(* Copyright (C) 2003-2005, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) module C = Cic module E = CicEnvironment module Un = CicUniv module TC = CicTypeChecker module UM = UriManager module Rd = CicReduction module PEH = ProofEngineHelpers module PT = PrimitiveTactics module DTI = DoubleTypeInference module H = ProceduralHelpers (* helpers ******************************************************************) let rec list_sub start length = function | _ :: tl when start > 0 -> list_sub (pred start) length tl | hd :: tl when length > 0 -> hd :: list_sub start (pred length) tl | _ -> [] (* proof construction *******************************************************) let iter f k = let rec iter_xns k (uri, t) = uri, iter_term k t and iter_ms k = function | None -> None | Some t -> Some (iter_term k t) and iter_fix len k (id, name, i, ty, bo) = id, name, i, iter_term k ty, iter_term (k + len) bo and iter_cofix len k (id, name, ty, bo) = id, name, iter_term k ty, iter_term (k + len) bo and iter_term k = function | C.ASort _ as t -> t | C.AImplicit _ as t -> t | C.ARel (id, rid, m, b) as t -> if m < k then t else f k id rid m b | C.AConst (id, uri, xnss) -> C.AConst (id, uri, List.map (iter_xns k) xnss) | C.AVar (id, uri, xnss) -> C.AVar (id, uri, List.map (iter_xns k) xnss) | C.AMutInd (id, uri, tyno, xnss) -> C.AMutInd (id, uri, tyno, List.map (iter_xns k) xnss) | C.AMutConstruct (id, uri, tyno, consno, xnss) -> C.AMutConstruct (id, uri,tyno,consno, List.map (iter_xns k) xnss) | C.AMeta (id, i, mss) -> C.AMeta(id, i, List.map (iter_ms k) mss) | C.AAppl (id, ts) -> C.AAppl (id, List.map (iter_term k) ts) | C.ACast (id, te, ty) -> C.ACast (id, iter_term k te, iter_term k ty) | C.AMutCase (id, sp, i, outty, t, pl) -> C.AMutCase (id, sp, i, iter_term k outty, iter_term k t, List.map (iter_term k) pl) | C.AProd (id, n, s, t) -> C.AProd (id, n, iter_term k s, iter_term (succ k) t) | C.ALambda (id, n, s, t) -> C.ALambda (id, n, iter_term k s, iter_term (succ k) t) | C.ALetIn (id, n, ty, s, t) -> C.ALetIn (id, n, iter_term k ty, iter_term k s, iter_term (succ k) t) | C.AFix (id, i, fl) -> C.AFix (id, i, List.map (iter_fix (List.length fl) k) fl) | C.ACoFix (id, i, fl) -> C.ACoFix (id, i, List.map (iter_cofix (List.length fl) k) fl) in iter_term k let lift k n = let f _ id rid m b = if m + n > 0 then C.ARel (id, rid, m + n, b) else begin HLog.error (Printf.sprintf "ProceduralConversion.lift: %i %i" m n); assert false end in iter f k let subst k v = let f k id rid m b = if m = k then lift 1 (pred k) v else C.ARel (id, rid, pred m, b) in iter f k let fake_annotate id c = let get_binder c m = try match List.nth c (pred m) with | Some (C.Name s, _) -> s | _ -> assert false with | Invalid_argument _ -> assert false in let mk_decl n v = Some (n, C.Decl v) in let mk_def n v ty = Some (n, C.Def (v, ty)) in let mk_fix (name, _, ty, bo) = mk_def (C.Name name) bo ty in let mk_cofix (name, ty, bo) = mk_def (C.Name name) bo ty in let rec ann_xns c (uri, t) = uri, ann_term c t and ann_ms c = function | None -> None | Some t -> Some (ann_term c t) and ann_fix newc c (name, i, ty, bo) = id, name, i, ann_term c ty, ann_term (List.rev_append newc c) bo and ann_cofix newc c (name, ty, bo) = id, name, ann_term c ty, ann_term (List.rev_append newc c) bo and ann_term c = function | C.Sort sort -> C.ASort (id, sort) | C.Implicit ann -> C.AImplicit (id, ann) | C.Rel m -> C.ARel (id, id, m, get_binder c m) | C.Const (uri, xnss) -> C.AConst (id, uri, List.map (ann_xns c) xnss) | C.Var (uri, xnss) -> C.AVar (id, uri, List.map (ann_xns c) xnss) | C.MutInd (uri, tyno, xnss) -> C.AMutInd (id, uri, tyno, List.map (ann_xns c) xnss) | C.MutConstruct (uri, tyno, consno, xnss) -> C.AMutConstruct (id, uri,tyno,consno, List.map (ann_xns c) xnss) | C.Meta (i, mss) -> C.AMeta(id, i, List.map (ann_ms c) mss) | C.Appl ts -> C.AAppl (id, List.map (ann_term c) ts) | C.Cast (te, ty) -> C.ACast (id, ann_term c te, ann_term c ty) | C.MutCase (sp, i, outty, t, pl) -> C.AMutCase (id, sp, i, ann_term c outty, ann_term c t, List.map (ann_term c) pl) | C.Prod (n, s, t) -> C.AProd (id, n, ann_term c s, ann_term (mk_decl n s :: c) t) | C.Lambda (n, s, t) -> C.ALambda (id, n, ann_term c s, ann_term (mk_decl n s :: c) t) | C.LetIn (n, s, ty, t) -> C.ALetIn (id, n, ann_term c s, ann_term c ty, ann_term (mk_def n s ty :: c) t) | C.Fix (i, fl) -> C.AFix (id, i, List.map (ann_fix (List.rev_map mk_fix fl) c) fl) | C.CoFix (i, fl) -> C.ACoFix (id, i, List.map (ann_cofix (List.rev_map mk_cofix fl) c) fl) in ann_term c let mk_arel k = C.ARel ("", "", k, "") let mk_aappl ts = C.AAppl ("", ts) let rec clear_absts f n k = function | t when n = 0 -> f k t | C.ALambda (_, _, _, t) -> clear_absts f (pred n) (succ k) t | t -> let u = match mk_aappl [lift (succ k) 1 t; mk_arel (succ k)] with | C.AAppl (_, [ C.AAppl (id, ts); t]) -> C.AAppl (id, ts @ [t]) | t -> t in clear_absts f (pred n) (succ k) u let hole id = C.AImplicit (id, Some `Hole) let meta id = C.AImplicit (id, None) let anon = C.Anonymous let generalize n = let is_meta = let map b = function | C.AImplicit (_, None) when b -> b | _ -> false in List.fold_left map true in let rec gen_fix len k (id, name, i, ty, bo) = id, name, i, gen_term k ty, gen_term (k + len) bo and gen_cofix len k (id, name, ty, bo) = id, name, gen_term k ty, gen_term (k + len) bo and gen_term k = function | C.ASort (id, _) | C.AImplicit (id, _) | C.AConst (id, _, _) | C.AVar (id, _, _) | C.AMutInd (id, _, _, _) | C.AMutConstruct (id, _, _, _, _) | C.AMeta (id, _, _) -> meta id | C.ARel (id, _, m, _) -> if succ (k - n) <= m && m <= k then hole id else meta id | C.AAppl (id, ts) -> let ts = List.map (gen_term k) ts in if is_meta ts then meta id else C.AAppl (id, ts) | C.ACast (id, te, ty) -> let te, ty = gen_term k te, gen_term k ty in if is_meta [te; ty] then meta id else C.ACast (id, te, ty) | C.AMutCase (id, sp, i, outty, t, pl) -> let outty, t, pl = gen_term k outty, gen_term k t, List.map (gen_term k) pl in if is_meta (outty :: t :: pl) then meta id else hole id (* C.AMutCase (id, sp, i, outty, t, pl) *) | C.AProd (id, _, s, t) -> let s, t = gen_term k s, gen_term (succ k) t in if is_meta [s; t] then meta id else C.AProd (id, anon, s, t) | C.ALambda (id, _, s, t) -> let s, t = gen_term k s, gen_term (succ k) t in if is_meta [s; t] then meta id else C.ALambda (id, anon, s, t) | C.ALetIn (id, _, s, ty, t) -> let s, ty, t = gen_term k s, gen_term k ty, gen_term (succ k) t in if is_meta [s; t] then meta id else C.ALetIn (id, anon, s, ty, t) | C.AFix (id, i, fl) -> C.AFix (id, i, List.map (gen_fix (List.length fl) k) fl) | C.ACoFix (id, i, fl) -> C.ACoFix (id, i, List.map (gen_cofix (List.length fl) k) fl) in gen_term let convert g ity k predicate = let rec aux = function | C.ALambda (_, _, b, ity), C.ALambda (id, n, u, pred) -> C.ALambda (id, n, aux (b, u), aux (ity, pred)) | C.AProd (_, _, b, ity), C.AProd (id, n, u, pred) -> C.AProd (id, n, aux (b, u), aux (ity, pred)) | C.ALetIn (_, _, a, b, ity), C.ALetIn (id, n, v, u, pred) -> C.ALetIn (id, n, aux (a, v), aux (b, u), aux (ity, pred)) | C.AAppl (_, bs), C.AAppl (id, us) when List.length bs = List.length us -> let map b u = aux (b,u) in C.AAppl (id, List.map2 map bs us) | C.ACast (_, ity, b), C.ACast (id, pred, u) -> C.ACast (id, aux (ity, pred), aux (b, u)) | ity, C.AAppl (_, C.ALambda (_, _, _, pred) :: v :: []) -> aux (ity, subst 1 v pred) | ity, C.AAppl (id, C.ALambda (_, _, _, pred) :: v :: vs) -> aux (ity, C.AAppl (id, subst 1 v pred :: vs)) | _, pred -> pred in g k (aux (ity, predicate)) let mk_pattern psno ity predicate = clear_absts (convert (generalize psno) ity) psno 0 predicate let beta v = function | C.ALambda (_, _, _, t) -> subst 1 v t | _ -> assert false let get_clears c p xtypes = let meta = C.Implicit None in let rec aux c names p it et = function | [] -> List.rev c, List.rev names | Some (C.Name name as n, C.Decl v) as hd :: tl -> let hd, names, v = if DTI.does_not_occur 1 p && DTI.does_not_occur 1 it && DTI.does_not_occur 1 et then Some (C.Anonymous, C.Decl v), name :: names, meta else hd, names, v in let p = C.Lambda (n, v, p) in let it = C.Prod (n, v, it) in let et = C.Prod (n, v, et) in aux (hd :: c) names p it et tl | Some (C.Name name as n, C.Def (v, x)) as hd :: tl -> let hd, names, v = if DTI.does_not_occur 1 p && DTI.does_not_occur 1 it && DTI.does_not_occur 1 et then Some (C.Anonymous, C.Def (v, x)), name :: names, meta else hd, names, v in let p = C.LetIn (n, v, x, p) in let it = C.LetIn (n, v, x, it) in let et = C.LetIn (n, v, x, et) in aux (hd :: c) names p it et tl | Some (C.Anonymous as n, C.Decl v) as hd :: tl -> let p = C.Lambda (n, meta, p) in let it = C.Lambda (n, meta, it) in let et = C.Lambda (n, meta, et) in aux (hd :: c) names p it et tl | Some (C.Anonymous as n, C.Def (v, _)) as hd :: tl -> let p = C.LetIn (n, meta, meta, p) in let it = C.LetIn (n, meta, meta, it) in let et = C.LetIn (n, meta, meta, et) in aux (hd :: c) names p it et tl | None :: tl -> assert false in match xtypes with | Some (it, et) -> aux [] [] p it et c | None -> c, [] let clear c hyp = let rec aux c = function | [] -> List.rev c | Some (C.Name name, entry) :: tail when name = hyp -> aux (Some (C.Anonymous, entry) :: c) tail | entry :: tail -> aux (entry :: c) tail in aux [] c (* let elim_inferred_type context goal arg using cpattern = let metasenv, ugraph = [], Un.default_ugraph in let ety = H.get_type "elim_inferred_type" context using in let _splits, args_no = PEH.split_with_whd (context, ety) in let _metasenv, _subst, predicate, _arg, actual_args = PT.mk_predicate_for_elim ~context ~metasenv ~subst:[] ~ugraph ~goal ~arg ~using ~cpattern ~args_no in let ty = C.Appl (predicate :: actual_args) in let upto = List.length actual_args in Rd.head_beta_reduce ~delta:false ~upto ty *) let does_not_occur = function | C.AImplicit (_, None) -> true | _ -> false