
The Matita Interactive Theorem Prover

Andrea Asperti1, Wilmer Ricciotti1, Claudio Sacerdoti Coen1, and
Enrico Tassi2

1 Department of Computer Science, University of Bologna
Mura Anteo Zamboni, 7 — 40127 Bologna, ITALY

{asperti,ricciott,sacerdot}@cs.unibo.it
2 Microsoft Research - INRIA Joint Centre

enrico.tassi@inria.fr

Abstract. Matita is an interactive theorem prover being developed by
the Helm team at the University of Bologna. Its stable version 0.5.x may
be downloaded at http://matita.cs.unibo.it. The tool originated in
the European project MoWGLI as a set of XML-based tools aimed to
provide a mathematician-friendly web-interface to repositories of formal
mathematical knoweldge, supporting advanced content-based function-
alities for querying, searching and browsing the library. It has since then
evolved into a light but fully fledged ITP, particularly suited for the as-
sessment of innovative ideas, both at foundational and logical level. In
this paper, we give an account of the whole system, its peculiarities and
its main applications.

1 The system

Matita is an interactive proof assistant, adopting a dependent type theory - the
Calculus of (Co)Inductive Constructions (CIC) - as its foundational language for
describing proofs. It is thus compatible, at the proof term level, with Coq [27],
and the two systems are able to check each other’s proof objects. Since the two
systems do not share a single line of code, but are akin to each other, it is natural
to take Coq as the main term of comparison, referring to other systems (most
notably, Isabelle and HOL) when some ideas or philosophies characteristic of
these latter tools have been imported into our system.

Similarly to Coq, Matita follows the so called De Bruijn principle, stating
that proofs generated by the system should be verifiable by a small and trusted
component, traditionally called kernel. Unsurprisingly, the kernel has roughly the
same size in the two tools, in spite of a few differences in the encoding of terms: in
particular, Matita’s kernel handles explicit substitutions to mimic Coq’s Section
mechanism, and can cope with existential metavariables, i.e. non-linear place-
holders that are Curry-Howard isomorphic to holes in the proofs. Metavariables
cannot be instantiated by the kernel: they are considered as opaque constants,
with a declared type, only equal to themselves.

While this extension does not make the kernel sensibly more complex or
fragile, it has a beneficial effect on the size of the type inference subsystem, here

http://matita.cs.unibo.it


2 Asperti, Ricciotti, Sacerdoti Coen, and Tassi

called refiner. In particular, the refiner can directly call the kernel to check the
complex and delicate conditions (guardedness, positivity) needed to ensure the
termination of recursive functions and detect erroneous definition of inductive
types leading to logical paradoxes. The Matita refiner implements several ad-
vanced features like coercive subtyping [16] and subset coercions [24], that allow
for some automatic modifications of the user input to fix a type error or annotate
simple programs with proof obligations.

The kernel compares types up to conversion, that is a decidable relation
involving β-reduction, constant unfolding and recursive function computation.
On the contrary, the refiner deals with incomplete terms, and compares types
with a higher order unification algorithm in charge of finding an instantiation
for metavariables that makes the two types convertible. Higher order unification
is in general semi-decidable, and is thus usually implemented as an extension
of the usual first order algorithm equipped with some extra heuristics. To avoid
the inherent complexity of combining together many heuristics, Matita enables
the user to extend unification by means of unification hints [4], that give explicit
solutions for the cases not handled by the basic algorithm.

Remarkably, many ad-hoc mechanisms studied in the last years for dealing
with the formalization of algebraic structures, including Canonical Structures,
Type Classes [25,28], and Coercion Pullbacks [21], can be implemented on top
of unification hints.

Library. Besides the aforementioned components, that make up the core of all
theorem provers, the most important aspect of Matita is its document-centric
philosophy. Matita is meant, first of all, as an interface between the user and the
mathematical library, storing definitions, theorems and notation. An important
consequence of this is that once a concept has been defined and added to the
library, it will stay visible unless it is removed or invalidated, with no need for
the user to explicitly reference or include a part of the library.

Objects are stored in the library together with metadata, which are used for
indexing and searching. The searching facility provided by Matita, that is a key
component of the system, has been described in [2].

Disambiguation. A well known, complex problem for interactive provers is that,
at a linguistic level, ordinary mathematical discourse systematically overloads
symbols and abuses notations in ways that make mechanical interpretation dif-
ficult. This originates from various sources, including conflicting parsing rules,
implicit information that a human reader can recover from the context, overload-
ing of operators, and so on. The complexity of the problem is due to the fact
that the comprehension of the text sometimes requires not just knowledge of the
notation and conventions at play but some understanding of the relevant math-
ematical aspects of the discipline (e.g. the fact that a given set can be equipped
by a suitable algebraic structure), requiring the system to dig into its base of
knowledge, in order to correctly parse the statement!

Matita was designed keeping in mind that ambiguous notation is not an
unfortunate accident, but a powerful tool in the hands of mathematicians. For



The Matita Interactive Theorem Prover 3

this reason, the user is allowed the maximum degree of flexibility in defining
notation. To manage ambiguous notation, Matita provides an ambiguous parser
(described in [23]) associating to the user input the set of all its possible in-
terpretations (according to the defined notation). While ambiguous parsing is a
potentially expensive operation, Matita is able to preserve efficiency by means
of a sophisticated algorithm, capable of detecting semantic errors as early as
possible, in order to prevent semantic analysis of a multitude of incorrect inter-
pretations. At the end of the process, it is possible that we are left with more
than one interpretation: in this case, Matita asks the user to select the correct
interpretation, then it stores it into the script to avoid interrogating the user
again the next time the script is executed.

2 Proof authoring

The user interface of Matita was inspired by that of CtCoq [11] and Proof
General [9] and is, in our experience, quite easy to learn for newcomers. The
main language used to write proof scripts is procedural, in the LCF tradition,
and essentially similar to the one used by Coq. In addition to that, Matita
features a declarative language ([13]), in the style usually ascribed to Trybulec
(the so called Mizar-style [19]), and made popular in the ITP community mostly
by the work of Wenzel [29].

Despite many similarities to Coq, Matita departs from it in more than one re-
spect (see [5] for details). The sequent-window is based on a MathML-compliant
GTK-widget providing a sophisticated bidimensional rendering and supporting
hyperlinks. During proof authoring, direct manipulation of terms is available on
the generated MathML markup: the user can follow hyperlinks to library objects,
visually select semantically meaningful subterms using the mouse, and perform
contextual actions on them like copy&paste or tactic application. To textually
represent graphical selections Matita adopts patterns, that are generated on-the-
fly from visual selections and consistently used by all tactics.

Step by step tacticals. LCF-tacticals (operations combining a number of tactics
in complex proof strategies), which are used for a better syntactical structuring of
proof scripts, are also provided by Matita. Tacticals provide syntax for expressing
concepts like branching, mimicking the tree structure of proofs at the script level.
Since branches of proof trees usually corresponds to conceptual parts of pen &
paper proofs, the branching tactical helps improving script readability.

In other systems, the practical use of these constructs is limited by the need
of executing each tactical in a single step, even though it is composed of multiple
tactics. Instead, Matita offers the possibility of interrupting the execution of a
script at intermediate evaluation steps of a tactical, allowing the user to inspect
changes in the status and, if needed, edit the script. This is a notable improve-
ment in the overall user experience. Step by step tacticals – also called tinycals
– are described in [22].



4 Asperti, Ricciotti, Sacerdoti Coen, and Tassi

Automation. Automation is a well known weak point of Coq, only partially com-
pensated by powerful reflexive tactics. Matita was intended to fill this gap, with
a particular attention to support the automation of those small logical trans-
formations (small step automation) needed to match [7] the current goal versus
the knowledge bases of already proved results, and which constitute the under-
lying glue [8] of the actual mathematical discourse. A large part of this glue
can be expressed in form of rewritings, allowing mathematicians to freely move
between different incarnations of the same entity without even mentioning the
transformation (sometimes referred to as Poincaré’s principle). For this reason,
the main component of Matita automation is a powerful paramodulation tool1

able to exploit the whole library of known equational facts (unit equalities) in
order to solve equational goals. Paramodulation is also used to supply matching
up to equational rewriting between a goal and a given statement, and this in turn
is used to support a simple, smooth but effective integration between equational
reasoning and a backward-based, Prolog-like resolution procedure. Again, this
automation tactic exploits the whole library of visible results, adopting a philos-
ophy already advocated and implemented by several successful systems (see e.g.
[18]), and contrasting with the approach of Coq, requiring the user to thoroughly
select a collection of theorems to be used. On the other side, we are not eager to
extend our SLD-approach to a more general resolution technique, since the pro-
log style, being closer to the LCF backward based procedural approach, allows
a better interaction between the user and the application, permitting the user
to drive the automatic search, e.g. by pruning or reordering the search space [6].

3 Formalizations

In the last years, Matita was successfully used in formalizations of considerable
complexity, spanning on the following areas:

Number theory These formalizations include results about Möbius’s µ, Eu-
ler’s φ and Chebyshev’s ψ and θ functions, up to a fully arithmetical proof
of the property of prime numbers known as Bertrand’s postulate ([1,3]).

Constructive analysis The main result is Lebesgue’s dominated convergence
theorem in the new, abstract setting of convex uniform spaces [20]. The for-
malization stresses some features peculiar of Matita, like coercions pullback.

Programming languages metatheory Comprises the formalization of sev-
eral different solutions of part 1A of the POPLmark challenge [10], charac-
terized by a different treatment of binding structures.

Hardware formalization Matita has been used to provide two realistic and
executable models of microprocessors for the Freescale 8-bit family and the
8051/8052 microprocessors respectively. The formalization also captures the
intensional behaviour, comprising exact execution times.

1 Matita paramodulation tool took part in the UEQ category of the 2009 CASC com-
petition ([26]), scoring better than Metis [14], Otter [17], and iProver [15].



The Matita Interactive Theorem Prover 5

Software verification Matita is employed in the FET Open EU Project CerCo
(Certified Complexity)2 ([12]) for the verification of the first formally cer-
tified complexity preserving compiler. The compiler, that targets the 8051
microprocessor, annotates the input program (in C) with the exact compu-
tational cost of every O(1) program slice. The costs, that are dependent on
the compilation strategy, are directly computed from the generated object
code. Hence it will be possible to reason on a hard real time program at the
C level, knowing that the compiled code will have the same behaviour. The
formalization in Matita will include executable formal models of every in-
termediate languages, a dependently typed implementation of the compiler,
and the proof of preservation of extensional and intensional properties.

Acknowledgments We would like to thank all the peolpe that contributed to
the development of Matita in the last ten years, and in particular F. Guidi,
L. Padovani, and S. Zacchiroli.

References

1. Andrea Asperti and Cristian Armentano. A page in number theory. Journal of
Formalized Reasoning, 1:1–23, 2008.

2. Andrea Asperti, Ferruccio Guidi, Claudio Sacerdoti Coen, Enrico Tassi, and Ste-
fano Zacchiroli. A content based mathematical search engine: Whelp. In Proc. of
TYPES’04, volume 3839 of LNCS, pages 17–32. Springer-Verlag, 2004.

3. Andrea Asperti and Wilmer Ricciotti. About the formalization of some results by
Chebyshev in number theory. In Proc. of TYPES’08, volume 5497 of LNCS, pages
19–31. Springer-Verlag, 2009.

4. Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi.
Hints in unification. In TPHOLs 2009, volume 5674/2009 of LNCS, pages 84–
98. Springer-Verlag, 2009.

5. Andrea Asperti, Claudio Sacerdoti Coen, Enrico Tassi, and Stefano Zacchiroli. User
interaction with the Matita proof assistant. J. Autom. Reasoning, 39(2):109–139,
2007.

6. Andrea Asperti and Enrico Tassi. An interactive driver for goal directed proof
strategies. In Proc. of UITP’08., volume 226 of ENTCS, pages 89–105, 2009.

7. Andrea Asperti and Enrico Tassi. Smart matching. In Proc. of MKM 2010, volume
6167 of LNCS, pages 263–277, 2010.

8. Andrea Asperti and Enrico Tassi. Superposition as a logical glue. In Proc. of
TYPES’09, EPTCS (to appear), 2010.

9. David Aspinall. Proof General: A generic tool for proof development. In Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 2000, volume
1785 of LNCS. Springer-Verlag, January 2000.

10. Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Ben-
jamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie
Weirich, and Steve Zdancewic. Mechanized metatheory for the masses: The

2 The project CerCo acknowledges the financial support of the Future and Emerg-
ing Technologies (FET) programme within the Seventh Framework Programme for
Research of the European Commission, under FET-Open grant number: 243881.



6 Asperti, Ricciotti, Sacerdoti Coen, and Tassi

POPLmark challenge. In Proc. of TPHOLs 2005), volume 3603 of LNCS, pages
50–65, 2005.

11. Yves Bertot. The CtCoq system: Design and architecture. Formal Aspects of
Computing, 11:225–243, 1999.

12. The CerCo website.
http://cerco.cs.unibo.it.

13. Claudio Sacerdoti Coen. Declarative representation of proof terms. J. Autom.
Reasoning, 44(1-2):25–52, 2010.

14. Joe Hurd. First-order proof tactics in higher-order logic theorem provers. Technical
Report NASA/CP-2003-212448, Nasa technical reports, 2003.

15. Konstantin Korovin. iProver – an instantiation-based theorem prover for first-
order logic (system description). In Proc. of IJCAR 2008, volume 5195 of LNCS,
pages 292–298. Springer, 2008.

16. Zhaohui Luo. Coercive subtyping. J. Logic and Computation, 9(1):105–130, 1999.
17. William McCune and Larry Wos. Otter - the CADE-13 competition incarnations.

J. of Autom. Reasoning, 18(2):211–220, 1997.
18. Jia Meng, Claire Quigley, and Lawrence C. Paulson. Automation for interactive

proof: First prototype. Inf. Comput., 204(10):1575–1596, 2006.
19. The Mizar proof-assistant.

http://mizar.uwb.edu.pl/.
20. Claudio Sacerdoti Coen and Enrico Tassi. A constructive and formal proof of

Lebesgue’s dominated convergence theorem in the interactive theorem prover
Matita. Journal of Formalized Reasoning, 1:51–89, 2008.

21. Claudio Sacerdoti Coen and Enrico Tassi. Working with mathematical structures
in type theory. In Proc. of TYPES’07, volume 4941/2008 of LNCS, pages 157–172.
Springer-Verlag, 2008.

22. Claudio Sacerdoti Coen, Enrico Tassi, and Stefano Zacchiroli. Tinycals: step by
step tacticals. In Proc. of UITP 2006, volume 174 of ENTCS, pages 125–142.
Elsevier Science, 2006.

23. Claudio Sacerdoti Coen and Stefano Zacchiroli. Efficient ambiguous parsing of
mathematical formulae. In Proc. of MKM 2004, volume 3119 of LNCS, pages
347–362. Springer-Verlag, 2004.

24. Matthieu Sozeau. Subset coercions in Coq. In Proc. of TYPES’06, volume
4502/2007 of LNCS, pages 237–252. Springer-Verlag, 2006.

25. Matthieu Sozeau and Nicolas Oury. First-class type classes. In Proc. of TPHOLs
2008, pages 278–293, 2008.

26. Geoff Sutcliffe. The CADE-22 automated theorem proving system competition -
CASC-22. AI Commun., 23:47–59, January 2010.

27. The Coq Development Team. The Coq proof assistant reference manual.
http://coq.inria.fr/doc/main.html.

28. Markus Wenzel. Type classes and overloading in higher-order logic. In Proc. of
TPHOLs 1997, volume 1275 of LNCS, pages 307–322, 1997.

29. Markus Wenzel. Isar – a generic interpretative approach to readable formal proof
documents. In Proc. of TPHOLS 1999, volume 1690 of LNCS, pages 167–184.
Springer, 1999.

http://cerco.cs.unibo.it
http://mizar.uwb.edu.pl/
http://coq.inria.fr/doc/main.html

	The Matita Interactive Theorem Prover

