (specified by
morphisms) is also provided. This allows to decouple parts of large
developments. For instance, once the group axioms are fixed, the user
can develop the theory of groups and independently prove that some
structure forms a group, automatically obtaining the instantiated the-
ory. Modularization in different forms can be found in other systems
too: Isabelle has locales while Coq has modules and functors.

In Matita we do not currently have any modularization mechanism,
even if dependent records [15] partially provide the functionality. When
modularization is considered, the dependencies used for invalidation
and regeneration inherits the hierarchical structure of developments
(as happens in [18]). Dependencies in Matita are simply flat.

2.3. Automation

In the long run, one would expect to work with a proof assistant like
Matita, using only a small set of basic tactics: intro (∀-introduction),
apply (modus ponens), elim (induction), cut (forward reasoning), and
a powerful tactic auto for automated reasoning. Incidentally, these are
also the only primitives available in declarative languages. The current
state of Matita is still far from this goal, but this is one of the main
development directions of the system.
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Even in this field, the underlying philosophy of Matita is to free the
user from any burden relative to the overall management of the library.
In Coq for instance, the user is responsible to define small collections
of theorems to be used as parameters for the auto tactic; in Isabelle
the same happens with lemmas used by the simplifier. In Matita, the
system itself automatically retrieves from the whole library a subset
of theorems worth to be considered, according to the signature of the
current goal and context.

At present, our basic automation tactic (auto) merely iterates the
use of the apply tactic. The search tree may be pruned according to
two main parameters: the depth (with the obvious meaning), and the
width that is the maximum number of (new) open goals allowed in the
proof at any instant.

Recently we have extended automation with paramodulation based
techniques. The extension works reasonably well with equational
rewriting, where the notion of equality is parametric and can be spec-
ified by the user: the system only requires a proof of reflexivity and
paramodulation (or rewriting, name employed in the proof assistant
community).

Given an equational goal, Matita recovers all known equational facts
from the library (and the local context), applying a variant of the so
called given-clause algorithm [23], that is the procedure currently used
by the majority of modern automatic theorem provers.

We have recently run the paramodulation tactic of Matita on the
unit-equality set of problems of the 2006 CASC competition [32], ob-
taining a score comparable (actually, slightly better) with Otter [22].

In our view, the existence of a large, growing library of known results
is the main and distinctive feature of automated tactics for interactive
theorem provers with respect to automatic theorem provers. An inter-
esting challenge is the automatic generation of new results, for example
by means of saturation-based techniques. This goal requires the ability
of the system to rate and possibly automatically select “interesting”
results among the set of valid but trivial facts, that is per se an inter-
esting open problem (see [21] for preliminary discussions and [13, 14]
for more advanced material on the larger topic of theory exploration).

2.4. Naming convention

A minor but not entirely negligible aspect of Matita is that of adopt-
ing a (semi)-rigid naming convention for concept names, derived by
our studies about metadata for statements. The convention is only
applied to theorems (not definitions), and relates theorem names to
their statements.
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The basic rule is that each name should be composed by an under-
score separated list of identifiers, occurring in a left to right traversal of
the statement. Additionally, identifiers occurring in different hypothe-
ses, or in an hypothesis and in the conclusion should be separated
by the string to . Finally, the theorem name may be following by a
decorator : a numerical suffix or a sequence of apostrophes.

EXAMPLE 1.
Consider for instance the statement:

\forall n: nat. n = n + O

Possible legal names for it are: plus n O, plus O, eq n plus n O,
and so on. Similarly in the following statement lt to le is a legal
name, while lt le is not:

\forall n,m: nat. n \lt m to n \leq m

But what about, say, the symmetric law of equality? Probably you
would like to name such a theorem with something explicitly recalling
symmetry. The correct approach in this case is the following.

EXAMPLE 2.
You should start with defining the symmetric property for relations:

definition symmetric :=
\lambda A: Type. \lambda R. \forall x,y: A. R x y \to R y x.

Then, you may state the symmetry of equality as:

\forall A: Type. symmetric A (eq A)

and symmetric eq is a legal name for such a theorem.

So, somehow unexpectedly, the introduction of semi-rigid naming
convention has an important beneficial effect on the global organization
of the library, forcing the user to define abstract concepts and properties
before using them (and formalizing such use).

3. The authoring interface

The basic mechanisms underpinning the usage of the Matita authoring
interface should be familiar to every user coming from Proof General
and is, in our experience with master students, quite easy to learn for
newcomers (at the very minimum as easy as learning how to use Proof
General or CoqIde, a Proof General-like Coq GUI). In spite of that, we
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Figure 3. Hypertextual browsing.

deliberately choose not to develop Matita targeting Proof General as
our user interface of choice. The first reason for not doing that is the
ambition to integrate in the user interface our high quality rendering
technologies, mainly GtkMathView, to render sequents exploiting the
bidimensional mathematical layouts of MathML-Presentation. At the
time of writing Proof General supports only text based rendering.1 The
second reason is that we wanted to build the Matita user interface on
a state-of-the-art and widespread graphical toolkit as GTK+ is.

On top of the basic mechanisms of script based theorem proving,
Matita sports innovative features not found in competing systems. In
the remaining part of this section we will discuss them in turn.

3.1. Direct manipulation of terms

The windows that show formulae and concepts to the user are based on
GtkMathView which is used to render notational level representations
of terms. Those representations are encoded in a mixed markup built
on top of two XML dialects: MathML-Presentation and BoxML. The
former language is used to encode the visual aspects of mathematical
formulae using the vocabulary of mathematical notation, which com-
prises atomic entities like identifiers, numbers, and operators together
with a set of layouts like sub/superscripts, fractions, and radicals. The
latter language is used to describe the placement of formulae with
respect to each other and where to break formulae in case the actual
window is too small to fit them on a single physical line.

3.1.1. Contextual actions and semantic selection
Once rendered in a window, notational level terms still play a role
and permit hypertextual browsing of referenced concepts and also lim-

1 This may change with the new Proof General based on the Eclipse platform
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Figure 4. Contextual actions and semantic selection.

ited forms of direct manipulation [31] using the mouse. Hypertextual
browsing is shown in Figure 3.

Markup elements which visually represent concepts from the library
(identifiers or glyphs coming from user defined notations) act as anchors
of hyperlinks. Targets of the hyperlinks are the concepts themselves,
referenced using their URIs. On the left of Figure 3 the mouse is over
an ∃ symbol which is part of a user defined notation for the existential
quantifier, available in the Matita standard library as a concept whose
URI is shown in the status bar. Clicking on an anchor will show the
target concept.

Since user defined notations are often used to hide details of complex
CIC terms, it can happen that markup elements reference more than
one concepts from the library; in a sense our hyperlinks are one-to-
many. For instance, on the right of Figure 3 the symbol 6 | is a user
defined notation which uses two concepts (logical negation and the
divisibility operator), following that hyperlink will pop-up a window
asking the user to choose the browsing destination.

Limited forms of direct manipulation are possible on (sub-)terms.
Figure 4 shows the contextual menu which will pop-up (clicking with
the right button) when part of the markup is visually selected.

Menu items of the pop-up menu permits to perform semantic con-
textual actions on the CIC term corresponding to the selected markup.
Examples of such actions are: type inquiries, application of tactics
having the selected term as argument, various kinds of reduction, and
semantic copy & paste. The latter is called “semantic” to distinguish
it from ordinary textual copy & paste where the text itself is subject
of the copy and paste actions. In our case the subject is rather the
underlying CIC term. This permits to perform semantic transforma-
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Figure 5. Overview of the notational framework: term encodings and their usage.

tions on the copied term like renaming variables to avoid captures or
λ-lifting free variables; transformations that can hardly be performed
at the notational level where not even a notion of scope is available.

Contextual actions can also be performed on several terms selected
at once (GtkMathView supports multiple selections). The typical use
case of multiple selection is simplification in multiple sub-terms at once.

A requirement for semantic contextual actions is that the markup
visually selected in a window has a corresponding CIC term: we call
this semantic selection. This requirement is non trivial to achieve since
selection in GtkMathView (and more generally in rendering engines for
XML based markup languages) is constrained to the structure of the
presentational markup, which is not necessarily related to the structure
of the underlying CIC term. On the left of Figure 4 for instance, the
formula “∀m : nat” is a well formed markup snippet: an horizontal box
containing two symbols and two identifiers. Nonetheless no well-formed
CIC term corresponds to it; intuitively a binder would, but a binder
requires a body (something after “.”) to be a well-formed term in CIC.

3.1.2. Implementation
Both hypertextual browsing and semantic selection are implemented
by enriching the presentational markup with semantic attributes. The
notational framework of Matita [37] is in charge of adding them. Fig-
ure 5 shows the architecture of the notational framework, including
the different encoding of terms and the transformations among them.
The intermediate content level—between the CIC, or semantic, level
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and the notational level—is an internal representation isomorphic to
MathML-Content, useful for interoperability with other mathematical
systems not sharing the same mathematical foundation of Matita.

The hrefs attribute is used to implement hypertextual browsing.
An element annotated with such an attribute represents an hyperlink
whose anchor is the rendered form of the element itself. Targets of
the hyperlink are the URIs listed as value of the hrefs attribute. Hy-
perlinks can be present only on atomic markup elements (identifiers,
symbols, and numbers). URIs are collected on nodes of the content
syntax tree during ambiguation (the transformation from semantic to
content level), and then spread on atomic markup elements pertaining
to the notation chosen for a given content element during rendering
(the transformation from content to notational level).

The xref attribute (for “cross reference”) is used to implement
semantic selection. Each CIC sub-term is annotated with a unique
identifier; the set of those identifiers is the domain of the xref attribute.
During ambiguation identifiers are collected on nodes of the context
syntax tree, cross referencing nodes of the CIC syntax tree. During
rendering identifiers are collected on the structures available in the
presentational markup (e.g.: atomic elements for concepts or numbers,
but also layouts for applications and more complex CIC terms). Since
each node of the CIC syntax tree denotes a well-formed CIC term it
is now possible to go “back” to a well-formed CIC term starting from
an element of the presentation markup who ends up having an xref
attribute.

During interactive visual selection, the user is permitted to select
some markup only when the mouse is located on an element having an
xref attribute. When this is not the case the selection is automatically
extended to the first element, in a visit toward the markup root, having
such an attribute (the markup root is granted to have it). The require-
ment of always having a correspondence between the selected markup
and a well-formed CIC term is hence fulfilled.

3.2. Patterns

In several situations working with direct manipulation of terms is sim-
pler and faster than typing the corresponding textual commands [12].
Nonetheless we need to record such visual actions in scripts. In Matita
patterns are textual representations of selections: users can select using
the GUI and then ask the system to paste the corresponding pattern
in the script. This process is often transparent to the user: once an
action is performed on a selection, the corresponding textual command
is computed and inserted in the script.
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Table I. Concrete syntax of patterns.

〈pattern〉 ::= [ in 〈sequent path〉 ] [ match 〈wanted〉 ]
〈sequent path〉 ::= { 〈ident〉 [ : 〈multipath〉 ] } [ \vdash 〈multipath〉 ]

〈multipath〉 ::= 〈term with placeholders〉
〈wanted〉 ::= 〈term〉

3.2.1. Pattern syntax & semantics
Patterns are composed of two parts: 〈sequent path〉 and 〈wanted〉; their
concrete syntax is reported in Table I. 〈sequent path〉 mocks-up a se-
quent, discharging unwanted sub-terms with “?” and selecting the in-
teresting parts with the placeholder “%”. 〈wanted〉 is a term living in
the context of the placeholders.

Textual patterns produced from a graphical selection are made of
the 〈sequent path〉 only. Such patterns can represent every selection,
but can get quite verbose. The 〈wanted〉 part of the syntax is meant to
help the users in writing concise and elegant patterns by hand.

Patterns are evaluated in two phases. The former selects roots (sub-
terms) of the sequent, using the 〈sequent path〉, while the latter searches
the 〈wanted〉 term starting from that roots. Phase 1 concerns only the
〈sequent path〉 part. 〈ident〉 is an hypothesis name and selects the as-
sumption where the following optional 〈multipath〉 will operate. \vdash
does the same for the conclusion of the sequent. If the whole pattern
is omitted only the conclusion will be selected; if the conclusion part
of the pattern is omitted but hypotheses are not, selection will occur
only in them as specified by the corresponding 〈multipath〉. Remember
that the user can be mostly unaware of pattern concrete syntax, since
Matita is able to write a 〈sequent path〉 from a graphical selection.

A 〈multipath〉 is a CIC term in which two special constants “%” and
“?” are allowed. The roots of discharged and selected sub-terms are
marked respectively with “?” and “%”. The default 〈multipath〉, the
one that selects the whole term, is simply “%”. Valid 〈multipath〉 are,
for example, “(? % ?)” or “% \to (% ?)” that respectively select the
first argument of an application or the source of an arrow and the head
of the application that is found in the arrow target.

Phase 1 not only selects terms (roots of sub-terms) but determines
also their context that will be possibly used in the next phase.

Phase 2 plays a role only if the 〈wanted〉 part is specified. From
phase 1 phase we have some terms, that we will use as roots, and their
context. For each of these contexts the 〈wanted〉 term is disambiguated
in it and the corresponding root is searched for a sub-term that can
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be unified to 〈wanted〉. The result of this search is the selection the
pattern represents.

3.2.2. Patterns in action
Consider the following sequent:

n : nat
m : nat
H : m + n = n

m = O

EXAMPLE 3.
To change the right part of the equality of the H hypothesis with

O + n, the user selects and pastes it as the pattern in the following
statement.

change in H:(? ? ? %) with (O + n).

The pattern mocks up the applicative skeleton of the term, ignoring
the notation that hides, behind m+n = n, the less familiar eq nat (m+
n) n.

Supporting notation in pattern is not a urgent necessity since pat-
terns are not meant to be written by hand: the user can select with
the mouse a sub-term in the sequents window, where notation is used,
and ask the system to automatically generate the pattern. Moreover
this choice simplifies the implementation also improving efficiency. The
main drawback of our choice is that patterns do not benefit from the
high readability that infix notation grants. Again, we believe that a
script based on a procedural language is not readable if not re-executed
step-by-step, and re-executing the script the users sees exactly where
the tactic is applied, without even trying to understand the pattern.

EXAMPLE 4.
The experienced user is not forbid to write by hand a concise pattern

to change all the occurrences of n in the hypothesis H at once:

change in H match n with (O + n).

In this case the 〈sequent path〉 selects the whole H, while the second
phase locates all n occurrences, thus resulting equivalent to the following
pattern, that the system would have automatically generated from the
selection.

change in H:(? ? (? ? %) %) with (O + n).
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3.2.3. Comparison with other systems
Patterns were studied and implemented to represent in text format
the user visual selection. The majority of the systems have no support
for acting on visually selected sub-formulae in the sequent. Notable
exceptions are CtCoq and Lego in combination with Proof General,
both supporting proof by pointing [12] and no longer maintained. When
sub-formulae cannot be acted on, all the performed operations can be
represented in the proof script by means of a textual command without
patterns. For instance, even if rewritings are extensively used in Isabelle
proof scripts, there are no comfortable facilities to restrict them to sub-
formulae, probably because the deep integration with automated tactics
makes this need less impelling.

All these considerations make a comparison of the pattern facility
harder from the pragmatic point of view. A deeper and more technical
comparison can be done with how Coq users restrict (by means of
textual expressions, not mouse movements) the application of a tactic
to sub-formulae occurring in a sequent.

While in Matita all the tactics that act on sub-formulae of the
current sequent accept pattern arguments, in Coq the user has two
different ways of restricting the application of tactics to sub-formulae,
both relying on the following syntax to identify an occurrence:

change n at 2 in H with (O + n).

The idea is that to identify a sub-formulae of the sequent we can
write it down and say that we want, for example, its third and fifth
occurrences (in a left to right textual visit of the formula). In the
previous example, only the second occurrence of n in the hypothesis
H would be changed. Some tactics support directly this syntax, while
others need the sequent to be prepared in advance using the pattern
tactic. Note that the choice is not left to the user and that there is no
way to achieve the same result by visually selecting formulae.

The tactic pattern computes a β-expansion of a part of the sequent
with respect to some occurrences of the given formula. In the previous
example the following command:

pattern n at 2 in H.

would have resulted in the sequent:

n : nat
m : nat
H : (fun n0 : nat => m + n = n0) n

m = 0
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where H has been β-expanded over the second occurrence of n. At
this point, since Coq unification algorithm is essentially first-order, the
application of an elimination principle (a term of type ∀P.∀x.(H x) →
(P x)) will unify x with n and P with (fun n0: nat => m + n = n0).
Since rewrite, replace and several other tactics boil down to the
application of the equality elimination principle, this trick implements
the expected behavior.

The idea behind this way of identifying sub-formulae is similar to
the patterns idea, but fails in extending to complex notation, since it re-
lies on a mono-dimensional sequent representation. Real mathematical
notation places arguments on top of each other (like in indexed sums
or integrations) or even puts them inside a bidimensional matrix. In
these cases using the mouse to select the wanted formula is probably
the more effective way to tell the system where to act. One of the
commitments of Matita is to use modern publishing techniques, so we
prefer our method that does not discourage the use of complex layouts.

3.3. Disambiguation

One of the most frequent activities in the interaction with any tool for
mathematics is input of formulae. Since Matita uses textual typing as
its input mechanism, formulae are linearized in a TEX-like encoding
(a widespread choice among mathematicians) and are rendered to the
user via MathML. Unicode can also be freely exploited for input of
mathematical glyphs.

For the purpose of input, the main problem posed by the wish
of sticking to the standard mathematical notation is its ambiguity,
induced by various factors: conflicting parsing rules, hidden informa-
tion to be recovered from the context, overloading, and subtyping. In
the setting of Matita subtyping is implemented by means of coercive
subtyping [20]: a function of type A → B declared as a coercion is
automatically inserted by the system whenever a term of type A is used
with expected type B. Since coercions are more general than subtyping,
in the remainder of this section we will only discuss them.

In programming languages these challenges are usually solved by
limiting the language that, being imposed to the user, can be freely
modelled by its designers. The restrictions imposed are guided by per-
formance reasons and by the need for the system, usually not inter-
active, to produce at the end exactly one interpretation. For instance,
overloading in C++ does not allow to declare two functions that take
the same input but returns output with different types.

Since we do not want to change mathematical notation too much,
we need to drop the standard techniques. The user is no longer forced
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to adapt to the system and the grand challenge becomes automatic de-
tection of the intended interpretation among the ones that make sense.

The challenge, that we call disambiguation, can be roughly described
as: starting from the concrete syntax of a formula, build an internal
representation of the formula among the ones that “make sense” for
the system. We interpret the latter notion as being well typed in some
weak type system (e.g. Weak Type Theory [19] or the type system used
in Mizar [9]). In the case of Matita, CIC terms are used as internal
representations of formulae, and CIC plays the role of the weak type
system.

Disambiguation can be split into two tasks that need not to be
implemented sequentially: the first one is the resolution of ambiguities
in order to map the formula to the set of possible internal represen-
tations that are well typed; the second one is to rate the obtained
representations to recognize those that are more likely to have the
meaning intended by the user. User interaction is requested in the case
where multiple representations receive the highest rating.

In [30] we proposed an efficient algorithm to implement the first task
considering only the difficulties posed by overloading. The sources of
ambiguities the algorithm deals with are: unbound identifiers (they can
refer to multiple concepts available in the knowledge base); numbers
and symbolic operators (they are usually overloaded). The algorithm
can easily be adapted to most type systems; its extension to handle
also coercions does not pose any additional problem, and it has been
implemented in Matita.

The second task (representations rating) is the topic of the remain-
der of this section. Provided an implementation of the first is available,
the proposed solution is completely independent of the type system.

3.3.1. Representations rating
The problem we address is finding some reasonable criteria that allow
to rate representations in order to guess most of the time the one the
user meant. When the guess is wrong, the rating can still be used
to present alternatives to the user in order of likelihood of being the
wanted representation. Since the guessed alternative is chosen among
the maximally rated ones, rating several alternatives in the same way
is also preferred to arbitrarily guessing an order.

Locality of reference appears to be a good criterion to solve over-
loading: a source of ambiguity is likely to be interpreted the same way
it was interpreted last time. Consecutive lemmas for example are likely
to be about the same concepts and thus are likely to require the same
overloading solving choices. In practice this criteria allows exceptions
very frequently. For instance, in the case of analysis it is common prac-
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tice to mix in the same statement order relations over real numbers and
order relations over natural numbers that are used to index sequences.

For this reason to the criterion of locality of reference we prefer
user preferences that can be explicitly given by the user or implicitly
set by the system. At any time a stack of preferred interpretations
is associated to any source of ambiguity, other interpretations can be
retrieved from the library. An interpretation builds a representation
from the representations of the sub-formulae of the source of ambiguity.
For instance, the interpretation:
interpretation ’plus x y =
(cic:/matita/nat/plus/plus.con x y).

interprets the content level ’plus node as addition over the natural
numbers (see Figure 5 for an example of how notation can be associated
to the content level node [26]).

The topmost interpretation on the stack is intuitively the current
(hence most likely) one. For instance, the user that intends to prove
some lemmas over rational numbers should set preferences for interpret-
ing the “less than” relation over natural, integer and rational numbers,
the latter being the current preference. Representations of a formula
that do not respect the user preferences for some symbol are not re-
jected, but simply get a low rating. This allow exceptions such as stating
a lemma that requires testing inequality over real numbers; however,
the exceptional interpretation for “less than” is not took in account
as a new user preference (as it happens with the locality of reference
criterion).

The criterion based on user preferences allows to rate the interpreta-
tions for a single occurrence of an ambiguity source. As for overloading,
a reasonable local criterion for coercions is at hand: an interpretation
that does not insert a coercion in one particular position is to be pre-
ferred to an interpretation that does. The real difficulty is now the
extension of rating to representations in order to take in account the
rating for each ambiguity source and the insertion of coercions to make
the interpretation well typed.

No reasonable criterion for the global rating of a representation is
evident a priori. The one we are now using is motivated by several
concrete examples found in the standard library of Matita. On the basis
of the examples collected so far, we achieved results deemed satisfactory
by our (small) user community rating representations as follow:

1. representations where ambiguity sources are interpreted outside
the domain of user preferences are rated +∞ (worst rating) if the
domain is non empty; the representation is also rated +∞ if every
ambiguity source has an empty domain;
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Table II. User preferences and other interpretations in effect for the disam-
biguation examples. Current preference underlined.

Ambiguity
source

Preferences Other interpretations

< , + , ∗ RR×R, ZZ×Z, NN×N CC×C

| · | RR, NZ RC

√
· CC

| 2Z×Z, 2N×N

b · c ZR

cos RR

π {cic : /matita/reals/trigo/pi.con}
numbers R, Z, N C

2. other representations are rated by the couple 〈c, o〉 ∈ {0, 1}2 where:
c is 0 if no coercion has been used while interpreting, 1 otherwise; o
is the worst rating on the interpretations of the symbols, numbers
and unbound identifiers that occur in the formula where an inter-
pretation is rated 1 if it is a preference that is not the current one,
0 otherwise;

3. the couples 〈c, o〉 are ordered lexicographically and +∞ is greater
than any couple; the best representations are those with minimal
rating.

Note that the global rating is very approximative in weighting coercions
with respect to the local one previously presented. This is mostly for
simplifying the implementation (see Section 3.3.2).

The following examples show our criterion at work supposing that
the user preferences are currently set as shown in Table II. Coercions
are automatically inserted to provide for the usual subtyping relation
on number classes.

EXAMPLE 5. (Preferences are respected).
theorem Rlt_x_Rplus_x_1: \forall x. x < x+1.

The best representation is ∀x : R.x <R x +R 1R that is the only one
rated 〈0, 0〉. The current preferences of the user are respected.

EXAMPLE 6. (Forcing a different representation).
theorem lt_x_plus_x_1: \forall x:nat. x < x+1.

The user can select a different representation adding just one type
annotation. The best representation is ∀x : N.x <N +N1N that is the
only one rated 〈0, 1〉.
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EXAMPLE 7. (The user is asked).

theorem divides_nm_to_divides_times_nr_times_mr:
\forall n,m,r. n | m \to n*r | m*r.

In this case the current preferences cannot be satisfied. The two best
representation are ∀n, m, r : N.n|Nm → n ∗N r|Nm ∗N r and ∀n, m, r :
Z.n|Zm → n ∗Z r|Zm ∗Z r that are rated 〈0, 1〉. The user is asked for the
intended meaning since our global rating cannot detect that the second
representation is locally better since it respects more preferences.

EXAMPLE 8. (Coercions are better avoided).

theorem Zdivides_to_Zdivides_abs:
\forall n,m. n | m \to |n| | |m|.

This case is close to the previous one, but the representation that in-
terprets n and m as natural numbers has worst score since it requires a
coercion. Thus the best representation is ∀n, m : Z.n|Zm → |n|Z |Z |m|Z
that is rated 〈0, 1〉.

EXAMPLE 9. (Forcing a representation with coercions).

theorem divides_to_Zdivides_abs:
\forall n,m:nat. n | m \to |n| | |m|.

Adding a single type annotation (:nat) the representation chosen
in the previous example is pruned out. The best representation is now
∀n, m : N.n|Nm → |n|Z |Z |m|Z, that is rated 〈1, 0〉.

EXAMPLE 10. (Multiple occurrences distinguished).

theorem lt_to_Zlt_integral:
\forall n,m. n < m+1 \to
\lfloor n \rfloor < \lfloor m \rfloor.

In this example the two less than relations are interpreted over dif-
ferent domains without requiring any coercion. The best representation
is ∀n, m : R.n <R m +R 1R → bnc <Z bmc that is rated 〈0, 1〉.

EXAMPLE 11. (Lack of preferences do not affect rating).

theorem Rlt_cos_0:
\forall x. \pi / 2 < x \to x < 3*\pi/2 \to \cos x < 0.

No preferences are given for π and cos. Thus both operators can be
interpreted over the real numbers without affecting the rating. The user
preferences for less than are still in effect. Thus the best representation
is ∀x : R.π/R2R <R x → x <R 3R ∗R π/R2R → cos x <R 0R that is rated
〈0, 0〉.
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Table III. Disambiguation attempts sequence.

Attempt no. Preferences Coercions Max. rating

1 current preferences only disabled 〈0, 0〉
2 all preferences disabled 〈0, 1〉
3 current preferences only enabled 〈1, 0〉
4 all preferences enabled 〈1, 1〉
5 no preferences enabled +∞

EXAMPLE 12. (Preferences are not respected).
theorem lt_to_Clt_sqrt:
\forall n,m. n < m \to \sqrt n < \sqrt m.

This case is similar to the previous one, but the preferences of the
user for less than cannot be satisfied. Thus the only two representations
are ∀n, m : Z.n <Z m →

√
n <C

√
m and ∀n, m : N.n <N m →

√
n <C√

m, both rated +∞. The user is asked for the intended meaning.

3.3.2. Implementation
Having to deal with multiple representations that need to be checked
for well-typedness (first task) and to be rated (second task), the issue of
performances need to be faced. Indeed, a priori the number of potential
representations is exponential in the number of ambiguity sources. The
algorithm we presented in [30] for the first task is linear in the number of
well typed representations that, in non artificial cases, is almost linear
in the number of ambiguity sources.

To reduce the cost of the second task we generate the potential
representations in increasing order of rating, stopping as soon as a
non empty set of well-typed representations is found. The technique is
to interleave the two tasks, tuning the parameters of the disambigua-
tion algorithm of [30] in order to bound the rating of the generated
representations. The parameters are: a flag that triggers the insertion
of coercions and a map from sources of ambiguity to their domain of
preferences. In Table III we show how the parameters are set in the five
disambiguation attempts tried in order. Since subsequent attempts re-
consider representations generated in previous attempts, memoization
can be used to speed up the process.

One issue not yet addressed is how the user sets the preferences. The
basic mechanism consists in adding explicit commands to the script, as
shown in the following example:
alias ident "i" = "cic:/matita/complex/i.con"
alias symbol "plus" = "addition over real numbers"
alias num = "real numbers"
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Figure 6. Ambiguity resolution.

For unbound identifiers (first line) the preference is set by giving
the URI of a concept in the library. For symbols and numbers (second
and third lines) the preference is set using the label given when an
interpretation was declared.

To reduce the need to give preferences explicitly, we provide two
complementary mechanisms. The first one is inclusion: an explicit com-
mand is provided to import all the preferences that were in effect at
the end of the execution of a given script. The command does not load
any concept from the library nor it is required before using a concept:
it affects only preferences. The second mechanism consists in automat-
ically setting implicit preferences for concepts and new notations just
defined.

An additional issue consists in remembering the outcome of user
interaction in order to avoid it the next time the script is executed.
This also allows future batch compilation of the script. At the end
of the interaction a minimal set of preferences, that would have been
sufficient to avoid asking the user, is automatically added to the script
as a set of explicit preferences (alias commands).

An orthogonal problem is that of finding a suitable user interface
for letting the user select the intended representation in case of multi-
ple representations with the same maximal rating. A list requires too
much effort to be investigated and stresses the problem of providing an
immediate feedback of the different choices.

Our solution, shown in Figure 6, consists in posing to the user a
sequence of simple questions: each question is about the interpretation
of a single source of ambiguity that is highlighted in the formula. The
questions that prune more representations are asked first. This interface
greatly improves over the one that shows all possible representations at
once since the user does not have to reason globally on representations,
but locally on single sources of ambiguity.
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3.3.3. Related issues
Since the internal representation of formulae has more information than
what has been typed by the user, two issues arise: that of providing
enough feedback to the user on the additional information in non-
intrusive ways, and that of pretty-printing the formulae to the user
closely to what was typed.

We believe that the feedback should be provided only on demand
since permanent feedback by means of colors or subscripts inserted in
the formula is both distracting for the user and insufficient to show all
the information automatically inferred by the system but hidden in the
standard mathematical notation. Thus the main feedback we provide
is by means of hyperlinks from every source of ambiguity to the math-
ematical concepts used in its interpretation (see Section 3.1.1). The
remaining hidden information such as the coercions inserted is shown
when the user asks the system to temporarily disable mathematical
notation or coercion hiding. Right now, disabling notation affects the
pretty printing of the whole formula. Doing this only for sub-formulae
is a possible future work which right now we do not feel urged to do.

Pretty-printing of formulae in a syntax close to what the user has
typed is currently not implemented in Matita and it can sometimes be
annoying when the system needs to report messages that include the
formula. We plan to implement this as a future work. However, error
messages are already localized in the script editing window: the sub-
formula the error message refers to is underlined in red in the script.
This greatly reduces the need to show formulae in the error messages.

After disambiguation, Matita keeps only one well typed represen-
tation for the formula typed by the user, requiring his help in case
of draws in representations rating. An alternative approach that we
do not fully implement in Matita consists in keeping the whole set of
well-typed representations that received the maximal rating; further
operations on the representations in the set will prune out those ele-
ments that produce errors when used as arguments. For instance, with
this approach the statement of a theorem can be left ambiguous and
will be clarified while proving.

Metavariables, which are typed placeholders for missing terms, al-
ready provide in the logic of Matita the possibility of representing in a
single term a set of representations. The actual representations can be
obtained by instantiating the metavariable compatibly with the typing
rules. This opportunity comes for free and is already heavily exploited.
For instance, if t is a theorem that proves \forall x,y:A. P x \to
P y \to x = y and H is a proof of (P 2), it is possible in Matita
to pass to a tactic the term (t ? ? ? H) that, after disambiguation,
becomes (t ?1 2 ?2 H) that represents at once a whole set of terms.
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The tactic can use the term in a context where the term is expected to
have type n = 2, further instantiating it to (t n 2 ?2 H).

In Matita we do not keep explicitly those set of representations that
can not be abstracted in a single term of the logic by means of metavari-
ables. Doing this would pose additional problems on the user interface
in providing feedback on the set of terms used as representations of a
formula. Moreover, most of the time the performances of the system
would suffer since every operation on a representation should be applied
in turn to each element of the set. When the operation under discussion
is the application of a long running automation tactic the additional
time spent in trying every interpretation can really make the tactic
unusable. However, this topic deserves further investigation.

3.3.4. Comparison with other systems
Overloading and subtyping are addressed in most interactive theo-
rem provers. We compare with Coq and Isabelle that have adopted
alternative solutions for both problems.

Overloading in Coq, Matita, and in the majority of systems is done
at the syntactic level and it must be resolved during the parsing (or
disambiguation) phase. On the contrary, overloading in Isabelle [35]
is a special form of constant definition where a constant is declared
as an axiom with a certain generic type; recursive rewriting rules are
associated to occurrences of the axiom specialized to certain types. The
rules must satisfy some criteria that grant the logical consistency of the
declaration. As explained in [24], the criterion adopted in Isabelle 2005
is not sufficient for consistency; an alternative criterion proposed in
the same paper accepts most common examples, but requires detecting
termination in a particular term rewriting system that is associated to
the overloaded definition.

We feel that overloading should be considered an user interface
issue to be addressed in a logic independent way and possibly to be
implemented as a stand-alone component to be plugged in different
systems. As previously discussed, our solution can be parameterized
on the type system, whereas the solution of Isabelle is more tightly
bound to the logic because of the need of detecting consistent definitions
(that, in Matita, has already been done before declaring the overloaded
notation). Moreover, in Isabelle overloading should always be combined
with type classes to restrict the type of the arguments of the overloaded
functions, otherwise type inference becomes too liberal, inferring well
typed representations that are not those intended by the user.

Overloading in Coq is more restricted than in Matita. Each symbol
can be overloaded several times, but each overloading must have a
different return type (in Coq terminology, it must belong to a differ-
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ent interpretation scope). When the application of a function to an
overloaded notation is interpreted, the type expected by the function
determines the only interpretation of the overloaded notation with that
return type. The user is also given special syntax to explicitly change
the interpretation scope for a sub-formula.

Coq’s mechanism allows to perform disambiguation in linear time,
but it suffers from several important limitations. When a function
is polymorphic, e.g. it has type \forall A:Type. A \to . . . , Coq is
unable to associate an interpretation scope to the second argument
of the function since the expected type will be known only after the
interpretation of the first argument. Moreover interpretation scopes
do not mix well with subtyping: if the current interpretation scope
is that of integer numbers and if multiplication is overloaded in that
scope with type Z -> Z -> Z, than forall (n:nat), n * 1 = n will
be rejected since the first argument of multiplication will be also parsed
in the interpretation scope of integer numbers without attempting any
insertion of coercions (that is performed only during type checking,
after disambiguation). Finally, the restriction on overloading inside an
interpretation scope is problematic in several examples where the type
of the arguments of the overloaded notation, and not the return type,
differentiate the interpretations.

Subtyping is implemented in Coq and Matita by means of coercive
subtyping. The two systems allows to declare general coercions, that
are useful not only to simulate subtyping. To prove generic theorems
over algebraic hierarchies dependent records in the spirit of [15] are
exploited. The subtyping relation for dependent records is replaced by
ad-hoc coercions. This approach has been successfully used in Coq for
the Constructive Coq Repository of Nijmegen [16] where the standard
algebraic and arithmetic hierarchies have been developed up to ordered
complete fields and complex numbers respectively.

Isabelle does not have coercions, but it implements type classes that
can be exploited to represent algebraic hierarchies thanks to the sub-
typing relation between type classes. Type classes have been inspired by
the similar concept in Haskell, that behind the scenes is implemented
using a technique similar to dependent records. Thus the approach of
Isabelle can be seen as more abstract with respect to the one of Matita
and it can be more natural for the user. The price to pay for not having
coercions is that quite often the user needs to explicitly insert functions
to embed values of a data type into values of a “supertype” that is a
completion of the first one that requires a different representation. This
is for instance the case when the user needs to map a natural number n
into the correspondent integral representative 〈n, 0〉 (integer numbers
are quotiented pair of natural numbers).
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3.4. Step by step tacticals

Two of the most frequent activities in interactive proving are proof
step formulation and execution [1]. In the Proof General interaction
paradigm, adopted by Matita, they are implemented respectively by
textually typing a command in the script editing window and moving
the execution point past the typed text. Already executed parts of the
script are locked to avoid accidental editing and highlighted to make
evident the position of the execution point. Feedback to the user is
provided by rendering in the sequents window the information about
what need to be done to conclude the proof.

In Matita, additional feedback can be given on demand by means of
pseudo-natural language representation of the current proof term, to
verify if it corresponds to the intended proof plan.

3.4.1. LCF tacticals: state of the art
Tactics, which represent single proof steps in a script, can be combined
to create complex proof strategies using higher order constructs called
tacticals. They first appeared in LCF [17] in 1979, and are nowadays
adopted by several mainstream provers like Isabelle, Coq, PVS, and
NuPRL. In this section we present the state of the art for LCF tacti-
cals, putting emphasis on the user interface aspects to reveal several
problems. In Matita we solve these problems replacing LCF tacticals
with tinycals that will be briefly discussed in the next section.

Paradigmatic examples of LCF tacticals are sequential composition
and branching. The former, usually written as “t1 ; t2”, takes two
tactics t1 and t2 and apply t2 to each of the goals resulting from the
application of t1 to the current goal; sequential composition can also
be repeated to obtain pipelines of tactics “t1 ; t2 ; t3 ; · · ·”. The latter,
“t ; [ t1 | · · · | tn ]”, takes n + 1 tactics, applies t to the current goal
and, requiring t to return exactly n goals, applies t1 to the first returned
goal, t2 to the second, and so forth. The script snippet of Figure 7 is
structured with LCF tacticals, expressed using the concrete syntax of
Matita tinycals.

LCF tacticals account for two improvements over plain tactic se-
quences. The first improvement its their ability in supporting script
structuring. Using branching indeed the script representation of proofs
can mimic the structure of the proof tree (the tree having sequents as
nodes and tactic-labeled arcs). Since proof tree branches usually reflect
conceptual parts of the pen and paper proof, the branching tactical
helps in improving scripts readability, which is on the average very
poor, if compared with declarative proof languages.
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theorem lt_O_defact_aux:
\forall f:nat_fact. \forall i:nat. O < defact_aux f i.

intro; elim f;
[1,2:
simplify; unfold lt;
rewrite > times_n_SO;
apply le_times;
[ change with (O < \pi _ i);
apply lt_O_nth_prime_n

|2,3:
change with (O < (\pi _ i)^n);
apply lt_O_exp;
apply lt_O_nth_prime_n

| change with (O < defact n1 (S i));
apply H ] ].

qed.

Figure 7. Sample Matita script with tacticals.

Maintainability of proof scripts is also improved by the use of
branching, for example when hypothesis are added, removed or per-
muted, since a static look at the script can spot where changes are
needed. The second improvement is the degree of conciseness that
could be achieved by factoring out common parts of proof scripts
using sequential composition. According to the proof as programming
metaphor [2], factorization of common scripts part is a practice as good
as factorization of code in ordinary programming.

The major drawback of LCF tacticals is in how they interact with
Proof General like user interfaces. In all the proof assistants we are
aware of, a tactic obtained applying a tactical is evaluated atomically
and placing the execution point in the middle of complex tacticals (for
example at occurrences of “;” in pipelines) is not allowed. Thus a fully
structured script as the one shown in Figure 7 can only be executed
atomically, either successfully (without any feedback on the inner proof
status the system passes through) or with a failure that is difficult to
understand. Several negative effects on the usability of the authoring
interface of such provers are induced by such coarse grained execution.

The first effect is the impossibility of showing interactively what is
happening during the evaluation of complex and potentially large script
snippets. This aspect is particularly annoying, given that scripts by
themselves are rarely meaningful without interactive proof replaying.

The second negative effect is in the inefficient practice of proof de-
velopment induced on users willing to obtain structured scripts. Since
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it is not always possible to predict the outcome of complex tactics, the
following is common practice among them:

1. evaluate the next tactic of the script;

2. inspect the set of returned sequents;

3. decide whether the use of “;” or “[” is appropriate;

4. if it is: retract the last statement, add the tactical, go to step (1).

The third and last negative effect is imprecise error reporting. Con-
sider the frequent case of a script breakage induced by changes in
the knowledge base. The error message returned by the system at a
given execution point may concern an inner status unknown to the
user, since the whole tactical is evaluated at once. Moreover, the error
message will probably concern terms that do not appear verbatim in
the script. Finding the statement that need to be fixed is usually done
replacing tactics with the identity tactic (a tactic which simply returns
unchanged the goal it was applied to) proceeding outside-in, until the
single failing tactic is found. This technique is not only error prone, but
is even not reliable in presence of side-effects (tactics closing sequents
other than that on which they are applied), since the identity tactic has
no side-effects and proof branches may be affected by their absence.

3.4.2. Matita tinycals
In Matita we break the tension between LCF tacticals and Proof Gen-
eral like interfaces by developing a new language of tacticals called
tinycals [29]. Tinycals can be evaluated in small steps, enabling the
execution point to be placed inside complex structures like pipelines
or branching constructs. The syntax of tacticals is de-structured and
the semantics is modified accordingly, enabling parsing and immediate
execution of fine grained constituents of LCF tacticals. In Figure 1 for
instance the occurrence of “[” just before the execution point has been
parsed and executed without executing the whole “[ . . . ]” block.

The semantics of tinycals is stated as a transition system over eval-
uation status, structures richer than the proof status tactics act on.
The key component of an evaluation status is the context stack, a
representation of the proof history up to the execution point. The
context stack is ruled by a last-in-first-out policy: levels get pushed
on top of it when tinycals which behave like “[” are executed and get
popped out of it when tinycals which behave like “]” are.

This way users can incrementally author script blocks encouraging
both proof structuring and conciseness. Tinycals also provide additional
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Figure 8. Visual representation of the context stack in the sequents window.

improvements not found in other tactical languages: non structured
sequences of tactics are locally permitted inside single branches of
structured snippets; addressing of several branches at once is possible
(using for example the “1,2:” syntax which can be found in Figure 7);
special support for focusing on a group of related goals is provided.

3.4.3. Visual representation of the context stack
The user interface of Proof General already presents part of the proof
status to the user in the sequents window. Our implementation in
Matita is based on a tabbed window, with one tab per sequent (see
Figure 8, where a zoomed sequents window is shown). Since the context
stack is peculiar of tinycals we decided from scratch how to present it
to the user. Being the stack a run time representation of (part of) the
proof tree, the idea of representing it visually as a tree is tempting.
However we failed to see any real advantage in such representation,
and past empirical studies on the topic of proof status representation
failed to see evidence of the utility of similar representations [2].

Our representation choice can be seen in the upper part of Figure 8.
The uppermost level of the context stack (the current branching con-
text) is represented as tab label annotations. All goals on which the
next tactic in a pipeline will be applied to have their labels typeset
in boldface (only ?34 in the example), goals of the current branching
context have labels prepended by |n (where n is their positional index,
|1: ?34 and |2: ?35 in the example), goals already closed by side-effects
have strike-through labels (?18 in the example). All remaining goals
are simply shown using their unique identifiers (e.g. ?25, ?26, ?27).

This choice makes the user aware of which goals will be affected
by a tactic evaluated at the execution point, and of all the indexing
information that might be needed there. Yet, this user interface choice
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minimizes the drift from the usual way of working in the Proof General
interaction paradigm, welcoming users used to other systems.

3.4.4. Related work
Two alternative approaches for authoring structured HOL scripts have
been proposed in [33] and [34]. The first approach, implemented in
Syme’s TkHOL, is similar to tinycals but was lacking a formal descrip-
tion that we provide in [29]. Moreover, unlike HOL, we consider a logic
with metavariables which can be closed by side effects. Therefore the
order in which branches are closed by tactics is relevant and must be
made explicit in the script. For this reason we support focusing and
positional addressing of branches which were missing in TkHOL.

The second approach, by Takahashi et al., implements syntax di-
rected editing by automatically claiming lemmata for each goal opened
by the last executed tactic. This technique breaks down with metavari-
ables because they are not allowed in the statements of lemmata.

4. Conclusions

In this paper we presented the interactive theorem prover Matita, focus-
ing on user interface aspects. We reported the main motivations behind
our design choices, but we silently omitted the historical perspective.
The overall choice to build the system aggregating many available com-
ponents and technologies (like XML, MathML, GTK+ and relational
databases), is a clear consequence of the way the system was born.

In the remainder of this section we will discuss how the origins of
Matita influenced its design and our plans for system development.

4.1. Historical perspective

The origins of Matita go back to 1999. At the time we were mostly
interested in developing tools and techniques to enhance the acces-
sibility via Web of libraries of formalized mathematics. Due to its
dimension, the library of the Coq proof assistant (of the order of 35’000
theorems) was chosen as a privileged test bench for our work, although
experiments have been also conducted with other systems, and notably
with NuPRL. The work, mostly performed in the framework of the
recently concluded European project MoWGLI [7], mainly consisted in
the following steps:

1. exporting the information from the internal representation of Coq
to a system and platform independent format. Since XML was at
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the time an emerging standard, we naturally adopted that tech-
nology, fostering a content-centric architecture [5] where the doc-
uments of the library were the main components around which
everything else has to be built;

2. developing indexing and searching techniques supporting semantic
queries to the library;

3. developing languages and tools for a high-quality notational ren-
dering of mathematical information.

According to our content-centric commitment, the library exported
from Coq was conceived as being distributed and most of the tools were
developed as Web services. The user interacts with the library and the
tools by means of a Web interface that orchestrates the Web services.

Web services and other tools have been implemented as front-ends to
a set of software components, collectively called the Helm components.
At the end of the MoWGLI project we already disposed of the following
tools and software components:

− XML specifications for the Calculus of Inductive Constructions,
with components for parsing and saving mathematical concepts in
such a format [27];

− metadata specifications with components for indexing and query-
ing the XML knowledge base;

− a proof checker (i.e. the kernel of a proof assistant), implemented
to check that we exported from the Coq library all the logically
relevant content;

− a sophisticated term parser (used by the search engine), able to
deal with potentially ambiguous and incomplete information, typ-
ical of the mathematical notation [30];

− a refiner component, i.e. a type inference system, based on par-
tially specified terms, used by the disambiguating parser [28];

− algorithms for proof rendering in natural language [6];

− an innovative, MathML-compliant rendering widget [25] for the
GTK+ graphical environment, supporting high-quality bidimen-
sional rendering, and semantic selection.

Starting from all this, developing our own proof assistant was not
out of reach: we “just” had to add an authoring interface, a set of

matita.tex; 26/02/2007; 18:40; p.31



32 Asperti, Sacerdoti Coen, Tassi, Zacchiroli

functionalities for the overall management of the library, and integrate
everything into a single system. Matita is the result of this effort.

4.2. On the exploitation of standard technologies

The software components Matita has been built on are heavily based on
a multitude of libraries for standard tasks such as XML parsing, con-
struction of DOM trees, syntax highlighting, and so on. These libraries
are often written in low level languages (C or C++) and they have inde-
pendent wrappers for the OCaml language. The neat result is increased
robustness of the code and more advanced functionalities, but also a
heavy set of dependencies needed to compile and run Matita. Similarly,
the dependency on a relational database provides scalability and good
performances, but introduces additional configuration complexity.

Most of the other systems have adopted the opposite approach of
providing self contained code, at the price of reimplementing standard
functionalities for the benefit of simplified installation procedures. The
same can be said of generic graphical interfaces such as Proof General
that so far has been entirely based on Emacs.

We think that an interesting goal for the research community is
splitting as much as possible the logic dependent code from the code
that deals with interface issues and to further separate the parts related
to the user interfaces. The aim is that of providing in the future not only
generic user interfaces, but also generic components for more advanced
tasks. The logic dependent code could be self contained for an easy
installation, while the generic components, to be installed only once
and to be developed collaboratively by the whole community, should
rely on external, state of the art, libraries. We will now try to clarify
the proposed splitting as components layering.

4.3. Components layering in interactive theorem proving

Even if Matita runs as a single process, its code can be roughly layered
into three layers. The inner layer (about 40.000 lines of OCaml code,
59% of the total), heavily logic dependent, is responsible for proof
verification and tactic execution. It relies on a library for parsing XML
files, used for storing and sharing the proof objects.

The outer layer (about 8.000 lines of OCaml code, 12% of the
total) is the graphical user interface. It is responsible for final ren-
dering of formulae and error messages, syntax highlighting of scripts,
representations of graphs, semantic selection, and so on. It is currently
based on high quality libraries constantly improved by the lively com-
munity of free software developers. Among them we use GTK+ (a
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graphical toolkit), Glade (rapid application development of user inter-
faces), GtkMathView (MathML+BoxML rendering), GtkSourceView
(syntax highlighting), GraphViz (graphs rendering), Gdome (model-
view-controller for MathML documents).

The middle layer (about 20.000 lines of OCaml code, 29% of the to-
tal), the most innovative one, is largely logic independent. It is responsi-
ble for: indexing and searching facilities (based on a logic independent
metadata set and on the use of a relational database); transforma-
tion from notational level terms to content level terms (parsing and
rendering, preserving cross references); disambiguation of content level
formulae (can be abstracted on a few logic dependent functionalities).
We regard all these functionalities as related to user interaction, but
independent from the user interface of the system. We claim that
the middle layer of generic mechanisms we presented can conveniently
fit between the kernel of other existing interactive theorem provers
and their user interfaces, exposing nice features to the user without
requiring major modification to the systems.

4.4. Future work

In the near future we plan to continue the development focusing on
and enhancing the peculiarities of Matita, starting from its document-
centric philosophy. In particular, we do not plan to maintain the library
in a centralized way, as most of the other systems do. On the contrary
we are currently developing Wiki-technologies to support collaborative
development of the library, encouraging people to expand, modify and
elaborate previous contributions. As a first step in this direction, we
will integrate Matita with a revision control system, building on the
invalidation and regeneration mechanisms to grant logical consistency.

Thanks to an increasing dissemination activity, we hope in the
medium term to attract users to form a critical mass and enter in direct
competition with the (still too few) major actors in the field. To this
aim, we are also progressing in the development of the standard library,
mainly to identify possible unnoticed problems and to give evidence of
the usability of the system.
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