TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO007-2.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 7235 TreeLimitedRun: ---------------------------------------------------------- 7237: Facts: 7237: Id : 2, {_}: add ?2 ?3 =<->= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 7237: Id : 3, {_}: multiply ?5 ?6 =<->= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6 7237: Id : 4, {_}: add (multiply ?8 ?9) ?10 =<= multiply (add ?8 ?10) (add ?9 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10 7237: Id : 5, {_}: add ?12 (multiply ?13 ?14) =<= multiply (add ?12 ?13) (add ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14 7237: Id : 6, {_}: multiply (add ?16 ?17) ?18 =<= add (multiply ?16 ?18) (multiply ?17 ?18) [18, 17, 16] by distributivity3 ?16 ?17 ?18 7237: Id : 7, {_}: multiply ?20 (add ?21 ?22) =<= add (multiply ?20 ?21) (multiply ?20 ?22) [22, 21, 20] by distributivity4 ?20 ?21 ?22 7237: Id : 8, {_}: add ?24 (inverse ?24) =>= multiplicative_identity [24] by additive_inverse1 ?24 7237: Id : 9, {_}: add (inverse ?26) ?26 =>= multiplicative_identity [26] by additive_inverse2 ?26 7237: Id : 10, {_}: multiply ?28 (inverse ?28) =>= additive_identity [28] by multiplicative_inverse1 ?28 7237: Id : 11, {_}: multiply (inverse ?30) ?30 =>= additive_identity [30] by multiplicative_inverse2 ?30 7237: Id : 12, {_}: multiply ?32 multiplicative_identity =>= ?32 [32] by multiplicative_id1 ?32 7237: Id : 13, {_}: multiply multiplicative_identity ?34 =>= ?34 [34] by multiplicative_id2 ?34 7237: Id : 14, {_}: add ?36 additive_identity =>= ?36 [36] by additive_id1 ?36 7237: Id : 15, {_}: add additive_identity ?38 =>= ?38 [38] by additive_id2 ?38 7237: Goal: 7237: Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity Statistics : Max weight : 22 Found proof, 25.812520s % SZS status Unsatisfiable for BOO007-2.p % SZS output start CNFRefutation for BOO007-2.p Id : 15, {_}: add additive_identity ?38 =>= ?38 [38] by additive_id2 ?38 Id : 14, {_}: add ?36 additive_identity =>= ?36 [36] by additive_id1 ?36 Id : 10, {_}: multiply ?28 (inverse ?28) =>= additive_identity [28] by multiplicative_inverse1 ?28 Id : 29, {_}: add (multiply ?78 ?79) ?80 =<= multiply (add ?78 ?80) (add ?79 ?80) [80, 79, 78] by distributivity1 ?78 ?79 ?80 Id : 7, {_}: multiply ?20 (add ?21 ?22) =<= add (multiply ?20 ?21) (multiply ?20 ?22) [22, 21, 20] by distributivity4 ?20 ?21 ?22 Id : 12, {_}: multiply ?32 multiplicative_identity =>= ?32 [32] by multiplicative_id1 ?32 Id : 13, {_}: multiply multiplicative_identity ?34 =>= ?34 [34] by multiplicative_id2 ?34 Id : 8, {_}: add ?24 (inverse ?24) =>= multiplicative_identity [24] by additive_inverse1 ?24 Id : 5, {_}: add ?12 (multiply ?13 ?14) =<= multiply (add ?12 ?13) (add ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14 Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 Id : 6, {_}: multiply (add ?16 ?17) ?18 =<= add (multiply ?16 ?18) (multiply ?17 ?18) [18, 17, 16] by distributivity3 ?16 ?17 ?18 Id : 4, {_}: add (multiply ?8 ?9) ?10 =<= multiply (add ?8 ?10) (add ?9 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10 Id : 3, {_}: multiply ?5 ?6 =?= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6 Id : 4410, {_}: add (multiply ?5051 (multiply ?5052 ?5053)) (multiply ?5054 ?5053) =<= multiply (add ?5051 (multiply ?5054 ?5053)) (multiply (add ?5052 ?5054) ?5053) [5054, 5053, 5052, 5051] by Super 4 with 6 at 2,3 Id : 110, {_}: add ?331 (multiply (inverse ?331) ?332) =>= multiply multiplicative_identity (add ?331 ?332) [332, 331] by Super 5 with 8 at 1,3 Id : 2619, {_}: add ?3165 (multiply (inverse ?3165) ?3166) =>= add ?3165 ?3166 [3166, 3165] by Demod 110 with 13 at 3 Id : 2624, {_}: add ?3177 (inverse ?3177) =>= add ?3177 multiplicative_identity [3177] by Super 2619 with 12 at 2,2 Id : 2676, {_}: multiplicative_identity =<= add ?3177 multiplicative_identity [3177] by Demod 2624 with 8 at 2 Id : 2712, {_}: add multiplicative_identity ?3245 =>= multiplicative_identity [3245] by Super 2 with 2676 at 3 Id : 4418, {_}: add (multiply ?5090 (multiply multiplicative_identity ?5091)) (multiply ?5092 ?5091) =<= multiply (add ?5090 (multiply ?5092 ?5091)) (multiply multiplicative_identity ?5091) [5092, 5091, 5090] by Super 4410 with 2712 at 1,2,3 Id : 4492, {_}: add (multiply ?5090 ?5091) (multiply ?5092 ?5091) =<= multiply (add ?5090 (multiply ?5092 ?5091)) (multiply multiplicative_identity ?5091) [5092, 5091, 5090] by Demod 4418 with 13 at 2,1,2 Id : 4493, {_}: multiply (add ?5090 ?5092) ?5091 =<= multiply (add ?5090 (multiply ?5092 ?5091)) (multiply multiplicative_identity ?5091) [5091, 5092, 5090] by Demod 4492 with 6 at 2 Id : 4494, {_}: multiply (add ?5090 ?5092) ?5091 =<= multiply (add ?5090 (multiply ?5092 ?5091)) ?5091 [5091, 5092, 5090] by Demod 4493 with 13 at 2,3 Id : 14427, {_}: multiply (add ?18435 ?18436) ?18437 =<= multiply ?18437 (add ?18435 (multiply ?18436 ?18437)) [18437, 18436, 18435] by Demod 4494 with 3 at 3 Id : 14483, {_}: multiply (add (multiply ?18657 ?18658) ?18657) ?18659 =?= multiply ?18659 (multiply ?18657 (add ?18658 ?18659)) [18659, 18658, 18657] by Super 14427 with 7 at 2,3 Id : 14628, {_}: multiply (add ?18657 (multiply ?18657 ?18658)) ?18659 =?= multiply ?18659 (multiply ?18657 (add ?18658 ?18659)) [18659, 18658, 18657] by Demod 14483 with 2 at 1,2 Id : 42, {_}: multiply (add ?110 ?111) (add ?110 ?112) =>= add ?110 (multiply ?112 ?111) [112, 111, 110] by Super 3 with 5 at 3 Id : 54, {_}: add ?110 (multiply ?111 ?112) =?= add ?110 (multiply ?112 ?111) [112, 111, 110] by Demod 42 with 5 at 2 Id : 32, {_}: add (multiply ?90 ?91) ?92 =<= multiply (add ?92 ?90) (add ?91 ?92) [92, 91, 90] by Super 29 with 2 at 1,3 Id : 2623, {_}: add ?3175 additive_identity =<= add ?3175 (inverse (inverse ?3175)) [3175] by Super 2619 with 10 at 2,2 Id : 2675, {_}: ?3175 =<= add ?3175 (inverse (inverse ?3175)) [3175] by Demod 2623 with 14 at 2 Id : 2885, {_}: add (multiply ?3390 ?3391) (inverse (inverse ?3391)) =<= multiply (add (inverse (inverse ?3391)) ?3390) ?3391 [3391, 3390] by Super 32 with 2675 at 2,3 Id : 2902, {_}: add (inverse (inverse ?3391)) (multiply ?3390 ?3391) =<= multiply (add (inverse (inverse ?3391)) ?3390) ?3391 [3390, 3391] by Demod 2885 with 2 at 2 Id : 2903, {_}: add (inverse (inverse ?3391)) (multiply ?3390 ?3391) =<= multiply ?3391 (add (inverse (inverse ?3391)) ?3390) [3390, 3391] by Demod 2902 with 3 at 3 Id : 109, {_}: add ?328 (multiply ?329 (inverse ?328)) =>= multiply (add ?328 ?329) multiplicative_identity [329, 328] by Super 5 with 8 at 2,3 Id : 113, {_}: add ?328 (multiply ?329 (inverse ?328)) =>= multiply multiplicative_identity (add ?328 ?329) [329, 328] by Demod 109 with 3 at 3 Id : 3539, {_}: add ?328 (multiply ?329 (inverse ?328)) =>= add ?328 ?329 [329, 328] by Demod 113 with 13 at 3 Id : 127, {_}: multiply ?345 (add (inverse ?345) ?346) =>= add additive_identity (multiply ?345 ?346) [346, 345] by Super 7 with 10 at 1,3 Id : 3718, {_}: multiply ?4360 (add (inverse ?4360) ?4361) =>= multiply ?4360 ?4361 [4361, 4360] by Demod 127 with 15 at 3 Id : 3731, {_}: multiply ?4395 (inverse ?4395) =<= multiply ?4395 (inverse (inverse (inverse ?4395))) [4395] by Super 3718 with 2675 at 2,2 Id : 3816, {_}: additive_identity =<= multiply ?4395 (inverse (inverse (inverse ?4395))) [4395] by Demod 3731 with 10 at 2 Id : 3994, {_}: add (inverse (inverse ?4521)) additive_identity =?= add (inverse (inverse ?4521)) ?4521 [4521] by Super 3539 with 3816 at 2,2 Id : 4001, {_}: add additive_identity (inverse (inverse ?4521)) =<= add (inverse (inverse ?4521)) ?4521 [4521] by Demod 3994 with 2 at 2 Id : 4002, {_}: inverse (inverse ?4521) =<= add (inverse (inverse ?4521)) ?4521 [4521] by Demod 4001 with 15 at 2 Id : 4003, {_}: inverse (inverse ?4521) =<= add ?4521 (inverse (inverse ?4521)) [4521] by Demod 4002 with 2 at 3 Id : 4004, {_}: inverse (inverse ?4521) =>= ?4521 [4521] by Demod 4003 with 2675 at 3 Id : 6542, {_}: add ?3391 (multiply ?3390 ?3391) =<= multiply ?3391 (add (inverse (inverse ?3391)) ?3390) [3390, 3391] by Demod 2903 with 4004 at 1,2 Id : 6543, {_}: add ?3391 (multiply ?3390 ?3391) =<= multiply ?3391 (add ?3391 ?3390) [3390, 3391] by Demod 6542 with 4004 at 1,2,3 Id : 198, {_}: add ?435 (multiply additive_identity ?436) =<= multiply ?435 (add ?435 ?436) [436, 435] by Super 5 with 14 at 1,3 Id : 218, {_}: add (multiply additive_identity ?463) ?464 =<= multiply ?464 (add ?463 ?464) [464, 463] by Super 4 with 15 at 1,3 Id : 823, {_}: add (multiply additive_identity ?1231) ?1232 =<= multiply ?1232 (add ?1231 ?1232) [1232, 1231] by Super 4 with 15 at 1,3 Id : 825, {_}: add (multiply additive_identity ?1237) (inverse ?1237) =>= multiply (inverse ?1237) multiplicative_identity [1237] by Super 823 with 8 at 2,3 Id : 857, {_}: add (inverse ?1237) (multiply additive_identity ?1237) =>= multiply (inverse ?1237) multiplicative_identity [1237] by Demod 825 with 2 at 2 Id : 858, {_}: add (inverse ?1237) (multiply additive_identity ?1237) =>= multiply multiplicative_identity (inverse ?1237) [1237] by Demod 857 with 3 at 3 Id : 859, {_}: add (inverse ?1237) (multiply additive_identity ?1237) =>= inverse ?1237 [1237] by Demod 858 with 13 at 3 Id : 1779, {_}: add (multiply additive_identity (inverse ?2462)) (multiply additive_identity ?2462) =>= multiply (multiply additive_identity ?2462) (inverse ?2462) [2462] by Super 218 with 859 at 2,3 Id : 1796, {_}: add (multiply additive_identity ?2462) (multiply additive_identity (inverse ?2462)) =>= multiply (multiply additive_identity ?2462) (inverse ?2462) [2462] by Demod 1779 with 2 at 2 Id : 1797, {_}: multiply additive_identity (add ?2462 (inverse ?2462)) =<= multiply (multiply additive_identity ?2462) (inverse ?2462) [2462] by Demod 1796 with 7 at 2 Id : 1798, {_}: multiply additive_identity multiplicative_identity =<= multiply (multiply additive_identity ?2462) (inverse ?2462) [2462] by Demod 1797 with 8 at 2,2 Id : 1799, {_}: multiply multiplicative_identity additive_identity =<= multiply (multiply additive_identity ?2462) (inverse ?2462) [2462] by Demod 1798 with 3 at 2 Id : 1800, {_}: additive_identity =<= multiply (multiply additive_identity ?2462) (inverse ?2462) [2462] by Demod 1799 with 13 at 2 Id : 1801, {_}: additive_identity =<= multiply (inverse ?2462) (multiply additive_identity ?2462) [2462] by Demod 1800 with 3 at 3 Id : 2630, {_}: add ?3192 additive_identity =<= add ?3192 (multiply additive_identity ?3192) [3192] by Super 2619 with 1801 at 2,2 Id : 2681, {_}: ?3192 =<= add ?3192 (multiply additive_identity ?3192) [3192] by Demod 2630 with 14 at 2 Id : 2946, {_}: add (multiply additive_identity ?3456) (multiply additive_identity ?3456) =>= multiply (multiply additive_identity ?3456) ?3456 [3456] by Super 218 with 2681 at 2,3 Id : 2974, {_}: multiply (add additive_identity additive_identity) ?3456 =<= multiply (multiply additive_identity ?3456) ?3456 [3456] by Demod 2946 with 6 at 2 Id : 2975, {_}: multiply additive_identity ?3456 =<= multiply (multiply additive_identity ?3456) ?3456 [3456] by Demod 2974 with 14 at 1,2 Id : 2976, {_}: multiply additive_identity ?3456 =<= multiply ?3456 (multiply additive_identity ?3456) [3456] by Demod 2975 with 3 at 3 Id : 3700, {_}: multiply ?345 (add (inverse ?345) ?346) =>= multiply ?345 ?346 [346, 345] by Demod 127 with 15 at 3 Id : 3717, {_}: multiply additive_identity (add (inverse additive_identity) ?4358) =<= multiply (add (inverse additive_identity) ?4358) (multiply additive_identity ?4358) [4358] by Super 2976 with 3700 at 2,3 Id : 219, {_}: inverse additive_identity =>= multiplicative_identity [] by Super 8 with 15 at 2 Id : 3743, {_}: multiply additive_identity (add multiplicative_identity ?4358) =<= multiply (add (inverse additive_identity) ?4358) (multiply additive_identity ?4358) [4358] by Demod 3717 with 219 at 1,2,2 Id : 3744, {_}: multiply additive_identity multiplicative_identity =<= multiply (add (inverse additive_identity) ?4358) (multiply additive_identity ?4358) [4358] by Demod 3743 with 2712 at 2,2 Id : 3745, {_}: multiply multiplicative_identity additive_identity =<= multiply (add (inverse additive_identity) ?4358) (multiply additive_identity ?4358) [4358] by Demod 3744 with 3 at 2 Id : 3746, {_}: additive_identity =<= multiply (add (inverse additive_identity) ?4358) (multiply additive_identity ?4358) [4358] by Demod 3745 with 13 at 2 Id : 3747, {_}: additive_identity =<= multiply (add multiplicative_identity ?4358) (multiply additive_identity ?4358) [4358] by Demod 3746 with 219 at 1,1,3 Id : 3748, {_}: additive_identity =<= multiply multiplicative_identity (multiply additive_identity ?4358) [4358] by Demod 3747 with 2712 at 1,3 Id : 3749, {_}: additive_identity =<= multiply additive_identity ?4358 [4358] by Demod 3748 with 13 at 3 Id : 3851, {_}: add ?435 additive_identity =<= multiply ?435 (add ?435 ?436) [436, 435] by Demod 198 with 3749 at 2,2 Id : 3875, {_}: ?435 =<= multiply ?435 (add ?435 ?436) [436, 435] by Demod 3851 with 14 at 2 Id : 6544, {_}: add ?3391 (multiply ?3390 ?3391) =>= ?3391 [3390, 3391] by Demod 6543 with 3875 at 3 Id : 6555, {_}: add ?7711 (multiply ?7711 ?7712) =>= ?7711 [7712, 7711] by Super 54 with 6544 at 3 Id : 27581, {_}: multiply ?44844 ?44845 =<= multiply ?44845 (multiply ?44844 (add ?44846 ?44845)) [44846, 44845, 44844] by Demod 14628 with 6555 at 1,2 Id : 27601, {_}: multiply ?44928 (multiply ?44929 ?44930) =<= multiply (multiply ?44929 ?44930) (multiply ?44928 ?44930) [44930, 44929, 44928] by Super 27581 with 6544 at 2,2,3 Id : 27602, {_}: multiply ?44932 (multiply ?44933 ?44934) =<= multiply (multiply ?44933 ?44934) (multiply ?44932 ?44933) [44934, 44933, 44932] by Super 27581 with 6555 at 2,2,3 Id : 40097, {_}: multiply (multiply ?69603 ?69604) (multiply ?69604 ?69605) =>= multiply ?69603 (multiply ?69604 ?69605) [69605, 69604, 69603] by Super 3 with 27602 at 3 Id : 59, {_}: add (multiply ?156 (multiply ?157 ?158)) (multiply ?159 ?158) =<= multiply (add ?156 (multiply ?159 ?158)) (multiply (add ?157 ?159) ?158) [159, 158, 157, 156] by Super 4 with 6 at 2,3 Id : 6681, {_}: add (multiply ?7900 (multiply ?7901 ?7902)) (multiply ?7900 ?7902) =>= multiply ?7900 (multiply (add ?7901 ?7900) ?7902) [7902, 7901, 7900] by Super 59 with 6555 at 1,3 Id : 6781, {_}: add (multiply ?7900 ?7902) (multiply ?7900 (multiply ?7901 ?7902)) =>= multiply ?7900 (multiply (add ?7901 ?7900) ?7902) [7901, 7902, 7900] by Demod 6681 with 2 at 2 Id : 6782, {_}: multiply ?7900 (add ?7902 (multiply ?7901 ?7902)) =?= multiply ?7900 (multiply (add ?7901 ?7900) ?7902) [7901, 7902, 7900] by Demod 6781 with 7 at 2 Id : 18606, {_}: multiply ?26516 ?26517 =<= multiply ?26516 (multiply (add ?26518 ?26516) ?26517) [26518, 26517, 26516] by Demod 6782 with 6544 at 2,2 Id : 18626, {_}: multiply (multiply ?26600 ?26601) ?26602 =<= multiply (multiply ?26600 ?26601) (multiply ?26601 ?26602) [26602, 26601, 26600] by Super 18606 with 6544 at 1,2,3 Id : 40364, {_}: multiply (multiply ?69603 ?69604) ?69605 =>= multiply ?69603 (multiply ?69604 ?69605) [69605, 69604, 69603] by Demod 40097 with 18626 at 2 Id : 40676, {_}: multiply ?44928 (multiply ?44929 ?44930) =<= multiply ?44929 (multiply ?44930 (multiply ?44928 ?44930)) [44930, 44929, 44928] by Demod 27601 with 40364 at 3 Id : 313, {_}: add (multiply ?580 ?581) ?582 =<= multiply (add ?580 ?582) (add ?582 ?581) [582, 581, 580] by Super 29 with 2 at 2,3 Id : 322, {_}: add (multiply ?615 ?616) (inverse ?615) =?= multiply multiplicative_identity (add (inverse ?615) ?616) [616, 615] by Super 313 with 8 at 1,3 Id : 344, {_}: add (inverse ?615) (multiply ?615 ?616) =?= multiply multiplicative_identity (add (inverse ?615) ?616) [616, 615] by Demod 322 with 2 at 2 Id : 345, {_}: add (inverse ?615) (multiply ?615 ?616) =>= add (inverse ?615) ?616 [616, 615] by Demod 344 with 13 at 3 Id : 4715, {_}: multiply ?5528 (add (inverse ?5528) ?5529) =>= multiply ?5528 (multiply ?5528 ?5529) [5529, 5528] by Super 3700 with 345 at 2,2 Id : 4833, {_}: multiply ?5660 ?5661 =<= multiply ?5660 (multiply ?5660 ?5661) [5661, 5660] by Demod 4715 with 3700 at 2 Id : 4834, {_}: multiply ?5663 ?5664 =<= multiply ?5663 (multiply ?5664 ?5663) [5664, 5663] by Super 4833 with 3 at 2,3 Id : 40677, {_}: multiply ?44928 (multiply ?44929 ?44930) =?= multiply ?44929 (multiply ?44930 ?44928) [44930, 44929, 44928] by Demod 40676 with 4834 at 2,3 Id : 41115, {_}: multiply a (multiply b c) =?= multiply a (multiply b c) [] by Demod 41114 with 40677 at 3 Id : 41114, {_}: multiply a (multiply b c) =<= multiply c (multiply a b) [] by Demod 1 with 3 at 3 Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity % SZS output end CNFRefutation for BOO007-2.p 7238: solved BOO007-2.p in 9.556596 using kbo WARNING: TreeLimitedRun lost 20.33s, total lost is 20.33s FINAL WATCH: 29.9 CPU 26.0 WC Killed 3 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO007-4.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 7254 TreeLimitedRun: ---------------------------------------------------------- 7256: Facts: 7256: Id : 2, {_}: add ?2 ?3 =<->= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 7256: Id : 3, {_}: multiply ?5 ?6 =<->= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6 7256: Id : 4, {_}: add ?8 (multiply ?9 ?10) =<= multiply (add ?8 ?9) (add ?8 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10 7256: Id : 5, {_}: multiply ?12 (add ?13 ?14) =<= add (multiply ?12 ?13) (multiply ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14 7256: Id : 6, {_}: add ?16 additive_identity =>= ?16 [16] by additive_id1 ?16 7256: Id : 7, {_}: multiply ?18 multiplicative_identity =>= ?18 [18] by multiplicative_id1 ?18 7256: Id : 8, {_}: add ?20 (inverse ?20) =>= multiplicative_identity [20] by additive_inverse1 ?20 7256: Id : 9, {_}: multiply ?22 (inverse ?22) =>= additive_identity [22] by multiplicative_inverse1 ?22 7256: Goal: 7256: Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity Statistics : Max weight : 25 Found proof, 20.469434s % SZS status Unsatisfiable for BOO007-4.p % SZS output start CNFRefutation for BOO007-4.p Id : 5, {_}: multiply ?12 (add ?13 ?14) =<= add (multiply ?12 ?13) (multiply ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14 Id : 8, {_}: add ?20 (inverse ?20) =>= multiplicative_identity [20] by additive_inverse1 ?20 Id : 4, {_}: add ?8 (multiply ?9 ?10) =<= multiply (add ?8 ?9) (add ?8 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10 Id : 7, {_}: multiply ?18 multiplicative_identity =>= ?18 [18] by multiplicative_id1 ?18 Id : 40, {_}: multiply ?112 (add ?113 ?114) =<= add (multiply ?112 ?113) (multiply ?112 ?114) [114, 113, 112] by distributivity2 ?112 ?113 ?114 Id : 6, {_}: add ?16 additive_identity =>= ?16 [16] by additive_id1 ?16 Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 Id : 23, {_}: add ?62 (multiply ?63 ?64) =<= multiply (add ?62 ?63) (add ?62 ?64) [64, 63, 62] by distributivity1 ?62 ?63 ?64 Id : 3, {_}: multiply ?5 ?6 =?= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6 Id : 92, {_}: add ?229 (multiply ?230 ?231) =<= multiply (add ?229 ?230) (add ?231 ?229) [231, 230, 229] by Super 23 with 2 at 2,3 Id : 99, {_}: add ?256 (multiply additive_identity ?257) =<= multiply ?256 (add ?257 ?256) [257, 256] by Super 92 with 6 at 1,3 Id : 57, {_}: add additive_identity ?160 =>= ?160 [160] by Super 2 with 6 at 3 Id : 2049, {_}: multiply ?2660 (add ?2661 ?2662) =<= add (multiply ?2660 ?2661) (multiply ?2662 ?2660) [2662, 2661, 2660] by Super 40 with 3 at 2,3 Id : 67, {_}: multiply multiplicative_identity ?178 =>= ?178 [178] by Super 3 with 7 at 3 Id : 2053, {_}: multiply ?2674 (add ?2675 multiplicative_identity) =?= add (multiply ?2674 ?2675) ?2674 [2675, 2674] by Super 2049 with 67 at 2,3 Id : 76, {_}: add ?193 (multiply (inverse ?193) ?194) =>= multiply multiplicative_identity (add ?193 ?194) [194, 193] by Super 4 with 8 at 1,3 Id : 1763, {_}: add ?2343 (multiply (inverse ?2343) ?2344) =>= add ?2343 ?2344 [2344, 2343] by Demod 76 with 67 at 3 Id : 1767, {_}: add ?2353 (inverse ?2353) =>= add ?2353 multiplicative_identity [2353] by Super 1763 with 7 at 2,2 Id : 1810, {_}: multiplicative_identity =<= add ?2353 multiplicative_identity [2353] by Demod 1767 with 8 at 2 Id : 2111, {_}: multiply ?2674 multiplicative_identity =<= add (multiply ?2674 ?2675) ?2674 [2675, 2674] by Demod 2053 with 1810 at 2,2 Id : 2112, {_}: ?2674 =<= add (multiply ?2674 ?2675) ?2674 [2675, 2674] by Demod 2111 with 7 at 2 Id : 2113, {_}: ?2674 =<= add ?2674 (multiply ?2674 ?2675) [2675, 2674] by Demod 2112 with 2 at 3 Id : 2776, {_}: additive_identity =<= multiply additive_identity ?3300 [3300] by Super 57 with 2113 at 2 Id : 2859, {_}: add ?256 additive_identity =<= multiply ?256 (add ?257 ?256) [257, 256] by Demod 99 with 2776 at 2,2 Id : 2867, {_}: ?256 =<= multiply ?256 (add ?257 ?256) [257, 256] by Demod 2859 with 6 at 2 Id : 38, {_}: add (multiply ?102 ?103) (multiply ?104 (multiply ?102 ?105)) =<= multiply (add (multiply ?102 ?103) ?104) (multiply ?102 (add ?103 ?105)) [105, 104, 103, 102] by Super 4 with 5 at 2,3 Id : 1840, {_}: add multiplicative_identity ?2424 =>= multiplicative_identity [2424] by Super 2 with 1810 at 3 Id : 1916, {_}: add (multiply ?2484 multiplicative_identity) (multiply ?2485 (multiply ?2484 ?2486)) =?= multiply (add (multiply ?2484 multiplicative_identity) ?2485) (multiply ?2484 multiplicative_identity) [2486, 2485, 2484] by Super 38 with 1840 at 2,2,3 Id : 1942, {_}: add ?2484 (multiply ?2485 (multiply ?2484 ?2486)) =?= multiply (add (multiply ?2484 multiplicative_identity) ?2485) (multiply ?2484 multiplicative_identity) [2486, 2485, 2484] by Demod 1916 with 7 at 1,2 Id : 1943, {_}: add ?2484 (multiply ?2485 (multiply ?2484 ?2486)) =?= multiply (add ?2484 ?2485) (multiply ?2484 multiplicative_identity) [2486, 2485, 2484] by Demod 1942 with 7 at 1,1,3 Id : 1944, {_}: add ?2484 (multiply ?2485 (multiply ?2484 ?2486)) =>= multiply (add ?2484 ?2485) ?2484 [2486, 2485, 2484] by Demod 1943 with 7 at 2,3 Id : 1945, {_}: add ?2484 (multiply ?2485 (multiply ?2484 ?2486)) =>= multiply ?2484 (add ?2484 ?2485) [2486, 2485, 2484] by Demod 1944 with 3 at 3 Id : 56, {_}: add ?157 (multiply additive_identity ?158) =<= multiply ?157 (add ?157 ?158) [158, 157] by Super 4 with 6 at 1,3 Id : 1946, {_}: add ?2484 (multiply ?2485 (multiply ?2484 ?2486)) =>= add ?2484 (multiply additive_identity ?2485) [2486, 2485, 2484] by Demod 1945 with 56 at 3 Id : 11614, {_}: add ?2484 (multiply ?2485 (multiply ?2484 ?2486)) =>= add ?2484 additive_identity [2486, 2485, 2484] by Demod 1946 with 2776 at 2,3 Id : 11615, {_}: add ?2484 (multiply ?2485 (multiply ?2484 ?2486)) =>= ?2484 [2486, 2485, 2484] by Demod 11614 with 6 at 3 Id : 11631, {_}: multiply ?14884 (multiply ?14885 ?14886) =<= multiply (multiply ?14884 (multiply ?14885 ?14886)) ?14885 [14886, 14885, 14884] by Super 2867 with 11615 at 2,3 Id : 20293, {_}: multiply ?31824 (multiply ?31825 ?31826) =<= multiply ?31825 (multiply ?31824 (multiply ?31825 ?31826)) [31826, 31825, 31824] by Demod 11631 with 3 at 3 Id : 20294, {_}: multiply ?31828 (multiply ?31829 ?31830) =<= multiply ?31829 (multiply ?31828 (multiply ?31830 ?31829)) [31830, 31829, 31828] by Super 20293 with 3 at 2,2,3 Id : 2069, {_}: multiply ?2737 (add multiplicative_identity ?2738) =?= add ?2737 (multiply ?2738 ?2737) [2738, 2737] by Super 2049 with 7 at 1,3 Id : 2133, {_}: multiply ?2737 multiplicative_identity =<= add ?2737 (multiply ?2738 ?2737) [2738, 2737] by Demod 2069 with 1840 at 2,2 Id : 2134, {_}: ?2737 =<= add ?2737 (multiply ?2738 ?2737) [2738, 2737] by Demod 2133 with 7 at 2 Id : 3299, {_}: add ?3993 (multiply ?3994 (multiply ?3995 ?3993)) =>= multiply (add ?3993 ?3994) ?3993 [3995, 3994, 3993] by Super 4 with 2134 at 2,3 Id : 3344, {_}: add ?3993 (multiply ?3994 (multiply ?3995 ?3993)) =>= multiply ?3993 (add ?3993 ?3994) [3995, 3994, 3993] by Demod 3299 with 3 at 3 Id : 2858, {_}: add ?157 additive_identity =<= multiply ?157 (add ?157 ?158) [158, 157] by Demod 56 with 2776 at 2,2 Id : 2868, {_}: ?157 =<= multiply ?157 (add ?157 ?158) [158, 157] by Demod 2858 with 6 at 2 Id : 3345, {_}: add ?3993 (multiply ?3994 (multiply ?3995 ?3993)) =>= ?3993 [3995, 3994, 3993] by Demod 3344 with 2868 at 3 Id : 12917, {_}: multiply ?17385 (multiply ?17386 ?17387) =<= multiply (multiply ?17385 (multiply ?17386 ?17387)) ?17387 [17387, 17386, 17385] by Super 2867 with 3345 at 2,3 Id : 13062, {_}: multiply ?17385 (multiply ?17386 ?17387) =<= multiply ?17387 (multiply ?17385 (multiply ?17386 ?17387)) [17387, 17386, 17385] by Demod 12917 with 3 at 3 Id : 29600, {_}: multiply ?31828 (multiply ?31829 ?31830) =?= multiply ?31828 (multiply ?31830 ?31829) [31830, 31829, 31828] by Demod 20294 with 13062 at 3 Id : 2779, {_}: add (multiply ?3308 ?3309) (multiply additive_identity ?3308) =>= multiply (multiply ?3308 ?3309) ?3308 [3309, 3308] by Super 99 with 2113 at 2,3 Id : 41, {_}: multiply ?116 (add ?117 ?118) =<= add (multiply ?116 ?117) (multiply ?118 ?116) [118, 117, 116] by Super 40 with 3 at 2,3 Id : 2816, {_}: multiply ?3308 (add ?3309 additive_identity) =<= multiply (multiply ?3308 ?3309) ?3308 [3309, 3308] by Demod 2779 with 41 at 2 Id : 2817, {_}: multiply ?3308 ?3309 =<= multiply (multiply ?3308 ?3309) ?3308 [3309, 3308] by Demod 2816 with 6 at 2,2 Id : 2818, {_}: multiply ?3308 ?3309 =<= multiply ?3308 (multiply ?3308 ?3309) [3309, 3308] by Demod 2817 with 3 at 3 Id : 3384, {_}: multiply ?4113 (add ?4114 (multiply ?4113 ?4115)) =>= add (multiply ?4113 ?4114) (multiply ?4113 ?4115) [4115, 4114, 4113] by Super 5 with 2818 at 2,3 Id : 13455, {_}: multiply ?18521 (add ?18522 (multiply ?18521 ?18523)) =>= multiply ?18521 (add ?18522 ?18523) [18523, 18522, 18521] by Demod 3384 with 5 at 3 Id : 13513, {_}: multiply ?18755 (multiply ?18756 (add ?18757 ?18755)) =?= multiply ?18755 (add (multiply ?18756 ?18757) ?18756) [18757, 18756, 18755] by Super 13455 with 41 at 2,2 Id : 13649, {_}: multiply ?18755 (multiply ?18756 (add ?18757 ?18755)) =?= multiply ?18755 (add ?18756 (multiply ?18756 ?18757)) [18757, 18756, 18755] by Demod 13513 with 2 at 2,3 Id : 22072, {_}: multiply ?35092 (multiply ?35093 (add ?35094 ?35092)) =>= multiply ?35092 ?35093 [35094, 35093, 35092] by Demod 13649 with 2113 at 2,3 Id : 22103, {_}: multiply (multiply ?35231 ?35232) (multiply ?35233 ?35231) =>= multiply (multiply ?35231 ?35232) ?35233 [35233, 35232, 35231] by Super 22072 with 2113 at 2,2,2 Id : 31136, {_}: multiply (multiply ?54413 ?54414) (multiply ?54413 ?54415) =>= multiply (multiply ?54413 ?54414) ?54415 [54415, 54414, 54413] by Super 29600 with 22103 at 3 Id : 22104, {_}: multiply (multiply ?35235 ?35236) (multiply ?35237 ?35236) =>= multiply (multiply ?35235 ?35236) ?35237 [35237, 35236, 35235] by Super 22072 with 2134 at 2,2,2 Id : 31766, {_}: multiply (multiply ?55866 ?55867) (multiply ?55867 ?55868) =>= multiply (multiply ?55866 ?55867) ?55868 [55868, 55867, 55866] by Super 29600 with 22104 at 3 Id : 31181, {_}: multiply (multiply ?54619 ?54620) (multiply ?54620 ?54621) =>= multiply (multiply ?54620 ?54621) ?54619 [54621, 54620, 54619] by Super 3 with 22103 at 3 Id : 36297, {_}: multiply (multiply ?55867 ?55868) ?55866 =?= multiply (multiply ?55866 ?55867) ?55868 [55866, 55868, 55867] by Demod 31766 with 31181 at 2 Id : 36392, {_}: multiply ?65656 (multiply ?65657 ?65658) =<= multiply (multiply ?65656 ?65657) ?65658 [65658, 65657, 65656] by Super 3 with 36297 at 3 Id : 36866, {_}: multiply ?54413 (multiply ?54414 (multiply ?54413 ?54415)) =>= multiply (multiply ?54413 ?54414) ?54415 [54415, 54414, 54413] by Demod 31136 with 36392 at 2 Id : 36867, {_}: multiply ?54413 (multiply ?54414 (multiply ?54413 ?54415)) =>= multiply ?54413 (multiply ?54414 ?54415) [54415, 54414, 54413] by Demod 36866 with 36392 at 3 Id : 11765, {_}: multiply ?14884 (multiply ?14885 ?14886) =<= multiply ?14885 (multiply ?14884 (multiply ?14885 ?14886)) [14886, 14885, 14884] by Demod 11631 with 3 at 3 Id : 36868, {_}: multiply ?54414 (multiply ?54413 ?54415) =?= multiply ?54413 (multiply ?54414 ?54415) [54415, 54413, 54414] by Demod 36867 with 11765 at 2 Id : 37322, {_}: multiply a (multiply b c) =?= multiply a (multiply b c) [] by Demod 37321 with 3 at 2,3 Id : 37321, {_}: multiply a (multiply b c) =?= multiply a (multiply c b) [] by Demod 37320 with 36868 at 3 Id : 37320, {_}: multiply a (multiply b c) =<= multiply c (multiply a b) [] by Demod 1 with 3 at 3 Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity % SZS output end CNFRefutation for BOO007-4.p 7257: solved BOO007-4.p in 8.584536 using kbo WARNING: TreeLimitedRun lost 22.96s, total lost is 22.96s FINAL WATCH: 31.5 CPU 20.5 WC Killed 3 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO019-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 7284 TreeLimitedRun: ---------------------------------------------------------- 7286: Facts: 7286: Id : 2, {_}: multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6) =>= multiply ?2 ?3 (multiply ?4 ?5 ?6) [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6 7286: Id : 3, {_}: multiply ?8 ?8 ?9 =>= ?8 [9, 8] by ternary_multiply_2 ?8 ?9 7286: Id : 4, {_}: multiply (inverse ?11) ?11 ?12 =>= ?12 [12, 11] by left_inverse ?11 ?12 7286: Id : 5, {_}: multiply ?14 ?15 (inverse ?15) =>= ?14 [15, 14] by right_inverse ?14 ?15 7286: Goal: 7286: Id : 1, {_}: multiply y x x =>= x [] by prove_ternary_multiply_1_independant % SZS status Timeout for BOO019-1.p FINAL WATCH: 181.3 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO023-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 7357 TreeLimitedRun: ---------------------------------------------------------- 7359: Facts: 7359: Id : 2, {_}: multiply (add ?2 ?3) ?3 =>= ?3 [3, 2] by multiply_add ?2 ?3 7359: Id : 3, {_}: multiply ?5 (add ?6 ?7) =<= add (multiply ?6 ?5) (multiply ?7 ?5) [7, 6, 5] by multiply_add_property ?5 ?6 ?7 7359: Id : 4, {_}: add ?9 (inverse ?9) =>= n1 [9] by additive_inverse ?9 7359: Id : 5, {_}: pixley ?11 ?12 ?13 =<= add (multiply ?11 (inverse ?12)) (add (multiply ?11 ?13) (multiply (inverse ?12) ?13)) [13, 12, 11] by pixley_defn ?11 ?12 ?13 7359: Id : 6, {_}: pixley ?15 ?15 ?16 =>= ?16 [16, 15] by pixley1 ?15 ?16 7359: Id : 7, {_}: pixley ?18 ?19 ?19 =>= ?18 [19, 18] by pixley2 ?18 ?19 7359: Id : 8, {_}: pixley ?21 ?22 ?21 =>= ?21 [22, 21] by pixley3 ?21 ?22 7359: Goal: 7359: Id : 1, {_}: add a (multiply b c) =<= multiply (add a b) (add a c) [] by prove_add_multiply_property Statistics : Max weight : 22 Found proof, 27.362162s % SZS status Unsatisfiable for BOO023-1.p % SZS output start CNFRefutation for BOO023-1.p Id : 6, {_}: pixley ?15 ?15 ?16 =>= ?16 [16, 15] by pixley1 ?15 ?16 Id : 7, {_}: pixley ?18 ?19 ?19 =>= ?18 [19, 18] by pixley2 ?18 ?19 Id : 12, {_}: multiply ?33 (add ?34 ?35) =<= add (multiply ?34 ?33) (multiply ?35 ?33) [35, 34, 33] by multiply_add_property ?33 ?34 ?35 Id : 4, {_}: add ?9 (inverse ?9) =>= n1 [9] by additive_inverse ?9 Id : 2, {_}: multiply (add ?2 ?3) ?3 =>= ?3 [3, 2] by multiply_add ?2 ?3 Id : 5, {_}: pixley ?11 ?12 ?13 =<= add (multiply ?11 (inverse ?12)) (add (multiply ?11 ?13) (multiply (inverse ?12) ?13)) [13, 12, 11] by pixley_defn ?11 ?12 ?13 Id : 8, {_}: pixley ?21 ?22 ?21 =>= ?21 [22, 21] by pixley3 ?21 ?22 Id : 3, {_}: multiply ?5 (add ?6 ?7) =<= add (multiply ?6 ?5) (multiply ?7 ?5) [7, 6, 5] by multiply_add_property ?5 ?6 ?7 Id : 19, {_}: pixley ?11 ?12 ?13 =<= add (multiply ?11 (inverse ?12)) (multiply ?13 (add ?11 (inverse ?12))) [13, 12, 11] by Demod 5 with 3 at 2,3 Id : 45, {_}: multiply (multiply ?127 (add ?128 ?129)) (multiply ?129 ?127) =>= multiply ?129 ?127 [129, 128, 127] by Super 2 with 3 at 1,2 Id : 49, {_}: multiply (multiply ?143 n1) (multiply (inverse ?144) ?143) =>= multiply (inverse ?144) ?143 [144, 143] by Super 45 with 4 at 2,1,2 Id : 13, {_}: multiply ?37 (add ?38 (add ?39 ?37)) =>= add (multiply ?38 ?37) ?37 [39, 38, 37] by Super 12 with 2 at 2,3 Id : 14, {_}: multiply ?41 (add (add ?42 ?41) ?43) =>= add ?41 (multiply ?43 ?41) [43, 42, 41] by Super 12 with 2 at 1,3 Id : 16, {_}: multiply n1 (inverse ?49) =>= inverse ?49 [49] by Super 2 with 4 at 1,2 Id : 39, {_}: multiply (inverse ?107) (add ?108 n1) =<= add (multiply ?108 (inverse ?107)) (inverse ?107) [108, 107] by Super 3 with 16 at 2,3 Id : 162, {_}: multiply (pixley ?405 ?406 ?407) (multiply ?407 (add ?405 (inverse ?406))) =>= multiply ?407 (add ?405 (inverse ?406)) [407, 406, 405] by Super 2 with 19 at 1,2 Id : 456, {_}: multiply ?899 (multiply ?900 (add ?899 (inverse ?900))) =>= multiply ?900 (add ?899 (inverse ?900)) [900, 899] by Super 162 with 7 at 1,2 Id : 207, {_}: multiply (multiply ?492 n1) (multiply (inverse ?493) ?492) =>= multiply (inverse ?493) ?492 [493, 492] by Super 45 with 4 at 2,1,2 Id : 224, {_}: multiply n1 (multiply (inverse ?523) (add ?524 n1)) =>= multiply (inverse ?523) (add ?524 n1) [524, 523] by Super 207 with 2 at 1,2 Id : 227, {_}: multiply n1 (add (inverse ?534) (multiply n1 (inverse ?534))) =<= multiply (inverse ?534) (add (add ?535 (inverse ?534)) n1) [535, 534] by Super 224 with 14 at 2,2 Id : 232, {_}: multiply n1 (add (inverse ?534) (inverse ?534)) =<= multiply (inverse ?534) (add (add ?535 (inverse ?534)) n1) [535, 534] by Demod 227 with 16 at 2,2,2 Id : 233, {_}: multiply n1 (add (inverse ?534) (inverse ?534)) =>= add (inverse ?534) (multiply n1 (inverse ?534)) [534] by Demod 232 with 14 at 3 Id : 234, {_}: multiply n1 (add (inverse ?534) (inverse ?534)) =>= add (inverse ?534) (inverse ?534) [534] by Demod 233 with 16 at 2,3 Id : 460, {_}: multiply (inverse n1) (add (inverse n1) (inverse n1)) =>= multiply n1 (add (inverse n1) (inverse n1)) [] by Super 456 with 234 at 2,2 Id : 468, {_}: multiply (inverse n1) (add (inverse n1) (inverse n1)) =>= add (inverse n1) (inverse n1) [] by Demod 460 with 234 at 3 Id : 469, {_}: pixley (inverse n1) n1 (inverse n1) =<= add (multiply (inverse n1) (inverse n1)) (add (inverse n1) (inverse n1)) [] by Super 19 with 468 at 2,3 Id : 483, {_}: inverse n1 =<= add (multiply (inverse n1) (inverse n1)) (add (inverse n1) (inverse n1)) [] by Demod 469 with 8 at 2 Id : 491, {_}: multiply (inverse n1) (inverse n1) =<= add (multiply (multiply (inverse n1) (inverse n1)) (inverse n1)) (inverse n1) [] by Super 13 with 483 at 2,2 Id : 510, {_}: multiply (inverse n1) (inverse n1) =<= multiply (inverse n1) (add (multiply (inverse n1) (inverse n1)) n1) [] by Demod 491 with 39 at 3 Id : 21, {_}: pixley ?58 ?59 ?60 =<= add (multiply ?58 (inverse ?59)) (multiply ?60 (add ?58 (inverse ?59))) [60, 59, 58] by Demod 5 with 3 at 2,3 Id : 22, {_}: pixley ?62 ?62 ?63 =<= add (multiply ?62 (inverse ?62)) (multiply ?63 n1) [63, 62] by Super 21 with 4 at 2,2,3 Id : 116, {_}: ?322 =<= add (multiply ?323 (inverse ?323)) (multiply ?322 n1) [323, 322] by Demod 22 with 6 at 2 Id : 131, {_}: ?358 =<= add (inverse n1) (multiply ?358 n1) [358] by Super 116 with 16 at 1,3 Id : 144, {_}: add ?384 n1 =?= add (inverse n1) n1 [384] by Super 131 with 2 at 2,3 Id : 132, {_}: add ?360 n1 =?= add (inverse n1) n1 [360] by Super 131 with 2 at 2,3 Id : 145, {_}: add ?386 n1 =?= add ?387 n1 [387, 386] by Super 144 with 132 at 3 Id : 511, {_}: multiply (inverse n1) (inverse n1) =<= multiply (inverse n1) (add ?957 n1) [957] by Super 510 with 145 at 2,3 Id : 527, {_}: multiply (inverse n1) (inverse n1) =<= add (inverse n1) (multiply n1 (inverse n1)) [] by Super 14 with 511 at 2 Id : 536, {_}: multiply (inverse n1) (inverse n1) =>= add (inverse n1) (inverse n1) [] by Demod 527 with 16 at 2,3 Id : 548, {_}: multiply (inverse n1) (add (inverse n1) n1) =<= add (add (inverse n1) (inverse n1)) (inverse n1) [] by Super 39 with 536 at 1,3 Id : 544, {_}: add (inverse n1) (inverse n1) =<= multiply (inverse n1) (add ?957 n1) [957] by Demod 511 with 536 at 2 Id : 562, {_}: add (inverse n1) (inverse n1) =<= add (add (inverse n1) (inverse n1)) (inverse n1) [] by Demod 548 with 544 at 2 Id : 755, {_}: multiply (inverse n1) (add (inverse n1) (inverse n1)) =>= add (inverse n1) (multiply (inverse n1) (inverse n1)) [] by Super 14 with 562 at 2,2 Id : 777, {_}: add (inverse n1) (inverse n1) =<= add (inverse n1) (multiply (inverse n1) (inverse n1)) [] by Demod 755 with 468 at 2 Id : 778, {_}: add (inverse n1) (inverse n1) =<= add (inverse n1) (add (inverse n1) (inverse n1)) [] by Demod 777 with 536 at 2,3 Id : 40, {_}: multiply (inverse ?110) (add n1 ?111) =<= add (inverse ?110) (multiply ?111 (inverse ?110)) [111, 110] by Super 3 with 16 at 1,3 Id : 553, {_}: multiply (inverse n1) (add n1 (inverse n1)) =<= add (inverse n1) (add (inverse n1) (inverse n1)) [] by Super 40 with 536 at 2,3 Id : 560, {_}: multiply (inverse n1) n1 =<= add (inverse n1) (add (inverse n1) (inverse n1)) [] by Demod 553 with 4 at 2,2 Id : 779, {_}: add (inverse n1) (inverse n1) =>= multiply (inverse n1) n1 [] by Demod 778 with 560 at 3 Id : 801, {_}: multiply (inverse n1) n1 =<= add (inverse n1) (multiply (inverse n1) n1) [] by Demod 560 with 779 at 2,3 Id : 118, {_}: ?328 =<= add (inverse n1) (multiply ?328 n1) [328] by Super 116 with 16 at 1,3 Id : 802, {_}: multiply (inverse n1) n1 =>= inverse n1 [] by Demod 801 with 118 at 3 Id : 803, {_}: add (inverse n1) (inverse n1) =>= inverse n1 [] by Demod 779 with 802 at 3 Id : 820, {_}: multiply (inverse n1) (add ?1297 (inverse n1)) =>= add (multiply ?1297 (inverse n1)) (inverse n1) [1297] by Super 13 with 803 at 2,2,2 Id : 854, {_}: multiply (inverse n1) (add ?1297 (inverse n1)) =>= multiply (inverse n1) (add ?1297 n1) [1297] by Demod 820 with 39 at 3 Id : 799, {_}: multiply (inverse n1) n1 =<= multiply (inverse n1) (add ?957 n1) [957] by Demod 544 with 779 at 2 Id : 805, {_}: inverse n1 =<= multiply (inverse n1) (add ?957 n1) [957] by Demod 799 with 802 at 2 Id : 855, {_}: multiply (inverse n1) (add ?1297 (inverse n1)) =>= inverse n1 [1297] by Demod 854 with 805 at 3 Id : 991, {_}: multiply (multiply (add ?1440 (inverse n1)) n1) (inverse n1) =>= multiply (inverse n1) (add ?1440 (inverse n1)) [1440] by Super 49 with 855 at 2,2 Id : 1351, {_}: multiply (multiply (add ?1886 (inverse n1)) n1) (inverse n1) =>= inverse n1 [1886] by Demod 991 with 855 at 3 Id : 1352, {_}: multiply (multiply n1 n1) (inverse n1) =>= inverse n1 [] by Super 1351 with 4 at 1,1,2 Id : 1389, {_}: multiply (inverse n1) (add (multiply n1 n1) ?1904) =>= add (inverse n1) (multiply ?1904 (inverse n1)) [1904] by Super 3 with 1352 at 1,3 Id : 1403, {_}: multiply (inverse n1) (add (multiply n1 n1) ?1904) =>= multiply (inverse n1) (add n1 ?1904) [1904] by Demod 1389 with 40 at 3 Id : 821, {_}: pixley (inverse n1) n1 ?1299 =<= add (multiply (inverse n1) (inverse n1)) (multiply ?1299 (inverse n1)) [1299] by Super 19 with 803 at 2,2,3 Id : 800, {_}: multiply (inverse n1) (inverse n1) =>= multiply (inverse n1) n1 [] by Demod 536 with 779 at 3 Id : 804, {_}: multiply (inverse n1) (inverse n1) =>= inverse n1 [] by Demod 800 with 802 at 3 Id : 852, {_}: pixley (inverse n1) n1 ?1299 =<= add (inverse n1) (multiply ?1299 (inverse n1)) [1299] by Demod 821 with 804 at 1,3 Id : 853, {_}: pixley (inverse n1) n1 ?1299 =<= multiply (inverse n1) (add n1 ?1299) [1299] by Demod 852 with 40 at 3 Id : 1517, {_}: multiply (inverse n1) (add (multiply n1 n1) ?2009) =>= pixley (inverse n1) n1 ?2009 [2009] by Demod 1403 with 853 at 3 Id : 1520, {_}: multiply (inverse n1) (multiply n1 (add n1 ?2014)) =>= pixley (inverse n1) n1 (multiply ?2014 n1) [2014] by Super 1517 with 3 at 2,2 Id : 824, {_}: multiply (inverse n1) (add (inverse n1) ?1304) =>= add (inverse n1) (multiply ?1304 (inverse n1)) [1304] by Super 14 with 803 at 1,2,2 Id : 850, {_}: multiply (inverse n1) (add (inverse n1) ?1304) =>= multiply (inverse n1) (add n1 ?1304) [1304] by Demod 824 with 40 at 3 Id : 933, {_}: multiply (inverse n1) (add (inverse n1) ?1398) =>= pixley (inverse n1) n1 ?1398 [1398] by Demod 850 with 853 at 3 Id : 941, {_}: multiply (inverse n1) ?1413 =<= pixley (inverse n1) n1 (multiply ?1413 n1) [1413] by Super 933 with 118 at 2,2 Id : 1792, {_}: multiply (inverse n1) (multiply n1 (add n1 ?2486)) =>= multiply (inverse n1) ?2486 [2486] by Demod 1520 with 941 at 3 Id : 1793, {_}: multiply (inverse n1) (multiply n1 n1) =>= multiply (inverse n1) (inverse n1) [] by Super 1792 with 4 at 2,2,2 Id : 1808, {_}: multiply (inverse n1) (multiply n1 n1) =>= inverse n1 [] by Demod 1793 with 804 at 3 Id : 1825, {_}: multiply (multiply n1 n1) (add (inverse n1) ?2515) =>= add (inverse n1) (multiply ?2515 (multiply n1 n1)) [2515] by Super 3 with 1808 at 1,3 Id : 111, {_}: ?63 =<= add (multiply ?62 (inverse ?62)) (multiply ?63 n1) [62, 63] by Demod 22 with 6 at 2 Id : 115, {_}: multiply (multiply ?319 n1) (add ?320 ?319) =<= add (multiply ?320 (multiply ?319 n1)) (multiply ?319 n1) [320, 319] by Super 13 with 111 at 2,2,2 Id : 1821, {_}: multiply (multiply n1 n1) (add (inverse n1) n1) =>= add (inverse n1) (multiply n1 n1) [] by Super 115 with 1808 at 1,3 Id : 328, {_}: multiply (multiply ?725 n1) (add ?725 ?726) =<= add (multiply ?725 n1) (multiply ?726 (multiply ?725 n1)) [726, 725] by Super 14 with 111 at 1,2,2 Id : 114, {_}: multiply ?317 (multiply ?317 n1) =>= multiply ?317 n1 [317] by Super 2 with 111 at 1,2 Id : 333, {_}: multiply (multiply ?739 n1) (add ?739 ?739) =>= add (multiply ?739 n1) (multiply ?739 n1) [739] by Super 328 with 114 at 2,3 Id : 358, {_}: multiply (multiply ?765 n1) (add ?765 ?765) =>= multiply n1 (add ?765 ?765) [765] by Demod 333 with 3 at 3 Id : 359, {_}: multiply (multiply n1 n1) (add ?767 n1) =>= multiply n1 (add n1 n1) [767] by Super 358 with 145 at 2,2 Id : 1832, {_}: multiply n1 (add n1 n1) =<= add (inverse n1) (multiply n1 n1) [] by Demod 1821 with 359 at 2 Id : 1856, {_}: multiply n1 (add n1 n1) =>= n1 [] by Demod 1832 with 118 at 3 Id : 1857, {_}: multiply n1 (add ?2545 n1) =>= n1 [2545] by Super 1856 with 145 at 2,2 Id : 112, {_}: multiply (multiply ?311 n1) (add ?311 ?312) =<= add (multiply ?311 n1) (multiply ?312 (multiply ?311 n1)) [312, 311] by Super 14 with 111 at 1,2,2 Id : 1826, {_}: multiply (multiply n1 n1) (add n1 (inverse n1)) =>= add (multiply n1 n1) (inverse n1) [] by Super 112 with 1808 at 2,3 Id : 1829, {_}: multiply (multiply n1 n1) n1 =<= add (multiply n1 n1) (inverse n1) [] by Demod 1826 with 4 at 2,2 Id : 1875, {_}: multiply (inverse n1) (multiply (multiply n1 n1) n1) =>= inverse n1 [] by Super 855 with 1829 at 2,2 Id : 2010, {_}: multiply (multiply (multiply n1 n1) n1) (add (inverse n1) (multiply n1 n1)) =>= add (inverse n1) (multiply (multiply n1 n1) n1) [] by Super 115 with 1875 at 1,3 Id : 2025, {_}: multiply (multiply (multiply n1 n1) n1) n1 =<= add (inverse n1) (multiply (multiply n1 n1) n1) [] by Demod 2010 with 118 at 2,2 Id : 2026, {_}: multiply (multiply (multiply n1 n1) n1) n1 =>= multiply n1 n1 [] by Demod 2025 with 118 at 3 Id : 2039, {_}: multiply (multiply n1 n1) n1 =<= add (multiply ?2705 (inverse ?2705)) (multiply n1 n1) [2705] by Super 111 with 2026 at 2,3 Id : 2063, {_}: multiply (multiply n1 n1) n1 =>= n1 [] by Demod 2039 with 111 at 3 Id : 2103, {_}: multiply n1 n1 =<= add (inverse n1) n1 [] by Super 118 with 2063 at 2,3 Id : 2148, {_}: multiply n1 (multiply n1 n1) =>= n1 [] by Super 1857 with 2103 at 2,2 Id : 2153, {_}: multiply n1 n1 =>= n1 [] by Demod 2148 with 114 at 2 Id : 2704, {_}: multiply n1 (add (inverse n1) ?2515) =<= add (inverse n1) (multiply ?2515 (multiply n1 n1)) [2515] by Demod 1825 with 2153 at 1,2 Id : 2705, {_}: multiply n1 (add (inverse n1) ?2515) =>= add (inverse n1) (multiply ?2515 n1) [2515] by Demod 2704 with 2153 at 2,2,3 Id : 2724, {_}: multiply n1 (add (inverse n1) ?3364) =>= ?3364 [3364] by Demod 2705 with 118 at 3 Id : 2725, {_}: multiply n1 n1 =>= inverse (inverse n1) [] by Super 2724 with 4 at 2,2 Id : 2764, {_}: n1 =<= inverse (inverse n1) [] by Demod 2725 with 2153 at 2 Id : 2800, {_}: pixley ?3409 (inverse n1) ?3410 =<= add (multiply ?3409 (inverse (inverse n1))) (multiply ?3410 (add ?3409 n1)) [3410, 3409] by Super 19 with 2764 at 2,2,2,3 Id : 2864, {_}: pixley ?3409 (inverse n1) ?3410 =<= add (multiply ?3409 n1) (multiply ?3410 (add ?3409 n1)) [3410, 3409] by Demod 2800 with 2764 at 2,1,3 Id : 2187, {_}: multiply n1 (add ?2812 n1) =>= add (multiply ?2812 n1) n1 [2812] by Super 3 with 2153 at 2,3 Id : 2201, {_}: n1 =<= add (multiply ?2812 n1) n1 [2812] by Demod 2187 with 1857 at 2 Id : 2404, {_}: add ?3077 n1 =>= n1 [3077] by Super 145 with 2201 at 3 Id : 2865, {_}: pixley ?3409 (inverse n1) ?3410 =<= add (multiply ?3409 n1) (multiply ?3410 n1) [3410, 3409] by Demod 2864 with 2404 at 2,2,3 Id : 2866, {_}: pixley ?3409 (inverse n1) ?3410 =>= multiply n1 (add ?3409 ?3410) [3410, 3409] by Demod 2865 with 3 at 3 Id : 3214, {_}: multiply n1 (add ?3636 ?3636) =>= ?3636 [3636] by Super 8 with 2866 at 2 Id : 3216, {_}: multiply n1 (multiply ?3639 (add ?3640 ?3640)) =>= multiply ?3640 ?3639 [3640, 3639] by Super 3214 with 3 at 2,2 Id : 348, {_}: multiply (multiply ?739 n1) (add ?739 ?739) =>= multiply n1 (add ?739 ?739) [739] by Demod 333 with 3 at 3 Id : 3140, {_}: multiply n1 (add ?3558 ?3558) =>= ?3558 [3558] by Super 8 with 2866 at 2 Id : 3193, {_}: multiply (multiply ?739 n1) (add ?739 ?739) =>= ?739 [739] by Demod 348 with 3140 at 3 Id : 3138, {_}: multiply n1 (add ?3554 (inverse n1)) =>= ?3554 [3554] by Super 7 with 2866 at 2 Id : 1824, {_}: multiply (multiply n1 n1) (add ?2513 (inverse n1)) =>= add (multiply ?2513 (multiply n1 n1)) (inverse n1) [2513] by Super 3 with 1808 at 2,3 Id : 2604, {_}: multiply n1 (add ?2513 (inverse n1)) =<= add (multiply ?2513 (multiply n1 n1)) (inverse n1) [2513] by Demod 1824 with 2153 at 1,2 Id : 2605, {_}: multiply n1 (add ?2513 (inverse n1)) =>= add (multiply ?2513 n1) (inverse n1) [2513] by Demod 2604 with 2153 at 2,1,3 Id : 3176, {_}: add (multiply ?3554 n1) (inverse n1) =>= ?3554 [3554] by Demod 3138 with 2605 at 2 Id : 3625, {_}: pixley (multiply ?4091 n1) n1 ?4092 =<= add (multiply (multiply ?4091 n1) (inverse n1)) (multiply ?4092 ?4091) [4092, 4091] by Super 19 with 3176 at 2,2,3 Id : 168, {_}: multiply ?427 (multiply ?428 (add ?427 (inverse ?428))) =>= multiply ?428 (add ?427 (inverse ?428)) [428, 427] by Super 162 with 7 at 1,2 Id : 2792, {_}: multiply ?3392 (multiply (inverse n1) (add ?3392 n1)) =?= multiply (inverse n1) (add ?3392 (inverse (inverse n1))) [3392] by Super 168 with 2764 at 2,2,2,2 Id : 2889, {_}: multiply ?3392 (multiply (inverse n1) n1) =<= multiply (inverse n1) (add ?3392 (inverse (inverse n1))) [3392] by Demod 2792 with 2404 at 2,2,2 Id : 2890, {_}: multiply ?3392 (inverse n1) =<= multiply (inverse n1) (add ?3392 (inverse (inverse n1))) [3392] by Demod 2889 with 802 at 2,2 Id : 2891, {_}: multiply ?3392 (inverse n1) =<= multiply (inverse n1) (add ?3392 n1) [3392] by Demod 2890 with 2764 at 2,2,3 Id : 2892, {_}: multiply ?3392 (inverse n1) =?= multiply (inverse n1) n1 [3392] by Demod 2891 with 2404 at 2,3 Id : 2893, {_}: multiply ?3392 (inverse n1) =>= inverse n1 [3392] by Demod 2892 with 802 at 3 Id : 3644, {_}: pixley (multiply ?4091 n1) n1 ?4092 =>= add (inverse n1) (multiply ?4092 ?4091) [4092, 4091] by Demod 3625 with 2893 at 1,3 Id : 4104, {_}: add (inverse n1) (multiply n1 ?4514) =>= multiply ?4514 n1 [4514] by Super 7 with 3644 at 2 Id : 2500, {_}: multiply ?3180 n1 =<= add ?3180 (multiply n1 ?3180) [3180] by Super 14 with 2404 at 2,2 Id : 2503, {_}: multiply (inverse ?3188) n1 =<= add (inverse ?3188) (inverse ?3188) [3188] by Super 2500 with 16 at 2,3 Id : 3217, {_}: multiply n1 (multiply (inverse ?3642) n1) =>= inverse ?3642 [3642] by Super 3214 with 2503 at 2,2 Id : 211, {_}: multiply n1 (multiply (inverse ?505) (add ?506 n1)) =>= multiply (inverse ?505) (add ?506 n1) [506, 505] by Super 207 with 2 at 1,2 Id : 2439, {_}: multiply n1 (multiply (inverse ?505) n1) =<= multiply (inverse ?505) (add ?506 n1) [506, 505] by Demod 211 with 2404 at 2,2,2 Id : 2440, {_}: multiply n1 (multiply (inverse ?505) n1) =>= multiply (inverse ?505) n1 [505] by Demod 2439 with 2404 at 2,3 Id : 3261, {_}: multiply (inverse ?3642) n1 =>= inverse ?3642 [3642] by Demod 3217 with 2440 at 2 Id : 3295, {_}: multiply n1 (add (inverse ?3690) ?3691) =>= add (inverse ?3690) (multiply ?3691 n1) [3691, 3690] by Super 3 with 3261 at 1,3 Id : 4161, {_}: multiply n1 (multiply ?4592 n1) =<= add (inverse n1) (multiply (multiply n1 ?4592) n1) [4592] by Super 3295 with 4104 at 2,2 Id : 4181, {_}: multiply n1 (multiply ?4592 n1) =>= multiply n1 ?4592 [4592] by Demod 4161 with 118 at 3 Id : 4229, {_}: add (inverse n1) (multiply n1 ?4659) =>= multiply (multiply ?4659 n1) n1 [4659] by Super 4104 with 4181 at 2,2 Id : 4237, {_}: multiply ?4659 n1 =<= multiply (multiply ?4659 n1) n1 [4659] by Demod 4229 with 4104 at 2 Id : 4262, {_}: multiply ?4698 n1 =<= add (inverse n1) (multiply ?4698 n1) [4698] by Super 118 with 4237 at 2,3 Id : 4299, {_}: multiply ?4698 n1 =>= ?4698 [4698] by Demod 4262 with 118 at 3 Id : 4337, {_}: multiply ?739 (add ?739 ?739) =>= ?739 [739] by Demod 3193 with 4299 at 1,2 Id : 4333, {_}: multiply ?311 (add ?311 ?312) =<= add (multiply ?311 n1) (multiply ?312 (multiply ?311 n1)) [312, 311] by Demod 112 with 4299 at 1,2 Id : 4334, {_}: multiply ?311 (add ?311 ?312) =<= add ?311 (multiply ?312 (multiply ?311 n1)) [312, 311] by Demod 4333 with 4299 at 1,3 Id : 4335, {_}: multiply ?311 (add ?311 ?312) =>= add ?311 (multiply ?312 ?311) [312, 311] by Demod 4334 with 4299 at 2,2,3 Id : 4343, {_}: add ?739 (multiply ?739 ?739) =>= ?739 [739] by Demod 4337 with 4335 at 2 Id : 3294, {_}: multiply n1 (add ?3687 (inverse ?3688)) =>= add (multiply ?3687 n1) (inverse ?3688) [3688, 3687] by Super 3 with 3261 at 2,3 Id : 3729, {_}: multiply ?4170 (add (multiply ?4170 n1) (inverse n1)) =>= multiply n1 (add ?4170 (inverse n1)) [4170] by Super 168 with 3294 at 2,2 Id : 3774, {_}: multiply ?4170 ?4170 =?= multiply n1 (add ?4170 (inverse n1)) [4170] by Demod 3729 with 3176 at 2,2 Id : 3775, {_}: multiply ?4170 ?4170 =?= add (multiply ?4170 n1) (inverse n1) [4170] by Demod 3774 with 3294 at 3 Id : 3776, {_}: multiply ?4170 ?4170 =>= ?4170 [4170] by Demod 3775 with 3176 at 3 Id : 4344, {_}: add ?739 ?739 =>= ?739 [739] by Demod 4343 with 3776 at 2,2 Id : 4493, {_}: multiply n1 (multiply ?3639 ?3640) =>= multiply ?3640 ?3639 [3640, 3639] by Demod 3216 with 4344 at 2,2,2 Id : 4345, {_}: multiply n1 ?3558 =>= ?3558 [3558] by Demod 3140 with 4344 at 2,2 Id : 4494, {_}: multiply ?3639 ?3640 =<->= multiply ?3640 ?3639 [3640, 3639] by Demod 4493 with 4345 at 2 Id : 26483, {_}: multiply ?32739 (add ?32740 ?32741) =<= add (multiply ?32740 ?32739) (multiply ?32739 ?32741) [32741, 32740, 32739] by Super 3 with 4494 at 2,3 Id : 38, {_}: pixley n1 ?104 ?105 =<= add (inverse ?104) (multiply ?105 (add n1 (inverse ?104))) [105, 104] by Super 19 with 16 at 1,3 Id : 3291, {_}: inverse ?3679 =<= add (inverse n1) (inverse ?3679) [3679] by Super 118 with 3261 at 2,3 Id : 3350, {_}: multiply (inverse n1) (multiply ?3740 (inverse ?3740)) =?= multiply ?3740 (add (inverse n1) (inverse ?3740)) [3740] by Super 168 with 3291 at 2,2,2 Id : 2918, {_}: multiply (inverse n1) (add n1 ?3455) =>= add (inverse n1) (inverse n1) [3455] by Super 40 with 2893 at 2,3 Id : 2958, {_}: pixley (inverse n1) n1 ?3455 =>= add (inverse n1) (inverse n1) [3455] by Demod 2918 with 853 at 2 Id : 2959, {_}: pixley (inverse n1) n1 ?3455 =>= multiply (inverse n1) n1 [3455] by Demod 2958 with 2503 at 3 Id : 2960, {_}: pixley (inverse n1) n1 ?3455 =>= inverse n1 [3455] by Demod 2959 with 802 at 3 Id : 3082, {_}: multiply (inverse n1) ?1413 =>= inverse n1 [1413] by Demod 941 with 2960 at 3 Id : 3362, {_}: inverse n1 =<= multiply ?3740 (add (inverse n1) (inverse ?3740)) [3740] by Demod 3350 with 3082 at 2 Id : 3363, {_}: inverse n1 =<= multiply ?3740 (inverse ?3740) [3740] by Demod 3362 with 3291 at 2,3 Id : 4536, {_}: inverse n1 =<= multiply (inverse ?4952) ?4952 [4952] by Super 3363 with 4494 at 3 Id : 4598, {_}: multiply ?5081 (add ?5082 (inverse ?5081)) =>= add (multiply ?5082 ?5081) (inverse n1) [5082, 5081] by Super 3 with 4536 at 2,3 Id : 4322, {_}: add ?3554 (inverse n1) =>= ?3554 [3554] by Demod 3176 with 4299 at 1,2 Id : 4638, {_}: multiply ?5081 (add ?5082 (inverse ?5081)) =>= multiply ?5082 ?5081 [5082, 5081] by Demod 4598 with 4322 at 3 Id : 5477, {_}: pixley n1 ?6378 ?6378 =<= add (inverse ?6378) (multiply n1 ?6378) [6378] by Super 38 with 4638 at 2,3 Id : 5523, {_}: n1 =<= add (inverse ?6378) (multiply n1 ?6378) [6378] by Demod 5477 with 7 at 2 Id : 5524, {_}: n1 =<= add (inverse ?6378) ?6378 [6378] by Demod 5523 with 4345 at 2,3 Id : 5583, {_}: pixley (inverse (inverse ?6490)) ?6490 ?6491 =<= add (multiply (inverse (inverse ?6490)) (inverse ?6490)) (multiply ?6491 n1) [6491, 6490] by Super 19 with 5524 at 2,2,3 Id : 5632, {_}: pixley (inverse (inverse ?6490)) ?6490 ?6491 =>= add (inverse n1) (multiply ?6491 n1) [6491, 6490] by Demod 5583 with 4536 at 1,3 Id : 5633, {_}: pixley (inverse (inverse ?6490)) ?6490 ?6491 =>= add (inverse n1) ?6491 [6491, 6490] by Demod 5632 with 4299 at 2,3 Id : 4330, {_}: ?328 =<= add (inverse n1) ?328 [328] by Demod 118 with 4299 at 2,3 Id : 5634, {_}: pixley (inverse (inverse ?6490)) ?6490 ?6491 =>= ?6491 [6491, 6490] by Demod 5633 with 4330 at 3 Id : 6844, {_}: ?8162 =<= inverse (inverse ?8162) [8162] by Super 7 with 5634 at 2 Id : 4506, {_}: multiply (add ?4834 ?4835) ?4834 =>= add ?4834 (multiply ?4835 ?4834) [4835, 4834] by Super 4335 with 4494 at 2 Id : 24, {_}: pixley (add ?69 (inverse ?70)) ?70 ?71 =<= add (inverse ?70) (multiply ?71 (add (add ?69 (inverse ?70)) (inverse ?70))) [71, 70, 69] by Super 21 with 2 at 1,3 Id : 6921, {_}: multiply (inverse ?8267) (add ?8268 ?8267) =>= multiply ?8268 (inverse ?8267) [8268, 8267] by Super 4638 with 6844 at 2,2,2 Id : 7972, {_}: pixley (add ?9624 (inverse ?9625)) ?9625 (inverse (inverse ?9625)) =<= add (inverse ?9625) (multiply (add ?9624 (inverse ?9625)) (inverse (inverse ?9625))) [9625, 9624] by Super 24 with 6921 at 2,3 Id : 8039, {_}: pixley (add ?9624 (inverse ?9625)) ?9625 ?9625 =<= add (inverse ?9625) (multiply (add ?9624 (inverse ?9625)) (inverse (inverse ?9625))) [9625, 9624] by Demod 7972 with 6844 at 3,2 Id : 8040, {_}: add ?9624 (inverse ?9625) =<= add (inverse ?9625) (multiply (add ?9624 (inverse ?9625)) (inverse (inverse ?9625))) [9625, 9624] by Demod 8039 with 7 at 2 Id : 8041, {_}: add ?9624 (inverse ?9625) =<= add (inverse ?9625) (multiply (add ?9624 (inverse ?9625)) ?9625) [9625, 9624] by Demod 8040 with 6844 at 2,2,3 Id : 5469, {_}: multiply ?6353 ?6354 =<= multiply (add ?6353 (inverse ?6354)) ?6354 [6354, 6353] by Super 4494 with 4638 at 2 Id : 8436, {_}: add ?10195 (inverse ?10196) =<= add (inverse ?10196) (multiply ?10195 ?10196) [10196, 10195] by Demod 8041 with 5469 at 2,3 Id : 8668, {_}: add ?10499 (inverse ?10500) =<= add (inverse ?10500) (multiply ?10500 ?10499) [10500, 10499] by Super 8436 with 4494 at 2,3 Id : 7986, {_}: multiply (inverse ?9670) (add ?9671 ?9670) =>= multiply ?9671 (inverse ?9670) [9671, 9670] by Super 4638 with 6844 at 2,2,2 Id : 4515, {_}: multiply ?4866 (add ?4867 ?4866) =>= ?4866 [4867, 4866] by Super 2 with 4494 at 2 Id : 4325, {_}: multiply ?319 (add ?320 ?319) =<= add (multiply ?320 (multiply ?319 n1)) (multiply ?319 n1) [320, 319] by Demod 115 with 4299 at 1,2 Id : 4326, {_}: multiply ?319 (add ?320 ?319) =<= add (multiply ?320 ?319) (multiply ?319 n1) [320, 319] by Demod 4325 with 4299 at 2,1,3 Id : 4327, {_}: multiply ?319 (add ?320 ?319) =>= add (multiply ?320 ?319) ?319 [320, 319] by Demod 4326 with 4299 at 2,3 Id : 4822, {_}: add (multiply ?5363 ?5364) ?5364 =>= ?5364 [5364, 5363] by Demod 4515 with 4327 at 2 Id : 3563, {_}: multiply (inverse ?4029) (add n1 ?4029) =>= add (inverse ?4029) (inverse n1) [4029] by Super 40 with 3363 at 2,3 Id : 4361, {_}: multiply (inverse ?4029) (add n1 ?4029) =>= inverse ?4029 [4029] by Demod 3563 with 4322 at 3 Id : 4836, {_}: add (inverse ?5402) (add n1 ?5402) =>= add n1 ?5402 [5402] by Super 4822 with 4361 at 1,2 Id : 7992, {_}: multiply (inverse (add n1 ?9684)) (add n1 ?9684) =>= multiply (inverse ?9684) (inverse (add n1 ?9684)) [9684] by Super 7986 with 4836 at 2,2 Id : 8087, {_}: inverse n1 =<= multiply (inverse ?9684) (inverse (add n1 ?9684)) [9684] by Demod 7992 with 4536 at 2 Id : 8709, {_}: add (inverse (add n1 ?10631)) (inverse (inverse ?10631)) =>= add (inverse (inverse ?10631)) (inverse n1) [10631] by Super 8668 with 8087 at 2,3 Id : 8797, {_}: add (inverse (add n1 ?10631)) ?10631 =>= add (inverse (inverse ?10631)) (inverse n1) [10631] by Demod 8709 with 6844 at 2,2 Id : 8798, {_}: add (inverse (add n1 ?10631)) ?10631 =>= add ?10631 (inverse n1) [10631] by Demod 8797 with 6844 at 1,3 Id : 8799, {_}: add (inverse (add n1 ?10631)) ?10631 =>= ?10631 [10631] by Demod 8798 with 4322 at 3 Id : 8830, {_}: multiply ?10713 (inverse (add n1 ?10713)) =<= add (inverse (add n1 ?10713)) (multiply ?10713 (inverse (add n1 ?10713))) [10713] by Super 4506 with 8799 at 1,2 Id : 11, {_}: multiply (multiply ?29 (add ?30 ?31)) (multiply ?31 ?29) =>= multiply ?31 ?29 [31, 30, 29] by Super 2 with 3 at 1,2 Id : 4597, {_}: multiply (inverse n1) (multiply ?5078 (inverse (add ?5079 ?5078))) =>= multiply ?5078 (inverse (add ?5079 ?5078)) [5079, 5078] by Super 11 with 4536 at 1,2 Id : 4642, {_}: inverse n1 =<= multiply ?5078 (inverse (add ?5079 ?5078)) [5079, 5078] by Demod 4597 with 3082 at 2 Id : 8866, {_}: inverse n1 =<= add (inverse (add n1 ?10713)) (multiply ?10713 (inverse (add n1 ?10713))) [10713] by Demod 8830 with 4642 at 2 Id : 8867, {_}: inverse n1 =<= add (inverse (add n1 ?10713)) (inverse n1) [10713] by Demod 8866 with 4642 at 2,3 Id : 8868, {_}: inverse n1 =<= inverse (add n1 ?10713) [10713] by Demod 8867 with 4322 at 3 Id : 8949, {_}: add n1 ?10849 =>= inverse (inverse n1) [10849] by Super 6844 with 8868 at 1,3 Id : 8971, {_}: add n1 ?10849 =>= n1 [10849] by Demod 8949 with 6844 at 3 Id : 9083, {_}: multiply ?10928 (add n1 ?10929) =?= add ?10928 (multiply ?10929 ?10928) [10929, 10928] by Super 14 with 8971 at 1,2,2 Id : 9137, {_}: multiply ?10928 n1 =<= add ?10928 (multiply ?10929 ?10928) [10929, 10928] by Demod 9083 with 8971 at 2,2 Id : 9138, {_}: ?10928 =<= add ?10928 (multiply ?10929 ?10928) [10929, 10928] by Demod 9137 with 4299 at 2 Id : 9186, {_}: multiply ?311 (add ?311 ?312) =>= ?311 [312, 311] by Demod 4335 with 9138 at 3 Id : 26573, {_}: multiply (add ?33125 ?33126) (add ?33125 ?33127) =>= add ?33125 (multiply (add ?33125 ?33126) ?33127) [33127, 33126, 33125] by Super 26483 with 9186 at 1,3 Id : 90, {_}: multiply (add (add ?258 ?259) ?260) (add ?261 ?259) =<= add (multiply ?261 (add (add ?258 ?259) ?260)) (add ?259 (multiply ?260 ?259)) [261, 260, 259, 258] by Super 3 with 14 at 2,3 Id : 18466, {_}: multiply (add (add ?23237 ?23238) ?23239) (add ?23240 ?23238) =>= add (multiply ?23240 (add (add ?23237 ?23238) ?23239)) ?23238 [23240, 23239, 23238, 23237] by Demod 90 with 9138 at 2,3 Id : 18514, {_}: multiply (add ?23470 ?23471) (add ?23472 ?23470) =<= add (multiply ?23472 (add (add ?23470 ?23470) ?23471)) ?23470 [23472, 23471, 23470] by Super 18466 with 4344 at 1,1,2 Id : 37375, {_}: multiply (add ?50109 ?50110) (add ?50111 ?50109) =>= add (multiply ?50111 (add ?50109 ?50110)) ?50109 [50111, 50110, 50109] by Demod 18514 with 4344 at 1,2,1,3 Id : 4599, {_}: multiply ?5084 (add (inverse ?5084) ?5085) =>= add (inverse n1) (multiply ?5085 ?5084) [5085, 5084] by Super 3 with 4536 at 1,3 Id : 4639, {_}: multiply ?5084 (add (inverse ?5084) ?5085) =>= multiply ?5085 ?5084 [5085, 5084] by Demod 4599 with 4330 at 3 Id : 6900, {_}: multiply (inverse ?8203) (add ?8203 ?8204) =>= multiply ?8204 (inverse ?8203) [8204, 8203] by Super 4639 with 6844 at 1,2,2 Id : 8694, {_}: add (add ?10586 ?10587) (inverse (inverse ?10586)) =<= add (inverse (inverse ?10586)) (multiply ?10587 (inverse ?10586)) [10587, 10586] by Super 8668 with 6900 at 2,3 Id : 8768, {_}: add (add ?10586 ?10587) ?10586 =<= add (inverse (inverse ?10586)) (multiply ?10587 (inverse ?10586)) [10587, 10586] by Demod 8694 with 6844 at 2,2 Id : 8769, {_}: add (add ?10586 ?10587) ?10586 =<= add ?10586 (multiply ?10587 (inverse ?10586)) [10587, 10586] by Demod 8768 with 6844 at 1,3 Id : 9215, {_}: ?11073 =<= add ?11073 (multiply ?11074 ?11073) [11074, 11073] by Demod 9137 with 4299 at 2 Id : 9242, {_}: add ?11155 ?11156 =<= add (add ?11155 ?11156) ?11155 [11156, 11155] by Super 9215 with 9186 at 2,3 Id : 10801, {_}: add ?10586 ?10587 =<= add ?10586 (multiply ?10587 (inverse ?10586)) [10587, 10586] by Demod 8769 with 9242 at 2 Id : 8477, {_}: add ?10327 (inverse (inverse ?10328)) =<= add ?10328 (multiply ?10327 (inverse ?10328)) [10328, 10327] by Super 8436 with 6844 at 1,3 Id : 8547, {_}: add ?10327 ?10328 =<= add ?10328 (multiply ?10327 (inverse ?10328)) [10328, 10327] by Demod 8477 with 6844 at 2,2 Id : 10802, {_}: add ?10586 ?10587 =<->= add ?10587 ?10586 [10587, 10586] by Demod 10801 with 8547 at 3 Id : 37398, {_}: multiply (add ?50197 ?50198) (add ?50197 ?50199) =>= add (multiply ?50199 (add ?50197 ?50198)) ?50197 [50199, 50198, 50197] by Super 37375 with 10802 at 2,2 Id : 61860, {_}: add ?50197 (multiply (add ?50197 ?50198) ?50199) =?= add (multiply ?50199 (add ?50197 ?50198)) ?50197 [50199, 50198, 50197] by Demod 37398 with 26573 at 2 Id : 72, {_}: multiply (add ?208 (add ?209 ?210)) (add ?210 ?211) =<= add (add (multiply ?208 ?210) ?210) (multiply ?211 (add ?208 (add ?209 ?210))) [211, 210, 209, 208] by Super 3 with 13 at 1,3 Id : 4566, {_}: add (multiply ?4867 ?4866) ?4866 =>= ?4866 [4866, 4867] by Demod 4515 with 4327 at 2 Id : 7327, {_}: multiply (add ?8864 (add ?8865 ?8866)) (add ?8866 ?8867) =>= add ?8866 (multiply ?8867 (add ?8864 (add ?8865 ?8866))) [8867, 8866, 8865, 8864] by Demod 72 with 4566 at 1,3 Id : 7347, {_}: multiply (add ?8956 ?8957) (add ?8957 ?8958) =<= add ?8957 (multiply ?8958 (add ?8956 (add ?8957 ?8957))) [8958, 8957, 8956] by Super 7327 with 4344 at 2,1,2 Id : 7450, {_}: multiply (add ?8956 ?8957) (add ?8957 ?8958) =>= add ?8957 (multiply ?8958 (add ?8956 ?8957)) [8958, 8957, 8956] by Demod 7347 with 4344 at 2,2,2,3 Id : 31148, {_}: add ?40696 (multiply ?40697 (add ?40698 ?40696)) =<= multiply (add ?40696 ?40697) (add ?40698 ?40696) [40698, 40697, 40696] by Super 4494 with 7450 at 2 Id : 18735, {_}: multiply (add ?23470 ?23471) (add ?23472 ?23470) =>= add (multiply ?23472 (add ?23470 ?23471)) ?23470 [23472, 23471, 23470] by Demod 18514 with 4344 at 1,2,1,3 Id : 52935, {_}: add ?78849 (multiply ?78850 (add ?78851 ?78849)) =?= add (multiply ?78851 (add ?78849 ?78850)) ?78849 [78851, 78850, 78849] by Demod 31148 with 18735 at 3 Id : 20, {_}: multiply (pixley ?54 ?55 ?56) (multiply ?56 (add ?54 (inverse ?55))) =>= multiply ?56 (add ?54 (inverse ?55)) [56, 55, 54] by Super 2 with 19 at 1,2 Id : 4497, {_}: multiply (multiply ?56 (add ?54 (inverse ?55))) (pixley ?54 ?55 ?56) =>= multiply ?56 (add ?54 (inverse ?55)) [55, 54, 56] by Demod 20 with 4494 at 2 Id : 5472, {_}: multiply (multiply ?6365 ?6366) (pixley ?6365 ?6366 ?6366) =>= multiply ?6366 (add ?6365 (inverse ?6366)) [6366, 6365] by Super 4497 with 4638 at 1,2 Id : 5532, {_}: multiply (multiply ?6365 ?6366) ?6365 =?= multiply ?6366 (add ?6365 (inverse ?6366)) [6366, 6365] by Demod 5472 with 7 at 2,2 Id : 5533, {_}: multiply (multiply ?6365 ?6366) ?6365 =>= multiply ?6365 ?6366 [6366, 6365] by Demod 5532 with 4638 at 3 Id : 5852, {_}: multiply ?6810 (add ?6811 (multiply ?6810 ?6812)) =>= add (multiply ?6811 ?6810) (multiply ?6810 ?6812) [6812, 6811, 6810] by Super 3 with 5533 at 2,3 Id : 4516, {_}: multiply ?4869 (add ?4870 ?4871) =<= add (multiply ?4870 ?4869) (multiply ?4869 ?4871) [4871, 4870, 4869] by Super 3 with 4494 at 2,3 Id : 29570, {_}: multiply ?6810 (add ?6811 (multiply ?6810 ?6812)) =>= multiply ?6810 (add ?6811 ?6812) [6812, 6811, 6810] by Demod 5852 with 4516 at 3 Id : 53042, {_}: add ?79294 (multiply (multiply ?79295 ?79296) (add ?79295 ?79294)) =>= add (multiply ?79295 (add ?79294 ?79296)) ?79294 [79296, 79295, 79294] by Super 52935 with 29570 at 1,3 Id : 53555, {_}: add ?79294 (multiply (add ?79295 ?79294) (multiply ?79295 ?79296)) =>= add (multiply ?79295 (add ?79294 ?79296)) ?79294 [79296, 79295, 79294] by Demod 53042 with 4494 at 2,2 Id : 9187, {_}: multiply ?41 (add (add ?42 ?41) ?43) =>= ?41 [43, 42, 41] by Demod 14 with 9138 at 3 Id : 9225, {_}: ?11099 =<= add ?11099 (multiply ?11099 ?11100) [11100, 11099] by Super 9215 with 4494 at 2,3 Id : 9315, {_}: multiply (multiply ?11209 ?11210) (add ?11209 ?11211) =>= multiply ?11209 ?11210 [11211, 11210, 11209] by Super 9187 with 9225 at 1,2,2 Id : 9417, {_}: multiply (add ?11209 ?11211) (multiply ?11209 ?11210) =>= multiply ?11209 ?11210 [11210, 11211, 11209] by Demod 9315 with 4494 at 2 Id : 53556, {_}: add ?79294 (multiply ?79295 ?79296) =<= add (multiply ?79295 (add ?79294 ?79296)) ?79294 [79296, 79295, 79294] by Demod 53555 with 9417 at 2,2 Id : 74494, {_}: add ?50197 (multiply (add ?50197 ?50198) ?50199) =>= add ?50197 (multiply ?50199 ?50198) [50199, 50198, 50197] by Demod 61860 with 53556 at 3 Id : 74497, {_}: multiply (add ?33125 ?33126) (add ?33125 ?33127) =>= add ?33125 (multiply ?33127 ?33126) [33127, 33126, 33125] by Demod 26573 with 74494 at 3 Id : 75145, {_}: add a (multiply b c) === add a (multiply b c) [] by Demod 75144 with 4494 at 2,3 Id : 75144, {_}: add a (multiply b c) =<= add a (multiply c b) [] by Demod 1 with 74497 at 3 Id : 1, {_}: add a (multiply b c) =<= multiply (add a b) (add a c) [] by prove_add_multiply_property % SZS output end CNFRefutation for BOO023-1.p 7359: solved BOO023-1.p in 13.732857 using nrkbo WARNING: TreeLimitedRun lost 16.23s, total lost is 16.23s FINAL WATCH: 30.0 CPU 27.5 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO030-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 7375 TreeLimitedRun: ---------------------------------------------------------- 7377: Facts: 7377: Id : 2, {_}: add ?2 (multiply ?3 (multiply ?2 ?4)) =>= ?2 [4, 3, 2] by l1 ?2 ?3 ?4 7377: Id : 3, {_}: add (add (multiply ?6 ?7) (multiply ?7 ?8)) ?7 =>= ?7 [8, 7, 6] by l3 ?6 ?7 ?8 7377: Id : 4, {_}: multiply (add ?10 ?11) (add ?10 (inverse ?11)) =>= ?10 [11, 10] by b1 ?10 ?11 7377: Id : 5, {_}: multiply (add (multiply ?13 ?14) ?13) (add ?13 ?14) =>= ?13 [14, 13] by majority1 ?13 ?14 7377: Id : 6, {_}: multiply (add (multiply ?16 ?16) ?17) (add ?16 ?16) =>= ?16 [17, 16] by majority2 ?16 ?17 7377: Id : 7, {_}: multiply (add (multiply ?19 ?20) ?20) (add ?19 ?20) =>= ?20 [20, 19] by majority3 ?19 ?20 7377: Goal: 7377: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution % SZS status Timeout for BOO030-1.p FINAL WATCH: 182.9 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO031-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 7490 TreeLimitedRun: ---------------------------------------------------------- 7492: Facts: 7492: Id : 2, {_}: add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) =>= multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2)) [4, 3, 2] by distributivity ?2 ?3 ?4 7492: Id : 3, {_}: add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6 [8, 7, 6] by l1 ?6 ?7 ?8 7492: Id : 4, {_}: add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11 [12, 11, 10] by l3 ?10 ?11 ?12 7492: Id : 5, {_}: multiply (add ?14 (inverse ?14)) ?15 =>= ?15 [15, 14] by property3 ?14 ?15 7492: Id : 6, {_}: multiply ?17 (add ?18 (add ?17 ?19)) =>= ?17 [19, 18, 17] by l2 ?17 ?18 ?19 7492: Id : 7, {_}: multiply (multiply (add ?21 ?22) (add ?22 ?23)) ?22 =>= ?22 [23, 22, 21] by l4 ?21 ?22 ?23 7492: Id : 8, {_}: add (multiply ?25 (inverse ?25)) ?26 =>= ?26 [26, 25] by property3_dual ?25 ?26 7492: Id : 9, {_}: add ?28 (inverse ?28) =>= n1 [28] by additive_inverse ?28 7492: Id : 10, {_}: multiply ?30 (inverse ?30) =>= n0 [30] by multiplicative_inverse ?30 7492: Id : 11, {_}: add (add ?32 ?33) ?34 =?= add ?32 (add ?33 ?34) [34, 33, 32] by associativity_of_add ?32 ?33 ?34 7492: Id : 12, {_}: multiply (multiply ?36 ?37) ?38 =?= multiply ?36 (multiply ?37 ?38) [38, 37, 36] by associativity_of_multiply ?36 ?37 ?38 7492: Goal: 7492: Id : 1, {_}: multiply a (add b c) =<= add (multiply b a) (multiply c a) [] by prove_multiply_add_property Statistics : Max weight : 29 Found proof, 29.898008s % SZS status Unsatisfiable for BOO031-1.p % SZS output start CNFRefutation for BOO031-1.p Id : 52, {_}: multiply (multiply (add ?189 ?190) (add ?190 ?191)) ?190 =>= ?190 [191, 190, 189] by l4 ?189 ?190 ?191 Id : 4, {_}: add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11 [12, 11, 10] by l3 ?10 ?11 ?12 Id : 37, {_}: multiply ?128 (add ?129 (add ?128 ?130)) =>= ?128 [130, 129, 128] by l2 ?128 ?129 ?130 Id : 18, {_}: add (add (multiply ?58 ?59) (multiply ?59 ?60)) ?59 =>= ?59 [60, 59, 58] by l3 ?58 ?59 ?60 Id : 11, {_}: add (add ?32 ?33) ?34 =>= add ?32 (add ?33 ?34) [34, 33, 32] by associativity_of_add ?32 ?33 ?34 Id : 12, {_}: multiply (multiply ?36 ?37) ?38 =>= multiply ?36 (multiply ?37 ?38) [38, 37, 36] by associativity_of_multiply ?36 ?37 ?38 Id : 7, {_}: multiply (multiply (add ?21 ?22) (add ?22 ?23)) ?22 =>= ?22 [23, 22, 21] by l4 ?21 ?22 ?23 Id : 3, {_}: add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6 [8, 7, 6] by l1 ?6 ?7 ?8 Id : 10, {_}: multiply ?30 (inverse ?30) =>= n0 [30] by multiplicative_inverse ?30 Id : 6, {_}: multiply ?17 (add ?18 (add ?17 ?19)) =>= ?17 [19, 18, 17] by l2 ?17 ?18 ?19 Id : 9, {_}: add ?28 (inverse ?28) =>= n1 [28] by additive_inverse ?28 Id : 5, {_}: multiply (add ?14 (inverse ?14)) ?15 =>= ?15 [15, 14] by property3 ?14 ?15 Id : 2, {_}: add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) =>= multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2)) [4, 3, 2] by distributivity ?2 ?3 ?4 Id : 24, {_}: add (multiply ?78 (add ?79 (inverse ?79))) (add ?80 (multiply ?80 ?78)) =<= multiply (add ?78 (add ?79 (inverse ?79))) (multiply (add (add ?79 (inverse ?79)) ?80) (add ?80 ?78)) [80, 79, 78] by Super 2 with 5 at 1,2,2 Id : 1512, {_}: add (multiply ?78 n1) (add ?80 (multiply ?80 ?78)) =<= multiply (add ?78 (add ?79 (inverse ?79))) (multiply (add (add ?79 (inverse ?79)) ?80) (add ?80 ?78)) [79, 80, 78] by Demod 24 with 9 at 2,1,2 Id : 79, {_}: multiply n1 ?15 =>= ?15 [15] by Demod 5 with 9 at 1,2 Id : 89, {_}: n0 =<= inverse n1 [] by Super 79 with 10 at 2 Id : 244, {_}: add n1 n0 =>= n1 [] by Super 9 with 89 at 2,2 Id : 265, {_}: multiply n1 (add ?616 n1) =>= n1 [616] by Super 6 with 244 at 2,2,2 Id : 277, {_}: add ?616 n1 =>= n1 [616] by Demod 265 with 79 at 2 Id : 288, {_}: multiply ?632 (add ?633 n1) =>= ?632 [633, 632] by Super 6 with 277 at 2,2,2 Id : 306, {_}: multiply ?632 n1 =>= ?632 [632] by Demod 288 with 277 at 2,2 Id : 1513, {_}: add ?78 (add ?80 (multiply ?80 ?78)) =<= multiply (add ?78 (add ?79 (inverse ?79))) (multiply (add (add ?79 (inverse ?79)) ?80) (add ?80 ?78)) [79, 80, 78] by Demod 1512 with 306 at 1,2 Id : 22, {_}: add ?71 (multiply ?71 ?72) =>= ?71 [72, 71] by Super 3 with 5 at 2,2 Id : 1514, {_}: add ?78 ?80 =<= multiply (add ?78 (add ?79 (inverse ?79))) (multiply (add (add ?79 (inverse ?79)) ?80) (add ?80 ?78)) [79, 80, 78] by Demod 1513 with 22 at 2,2 Id : 1515, {_}: add ?78 ?80 =<= multiply (add ?78 n1) (multiply (add (add ?79 (inverse ?79)) ?80) (add ?80 ?78)) [79, 80, 78] by Demod 1514 with 9 at 2,1,3 Id : 1516, {_}: add ?78 ?80 =<= multiply n1 (multiply (add (add ?79 (inverse ?79)) ?80) (add ?80 ?78)) [79, 80, 78] by Demod 1515 with 277 at 1,3 Id : 1517, {_}: add ?78 ?80 =<= multiply n1 (multiply (add n1 ?80) (add ?80 ?78)) [80, 78] by Demod 1516 with 9 at 1,1,2,3 Id : 130, {_}: multiply (add ?21 ?22) (multiply (add ?22 ?23) ?22) =>= ?22 [23, 22, 21] by Demod 7 with 12 at 2 Id : 388, {_}: multiply (add ?766 n1) (add n1 ?767) =>= n1 [767, 766] by Super 130 with 306 at 2,2 Id : 423, {_}: multiply n1 (add n1 ?767) =>= n1 [767] by Demod 388 with 277 at 1,2 Id : 424, {_}: add n1 ?767 =>= n1 [767] by Demod 423 with 79 at 2 Id : 1518, {_}: add ?78 ?80 =<= multiply n1 (multiply n1 (add ?80 ?78)) [80, 78] by Demod 1517 with 424 at 1,2,3 Id : 1519, {_}: add ?78 ?80 =<= multiply n1 (add ?80 ?78) [80, 78] by Demod 1518 with 79 at 2,3 Id : 1520, {_}: add ?78 ?80 =?= add ?80 ?78 [80, 78] by Demod 1519 with 79 at 3 Id : 33, {_}: add (multiply ?111 ?112) (add ?112 (multiply (add ?113 (add ?112 ?114)) ?111)) =<= multiply (add ?111 ?112) (multiply (add ?112 (add ?113 (add ?112 ?114))) (add (add ?113 (add ?112 ?114)) ?111)) [114, 113, 112, 111] by Super 2 with 6 at 1,2,2 Id : 19, {_}: add (multiply ?62 ?63) ?63 =>= ?63 [63, 62] by Super 18 with 3 at 1,2 Id : 319, {_}: add ?667 ?668 =<= add (multiply ?669 ?667) (add ?667 ?668) [669, 668, 667] by Super 11 with 19 at 1,2 Id : 8952, {_}: add ?112 (multiply (add ?113 (add ?112 ?114)) ?111) =<= multiply (add ?111 ?112) (multiply (add ?112 (add ?113 (add ?112 ?114))) (add (add ?113 (add ?112 ?114)) ?111)) [111, 114, 113, 112] by Demod 33 with 319 at 2 Id : 326, {_}: add (multiply ?689 ?690) ?690 =>= ?690 [690, 689] by Super 18 with 3 at 1,2 Id : 327, {_}: add ?692 (add ?693 (add ?692 ?694)) =>= add ?693 (add ?692 ?694) [694, 693, 692] by Super 326 with 6 at 1,2 Id : 8953, {_}: add ?112 (multiply (add ?113 (add ?112 ?114)) ?111) =<= multiply (add ?111 ?112) (multiply (add ?113 (add ?112 ?114)) (add (add ?113 (add ?112 ?114)) ?111)) [111, 114, 113, 112] by Demod 8952 with 327 at 1,2,3 Id : 8954, {_}: add ?112 (multiply (add ?113 (add ?112 ?114)) ?111) =<= multiply (add ?111 ?112) (multiply (add ?113 (add ?112 ?114)) (add ?113 (add (add ?112 ?114) ?111))) [111, 114, 113, 112] by Demod 8953 with 11 at 2,2,3 Id : 8955, {_}: add ?112 (multiply (add ?113 (add ?112 ?114)) ?111) =<= multiply (add ?111 ?112) (multiply (add ?113 (add ?112 ?114)) (add ?113 (add ?112 (add ?114 ?111)))) [111, 114, 113, 112] by Demod 8954 with 11 at 2,2,2,3 Id : 3498, {_}: add ?4266 ?4267 =<= add (multiply ?4268 ?4266) (add ?4266 ?4267) [4268, 4267, 4266] by Super 11 with 19 at 1,2 Id : 3525, {_}: add ?4375 ?4376 =<= add (multiply ?4377 (multiply ?4378 ?4375)) (add ?4375 ?4376) [4378, 4377, 4376, 4375] by Super 3498 with 12 at 1,3 Id : 23, {_}: add (multiply ?74 ?75) (add (multiply ?75 (add ?76 (inverse ?76))) ?74) =<= multiply (add ?74 ?75) (multiply (add ?75 (add ?76 (inverse ?76))) (add (add ?76 (inverse ?76)) ?74)) [76, 75, 74] by Super 2 with 5 at 2,2,2 Id : 862, {_}: add (multiply ?74 ?75) (add (multiply ?75 n1) ?74) =<= multiply (add ?74 ?75) (multiply (add ?75 (add ?76 (inverse ?76))) (add (add ?76 (inverse ?76)) ?74)) [76, 75, 74] by Demod 23 with 9 at 2,1,2,2 Id : 863, {_}: add (multiply ?74 ?75) (add ?75 ?74) =<= multiply (add ?74 ?75) (multiply (add ?75 (add ?76 (inverse ?76))) (add (add ?76 (inverse ?76)) ?74)) [76, 75, 74] by Demod 862 with 306 at 1,2,2 Id : 864, {_}: add (multiply ?74 ?75) (add ?75 ?74) =<= multiply (add ?74 ?75) (multiply (add ?75 n1) (add (add ?76 (inverse ?76)) ?74)) [76, 75, 74] by Demod 863 with 9 at 2,1,2,3 Id : 865, {_}: add (multiply ?74 ?75) (add ?75 ?74) =?= multiply (add ?74 ?75) (multiply n1 (add (add ?76 (inverse ?76)) ?74)) [76, 75, 74] by Demod 864 with 277 at 1,2,3 Id : 866, {_}: add (multiply ?74 ?75) (add ?75 ?74) =?= multiply (add ?74 ?75) (multiply n1 (add n1 ?74)) [75, 74] by Demod 865 with 9 at 1,2,2,3 Id : 867, {_}: add (multiply ?74 ?75) (add ?75 ?74) =>= multiply (add ?74 ?75) (multiply n1 n1) [75, 74] by Demod 866 with 424 at 2,2,3 Id : 868, {_}: add (multiply ?74 ?75) (add ?75 ?74) =>= multiply (add ?74 ?75) n1 [75, 74] by Demod 867 with 79 at 2,3 Id : 869, {_}: add (multiply ?74 ?75) (add ?75 ?74) =>= add ?74 ?75 [75, 74] by Demod 868 with 306 at 3 Id : 875, {_}: add (add ?1354 ?1355) ?1356 =<= add (multiply ?1354 ?1355) (add (add ?1355 ?1354) ?1356) [1356, 1355, 1354] by Super 11 with 869 at 1,2 Id : 907, {_}: add ?1354 (add ?1355 ?1356) =<= add (multiply ?1354 ?1355) (add (add ?1355 ?1354) ?1356) [1356, 1355, 1354] by Demod 875 with 11 at 2 Id : 908, {_}: add ?1354 (add ?1355 ?1356) =<= add (multiply ?1354 ?1355) (add ?1355 (add ?1354 ?1356)) [1356, 1355, 1354] by Demod 907 with 11 at 2,3 Id : 473, {_}: multiply n1 (multiply (add ?849 ?850) ?849) =>= ?849 [850, 849] by Super 130 with 424 at 1,2 Id : 505, {_}: multiply (add ?849 ?850) ?849 =>= ?849 [850, 849] by Demod 473 with 79 at 2 Id : 1151, {_}: add (add ?1664 ?1665) (multiply ?1666 ?1664) =>= add ?1664 ?1665 [1666, 1665, 1664] by Super 3 with 505 at 2,2,2 Id : 7964, {_}: add ?10440 (add ?10441 (multiply ?10442 ?10440)) =>= add ?10440 ?10441 [10442, 10441, 10440] by Demod 1151 with 11 at 2 Id : 42, {_}: multiply ?149 (add ?149 ?150) =>= ?149 [150, 149] by Super 37 with 4 at 2,2 Id : 7969, {_}: add (add ?10461 ?10462) (add ?10463 ?10461) =>= add (add ?10461 ?10462) ?10463 [10463, 10462, 10461] by Super 7964 with 42 at 2,2,2 Id : 8112, {_}: add ?10461 (add ?10462 (add ?10463 ?10461)) =>= add (add ?10461 ?10462) ?10463 [10463, 10462, 10461] by Demod 7969 with 11 at 2 Id : 8113, {_}: add ?10461 (add ?10462 (add ?10463 ?10461)) =>= add ?10461 (add ?10462 ?10463) [10463, 10462, 10461] by Demod 8112 with 11 at 3 Id : 39, {_}: multiply ?137 (add ?138 ?137) =>= ?137 [138, 137] by Super 37 with 3 at 2,2,2 Id : 1332, {_}: add ?1903 (add ?1904 ?1903) =>= add ?1904 ?1903 [1904, 1903] by Super 19 with 39 at 1,2 Id : 1336, {_}: add ?1916 (add ?1917 (add ?1918 ?1916)) =>= add (add ?1917 ?1918) ?1916 [1918, 1917, 1916] by Super 1332 with 11 at 2,2 Id : 1384, {_}: add ?1916 (add ?1917 (add ?1918 ?1916)) =>= add ?1917 (add ?1918 ?1916) [1918, 1917, 1916] by Demod 1336 with 11 at 3 Id : 12802, {_}: add ?10462 (add ?10463 ?10461) =?= add ?10461 (add ?10462 ?10463) [10461, 10463, 10462] by Demod 8113 with 1384 at 2 Id : 51897, {_}: add ?1354 (add ?1355 ?1356) =<= add ?1355 (add (add ?1354 ?1356) (multiply ?1354 ?1355)) [1356, 1355, 1354] by Demod 908 with 12802 at 3 Id : 51898, {_}: add ?1354 (add ?1355 ?1356) =<= add ?1355 (add ?1354 (add ?1356 (multiply ?1354 ?1355))) [1356, 1355, 1354] by Demod 51897 with 11 at 2,3 Id : 4077, {_}: add ?5060 ?5061 =<= add ?5060 (add (multiply ?5060 ?5062) ?5061) [5062, 5061, 5060] by Super 11 with 22 at 1,2 Id : 4108, {_}: add ?5166 ?5167 =<= add ?5166 (add ?5167 (multiply ?5166 ?5168)) [5168, 5167, 5166] by Super 4077 with 1520 at 2,3 Id : 51899, {_}: add ?1354 (add ?1355 ?1356) =?= add ?1355 (add ?1354 ?1356) [1356, 1355, 1354] by Demod 51898 with 4108 at 2,3 Id : 52761, {_}: add ?4375 ?4376 =<= add ?4375 (add (multiply ?4377 (multiply ?4378 ?4375)) ?4376) [4378, 4377, 4376, 4375] by Demod 3525 with 51899 at 3 Id : 52838, {_}: add ?65233 (multiply (add ?65234 (add ?65233 (multiply ?65235 (multiply ?65236 ?65233)))) ?65237) =<= multiply (add ?65237 ?65233) (multiply (add ?65234 (add ?65233 (multiply ?65235 (multiply ?65236 ?65233)))) (add ?65234 (add ?65233 ?65237))) [65237, 65236, 65235, 65234, 65233] by Super 8955 with 52761 at 2,2,2,3 Id : 329, {_}: add (multiply ?698 (multiply ?699 ?700)) ?700 =>= ?700 [700, 699, 698] by Super 326 with 12 at 1,2 Id : 3872, {_}: add ?700 (multiply ?698 (multiply ?699 ?700)) =>= ?700 [699, 698, 700] by Demod 329 with 1520 at 2 Id : 53181, {_}: add ?65233 (multiply (add ?65234 ?65233) ?65237) =<= multiply (add ?65237 ?65233) (multiply (add ?65234 (add ?65233 (multiply ?65235 (multiply ?65236 ?65233)))) (add ?65234 (add ?65233 ?65237))) [65236, 65235, 65237, 65234, 65233] by Demod 52838 with 3872 at 2,1,2,2 Id : 53182, {_}: add ?65233 (multiply (add ?65234 ?65233) ?65237) =<= multiply (add ?65237 ?65233) (multiply (add ?65234 ?65233) (add ?65234 (add ?65233 ?65237))) [65237, 65234, 65233] by Demod 53181 with 3872 at 2,1,2,3 Id : 817, {_}: multiply ?1290 (add ?1290 ?1291) =>= ?1290 [1291, 1290] by Super 37 with 4 at 2,2 Id : 821, {_}: multiply (add ?1301 ?1302) (add ?1301 (add ?1302 ?1303)) =>= add ?1301 ?1302 [1303, 1302, 1301] by Super 817 with 11 at 2,2 Id : 53758, {_}: add ?66965 (multiply (add ?66966 ?66965) ?66967) =>= multiply (add ?66967 ?66965) (add ?66966 ?66965) [66967, 66966, 66965] by Demod 53182 with 821 at 2,3 Id : 1027, {_}: multiply (add ?1536 ?1537) ?1537 =>= ?1537 [1537, 1536] by Super 52 with 6 at 1,2 Id : 35, {_}: add ?121 (multiply ?122 ?121) =>= ?121 [122, 121] by Super 3 with 6 at 2,2,2 Id : 1034, {_}: multiply ?1558 (multiply ?1559 ?1558) =>= multiply ?1559 ?1558 [1559, 1558] by Super 1027 with 35 at 1,2 Id : 719, {_}: multiply ?1141 (add ?1142 ?1141) =>= ?1141 [1142, 1141] by Super 37 with 3 at 2,2,2 Id : 725, {_}: multiply (multiply ?1160 ?1161) ?1160 =>= multiply ?1160 ?1161 [1161, 1160] by Super 719 with 22 at 2,2 Id : 751, {_}: multiply ?1160 (multiply ?1161 ?1160) =>= multiply ?1160 ?1161 [1161, 1160] by Demod 725 with 12 at 2 Id : 1786, {_}: multiply ?1558 ?1559 =?= multiply ?1559 ?1558 [1559, 1558] by Demod 1034 with 751 at 2 Id : 55538, {_}: add ?69055 (multiply ?69056 (add ?69057 ?69055)) =>= multiply (add ?69056 ?69055) (add ?69057 ?69055) [69057, 69056, 69055] by Super 53758 with 1786 at 2,2 Id : 55544, {_}: add (multiply ?69081 ?69082) (multiply ?69083 ?69082) =<= multiply (add ?69083 (multiply ?69081 ?69082)) (add ?69082 (multiply ?69081 ?69082)) [69083, 69082, 69081] by Super 55538 with 35 at 2,2,2 Id : 55864, {_}: add (multiply ?69081 ?69082) (multiply ?69083 ?69082) =>= multiply (add ?69083 (multiply ?69081 ?69082)) ?69082 [69083, 69082, 69081] by Demod 55544 with 35 at 2,3 Id : 55865, {_}: add (multiply ?69081 ?69082) (multiply ?69083 ?69082) =>= multiply ?69082 (add ?69083 (multiply ?69081 ?69082)) [69083, 69082, 69081] by Demod 55864 with 1786 at 3 Id : 53763, {_}: add (multiply ?66987 ?66988) (multiply ?66987 ?66989) =<= multiply (add ?66989 (multiply ?66987 ?66988)) (add ?66987 (multiply ?66987 ?66988)) [66989, 66988, 66987] by Super 53758 with 22 at 1,2,2 Id : 54091, {_}: add (multiply ?66987 ?66988) (multiply ?66987 ?66989) =>= multiply (add ?66989 (multiply ?66987 ?66988)) ?66987 [66989, 66988, 66987] by Demod 53763 with 22 at 2,3 Id : 56255, {_}: add (multiply ?69913 ?69914) (multiply ?69913 ?69915) =>= multiply ?69913 (add ?69915 (multiply ?69913 ?69914)) [69915, 69914, 69913] by Demod 54091 with 1786 at 3 Id : 56350, {_}: add (multiply ?70343 ?70344) (multiply ?70344 ?70345) =>= multiply ?70344 (add ?70345 (multiply ?70344 ?70343)) [70345, 70344, 70343] by Super 56255 with 1786 at 1,2 Id : 53764, {_}: add (multiply ?66991 ?66992) (multiply ?66992 ?66993) =<= multiply (add ?66993 (multiply ?66991 ?66992)) (add ?66992 (multiply ?66991 ?66992)) [66993, 66992, 66991] by Super 53758 with 35 at 1,2,2 Id : 54093, {_}: add (multiply ?66991 ?66992) (multiply ?66992 ?66993) =>= multiply (add ?66993 (multiply ?66991 ?66992)) ?66992 [66993, 66992, 66991] by Demod 53764 with 35 at 2,3 Id : 54094, {_}: add (multiply ?66991 ?66992) (multiply ?66992 ?66993) =>= multiply ?66992 (add ?66993 (multiply ?66991 ?66992)) [66993, 66992, 66991] by Demod 54093 with 1786 at 3 Id : 61864, {_}: multiply ?70344 (add ?70345 (multiply ?70343 ?70344)) =?= multiply ?70344 (add ?70345 (multiply ?70344 ?70343)) [70343, 70345, 70344] by Demod 56350 with 54094 at 2 Id : 57021, {_}: add (multiply ?70838 ?70839) (multiply ?70840 ?70838) =>= multiply ?70838 (add ?70839 (multiply ?70840 ?70838)) [70840, 70839, 70838] by Super 1520 with 54094 at 3 Id : 55543, {_}: add (multiply ?69077 ?69078) (multiply ?69079 ?69077) =<= multiply (add ?69079 (multiply ?69077 ?69078)) (add ?69077 (multiply ?69077 ?69078)) [69079, 69078, 69077] by Super 55538 with 22 at 2,2,2 Id : 55862, {_}: add (multiply ?69077 ?69078) (multiply ?69079 ?69077) =>= multiply (add ?69079 (multiply ?69077 ?69078)) ?69077 [69079, 69078, 69077] by Demod 55543 with 22 at 2,3 Id : 55863, {_}: add (multiply ?69077 ?69078) (multiply ?69079 ?69077) =>= multiply ?69077 (add ?69079 (multiply ?69077 ?69078)) [69079, 69078, 69077] by Demod 55862 with 1786 at 3 Id : 62858, {_}: multiply ?78408 (add ?78409 (multiply ?78408 ?78410)) =?= multiply ?78408 (add ?78410 (multiply ?78409 ?78408)) [78410, 78409, 78408] by Demod 57021 with 55863 at 2 Id : 63963, {_}: multiply ?79737 (add ?79738 (multiply ?79737 ?79739)) =<= multiply ?79737 (add (multiply ?79738 ?79737) ?79739) [79739, 79738, 79737] by Super 62858 with 1520 at 2,3 Id : 56973, {_}: add (multiply ?2 ?3) (multiply ?4 (add ?2 (multiply ?3 ?4))) =>= multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2)) [4, 3, 2] by Demod 2 with 54094 at 2,2 Id : 64070, {_}: multiply ?80226 (add ?80227 (multiply ?80226 (multiply ?80228 (add ?80227 (multiply ?80226 ?80228))))) =>= multiply ?80226 (multiply (add ?80227 ?80226) (multiply (add ?80226 ?80228) (add ?80228 ?80227))) [80228, 80227, 80226] by Super 63963 with 56973 at 2,3 Id : 715, {_}: multiply ?1129 ?1130 =<= multiply ?1129 (multiply ?1130 (add ?1131 (multiply ?1129 ?1130))) [1131, 1130, 1129] by Super 12 with 39 at 2 Id : 64570, {_}: multiply ?80226 (add ?80227 (multiply ?80226 ?80228)) =<= multiply ?80226 (multiply (add ?80227 ?80226) (multiply (add ?80226 ?80228) (add ?80228 ?80227))) [80228, 80227, 80226] by Demod 64070 with 715 at 2,2,2 Id : 714, {_}: multiply ?1125 ?1126 =<= multiply ?1125 (multiply (add ?1127 ?1125) ?1126) [1127, 1126, 1125] by Super 12 with 39 at 1,2 Id : 64571, {_}: multiply ?80226 (add ?80227 (multiply ?80226 ?80228)) =<= multiply ?80226 (multiply (add ?80226 ?80228) (add ?80228 ?80227)) [80228, 80227, 80226] by Demod 64570 with 714 at 3 Id : 812, {_}: multiply ?1274 ?1275 =<= multiply ?1274 (multiply (add ?1274 ?1276) ?1275) [1276, 1275, 1274] by Super 12 with 42 at 1,2 Id : 64572, {_}: multiply ?80226 (add ?80227 (multiply ?80226 ?80228)) =>= multiply ?80226 (add ?80228 ?80227) [80228, 80227, 80226] by Demod 64571 with 812 at 3 Id : 65423, {_}: multiply ?70344 (add ?70345 (multiply ?70343 ?70344)) =>= multiply ?70344 (add ?70343 ?70345) [70343, 70345, 70344] by Demod 61864 with 64572 at 3 Id : 65431, {_}: add (multiply ?69081 ?69082) (multiply ?69083 ?69082) =>= multiply ?69082 (add ?69081 ?69083) [69083, 69082, 69081] by Demod 55865 with 65423 at 3 Id : 65960, {_}: multiply a (add c b) =?= multiply a (add c b) [] by Demod 65959 with 65431 at 3 Id : 65959, {_}: multiply a (add c b) =<= add (multiply c a) (multiply b a) [] by Demod 65958 with 1520 at 3 Id : 65958, {_}: multiply a (add c b) =<= add (multiply b a) (multiply c a) [] by Demod 1 with 1520 at 2,2 Id : 1, {_}: multiply a (add b c) =<= add (multiply b a) (multiply c a) [] by prove_multiply_add_property % SZS output end CNFRefutation for BOO031-1.p 7493: solved BOO031-1.p in 13.184823 using kbo WARNING: TreeLimitedRun lost 18.18s, total lost is 18.18s FINAL WATCH: 31.4 CPU 30.0 WC Killed 3 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO032-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 7528 TreeLimitedRun: ---------------------------------------------------------- 7530: Facts: 7530: Id : 2, {_}: add ?2 (multiply ?3 (multiply ?2 ?4)) =>= ?2 [4, 3, 2] by l1 ?2 ?3 ?4 7530: Id : 3, {_}: add (add (multiply ?6 ?7) (multiply ?7 ?8)) ?7 =>= ?7 [8, 7, 6] by l3 ?6 ?7 ?8 7530: Id : 4, {_}: multiply (add ?10 (inverse ?10)) ?11 =>= ?11 [11, 10] by property3 ?10 ?11 7530: Id : 5, {_}: multiply ?13 (add ?14 (add ?13 ?15)) =>= ?13 [15, 14, 13] by l2 ?13 ?14 ?15 7530: Id : 6, {_}: multiply (multiply (add ?17 ?18) (add ?18 ?19)) ?18 =>= ?18 [19, 18, 17] by l4 ?17 ?18 ?19 7530: Id : 7, {_}: add (multiply ?21 (inverse ?21)) ?22 =>= ?22 [22, 21] by property3_dual ?21 ?22 7530: Id : 8, {_}: add (multiply (add ?24 ?25) ?24) (multiply ?24 ?25) =>= ?24 [25, 24] by majority1 ?24 ?25 7530: Id : 9, {_}: add (multiply (add ?27 ?27) ?28) (multiply ?27 ?27) =>= ?27 [28, 27] by majority2 ?27 ?28 7530: Id : 10, {_}: add (multiply (add ?30 ?31) ?31) (multiply ?30 ?31) =>= ?31 [31, 30] by majority3 ?30 ?31 7530: Id : 11, {_}: multiply (add (multiply ?33 ?34) ?33) (add ?33 ?34) =>= ?33 [34, 33] by majority1_dual ?33 ?34 7530: Id : 12, {_}: multiply (add (multiply ?36 ?36) ?37) (add ?36 ?36) =>= ?36 [37, 36] by majority2_dual ?36 ?37 7530: Id : 13, {_}: multiply (add (multiply ?39 ?40) ?40) (add ?39 ?40) =>= ?40 [40, 39] by majority3_dual ?39 ?40 7530: Goal: 7530: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution % SZS status Timeout for BOO032-1.p FINAL WATCH: 181.0 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO033-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 7592 TreeLimitedRun: ---------------------------------------------------------- 7594: Facts: 7594: Id : 2, {_}: add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) =<= multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2)) [4, 3, 2] by distributivity ?2 ?3 ?4 7594: Id : 3, {_}: add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6 [8, 7, 6] by l1 ?6 ?7 ?8 7594: Id : 4, {_}: add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11 [12, 11, 10] by l3 ?10 ?11 ?12 7594: Id : 5, {_}: multiply (add ?14 (inverse ?14)) ?15 =>= ?15 [15, 14] by property3 ?14 ?15 7594: Id : 6, {_}: multiply (add (multiply ?17 ?18) ?17) (add ?17 ?18) =>= ?17 [18, 17] by majority1 ?17 ?18 7594: Id : 7, {_}: multiply (add (multiply ?20 ?20) ?21) (add ?20 ?20) =>= ?20 [21, 20] by majority2 ?20 ?21 7594: Id : 8, {_}: multiply (add (multiply ?23 ?24) ?24) (add ?23 ?24) =>= ?24 [24, 23] by majority3 ?23 ?24 7594: Goal: 7594: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution % SZS status Timeout for BOO033-1.p FINAL WATCH: 195.0 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO034-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 7671 TreeLimitedRun: ---------------------------------------------------------- 7673: Facts: 7673: Id : 2, {_}: multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6) =>= multiply ?2 ?3 (multiply ?4 ?5 ?6) [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6 7673: Id : 3, {_}: multiply ?8 ?9 ?9 =>= ?9 [9, 8] by ternary_multiply_1 ?8 ?9 7673: Id : 4, {_}: multiply ?11 ?11 ?12 =>= ?11 [12, 11] by ternary_multiply_2 ?11 ?12 7673: Id : 5, {_}: multiply (inverse ?14) ?14 ?15 =>= ?15 [15, 14] by left_inverse ?14 ?15 7673: Id : 6, {_}: multiply ?17 ?18 (inverse ?18) =>= ?17 [18, 17] by right_inverse ?17 ?18 7673: Goal: 7673: Id : 1, {_}: multiply (multiply a (inverse a) b) (inverse (multiply (multiply c d e) f (multiply c d g))) (multiply d (multiply g f e) c) =>= b [] by prove_single_axiom Statistics : Max weight : 34 Found proof, 14.806331s % SZS status Unsatisfiable for BOO034-1.p % SZS output start CNFRefutation for BOO034-1.p Id : 4, {_}: multiply ?11 ?11 ?12 =>= ?11 [12, 11] by ternary_multiply_2 ?11 ?12 Id : 3, {_}: multiply ?8 ?9 ?9 =>= ?9 [9, 8] by ternary_multiply_1 ?8 ?9 Id : 6, {_}: multiply ?17 ?18 (inverse ?18) =>= ?17 [18, 17] by right_inverse ?17 ?18 Id : 5, {_}: multiply (inverse ?14) ?14 ?15 =>= ?15 [15, 14] by left_inverse ?14 ?15 Id : 2, {_}: multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6) =>= multiply ?2 ?3 (multiply ?4 ?5 ?6) [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6 Id : 69, {_}: multiply ?206 ?207 ?208 =<= multiply ?206 ?207 (multiply ?209 (multiply ?206 ?207 ?208) ?208) [209, 208, 207, 206] by Super 2 with 3 at 2 Id : 78, {_}: multiply ?251 ?252 ?253 =<= multiply ?251 ?252 (multiply ?251 ?252 ?253) [253, 252, 251] by Super 69 with 4 at 3,3 Id : 109, {_}: multiply (multiply ?277 ?278 ?279) ?280 (multiply ?277 ?278 ?281) =?= multiply ?277 ?278 (multiply ?279 ?280 (multiply ?277 ?278 ?281)) [281, 280, 279, 278, 277] by Super 2 with 78 at 3,2 Id : 292, {_}: multiply ?704 ?705 (multiply ?706 ?707 ?708) =<= multiply ?704 ?705 (multiply ?706 ?707 (multiply ?704 ?705 ?708)) [708, 707, 706, 705, 704] by Demod 109 with 2 at 2 Id : 178, {_}: multiply ?432 ?433 ?434 =<= multiply ?432 ?433 (multiply ?434 (multiply ?432 ?433 ?434) ?435) [435, 434, 433, 432] by Super 2 with 4 at 2 Id : 183, {_}: multiply ?456 ?457 (inverse ?457) =<= multiply ?456 ?457 (multiply (inverse ?457) ?456 ?458) [458, 457, 456] by Super 178 with 6 at 2,3,3 Id : 219, {_}: ?456 =<= multiply ?456 ?457 (multiply (inverse ?457) ?456 ?458) [458, 457, 456] by Demod 183 with 6 at 2 Id : 315, {_}: multiply (inverse ?833) ?834 (multiply ?834 ?833 ?835) =>= multiply (inverse ?833) ?834 ?834 [835, 834, 833] by Super 292 with 219 at 3,3 Id : 381, {_}: multiply (inverse ?929) ?930 (multiply ?930 ?929 ?931) =>= ?930 [931, 930, 929] by Demod 315 with 3 at 3 Id : 383, {_}: multiply (inverse ?939) ?940 ?939 =>= ?940 [940, 939] by Super 381 with 3 at 3,2 Id : 431, {_}: ?1028 =<= inverse (inverse ?1028) [1028] by Super 6 with 383 at 2 Id : 456, {_}: multiply ?1075 (inverse ?1075) ?1076 =>= ?1076 [1076, 1075] by Super 5 with 431 at 1,2 Id : 110, {_}: multiply (multiply ?283 ?284 ?285) ?286 (multiply ?283 ?284 ?287) =?= multiply ?283 ?284 (multiply (multiply ?283 ?284 ?285) ?286 ?287) [287, 286, 285, 284, 283] by Super 2 with 78 at 1,2 Id : 13710, {_}: multiply ?18469 ?18470 (multiply ?18471 ?18472 ?18473) =<= multiply ?18469 ?18470 (multiply (multiply ?18469 ?18470 ?18471) ?18472 ?18473) [18473, 18472, 18471, 18470, 18469] by Demod 110 with 2 at 2 Id : 74, {_}: multiply ?230 ?231 (inverse ?231) =<= multiply ?230 ?231 (multiply ?232 ?230 (inverse ?231)) [232, 231, 230] by Super 69 with 6 at 2,3,3 Id : 99, {_}: ?230 =<= multiply ?230 ?231 (multiply ?232 ?230 (inverse ?231)) [232, 231, 230] by Demod 74 with 6 at 2 Id : 1006, {_}: ?2080 =<= multiply ?2080 (inverse ?2081) (multiply ?2082 ?2080 ?2081) [2082, 2081, 2080] by Super 99 with 431 at 3,3,3 Id : 1022, {_}: ?2138 =<= multiply ?2138 (inverse (multiply ?2139 ?2140 (inverse ?2138))) ?2140 [2140, 2139, 2138] by Super 1006 with 99 at 3,3 Id : 453, {_}: ?1064 =<= multiply ?1064 (inverse ?1065) (multiply ?1065 ?1064 ?1066) [1066, 1065, 1064] by Super 219 with 431 at 1,3,3 Id : 1027, {_}: inverse ?2160 =<= multiply (inverse ?2160) (inverse (multiply ?2160 ?2161 ?2162)) ?2161 [2162, 2161, 2160] by Super 1006 with 453 at 3,3 Id : 1960, {_}: ?3704 =<= multiply ?3704 (inverse (inverse ?3705)) (inverse (multiply ?3705 (inverse ?3704) ?3706)) [3706, 3705, 3704] by Super 1022 with 1027 at 1,2,3 Id : 2051, {_}: ?3704 =<= multiply ?3704 ?3705 (inverse (multiply ?3705 (inverse ?3704) ?3706)) [3706, 3705, 3704] by Demod 1960 with 431 at 2,3 Id : 2599, {_}: ?4752 =<= multiply ?4752 (multiply ?4752 (inverse ?4753) ?4754) ?4753 [4754, 4753, 4752] by Super 99 with 2051 at 3,3 Id : 2906, {_}: multiply ?5282 (inverse (inverse ?5283)) ?5284 =<= multiply (multiply ?5282 (inverse (inverse ?5283)) ?5284) ?5283 ?5282 [5284, 5283, 5282] by Super 99 with 2599 at 3,3 Id : 2968, {_}: multiply ?5282 ?5283 ?5284 =<= multiply (multiply ?5282 (inverse (inverse ?5283)) ?5284) ?5283 ?5282 [5284, 5283, 5282] by Demod 2906 with 431 at 2,2 Id : 2969, {_}: multiply ?5282 ?5283 ?5284 =<= multiply (multiply ?5282 ?5283 ?5284) ?5283 ?5282 [5284, 5283, 5282] by Demod 2968 with 431 at 2,1,3 Id : 13816, {_}: multiply ?19099 ?19100 (multiply ?19101 ?19100 ?19099) =?= multiply ?19099 ?19100 (multiply ?19099 ?19100 ?19101) [19101, 19100, 19099] by Super 13710 with 2969 at 3,3 Id : 14033, {_}: multiply ?19463 ?19464 (multiply ?19465 ?19464 ?19463) =>= multiply ?19463 ?19464 ?19465 [19465, 19464, 19463] by Demod 13816 with 78 at 3 Id : 13, {_}: multiply ?58 ?59 ?60 =<= multiply ?58 ?59 (multiply ?61 (multiply ?58 ?59 ?60) ?60) [61, 60, 59, 58] by Super 2 with 3 at 2 Id : 457, {_}: multiply ?1078 ?1079 (inverse ?1078) =>= ?1079 [1079, 1078] by Super 383 with 431 at 1,2 Id : 602, {_}: multiply ?1325 ?1326 (inverse ?1325) =<= multiply ?1325 ?1326 (multiply ?1327 ?1326 (inverse ?1325)) [1327, 1326, 1325] by Super 13 with 457 at 2,3,3 Id : 620, {_}: ?1326 =<= multiply ?1325 ?1326 (multiply ?1327 ?1326 (inverse ?1325)) [1327, 1325, 1326] by Demod 602 with 457 at 2 Id : 454, {_}: ?1068 =<= multiply ?1068 (inverse ?1069) (multiply ?1070 ?1068 ?1069) [1070, 1069, 1068] by Super 99 with 431 at 3,3,3 Id : 1028, {_}: inverse ?2164 =<= multiply (inverse ?2164) (inverse (multiply ?2165 ?2166 ?2164)) ?2166 [2166, 2165, 2164] by Super 1006 with 454 at 3,3 Id : 2137, {_}: ?4052 =<= multiply ?4052 (inverse (inverse ?4053)) (inverse (multiply ?4054 (inverse ?4052) ?4053)) [4054, 4053, 4052] by Super 1022 with 1028 at 1,2,3 Id : 2184, {_}: ?4052 =<= multiply ?4052 ?4053 (inverse (multiply ?4054 (inverse ?4052) ?4053)) [4054, 4053, 4052] by Demod 2137 with 431 at 2,3 Id : 3771, {_}: ?6700 =<= multiply ?6700 (multiply ?6701 (inverse ?6702) ?6700) ?6702 [6702, 6701, 6700] by Super 99 with 2184 at 3,3 Id : 4156, {_}: multiply ?7430 (inverse (inverse ?7431)) ?7432 =<= multiply ?7431 (multiply ?7430 (inverse (inverse ?7431)) ?7432) ?7432 [7432, 7431, 7430] by Super 620 with 3771 at 3,3 Id : 4227, {_}: multiply ?7430 ?7431 ?7432 =<= multiply ?7431 (multiply ?7430 (inverse (inverse ?7431)) ?7432) ?7432 [7432, 7431, 7430] by Demod 4156 with 431 at 2,2 Id : 4228, {_}: multiply ?7430 ?7431 ?7432 =<= multiply ?7431 (multiply ?7430 ?7431 ?7432) ?7432 [7432, 7431, 7430] by Demod 4227 with 431 at 2,2,3 Id : 14102, {_}: multiply ?19738 (multiply ?19739 ?19740 ?19738) (multiply ?19739 ?19740 ?19738) =>= multiply ?19738 (multiply ?19739 ?19740 ?19738) ?19740 [19740, 19739, 19738] by Super 14033 with 4228 at 3,2 Id : 14654, {_}: multiply ?20559 ?20560 ?20561 =<= multiply ?20561 (multiply ?20559 ?20560 ?20561) ?20560 [20561, 20560, 20559] by Demod 14102 with 3 at 2 Id : 13942, {_}: multiply ?19099 ?19100 (multiply ?19101 ?19100 ?19099) =>= multiply ?19099 ?19100 ?19101 [19101, 19100, 19099] by Demod 13816 with 78 at 3 Id : 14667, {_}: multiply ?20604 ?20605 (multiply ?20606 ?20605 ?20604) =<= multiply (multiply ?20606 ?20605 ?20604) (multiply ?20604 ?20605 ?20606) ?20605 [20606, 20605, 20604] by Super 14654 with 13942 at 2,3 Id : 14825, {_}: multiply ?20604 ?20605 ?20606 =<= multiply (multiply ?20606 ?20605 ?20604) (multiply ?20604 ?20605 ?20606) ?20605 [20606, 20605, 20604] by Demod 14667 with 13942 at 2 Id : 36998, {_}: multiply (multiply ?54457 ?54458 ?54459) ?54460 ?54457 =<= multiply ?54457 ?54458 (multiply ?54459 ?54460 (multiply ?54461 ?54457 (inverse ?54458))) [54461, 54460, 54459, 54458, 54457] by Super 2 with 99 at 3,2 Id : 37534, {_}: multiply (multiply ?55874 ?55875 ?55876) ?55876 ?55874 =>= multiply ?55874 ?55875 ?55876 [55876, 55875, 55874] by Super 36998 with 4 at 3,3 Id : 37611, {_}: multiply (multiply ?56190 ?56191 ?56192) ?56192 ?56191 =?= multiply ?56191 (multiply ?56190 ?56191 ?56192) ?56192 [56192, 56191, 56190] by Super 37534 with 4228 at 1,2 Id : 37882, {_}: multiply (multiply ?56190 ?56191 ?56192) ?56192 ?56191 =>= multiply ?56190 ?56191 ?56192 [56192, 56191, 56190] by Demod 37611 with 4228 at 3 Id : 39099, {_}: multiply (multiply ?58330 ?58331 ?58332) ?58332 ?58331 =<= multiply (multiply ?58331 ?58332 (multiply ?58330 ?58331 ?58332)) (multiply ?58330 ?58331 ?58332) ?58332 [58332, 58331, 58330] by Super 14825 with 37882 at 2,3 Id : 39456, {_}: multiply ?58330 ?58331 ?58332 =<= multiply (multiply ?58331 ?58332 (multiply ?58330 ?58331 ?58332)) (multiply ?58330 ?58331 ?58332) ?58332 [58332, 58331, 58330] by Demod 39099 with 37882 at 2 Id : 39457, {_}: multiply ?58330 ?58331 ?58332 =<= multiply ?58331 ?58332 (multiply ?58330 ?58331 ?58332) [58332, 58331, 58330] by Demod 39456 with 37882 at 3 Id : 130, {_}: multiply ?283 ?284 (multiply ?285 ?286 ?287) =<= multiply ?283 ?284 (multiply (multiply ?283 ?284 ?285) ?286 ?287) [287, 286, 285, 284, 283] by Demod 110 with 2 at 2 Id : 2890, {_}: multiply ?5212 (inverse (inverse ?5213)) ?5214 =<= multiply ?5213 (multiply ?5212 (inverse (inverse ?5213)) ?5214) ?5212 [5214, 5213, 5212] by Super 620 with 2599 at 3,3 Id : 2981, {_}: multiply ?5212 ?5213 ?5214 =<= multiply ?5213 (multiply ?5212 (inverse (inverse ?5213)) ?5214) ?5212 [5214, 5213, 5212] by Demod 2890 with 431 at 2,2 Id : 2982, {_}: multiply ?5212 ?5213 ?5214 =<= multiply ?5213 (multiply ?5212 ?5213 ?5214) ?5212 [5214, 5213, 5212] by Demod 2981 with 431 at 2,2,3 Id : 37606, {_}: multiply (multiply ?56170 ?56171 ?56172) ?56170 ?56171 =?= multiply ?56171 (multiply ?56170 ?56171 ?56172) ?56170 [56172, 56171, 56170] by Super 37534 with 2982 at 1,2 Id : 37873, {_}: multiply (multiply ?56170 ?56171 ?56172) ?56170 ?56171 =>= multiply ?56170 ?56171 ?56172 [56172, 56171, 56170] by Demod 37606 with 2982 at 3 Id : 38530, {_}: multiply ?57466 ?57467 (multiply ?57468 ?57466 ?57467) =?= multiply ?57466 ?57467 (multiply ?57466 ?57467 ?57468) [57468, 57467, 57466] by Super 130 with 37873 at 3,3 Id : 38819, {_}: multiply ?57466 ?57467 (multiply ?57468 ?57466 ?57467) =>= multiply ?57466 ?57467 ?57468 [57468, 57467, 57466] by Demod 38530 with 78 at 3 Id : 40194, {_}: multiply ?58330 ?58331 ?58332 =<->= multiply ?58331 ?58332 ?58330 [58332, 58331, 58330] by Demod 39457 with 38819 at 3 Id : 129, {_}: multiply ?277 ?278 (multiply ?279 ?280 ?281) =<= multiply ?277 ?278 (multiply ?279 ?280 (multiply ?277 ?278 ?281)) [281, 280, 279, 278, 277] by Demod 109 with 2 at 2 Id : 14007, {_}: multiply ?19356 ?19357 (multiply ?19358 ?19359 (multiply ?19360 ?19357 ?19356)) =?= multiply ?19356 ?19357 (multiply ?19358 ?19359 (multiply ?19356 ?19357 ?19360)) [19360, 19359, 19358, 19357, 19356] by Super 129 with 13942 at 3,3,3 Id : 14145, {_}: multiply ?19356 ?19357 (multiply ?19358 ?19359 (multiply ?19360 ?19357 ?19356)) =>= multiply ?19356 ?19357 (multiply ?19358 ?19359 ?19360) [19360, 19359, 19358, 19357, 19356] by Demod 14007 with 129 at 3 Id : 39727, {_}: multiply ?59485 ?59486 (multiply ?59486 ?59487 ?59487) =?= multiply ?59485 ?59486 (multiply ?59486 ?59487 ?59485) [59487, 59486, 59485] by Super 129 with 38819 at 3,3 Id : 39997, {_}: multiply ?59485 ?59486 ?59487 =<= multiply ?59485 ?59486 (multiply ?59486 ?59487 ?59485) [59487, 59486, 59485] by Demod 39727 with 3 at 3,2 Id : 40816, {_}: multiply ?62195 ?62196 (multiply ?62195 ?62197 ?62196) =?= multiply ?62195 ?62196 (multiply ?62195 ?62197 ?62197) [62197, 62196, 62195] by Super 14145 with 39997 at 3,2 Id : 40978, {_}: multiply ?62195 ?62196 (multiply ?62195 ?62197 ?62196) =>= multiply ?62195 ?62196 ?62197 [62197, 62196, 62195] by Demod 40816 with 3 at 3,3 Id : 19, {_}: multiply ?83 ?84 ?85 =<= multiply ?83 ?84 (multiply ?85 (multiply ?83 ?84 ?85) ?86) [86, 85, 84, 83] by Super 2 with 4 at 2 Id : 311, {_}: multiply ?814 (multiply ?815 ?816 ?814) (multiply ?815 ?816 ?817) =?= multiply ?814 (multiply ?815 ?816 ?814) (multiply ?815 ?816 ?814) [817, 816, 815, 814] by Super 292 with 19 at 3,3 Id : 27015, {_}: multiply ?35223 (multiply ?35224 ?35225 ?35223) (multiply ?35224 ?35225 ?35226) =>= multiply ?35224 ?35225 ?35223 [35226, 35225, 35224, 35223] by Demod 311 with 3 at 3 Id : 27020, {_}: multiply ?35246 (multiply ?35247 ?35248 ?35246) ?35247 =>= multiply ?35247 ?35248 ?35246 [35248, 35247, 35246] by Super 27015 with 6 at 3,2 Id : 37551, {_}: multiply (multiply ?55940 ?55941 ?55942) ?55940 ?55942 =?= multiply ?55942 (multiply ?55940 ?55941 ?55942) ?55940 [55942, 55941, 55940] by Super 37534 with 27020 at 1,2 Id : 37791, {_}: multiply (multiply ?55940 ?55941 ?55942) ?55940 ?55942 =>= multiply ?55940 ?55941 ?55942 [55942, 55941, 55940] by Demod 37551 with 27020 at 3 Id : 40426, {_}: multiply ?61254 ?61255 (multiply ?61254 ?61256 ?61255) =>= multiply ?61254 ?61256 ?61255 [61256, 61255, 61254] by Super 37791 with 40194 at 2 Id : 43121, {_}: multiply ?62195 ?62197 ?62196 =<->= multiply ?62195 ?62196 ?62197 [62196, 62197, 62195] by Demod 40978 with 40426 at 2 Id : 455, {_}: multiply ?1072 (inverse ?1073) ?1073 =>= ?1072 [1073, 1072] by Super 6 with 431 at 3,2 Id : 43629, {_}: b === b [] by Demod 43628 with 455 at 2 Id : 43628, {_}: multiply b (inverse (multiply c d (multiply e f g))) (multiply c d (multiply e f g)) =>= b [] by Demod 43627 with 43121 at 3,2 Id : 43627, {_}: multiply b (inverse (multiply c d (multiply e f g))) (multiply c (multiply e f g) d) =>= b [] by Demod 43626 with 40194 at 3,2 Id : 43626, {_}: multiply b (inverse (multiply c d (multiply e f g))) (multiply d c (multiply e f g)) =>= b [] by Demod 43625 with 43121 at 3,2 Id : 43625, {_}: multiply b (inverse (multiply c d (multiply e f g))) (multiply d (multiply e f g) c) =>= b [] by Demod 43624 with 43121 at 2,3,2 Id : 43624, {_}: multiply b (inverse (multiply c d (multiply e f g))) (multiply d (multiply e g f) c) =>= b [] by Demod 43623 with 40194 at 2,3,2 Id : 43623, {_}: multiply b (inverse (multiply c d (multiply e f g))) (multiply d (multiply f e g) c) =>= b [] by Demod 43622 with 40194 at 2,3,2 Id : 43622, {_}: multiply b (inverse (multiply c d (multiply e f g))) (multiply d (multiply g f e) c) =>= b [] by Demod 47 with 456 at 1,2 Id : 47, {_}: multiply (multiply a (inverse a) b) (inverse (multiply c d (multiply e f g))) (multiply d (multiply g f e) c) =>= b [] by Demod 1 with 2 at 1,2,2 Id : 1, {_}: multiply (multiply a (inverse a) b) (inverse (multiply (multiply c d e) f (multiply c d g))) (multiply d (multiply g f e) c) =>= b [] by prove_single_axiom % SZS output end CNFRefutation for BOO034-1.p 7676: solved BOO034-1.p in 4.904306 using nrkbo WARNING: TreeLimitedRun lost 9.95s, total lost is 9.95s FINAL WATCH: 14.9 CPU 15.1 WC Killed 3 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO072-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 7699 TreeLimitedRun: ---------------------------------------------------------- 7701: Facts: 7701: Id : 2, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 7701: Goal: 7701: Id : 1, {_}: add b a =<= add a b [] by huntinton_1 Statistics : Max weight : 27 Found proof, 1.850010s % SZS status Unsatisfiable for BOO072-1.p % SZS output start CNFRefutation for BOO072-1.p Id : 3, {_}: inverse (add (inverse (add (inverse (add ?7 ?8)) ?9)) (inverse (add ?7 (inverse (add (inverse ?9) (inverse (add ?9 ?10))))))) =>= ?9 [10, 9, 8, 7] by dn1 ?7 ?8 ?9 ?10 Id : 2, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 Id : 15, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?74)) ?75)) ?74)) ?76)) (inverse ?74))) ?74) =>= inverse ?74 [76, 75, 74] by Super 3 with 2 at 2,1,2 Id : 20, {_}: inverse (add (inverse (add ?104 (inverse ?104))) ?104) =>= inverse ?104 [104] by Super 15 with 2 at 1,1,1,1,2 Id : 34, {_}: inverse (add (inverse ?125) (inverse (add ?125 (inverse (add (inverse ?125) (inverse (add ?125 ?126))))))) =>= ?125 [126, 125] by Super 2 with 20 at 1,1,2 Id : 55, {_}: inverse (add (inverse (add (inverse (add ?177 ?178)) ?179)) (inverse (add ?177 ?179))) =>= ?179 [179, 178, 177] by Super 2 with 34 at 2,1,2,1,2 Id : 129, {_}: inverse (add (inverse (add (inverse (add ?380 ?381)) ?382)) (inverse (add ?380 ?382))) =>= ?382 [382, 381, 380] by Super 2 with 34 at 2,1,2,1,2 Id : 139, {_}: inverse (add (inverse (add ?423 ?424)) (inverse (add (inverse ?423) ?424))) =>= ?424 [424, 423] by Super 129 with 34 at 1,1,1,1,2 Id : 173, {_}: inverse (add ?519 (inverse (add ?520 (inverse (add (inverse ?520) ?519))))) =>= inverse (add (inverse ?520) ?519) [520, 519] by Super 55 with 139 at 1,1,2 Id : 341, {_}: inverse (add (inverse ?868) (inverse (add ?868 (inverse (add (inverse ?868) (inverse ?868)))))) =>= ?868 [868] by Super 34 with 173 at 2,1,2,1,2 Id : 390, {_}: inverse (add (inverse ?868) (inverse ?868)) =>= ?868 [868] by Demod 341 with 173 at 2 Id : 174, {_}: inverse (add (inverse (add ?522 ?523)) (inverse (add (inverse ?522) ?523))) =>= ?523 [523, 522] by Super 129 with 34 at 1,1,1,1,2 Id : 59, {_}: inverse (add (inverse ?193) (inverse (add ?193 (inverse (add (inverse ?193) (inverse (add ?193 ?194))))))) =>= ?193 [194, 193] by Super 2 with 20 at 1,1,2 Id : 68, {_}: inverse (add (inverse ?226) (inverse (add ?226 ?226))) =>= ?226 [226] by Super 59 with 34 at 2,1,2,1,2 Id : 187, {_}: inverse (add (inverse (add ?573 (inverse (add ?573 ?573)))) ?573) =>= inverse (add ?573 ?573) [573] by Super 174 with 68 at 2,1,2 Id : 207, {_}: inverse (add (inverse (add ?609 ?609)) (inverse (add ?609 ?609))) =>= ?609 [609] by Super 55 with 187 at 1,1,2 Id : 418, {_}: add ?609 ?609 =>= ?609 [609] by Demod 207 with 390 at 2 Id : 427, {_}: inverse (inverse ?868) =>= ?868 [868] by Demod 390 with 418 at 1,2 Id : 434, {_}: inverse (add (inverse (add (inverse ?1023) ?1024)) (inverse (add ?1023 ?1024))) =>= ?1024 [1024, 1023] by Super 139 with 427 at 1,1,2,1,2 Id : 1270, {_}: inverse (add ?2140 (inverse (add (inverse ?2141) (inverse (add ?2141 ?2140))))) =>= inverse (add ?2141 ?2140) [2141, 2140] by Super 55 with 434 at 1,1,2 Id : 3038, {_}: inverse (inverse (add ?4462 ?4463)) =<= add ?4463 (inverse (add (inverse ?4462) (inverse (add ?4462 ?4463)))) [4463, 4462] by Super 427 with 1270 at 1,2 Id : 3136, {_}: add ?4462 ?4463 =<= add ?4463 (inverse (add (inverse ?4462) (inverse (add ?4462 ?4463)))) [4463, 4462] by Demod 3038 with 427 at 2 Id : 6089, {_}: inverse (add ?7788 (inverse (add (inverse (add ?7789 ?7790)) (inverse (add ?7789 ?7788))))) =>= inverse (add ?7789 ?7788) [7790, 7789, 7788] by Super 129 with 55 at 1,1,2 Id : 441, {_}: inverse (inverse ?1046) =>= ?1046 [1046] by Demod 390 with 418 at 1,2 Id : 447, {_}: inverse (inverse (add (inverse ?1065) ?1066)) =<= add ?1066 (inverse (add ?1065 (inverse (add (inverse ?1065) ?1066)))) [1066, 1065] by Super 441 with 173 at 1,2 Id : 459, {_}: add (inverse ?1065) ?1066 =<= add ?1066 (inverse (add ?1065 (inverse (add (inverse ?1065) ?1066)))) [1066, 1065] by Demod 447 with 427 at 2 Id : 6148, {_}: inverse (add (inverse (add (inverse ?8023) (inverse (add ?8023 ?8024)))) (inverse (add (inverse ?8023) (inverse (add ?8023 ?8024))))) =>= inverse (add ?8023 (inverse (add (inverse ?8023) (inverse (add ?8023 ?8024))))) [8024, 8023] by Super 6089 with 459 at 1,2,1,2 Id : 6324, {_}: inverse (inverse (add (inverse ?8023) (inverse (add ?8023 ?8024)))) =<= inverse (add ?8023 (inverse (add (inverse ?8023) (inverse (add ?8023 ?8024))))) [8024, 8023] by Demod 6148 with 418 at 1,2 Id : 6325, {_}: add (inverse ?8023) (inverse (add ?8023 ?8024)) =<= inverse (add ?8023 (inverse (add (inverse ?8023) (inverse (add ?8023 ?8024))))) [8024, 8023] by Demod 6324 with 427 at 2 Id : 6339, {_}: inverse (add (inverse ?125) (add (inverse ?125) (inverse (add ?125 ?126)))) =>= ?125 [126, 125] by Demod 34 with 6325 at 2,1,2 Id : 6, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?26)) ?27)) ?26)) ?28)) (inverse ?26))) ?26) =>= inverse ?26 [28, 27, 26] by Super 3 with 2 at 2,1,2 Id : 428, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add ?26 ?27)) ?26)) ?28)) (inverse ?26))) ?26) =>= inverse ?26 [28, 27, 26] by Demod 6 with 427 at 1,1,1,1,1,1,1,1,1,1,2 Id : 558, {_}: inverse ?1249 =<= add (inverse (add ?1250 ?1249)) (inverse (add (inverse ?1250) ?1249)) [1250, 1249] by Super 441 with 139 at 1,2 Id : 574, {_}: inverse ?1307 =<= add (inverse ?1307) (inverse (add (inverse ?1307) ?1307)) [1307] by Super 558 with 418 at 1,1,3 Id : 638, {_}: inverse (add (inverse (add (inverse ?1360) ?1360)) (inverse (add ?1360 (inverse (inverse ?1360))))) =>= inverse (add (inverse ?1360) (inverse (add (inverse ?1360) ?1360))) [1360] by Super 173 with 574 at 1,2,1,2,1,2 Id : 666, {_}: inverse (add (inverse (add (inverse ?1360) ?1360)) (inverse (add ?1360 ?1360))) =>= inverse (add (inverse ?1360) (inverse (add (inverse ?1360) ?1360))) [1360] by Demod 638 with 427 at 2,1,2,1,2 Id : 667, {_}: inverse (add (inverse (add (inverse ?1360) ?1360)) (inverse ?1360)) =?= inverse (add (inverse ?1360) (inverse (add (inverse ?1360) ?1360))) [1360] by Demod 666 with 418 at 1,2,1,2 Id : 668, {_}: inverse (add (inverse (add (inverse ?1360) ?1360)) (inverse ?1360)) =>= inverse (inverse ?1360) [1360] by Demod 667 with 574 at 1,3 Id : 669, {_}: inverse (add (inverse (add (inverse ?1360) ?1360)) (inverse ?1360)) =>= ?1360 [1360] by Demod 668 with 427 at 3 Id : 735, {_}: inverse ?1478 =<= add (inverse (add (inverse ?1478) ?1478)) (inverse ?1478) [1478] by Super 427 with 669 at 1,2 Id : 806, {_}: inverse (add (inverse (add (inverse (add (inverse (inverse ?1566)) ?1567)) (inverse (inverse ?1566)))) (inverse ?1566)) =>= inverse (inverse ?1566) [1567, 1566] by Super 428 with 735 at 1,1,1,1,1,1,1,2 Id : 831, {_}: inverse (add (inverse (add (inverse (add ?1566 ?1567)) (inverse (inverse ?1566)))) (inverse ?1566)) =>= inverse (inverse ?1566) [1567, 1566] by Demod 806 with 427 at 1,1,1,1,1,1,2 Id : 832, {_}: inverse (add (inverse (add (inverse (add ?1566 ?1567)) ?1566)) (inverse ?1566)) =>= inverse (inverse ?1566) [1567, 1566] by Demod 831 with 427 at 2,1,1,1,2 Id : 1609, {_}: inverse (add (inverse (add (inverse (add ?2631 ?2632)) ?2631)) (inverse ?2631)) =>= ?2631 [2632, 2631] by Demod 832 with 427 at 3 Id : 1638, {_}: inverse (add ?2717 (inverse (inverse (add ?2718 ?2717)))) =>= inverse (add ?2718 ?2717) [2718, 2717] by Super 1609 with 55 at 1,1,2 Id : 1716, {_}: inverse (add ?2717 (add ?2718 ?2717)) =>= inverse (add ?2718 ?2717) [2718, 2717] by Demod 1638 with 427 at 2,1,2 Id : 1730, {_}: inverse (inverse (add ?2762 ?2763)) =<= add ?2763 (add ?2762 ?2763) [2763, 2762] by Super 427 with 1716 at 1,2 Id : 1781, {_}: add ?2762 ?2763 =<= add ?2763 (add ?2762 ?2763) [2763, 2762] by Demod 1730 with 427 at 2 Id : 1756, {_}: inverse (add ?2861 (add ?2862 ?2861)) =>= inverse (add ?2862 ?2861) [2862, 2861] by Demod 1638 with 427 at 2,1,2 Id : 1279, {_}: inverse ?2178 =<= add (inverse (add (inverse ?2179) ?2178)) (inverse (add ?2179 ?2178)) [2179, 2178] by Super 427 with 434 at 1,2 Id : 1769, {_}: inverse (add (inverse (add ?2890 ?2891)) (inverse ?2891)) =<= inverse (add (inverse (add (inverse ?2890) ?2891)) (inverse (add ?2890 ?2891))) [2891, 2890] by Super 1756 with 1279 at 2,1,2 Id : 1826, {_}: inverse (add (inverse (add ?2890 ?2891)) (inverse ?2891)) =>= inverse (inverse ?2891) [2891, 2890] by Demod 1769 with 1279 at 1,3 Id : 1827, {_}: inverse (add (inverse (add ?2890 ?2891)) (inverse ?2891)) =>= ?2891 [2891, 2890] by Demod 1826 with 427 at 3 Id : 1898, {_}: inverse ?3030 =<= add (inverse (add ?3031 ?3030)) (inverse ?3030) [3031, 3030] by Super 427 with 1827 at 1,2 Id : 2055, {_}: inverse (add (inverse (inverse ?3241)) (inverse (add ?3242 (inverse ?3241)))) =>= inverse ?3241 [3242, 3241] by Super 55 with 1898 at 1,1,1,2 Id : 2103, {_}: inverse (add ?3241 (inverse (add ?3242 (inverse ?3241)))) =>= inverse ?3241 [3242, 3241] by Demod 2055 with 427 at 1,1,2 Id : 2185, {_}: inverse (inverse ?3376) =<= add ?3376 (inverse (add ?3377 (inverse ?3376))) [3377, 3376] by Super 427 with 2103 at 1,2 Id : 2285, {_}: ?3376 =<= add ?3376 (inverse (add ?3377 (inverse ?3376))) [3377, 3376] by Demod 2185 with 427 at 2 Id : 2657, {_}: add ?4004 (inverse (add ?4005 (inverse ?4004))) =?= add (inverse (add ?4005 (inverse ?4004))) ?4004 [4005, 4004] by Super 1781 with 2285 at 2,3 Id : 2775, {_}: ?4141 =<= add (inverse (add ?4142 (inverse ?4141))) ?4141 [4142, 4141] by Demod 2657 with 2285 at 2 Id : 5479, {_}: add ?7140 (inverse (add (inverse ?7141) (inverse (add ?7141 ?7142)))) =<= add ?7141 (add ?7140 (inverse (add (inverse ?7141) (inverse (add ?7141 ?7142))))) [7142, 7141, 7140] by Super 2775 with 2 at 1,3 Id : 2207, {_}: add (inverse ?3457) (inverse (add ?3458 (inverse (inverse ?3457)))) =<= add (inverse (add ?3458 (inverse (inverse ?3457)))) (inverse (add ?3457 (inverse (inverse ?3457)))) [3458, 3457] by Super 459 with 2103 at 2,1,2,3 Id : 2247, {_}: add (inverse ?3457) (inverse (add ?3458 ?3457)) =<= add (inverse (add ?3458 (inverse (inverse ?3457)))) (inverse (add ?3457 (inverse (inverse ?3457)))) [3458, 3457] by Demod 2207 with 427 at 2,1,2,2 Id : 2248, {_}: add (inverse ?3457) (inverse (add ?3458 ?3457)) =<= add (inverse (add ?3458 ?3457)) (inverse (add ?3457 (inverse (inverse ?3457)))) [3458, 3457] by Demod 2247 with 427 at 2,1,1,3 Id : 2249, {_}: add (inverse ?3457) (inverse (add ?3458 ?3457)) =<= add (inverse (add ?3458 ?3457)) (inverse (add ?3457 ?3457)) [3458, 3457] by Demod 2248 with 427 at 2,1,2,3 Id : 2250, {_}: add (inverse ?3457) (inverse (add ?3458 ?3457)) =?= add (inverse (add ?3458 ?3457)) (inverse ?3457) [3458, 3457] by Demod 2249 with 418 at 1,2,3 Id : 2251, {_}: add (inverse ?3457) (inverse (add ?3458 ?3457)) =>= inverse ?3457 [3458, 3457] by Demod 2250 with 1898 at 3 Id : 5515, {_}: add (inverse (inverse (add ?7288 ?7289))) (inverse (add (inverse ?7288) (inverse (add ?7288 ?7289)))) =>= add ?7288 (inverse (inverse (add ?7288 ?7289))) [7289, 7288] by Super 5479 with 2251 at 2,3 Id : 5800, {_}: add (add ?7288 ?7289) (inverse (add (inverse ?7288) (inverse (add ?7288 ?7289)))) =>= add ?7288 (inverse (inverse (add ?7288 ?7289))) [7289, 7288] by Demod 5515 with 427 at 1,2 Id : 5801, {_}: add ?7288 ?7289 =<= add ?7288 (inverse (inverse (add ?7288 ?7289))) [7289, 7288] by Demod 5800 with 2285 at 2 Id : 5802, {_}: add ?7288 ?7289 =<= add ?7288 (add ?7288 ?7289) [7289, 7288] by Demod 5801 with 427 at 2,3 Id : 6340, {_}: inverse (add (inverse ?125) (inverse (add ?125 ?126))) =>= ?125 [126, 125] by Demod 6339 with 5802 at 1,2 Id : 6342, {_}: add ?4462 ?4463 =<->= add ?4463 ?4462 [4463, 4462] by Demod 3136 with 6340 at 2,3 Id : 6579, {_}: add b a === add b a [] by Demod 1 with 6342 at 3 Id : 1, {_}: add b a =<= add a b [] by huntinton_1 % SZS output end CNFRefutation for BOO072-1.p 7704: solved BOO072-1.p in 0.836051 using nrkbo FINAL WATCH: 0.8 CPU 1.9 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO073-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 7708 TreeLimitedRun: ---------------------------------------------------------- 7710: Facts: 7710: Id : 2, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 7710: Goal: 7710: Id : 1, {_}: add (add a b) c =>= add a (add b c) [] by huntinton_2 % SZS status Timeout for BOO073-1.p FINAL WATCH: 183.2 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO074-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 7787 TreeLimitedRun: ---------------------------------------------------------- 7789: Facts: 7789: Id : 2, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 7789: Goal: 7789: Id : 1, {_}: add (inverse (add (inverse a) b)) (inverse (add (inverse a) (inverse b))) =>= a [] by huntinton_3 Statistics : Max weight : 27 Found proof, 3.912700s % SZS status Unsatisfiable for BOO074-1.p % SZS output start CNFRefutation for BOO074-1.p Id : 3, {_}: inverse (add (inverse (add (inverse (add ?7 ?8)) ?9)) (inverse (add ?7 (inverse (add (inverse ?9) (inverse (add ?9 ?10))))))) =>= ?9 [10, 9, 8, 7] by dn1 ?7 ?8 ?9 ?10 Id : 2, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 Id : 15, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?74)) ?75)) ?74)) ?76)) (inverse ?74))) ?74) =>= inverse ?74 [76, 75, 74] by Super 3 with 2 at 2,1,2 Id : 20, {_}: inverse (add (inverse (add ?104 (inverse ?104))) ?104) =>= inverse ?104 [104] by Super 15 with 2 at 1,1,1,1,2 Id : 34, {_}: inverse (add (inverse ?125) (inverse (add ?125 (inverse (add (inverse ?125) (inverse (add ?125 ?126))))))) =>= ?125 [126, 125] by Super 2 with 20 at 1,1,2 Id : 55, {_}: inverse (add (inverse (add (inverse (add ?177 ?178)) ?179)) (inverse (add ?177 ?179))) =>= ?179 [179, 178, 177] by Super 2 with 34 at 2,1,2,1,2 Id : 129, {_}: inverse (add (inverse (add (inverse (add ?380 ?381)) ?382)) (inverse (add ?380 ?382))) =>= ?382 [382, 381, 380] by Super 2 with 34 at 2,1,2,1,2 Id : 139, {_}: inverse (add (inverse (add ?423 ?424)) (inverse (add (inverse ?423) ?424))) =>= ?424 [424, 423] by Super 129 with 34 at 1,1,1,1,2 Id : 173, {_}: inverse (add ?519 (inverse (add ?520 (inverse (add (inverse ?520) ?519))))) =>= inverse (add (inverse ?520) ?519) [520, 519] by Super 55 with 139 at 1,1,2 Id : 341, {_}: inverse (add (inverse ?868) (inverse (add ?868 (inverse (add (inverse ?868) (inverse ?868)))))) =>= ?868 [868] by Super 34 with 173 at 2,1,2,1,2 Id : 390, {_}: inverse (add (inverse ?868) (inverse ?868)) =>= ?868 [868] by Demod 341 with 173 at 2 Id : 174, {_}: inverse (add (inverse (add ?522 ?523)) (inverse (add (inverse ?522) ?523))) =>= ?523 [523, 522] by Super 129 with 34 at 1,1,1,1,2 Id : 59, {_}: inverse (add (inverse ?193) (inverse (add ?193 (inverse (add (inverse ?193) (inverse (add ?193 ?194))))))) =>= ?193 [194, 193] by Super 2 with 20 at 1,1,2 Id : 68, {_}: inverse (add (inverse ?226) (inverse (add ?226 ?226))) =>= ?226 [226] by Super 59 with 34 at 2,1,2,1,2 Id : 187, {_}: inverse (add (inverse (add ?573 (inverse (add ?573 ?573)))) ?573) =>= inverse (add ?573 ?573) [573] by Super 174 with 68 at 2,1,2 Id : 207, {_}: inverse (add (inverse (add ?609 ?609)) (inverse (add ?609 ?609))) =>= ?609 [609] by Super 55 with 187 at 1,1,2 Id : 418, {_}: add ?609 ?609 =>= ?609 [609] by Demod 207 with 390 at 2 Id : 427, {_}: inverse (inverse ?868) =>= ?868 [868] by Demod 390 with 418 at 1,2 Id : 434, {_}: inverse (add (inverse (add (inverse ?1023) ?1024)) (inverse (add ?1023 ?1024))) =>= ?1024 [1024, 1023] by Super 139 with 427 at 1,1,2,1,2 Id : 1270, {_}: inverse (add ?2140 (inverse (add (inverse ?2141) (inverse (add ?2141 ?2140))))) =>= inverse (add ?2141 ?2140) [2141, 2140] by Super 55 with 434 at 1,1,2 Id : 3038, {_}: inverse (inverse (add ?4462 ?4463)) =<= add ?4463 (inverse (add (inverse ?4462) (inverse (add ?4462 ?4463)))) [4463, 4462] by Super 427 with 1270 at 1,2 Id : 3136, {_}: add ?4462 ?4463 =<= add ?4463 (inverse (add (inverse ?4462) (inverse (add ?4462 ?4463)))) [4463, 4462] by Demod 3038 with 427 at 2 Id : 6089, {_}: inverse (add ?7788 (inverse (add (inverse (add ?7789 ?7790)) (inverse (add ?7789 ?7788))))) =>= inverse (add ?7789 ?7788) [7790, 7789, 7788] by Super 129 with 55 at 1,1,2 Id : 441, {_}: inverse (inverse ?1046) =>= ?1046 [1046] by Demod 390 with 418 at 1,2 Id : 447, {_}: inverse (inverse (add (inverse ?1065) ?1066)) =<= add ?1066 (inverse (add ?1065 (inverse (add (inverse ?1065) ?1066)))) [1066, 1065] by Super 441 with 173 at 1,2 Id : 459, {_}: add (inverse ?1065) ?1066 =<= add ?1066 (inverse (add ?1065 (inverse (add (inverse ?1065) ?1066)))) [1066, 1065] by Demod 447 with 427 at 2 Id : 6148, {_}: inverse (add (inverse (add (inverse ?8023) (inverse (add ?8023 ?8024)))) (inverse (add (inverse ?8023) (inverse (add ?8023 ?8024))))) =>= inverse (add ?8023 (inverse (add (inverse ?8023) (inverse (add ?8023 ?8024))))) [8024, 8023] by Super 6089 with 459 at 1,2,1,2 Id : 6324, {_}: inverse (inverse (add (inverse ?8023) (inverse (add ?8023 ?8024)))) =<= inverse (add ?8023 (inverse (add (inverse ?8023) (inverse (add ?8023 ?8024))))) [8024, 8023] by Demod 6148 with 418 at 1,2 Id : 6325, {_}: add (inverse ?8023) (inverse (add ?8023 ?8024)) =<= inverse (add ?8023 (inverse (add (inverse ?8023) (inverse (add ?8023 ?8024))))) [8024, 8023] by Demod 6324 with 427 at 2 Id : 6339, {_}: inverse (add (inverse ?125) (add (inverse ?125) (inverse (add ?125 ?126)))) =>= ?125 [126, 125] by Demod 34 with 6325 at 2,1,2 Id : 6, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?26)) ?27)) ?26)) ?28)) (inverse ?26))) ?26) =>= inverse ?26 [28, 27, 26] by Super 3 with 2 at 2,1,2 Id : 428, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add ?26 ?27)) ?26)) ?28)) (inverse ?26))) ?26) =>= inverse ?26 [28, 27, 26] by Demod 6 with 427 at 1,1,1,1,1,1,1,1,1,1,2 Id : 558, {_}: inverse ?1249 =<= add (inverse (add ?1250 ?1249)) (inverse (add (inverse ?1250) ?1249)) [1250, 1249] by Super 441 with 139 at 1,2 Id : 574, {_}: inverse ?1307 =<= add (inverse ?1307) (inverse (add (inverse ?1307) ?1307)) [1307] by Super 558 with 418 at 1,1,3 Id : 638, {_}: inverse (add (inverse (add (inverse ?1360) ?1360)) (inverse (add ?1360 (inverse (inverse ?1360))))) =>= inverse (add (inverse ?1360) (inverse (add (inverse ?1360) ?1360))) [1360] by Super 173 with 574 at 1,2,1,2,1,2 Id : 666, {_}: inverse (add (inverse (add (inverse ?1360) ?1360)) (inverse (add ?1360 ?1360))) =>= inverse (add (inverse ?1360) (inverse (add (inverse ?1360) ?1360))) [1360] by Demod 638 with 427 at 2,1,2,1,2 Id : 667, {_}: inverse (add (inverse (add (inverse ?1360) ?1360)) (inverse ?1360)) =?= inverse (add (inverse ?1360) (inverse (add (inverse ?1360) ?1360))) [1360] by Demod 666 with 418 at 1,2,1,2 Id : 668, {_}: inverse (add (inverse (add (inverse ?1360) ?1360)) (inverse ?1360)) =>= inverse (inverse ?1360) [1360] by Demod 667 with 574 at 1,3 Id : 669, {_}: inverse (add (inverse (add (inverse ?1360) ?1360)) (inverse ?1360)) =>= ?1360 [1360] by Demod 668 with 427 at 3 Id : 735, {_}: inverse ?1478 =<= add (inverse (add (inverse ?1478) ?1478)) (inverse ?1478) [1478] by Super 427 with 669 at 1,2 Id : 806, {_}: inverse (add (inverse (add (inverse (add (inverse (inverse ?1566)) ?1567)) (inverse (inverse ?1566)))) (inverse ?1566)) =>= inverse (inverse ?1566) [1567, 1566] by Super 428 with 735 at 1,1,1,1,1,1,1,2 Id : 831, {_}: inverse (add (inverse (add (inverse (add ?1566 ?1567)) (inverse (inverse ?1566)))) (inverse ?1566)) =>= inverse (inverse ?1566) [1567, 1566] by Demod 806 with 427 at 1,1,1,1,1,1,2 Id : 832, {_}: inverse (add (inverse (add (inverse (add ?1566 ?1567)) ?1566)) (inverse ?1566)) =>= inverse (inverse ?1566) [1567, 1566] by Demod 831 with 427 at 2,1,1,1,2 Id : 1609, {_}: inverse (add (inverse (add (inverse (add ?2631 ?2632)) ?2631)) (inverse ?2631)) =>= ?2631 [2632, 2631] by Demod 832 with 427 at 3 Id : 1638, {_}: inverse (add ?2717 (inverse (inverse (add ?2718 ?2717)))) =>= inverse (add ?2718 ?2717) [2718, 2717] by Super 1609 with 55 at 1,1,2 Id : 1716, {_}: inverse (add ?2717 (add ?2718 ?2717)) =>= inverse (add ?2718 ?2717) [2718, 2717] by Demod 1638 with 427 at 2,1,2 Id : 1730, {_}: inverse (inverse (add ?2762 ?2763)) =<= add ?2763 (add ?2762 ?2763) [2763, 2762] by Super 427 with 1716 at 1,2 Id : 1781, {_}: add ?2762 ?2763 =<= add ?2763 (add ?2762 ?2763) [2763, 2762] by Demod 1730 with 427 at 2 Id : 1756, {_}: inverse (add ?2861 (add ?2862 ?2861)) =>= inverse (add ?2862 ?2861) [2862, 2861] by Demod 1638 with 427 at 2,1,2 Id : 1279, {_}: inverse ?2178 =<= add (inverse (add (inverse ?2179) ?2178)) (inverse (add ?2179 ?2178)) [2179, 2178] by Super 427 with 434 at 1,2 Id : 1769, {_}: inverse (add (inverse (add ?2890 ?2891)) (inverse ?2891)) =<= inverse (add (inverse (add (inverse ?2890) ?2891)) (inverse (add ?2890 ?2891))) [2891, 2890] by Super 1756 with 1279 at 2,1,2 Id : 1826, {_}: inverse (add (inverse (add ?2890 ?2891)) (inverse ?2891)) =>= inverse (inverse ?2891) [2891, 2890] by Demod 1769 with 1279 at 1,3 Id : 1827, {_}: inverse (add (inverse (add ?2890 ?2891)) (inverse ?2891)) =>= ?2891 [2891, 2890] by Demod 1826 with 427 at 3 Id : 1898, {_}: inverse ?3030 =<= add (inverse (add ?3031 ?3030)) (inverse ?3030) [3031, 3030] by Super 427 with 1827 at 1,2 Id : 2055, {_}: inverse (add (inverse (inverse ?3241)) (inverse (add ?3242 (inverse ?3241)))) =>= inverse ?3241 [3242, 3241] by Super 55 with 1898 at 1,1,1,2 Id : 2103, {_}: inverse (add ?3241 (inverse (add ?3242 (inverse ?3241)))) =>= inverse ?3241 [3242, 3241] by Demod 2055 with 427 at 1,1,2 Id : 2185, {_}: inverse (inverse ?3376) =<= add ?3376 (inverse (add ?3377 (inverse ?3376))) [3377, 3376] by Super 427 with 2103 at 1,2 Id : 2285, {_}: ?3376 =<= add ?3376 (inverse (add ?3377 (inverse ?3376))) [3377, 3376] by Demod 2185 with 427 at 2 Id : 2657, {_}: add ?4004 (inverse (add ?4005 (inverse ?4004))) =?= add (inverse (add ?4005 (inverse ?4004))) ?4004 [4005, 4004] by Super 1781 with 2285 at 2,3 Id : 2775, {_}: ?4141 =<= add (inverse (add ?4142 (inverse ?4141))) ?4141 [4142, 4141] by Demod 2657 with 2285 at 2 Id : 5479, {_}: add ?7140 (inverse (add (inverse ?7141) (inverse (add ?7141 ?7142)))) =<= add ?7141 (add ?7140 (inverse (add (inverse ?7141) (inverse (add ?7141 ?7142))))) [7142, 7141, 7140] by Super 2775 with 2 at 1,3 Id : 2207, {_}: add (inverse ?3457) (inverse (add ?3458 (inverse (inverse ?3457)))) =<= add (inverse (add ?3458 (inverse (inverse ?3457)))) (inverse (add ?3457 (inverse (inverse ?3457)))) [3458, 3457] by Super 459 with 2103 at 2,1,2,3 Id : 2247, {_}: add (inverse ?3457) (inverse (add ?3458 ?3457)) =<= add (inverse (add ?3458 (inverse (inverse ?3457)))) (inverse (add ?3457 (inverse (inverse ?3457)))) [3458, 3457] by Demod 2207 with 427 at 2,1,2,2 Id : 2248, {_}: add (inverse ?3457) (inverse (add ?3458 ?3457)) =<= add (inverse (add ?3458 ?3457)) (inverse (add ?3457 (inverse (inverse ?3457)))) [3458, 3457] by Demod 2247 with 427 at 2,1,1,3 Id : 2249, {_}: add (inverse ?3457) (inverse (add ?3458 ?3457)) =<= add (inverse (add ?3458 ?3457)) (inverse (add ?3457 ?3457)) [3458, 3457] by Demod 2248 with 427 at 2,1,2,3 Id : 2250, {_}: add (inverse ?3457) (inverse (add ?3458 ?3457)) =?= add (inverse (add ?3458 ?3457)) (inverse ?3457) [3458, 3457] by Demod 2249 with 418 at 1,2,3 Id : 2251, {_}: add (inverse ?3457) (inverse (add ?3458 ?3457)) =>= inverse ?3457 [3458, 3457] by Demod 2250 with 1898 at 3 Id : 5515, {_}: add (inverse (inverse (add ?7288 ?7289))) (inverse (add (inverse ?7288) (inverse (add ?7288 ?7289)))) =>= add ?7288 (inverse (inverse (add ?7288 ?7289))) [7289, 7288] by Super 5479 with 2251 at 2,3 Id : 5800, {_}: add (add ?7288 ?7289) (inverse (add (inverse ?7288) (inverse (add ?7288 ?7289)))) =>= add ?7288 (inverse (inverse (add ?7288 ?7289))) [7289, 7288] by Demod 5515 with 427 at 1,2 Id : 5801, {_}: add ?7288 ?7289 =<= add ?7288 (inverse (inverse (add ?7288 ?7289))) [7289, 7288] by Demod 5800 with 2285 at 2 Id : 5802, {_}: add ?7288 ?7289 =<= add ?7288 (add ?7288 ?7289) [7289, 7288] by Demod 5801 with 427 at 2,3 Id : 6340, {_}: inverse (add (inverse ?125) (inverse (add ?125 ?126))) =>= ?125 [126, 125] by Demod 6339 with 5802 at 1,2 Id : 6342, {_}: add ?4462 ?4463 =<->= add ?4463 ?4462 [4463, 4462] by Demod 3136 with 6340 at 2,3 Id : 446, {_}: inverse ?1062 =<= add (inverse (add ?1063 ?1062)) (inverse (add (inverse ?1063) ?1062)) [1063, 1062] by Super 441 with 139 at 1,2 Id : 146, {_}: inverse (add ?449 (inverse (add (inverse (add ?450 ?451)) (inverse (add ?450 ?449))))) =>= inverse (add ?450 ?449) [451, 450, 449] by Super 129 with 55 at 1,1,2 Id : 6346, {_}: add (inverse ?8023) (inverse (add ?8023 ?8024)) =>= inverse (add ?8023 ?8023) [8024, 8023] by Demod 6325 with 6340 at 2,1,3 Id : 6347, {_}: add (inverse ?8023) (inverse (add ?8023 ?8024)) =>= inverse ?8023 [8024, 8023] by Demod 6346 with 418 at 1,3 Id : 6382, {_}: add ?8125 ?8126 =<= add (add ?8125 ?8126) (inverse (inverse ?8125)) [8126, 8125] by Super 2285 with 6347 at 1,2,3 Id : 6456, {_}: add ?8125 ?8126 =<= add (add ?8125 ?8126) ?8125 [8126, 8125] by Demod 6382 with 427 at 2,3 Id : 6587, {_}: ?8282 =<= add ?8282 (inverse (add (inverse ?8282) ?8283)) [8283, 8282] by Super 2285 with 6456 at 1,2,3 Id : 6975, {_}: inverse (add ?8654 (inverse (add (inverse ?8655) (inverse (add ?8655 ?8654))))) =>= inverse (add ?8655 ?8654) [8655, 8654] by Super 146 with 6587 at 1,1,1,2,1,2 Id : 7096, {_}: inverse (add ?8654 (inverse (inverse ?8655))) =>= inverse (add ?8655 ?8654) [8655, 8654] by Demod 6975 with 6347 at 1,2,1,2 Id : 7097, {_}: inverse (add ?8654 ?8655) =<->= inverse (add ?8655 ?8654) [8655, 8654] by Demod 7096 with 427 at 2,1,2 Id : 7359, {_}: inverse ?9136 =<= add (inverse (add ?9137 ?9136)) (inverse (add ?9136 (inverse ?9137))) [9137, 9136] by Super 446 with 7097 at 2,3 Id : 10103, {_}: a === a [] by Demod 10102 with 427 at 2 Id : 10102, {_}: inverse (inverse a) =>= a [] by Demod 10101 with 7359 at 2 Id : 10101, {_}: add (inverse (add b (inverse a))) (inverse (add (inverse a) (inverse b))) =>= a [] by Demod 1 with 6342 at 1,1,2 Id : 1, {_}: add (inverse (add (inverse a) b)) (inverse (add (inverse a) (inverse b))) =>= a [] by huntinton_3 % SZS output end CNFRefutation for BOO074-1.p 7792: solved BOO074-1.p in 1.312081 using nrkbo FINAL WATCH: 1.3 CPU 4.3 WC Killed 2 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO076-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 7823 TreeLimitedRun: ---------------------------------------------------------- 7825: Facts: 7825: Id : 2, {_}: nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by sh_1 ?2 ?3 ?4 7825: Goal: 7825: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 % SZS status Timeout for BOO076-1.p FINAL WATCH: 194.6 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO077-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 7894 TreeLimitedRun: ---------------------------------------------------------- 7896: Facts: 7896: Id : 2, {_}: nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c1 ?2 ?3 ?4 7896: Goal: 7896: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 % SZS status Timeout for BOO077-1.p FINAL WATCH: 180.9 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO078-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 7966 TreeLimitedRun: ---------------------------------------------------------- 7968: Facts: 7968: Id : 2, {_}: nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c1 ?2 ?3 ?4 7968: Goal: 7968: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 % SZS status Timeout for BOO078-1.p FINAL WATCH: 189.5 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO079-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 8045 TreeLimitedRun: ---------------------------------------------------------- 8047: Facts: 8047: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?2))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c2 ?2 ?3 ?4 8047: Goal: 8047: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 % SZS status Timeout for BOO079-1.p FINAL WATCH: 181.4 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO080-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 8134 TreeLimitedRun: ---------------------------------------------------------- 8136: Facts: 8136: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?2))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c2 ?2 ?3 ?4 8136: Goal: 8136: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 % SZS status Timeout for BOO080-1.p FINAL WATCH: 194.3 CPU 130.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO081-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 8341 TreeLimitedRun: ---------------------------------------------------------- 8343: Facts: 8343: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c3 ?2 ?3 ?4 8343: Goal: 8343: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 % SZS status Timeout for BOO081-1.p FINAL WATCH: 183.3 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO082-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 8403 TreeLimitedRun: ---------------------------------------------------------- 8405: Facts: 8405: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c3 ?2 ?3 ?4 8405: Goal: 8405: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 % SZS status Timeout for BOO082-1.p FINAL WATCH: 193.2 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO083-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 8484 TreeLimitedRun: ---------------------------------------------------------- 8486: Facts: 8486: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c4 ?2 ?3 ?4 8486: Goal: 8486: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 % SZS status Timeout for BOO083-1.p FINAL WATCH: 180.2 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO084-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 8569 TreeLimitedRun: ---------------------------------------------------------- 8571: Facts: 8571: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c4 ?2 ?3 ?4 8571: Goal: 8571: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 % SZS status Timeout for BOO084-1.p FINAL WATCH: 187.8 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO085-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 8649 TreeLimitedRun: ---------------------------------------------------------- 8651: Facts: 8651: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c5 ?2 ?3 ?4 8651: Goal: 8651: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 % SZS status Timeout for BOO085-1.p FINAL WATCH: 193.0 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO086-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 8730 TreeLimitedRun: ---------------------------------------------------------- 8732: Facts: 8732: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c5 ?2 ?3 ?4 8732: Goal: 8732: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 % SZS status Timeout for BOO086-1.p FINAL WATCH: 183.2 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO087-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 8806 TreeLimitedRun: ---------------------------------------------------------- 8808: Facts: 8808: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?4 (nand ?2 ?3)) =>= ?4 [4, 3, 2] by c6 ?2 ?3 ?4 8808: Goal: 8808: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 % SZS status Timeout for BOO087-1.p FINAL WATCH: 181.4 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO088-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 8888 TreeLimitedRun: ---------------------------------------------------------- 8890: Facts: 8890: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?4 (nand ?2 ?3)) =>= ?4 [4, 3, 2] by c6 ?2 ?3 ?4 8890: Goal: 8890: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 % SZS status Timeout for BOO088-1.p FINAL WATCH: 181.6 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO089-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 8968 TreeLimitedRun: ---------------------------------------------------------- 8970: Facts: 8970: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c7 ?2 ?3 ?4 8970: Goal: 8970: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 % SZS status Timeout for BOO089-1.p FINAL WATCH: 180.2 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO090-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 9417 TreeLimitedRun: ---------------------------------------------------------- 9419: Facts: 9419: Id : 2, {_}: nand (nand ?2 (nand ?2 (nand ?3 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c7 ?2 ?3 ?4 9419: Goal: 9419: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 % SZS status Timeout for BOO090-1.p FINAL WATCH: 193.5 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO091-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 10065 TreeLimitedRun: ---------------------------------------------------------- 10067: Facts: 10067: Id : 2, {_}: nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c8 ?2 ?3 ?4 10067: Goal: 10067: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 % SZS status Timeout for BOO091-1.p FINAL WATCH: 195.1 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO092-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 10171 TreeLimitedRun: ---------------------------------------------------------- 10173: Facts: 10173: Id : 2, {_}: nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c8 ?2 ?3 ?4 10173: Goal: 10173: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 % SZS status Timeout for BOO092-1.p FINAL WATCH: 183.1 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO093-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 10252 TreeLimitedRun: ---------------------------------------------------------- 10254: Facts: 10254: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c9 ?2 ?3 ?4 10254: Goal: 10254: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 % SZS status Timeout for BOO093-1.p FINAL WATCH: 181.4 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO094-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 10322 TreeLimitedRun: ---------------------------------------------------------- 10324: Facts: 10324: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c9 ?2 ?3 ?4 10324: Goal: 10324: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 % SZS status Timeout for BOO094-1.p FINAL WATCH: 181.4 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO095-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 10397 TreeLimitedRun: ---------------------------------------------------------- 10399: Facts: 10399: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c10 ?2 ?3 ?4 10399: Goal: 10399: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 % SZS status Timeout for BOO095-1.p FINAL WATCH: 195.9 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO096-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 10468 TreeLimitedRun: ---------------------------------------------------------- 10470: Facts: 10470: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c10 ?2 ?3 ?4 10470: Goal: 10470: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 % SZS status Timeout for BOO096-1.p FINAL WATCH: 181.5 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO097-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 10546 TreeLimitedRun: ---------------------------------------------------------- 10548: Facts: 10548: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?4 (nand ?2 ?3)) =>= ?4 [4, 3, 2] by c11 ?2 ?3 ?4 10548: Goal: 10548: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 % SZS status Timeout for BOO097-1.p FINAL WATCH: 194.9 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO098-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 10625 TreeLimitedRun: ---------------------------------------------------------- 10627: Facts: 10627: Id : 2, {_}: nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?4 (nand ?2 ?3)) =>= ?4 [4, 3, 2] by c11 ?2 ?3 ?4 10627: Goal: 10627: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 % SZS status Timeout for BOO098-1.p FINAL WATCH: 181.8 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO099-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 10769 TreeLimitedRun: ---------------------------------------------------------- 10771: Facts: 10771: Id : 2, {_}: nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c12 ?2 ?3 ?4 10771: Goal: 10771: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 % SZS status Timeout for BOO099-1.p FINAL WATCH: 181.5 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO100-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 10844 TreeLimitedRun: ---------------------------------------------------------- 10846: Facts: 10846: Id : 2, {_}: nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c12 ?2 ?3 ?4 10846: Goal: 10846: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 % SZS status Timeout for BOO100-1.p FINAL WATCH: 180.9 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO101-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 10924 TreeLimitedRun: ---------------------------------------------------------- 10926: Facts: 10926: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c13 ?2 ?3 ?4 10926: Goal: 10926: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 % SZS status Timeout for BOO101-1.p FINAL WATCH: 183.1 CPU 110.3 WC Killed 1 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO102-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 10999 TreeLimitedRun: ---------------------------------------------------------- 11001: Facts: 11001: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c13 ?2 ?3 ?4 11001: Goal: 11001: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 % SZS status Timeout for BOO102-1.p FINAL WATCH: 181.7 CPU 110.3 WC Killed 1 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO103-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 11076 TreeLimitedRun: ---------------------------------------------------------- 11078: Facts: 11078: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c14 ?2 ?3 ?4 11078: Goal: 11078: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 % SZS status Timeout for BOO103-1.p FINAL WATCH: 192.6 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO104-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 11158 TreeLimitedRun: ---------------------------------------------------------- 11160: Facts: 11160: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c14 ?2 ?3 ?4 11160: Goal: 11160: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 % SZS status Timeout for BOO104-1.p FINAL WATCH: 183.3 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO105-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 11223 TreeLimitedRun: ---------------------------------------------------------- 11225: Facts: 11225: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c15 ?2 ?3 ?4 11225: Goal: 11225: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 % SZS status Timeout for BOO105-1.p FINAL WATCH: 194.9 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO106-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 11306 TreeLimitedRun: ---------------------------------------------------------- 11308: Facts: 11308: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?2 ?4)) =>= ?3 [4, 3, 2] by c15 ?2 ?3 ?4 11308: Goal: 11308: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 % SZS status Timeout for BOO106-1.p FINAL WATCH: 196.6 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO107-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 11389 TreeLimitedRun: ---------------------------------------------------------- 11391: Facts: 11391: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c16 ?2 ?3 ?4 11391: Goal: 11391: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1 % SZS status Timeout for BOO107-1.p FINAL WATCH: 182.6 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ BOO108-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 11534 TreeLimitedRun: ---------------------------------------------------------- 11536: Facts: 11536: Id : 2, {_}: nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?4 ?2)) =>= ?3 [4, 3, 2] by c16 ?2 ?3 ?4 11536: Goal: 11536: Id : 1, {_}: nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a [] by prove_meredith_2_basis_2 % SZS status Timeout for BOO108-1.p FINAL WATCH: 181.3 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL003-12.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 11618 TreeLimitedRun: ---------------------------------------------------------- 11620: Facts: 11620: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 11620: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 11620: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply w w)) (apply (apply b w) (apply (apply b b) b)) [] by strong_fixed_point 11620: Goal: 11620: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point % SZS status Timeout for COL003-12.p FINAL WATCH: 181.5 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL003-17.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 11701 TreeLimitedRun: ---------------------------------------------------------- 11703: Facts: 11703: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 11703: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 11703: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply b (apply w w)) (apply b w))) b)) b [] by strong_fixed_point 11703: Goal: 11703: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point % SZS status Timeout for COL003-17.p FINAL WATCH: 194.9 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL003-18.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 11772 TreeLimitedRun: ---------------------------------------------------------- 11774: Facts: 11774: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 11774: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 11774: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply w w)) (apply b w))) (apply (apply b b) b) [] by strong_fixed_point 11774: Goal: 11774: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point % SZS status Timeout for COL003-18.p FINAL WATCH: 180.3 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL003-19.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 11867 TreeLimitedRun: ---------------------------------------------------------- 11869: Facts: 11869: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 11869: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 11869: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply w w)) (apply (apply b (apply b w)) b))) b [] by strong_fixed_point 11869: Goal: 11869: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point % SZS status Timeout for COL003-19.p FINAL WATCH: 194.8 CPU 130.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL003-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 11954 TreeLimitedRun: ---------------------------------------------------------- 11956: Facts: 11956: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 11956: Id : 3, {_}: apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 [8, 7] by w_definition ?7 ?8 11956: Goal: 11956: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 % SZS status Timeout for COL003-1.p FINAL WATCH: 194.7 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL003-20.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 12032 TreeLimitedRun: ---------------------------------------------------------- 12034: Facts: 12034: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 12034: Id : 3, {_}: apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 [7, 6] by w_definition ?6 ?7 12034: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply w w)) (apply (apply b (apply b w)) (apply (apply b b) b)) [] by strong_fixed_point 12034: Goal: 12034: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point % SZS status Timeout for COL003-20.p FINAL WATCH: 181.0 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL004-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 12114 TreeLimitedRun: ---------------------------------------------------------- 12116: Facts: 12116: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 12116: Id : 3, {_}: apply (apply k ?7) ?8 =>= ?7 [8, 7] by k_definition ?7 ?8 12116: Goal: 12116: Id : 1, {_}: apply (apply ?1 (f ?1)) (g ?1) =<= apply (g ?1) (apply (apply (f ?1) (f ?1)) (g ?1)) [1] by prove_u_combinator ?1 % SZS status Timeout for COL004-1.p FINAL WATCH: 182.8 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL004-3.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 12229 TreeLimitedRun: ---------------------------------------------------------- 12231: Facts: 12231: Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4 12231: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 12231: Goal: 12231: Id : 1, {_}: apply (apply (apply (apply s (apply k (apply s (apply (apply s k) k)))) (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))) x) y =>= apply y (apply (apply x x) y) [] by prove_u_combinator Statistics : Max weight : 29 Found proof, 0.062441s % SZS status Unsatisfiable for COL004-3.p % SZS output start CNFRefutation for COL004-3.p Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4 Id : 17, {_}: apply (apply (apply s ?45) (apply k ?46)) ?47 =>= apply (apply ?45 ?47) ?46 [47, 46, 45] by Super 2 with 3 at 2,3 Id : 217, {_}: apply y (apply (apply x x) y) =?= apply y (apply (apply x x) y) [] by Demod 216 with 3 at 1,2 Id : 216, {_}: apply (apply (apply k y) (apply k y)) (apply (apply x x) y) =>= apply y (apply (apply x x) y) [] by Demod 215 with 2 at 1,2 Id : 215, {_}: apply (apply (apply (apply s k) k) y) (apply (apply x x) y) =>= apply y (apply (apply x x) y) [] by Demod 214 with 2 at 2 Id : 214, {_}: apply (apply (apply s (apply (apply s k) k)) (apply x x)) y =>= apply y (apply (apply x x) y) [] by Demod 213 with 3 at 1,2,1,2 Id : 213, {_}: apply (apply (apply s (apply (apply s k) k)) (apply (apply (apply k x) (apply k x)) x)) y =>= apply y (apply (apply x x) y) [] by Demod 212 with 17 at 2,1,2 Id : 212, {_}: apply (apply (apply s (apply (apply s k) k)) (apply (apply (apply s (apply k x)) (apply k x)) (apply k x))) y =>= apply y (apply (apply x x) y) [] by Demod 16 with 3 at 1,1,2 Id : 16, {_}: apply (apply (apply (apply k (apply s (apply (apply s k) k))) x) (apply (apply (apply s (apply k x)) (apply k x)) (apply k x))) y =>= apply y (apply (apply x x) y) [] by Demod 15 with 2 at 2,1,2 Id : 15, {_}: apply (apply (apply (apply k (apply s (apply (apply s k) k))) x) (apply (apply (apply k x) (apply k x)) (apply (apply k x) (apply k x)))) y =>= apply y (apply (apply x x) y) [] by Demod 14 with 2 at 2,2,1,2 Id : 14, {_}: apply (apply (apply (apply k (apply s (apply (apply s k) k))) x) (apply (apply (apply k x) (apply k x)) (apply (apply (apply s k) k) x))) y =>= apply y (apply (apply x x) y) [] by Demod 13 with 2 at 1,2,1,2 Id : 13, {_}: apply (apply (apply (apply k (apply s (apply (apply s k) k))) x) (apply (apply (apply (apply s k) k) x) (apply (apply (apply s k) k) x))) y =>= apply y (apply (apply x x) y) [] by Demod 12 with 2 at 2,1,2 Id : 12, {_}: apply (apply (apply (apply k (apply s (apply (apply s k) k))) x) (apply (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)) x)) y =>= apply y (apply (apply x x) y) [] by Demod 1 with 2 at 1,2 Id : 1, {_}: apply (apply (apply (apply s (apply k (apply s (apply (apply s k) k)))) (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))) x) y =>= apply y (apply (apply x x) y) [] by prove_u_combinator % SZS output end CNFRefutation for COL004-3.p 12232: solved COL004-3.p in 0.044002 using kbo FINAL WATCH: 0.0 CPU 0.1 WC Killed 1 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL005-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 12238 TreeLimitedRun: ---------------------------------------------------------- 12240: Facts: 12240: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 12240: Id : 3, {_}: apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 [8, 7] by w_definition ?7 ?8 12240: Goal: 12240: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_model ?1 % SZS status Timeout for COL005-1.p FINAL WATCH: 183.1 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL006-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 12313 TreeLimitedRun: ---------------------------------------------------------- 12315: Facts: 12315: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 12315: Id : 3, {_}: apply (apply k ?7) ?8 =>= ?7 [8, 7] by k_definition ?7 ?8 12315: Goal: 12315: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 % SZS status Timeout for COL006-1.p FINAL WATCH: 183.2 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL006-5.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 12381 TreeLimitedRun: ---------------------------------------------------------- 12383: Facts: 12383: Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4 12383: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 12383: Id : 4, {_}: strong_fixed_point =<= apply (apply s (apply k (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) (apply (apply s (apply k (apply (apply s s) (apply s k)))) (apply (apply s (apply k s)) k)) [] by strong_fixed_point 12383: Goal: 12383: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point % SZS status Timeout for COL006-5.p FINAL WATCH: 180.4 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL006-6.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 12464 TreeLimitedRun: ---------------------------------------------------------- 12466: Facts: 12466: Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4 12466: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 12466: Id : 4, {_}: strong_fixed_point =<= apply (apply s (apply k (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) (apply (apply s (apply (apply s (apply k s)) k)) (apply k (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) [] by strong_fixed_point 12466: Goal: 12466: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point % SZS status Timeout for COL006-6.p FINAL WATCH: 181.6 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL006-7.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 12540 TreeLimitedRun: ---------------------------------------------------------- 12542: Facts: 12542: Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4 12542: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 12542: Id : 4, {_}: strong_fixed_point =<= apply (apply s (apply k (apply (apply (apply s s) (apply (apply s k) k)) (apply (apply s s) (apply s k))))) (apply (apply s (apply k s)) k) [] by strong_fixed_point 12542: Goal: 12542: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point % SZS status Timeout for COL006-7.p FINAL WATCH: 189.7 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL011-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 13709 TreeLimitedRun: ---------------------------------------------------------- 13711: Facts: 13711: Id : 2, {_}: apply (apply o ?3) ?4 =?= apply ?4 (apply ?3 ?4) [4, 3] by o_definition ?3 ?4 13711: Id : 3, {_}: apply (apply (apply q1 ?6) ?7) ?8 =>= apply ?6 (apply ?8 ?7) [8, 7, 6] by q1_definition ?6 ?7 ?8 13711: Goal: 13711: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_fixed_point ?1 % SZS status Timeout for COL011-1.p FINAL WATCH: 182.6 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL034-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 13791 TreeLimitedRun: ---------------------------------------------------------- 13793: Facts: 13793: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 13793: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 13793: Id : 4, {_}: apply (apply t ?9) ?10 =>= apply ?10 ?9 [10, 9] by t_definition ?9 ?10 13793: Goal: 13793: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 Goal subsumed Statistics : Max weight : 62 Found proof, 1.451608s % SZS status Unsatisfiable for COL034-1.p % SZS output start CNFRefutation for COL034-1.p Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 Id : 4, {_}: apply (apply t ?9) ?10 =>= apply ?10 ?9 [10, 9] by t_definition ?9 ?10 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 Id : 11, {_}: apply m (apply (apply b ?29) ?30) =<= apply ?29 (apply ?30 (apply (apply b ?29) ?30)) [30, 29] by Super 2 with 3 at 2 Id : 2601, {_}: apply (f (apply (apply b m) (apply (apply b (apply t m)) b))) (apply m (apply (apply b (f (apply (apply b m) (apply (apply b (apply t m)) b)))) m)) === apply (f (apply (apply b m) (apply (apply b (apply t m)) b))) (apply m (apply (apply b (f (apply (apply b m) (apply (apply b (apply t m)) b)))) m)) [] by Super 2600 with 11 at 2 Id : 2600, {_}: apply ?1967 (apply (apply ?1969 (f (apply (apply b ?1967) (apply (apply b (apply t ?1968)) ?1969)))) ?1968) =<= apply (f (apply (apply b ?1967) (apply (apply b (apply t ?1968)) ?1969))) (apply ?1967 (apply (apply ?1969 (f (apply (apply b ?1967) (apply (apply b (apply t ?1968)) ?1969)))) ?1968)) [1968, 1969, 1967] by Demod 2338 with 4 at 2,2 Id : 2338, {_}: apply ?1967 (apply (apply t ?1968) (apply ?1969 (f (apply (apply b ?1967) (apply (apply b (apply t ?1968)) ?1969))))) =<= apply (f (apply (apply b ?1967) (apply (apply b (apply t ?1968)) ?1969))) (apply ?1967 (apply (apply ?1969 (f (apply (apply b ?1967) (apply (apply b (apply t ?1968)) ?1969)))) ?1968)) [1969, 1968, 1967] by Super 53 with 4 at 2,2,3 Id : 53, {_}: apply ?78 (apply ?79 (apply ?80 (f (apply (apply b ?78) (apply (apply b ?79) ?80))))) =<= apply (f (apply (apply b ?78) (apply (apply b ?79) ?80))) (apply ?78 (apply ?79 (apply ?80 (f (apply (apply b ?78) (apply (apply b ?79) ?80)))))) [80, 79, 78] by Demod 39 with 2 at 2,2 Id : 39, {_}: apply ?78 (apply (apply (apply b ?79) ?80) (f (apply (apply b ?78) (apply (apply b ?79) ?80)))) =<= apply (f (apply (apply b ?78) (apply (apply b ?79) ?80))) (apply ?78 (apply ?79 (apply ?80 (f (apply (apply b ?78) (apply (apply b ?79) ?80)))))) [80, 79, 78] by Super 8 with 2 at 2,2,3 Id : 8, {_}: apply ?20 (apply ?21 (f (apply (apply b ?20) ?21))) =<= apply (f (apply (apply b ?20) ?21)) (apply ?20 (apply ?21 (f (apply (apply b ?20) ?21)))) [21, 20] by Demod 7 with 2 at 2 Id : 7, {_}: apply (apply (apply b ?20) ?21) (f (apply (apply b ?20) ?21)) =<= apply (f (apply (apply b ?20) ?21)) (apply ?20 (apply ?21 (f (apply (apply b ?20) ?21)))) [21, 20] by Super 1 with 2 at 2,3 Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 % SZS output end CNFRefutation for COL034-1.p 13793: solved COL034-1.p in 0.50003 using nrkbo FINAL WATCH: 0.5 CPU 1.5 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL036-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 13802 TreeLimitedRun: ---------------------------------------------------------- 13804: Facts: 13804: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 13804: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 13804: Id : 4, {_}: apply (apply t ?11) ?12 =>= apply ?12 ?11 [12, 11] by t_definition ?11 ?12 13804: Goal: 13804: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 % SZS status Timeout for COL036-1.p FINAL WATCH: 180.6 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL037-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 13901 TreeLimitedRun: ---------------------------------------------------------- 13903: Facts: 13903: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 13903: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 13903: Id : 4, {_}: apply (apply (apply c ?11) ?12) ?13 =>= apply (apply ?11 ?13) ?12 [13, 12, 11] by c_definition ?11 ?12 ?13 13903: Goal: 13903: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 % SZS status Timeout for COL037-1.p FINAL WATCH: 195.0 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL038-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 13995 TreeLimitedRun: ---------------------------------------------------------- 13997: Facts: 13997: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 13997: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 13997: Id : 4, {_}: apply (apply (apply v ?9) ?10) ?11 =>= apply (apply ?11 ?9) ?10 [11, 10, 9] by v_definition ?9 ?10 ?11 13997: Goal: 13997: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 % SZS status Timeout for COL038-1.p FINAL WATCH: 183.1 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL041-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 14072 TreeLimitedRun: ---------------------------------------------------------- 14074: Facts: 14074: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 14074: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 14074: Id : 4, {_}: apply (apply (apply c ?9) ?10) ?11 =>= apply (apply ?9 ?11) ?10 [11, 10, 9] by c_definition ?9 ?10 ?11 14074: Goal: 14074: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 Goal subsumed Statistics : Max weight : 54 Found proof, 0.866188s % SZS status Unsatisfiable for COL041-1.p % SZS output start CNFRefutation for COL041-1.p Id : 4, {_}: apply (apply (apply c ?9) ?10) ?11 =>= apply (apply ?9 ?11) ?10 [11, 10, 9] by c_definition ?9 ?10 ?11 Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 Id : 12, {_}: apply m ?33 =?= apply ?33 ?33 [33] by m_definition ?33 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 Id : 15, {_}: apply m ?39 =?= apply m ?39 [39] by Super 12 with 3 at 3 Id : 11, {_}: apply m (apply (apply b ?30) ?31) =<= apply ?30 (apply ?31 (apply (apply b ?30) ?31)) [31, 30] by Super 2 with 3 at 2 Id : 1727, {_}: apply (f (apply (apply b m) (apply (apply c b) m))) (apply m (apply (apply b (f (apply (apply b m) (apply (apply c b) m)))) m)) =?= apply (f (apply (apply b m) (apply (apply c b) m))) (apply m (apply (apply b (f (apply (apply b m) (apply (apply c b) m)))) m)) [] by Super 1726 with 11 at 2 Id : 1726, {_}: apply m (apply (apply ?1856 (f (apply (apply b m) (apply (apply c ?1856) ?1857)))) ?1857) =<= apply (f (apply (apply b m) (apply (apply c ?1856) ?1857))) (apply m (apply (apply ?1856 (f (apply (apply b m) (apply (apply c ?1856) ?1857)))) ?1857)) [1857, 1856] by Demod 1693 with 4 at 2,2 Id : 1693, {_}: apply m (apply (apply (apply c ?1856) ?1857) (f (apply (apply b m) (apply (apply c ?1856) ?1857)))) =<= apply (f (apply (apply b m) (apply (apply c ?1856) ?1857))) (apply m (apply (apply ?1856 (f (apply (apply b m) (apply (apply c ?1856) ?1857)))) ?1857)) [1857, 1856] by Super 48 with 4 at 2,2,3 Id : 48, {_}: apply m (apply ?112 (f (apply (apply b m) ?112))) =<= apply (f (apply (apply b m) ?112)) (apply m (apply ?112 (f (apply (apply b m) ?112)))) [112] by Super 8 with 15 at 2,3 Id : 8, {_}: apply ?21 (apply ?22 (f (apply (apply b ?21) ?22))) =<= apply (f (apply (apply b ?21) ?22)) (apply ?21 (apply ?22 (f (apply (apply b ?21) ?22)))) [22, 21] by Demod 7 with 2 at 2 Id : 7, {_}: apply (apply (apply b ?21) ?22) (f (apply (apply b ?21) ?22)) =<= apply (f (apply (apply b ?21) ?22)) (apply ?21 (apply ?22 (f (apply (apply b ?21) ?22)))) [22, 21] by Super 1 with 2 at 2,3 Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 % SZS output end CNFRefutation for COL041-1.p 14075: solved COL041-1.p in 0.33202 using kbo FINAL WATCH: 0.3 CPU 1.0 WC Killed 2 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL042-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 14081 TreeLimitedRun: ---------------------------------------------------------- 14083: Facts: 14083: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 14083: Id : 3, {_}: apply (apply w1 ?7) ?8 =?= apply (apply ?8 ?7) ?7 [8, 7] by w1_definition ?7 ?8 14083: Goal: 14083: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 % SZS status Timeout for COL042-1.p FINAL WATCH: 195.0 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL043-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 14154 TreeLimitedRun: ---------------------------------------------------------- 14156: Facts: 14156: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 14156: Id : 3, {_}: apply (apply (apply h ?7) ?8) ?9 =?= apply (apply (apply ?7 ?8) ?9) ?8 [9, 8, 7] by h_definition ?7 ?8 ?9 14156: Goal: 14156: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 % SZS status Timeout for COL043-1.p FINAL WATCH: 180.5 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL043-3.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 14234 TreeLimitedRun: ---------------------------------------------------------- 14236: Facts: 14236: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 14236: Id : 3, {_}: apply (apply (apply h ?6) ?7) ?8 =?= apply (apply (apply ?6 ?7) ?8) ?7 [8, 7, 6] by h_definition ?6 ?7 ?8 14236: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply h (apply (apply b (apply (apply b h) (apply b b))) (apply h (apply (apply b h) (apply b b))))) h)) b)) b [] by strong_fixed_point 14236: Goal: 14236: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point % SZS status Timeout for COL043-3.p FINAL WATCH: 194.9 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL044-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 14313 TreeLimitedRun: ---------------------------------------------------------- 14315: Facts: 14315: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 14315: Id : 3, {_}: apply (apply (apply n ?7) ?8) ?9 =?= apply (apply (apply ?7 ?9) ?8) ?9 [9, 8, 7] by n_definition ?7 ?8 ?9 14315: Goal: 14315: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 % SZS status Timeout for COL044-1.p FINAL WATCH: 180.6 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL044-6.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 14396 TreeLimitedRun: ---------------------------------------------------------- 14398: Facts: 14398: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 14398: Id : 3, {_}: apply (apply (apply n ?6) ?7) ?8 =?= apply (apply (apply ?6 ?8) ?7) ?8 [8, 7, 6] by n_definition ?6 ?7 ?8 14398: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply n (apply (apply b b) (apply (apply n (apply (apply b b) n)) n))) n)) b)) b [] by strong_fixed_point 14398: Goal: 14398: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point % SZS status Timeout for COL044-6.p FINAL WATCH: 196.6 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL044-7.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 14473 TreeLimitedRun: ---------------------------------------------------------- 14475: Facts: 14475: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 14475: Id : 3, {_}: apply (apply (apply n ?6) ?7) ?8 =?= apply (apply (apply ?6 ?8) ?7) ?8 [8, 7, 6] by n_definition ?6 ?7 ?8 14475: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply n (apply (apply b b) (apply (apply n (apply n (apply b b))) n))) n)) b)) b [] by strong_fixed_point 14475: Goal: 14475: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point % SZS status Timeout for COL044-7.p FINAL WATCH: 183.2 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL044-8.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 14545 TreeLimitedRun: ---------------------------------------------------------- 14547: Facts: 14547: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 14547: Id : 3, {_}: apply (apply (apply n ?6) ?7) ?8 =?= apply (apply (apply ?6 ?8) ?7) ?8 [8, 7, 6] by n_definition ?6 ?7 ?8 14547: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply n (apply n (apply (apply b (apply b b)) (apply n (apply (apply b b) n))))) n)) b)) b [] by strong_fixed_point 14547: Goal: 14547: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point % SZS status Timeout for COL044-8.p FINAL WATCH: 193.0 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL044-9.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 14624 TreeLimitedRun: ---------------------------------------------------------- 14626: Facts: 14626: Id : 2, {_}: apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) [4, 3, 2] by b_definition ?2 ?3 ?4 14626: Id : 3, {_}: apply (apply (apply n ?6) ?7) ?8 =?= apply (apply (apply ?6 ?8) ?7) ?8 [8, 7, 6] by n_definition ?6 ?7 ?8 14626: Id : 4, {_}: strong_fixed_point =<= apply (apply b (apply (apply b (apply (apply n (apply n (apply (apply b (apply b b)) (apply n (apply n (apply b b)))))) n)) b)) b [] by strong_fixed_point 14626: Goal: 14626: Id : 1, {_}: apply strong_fixed_point fixed_pt =<= apply fixed_pt (apply strong_fixed_point fixed_pt) [] by prove_strong_fixed_point % SZS status Timeout for COL044-9.p FINAL WATCH: 195.0 CPU 130.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL046-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 14734 TreeLimitedRun: ---------------------------------------------------------- 14736: Facts: 14736: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 14736: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 14736: Id : 4, {_}: apply m ?11 =?= apply ?11 ?11 [11] by m_definition ?11 14736: Goal: 14736: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 % SZS status Timeout for COL046-1.p FINAL WATCH: 183.1 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL047-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 14810 TreeLimitedRun: ---------------------------------------------------------- 14812: Facts: 14812: Id : 2, {_}: apply (apply l ?3) ?4 =?= apply ?3 (apply ?4 ?4) [4, 3] by l_definition ?3 ?4 14812: Id : 3, {_}: apply (apply (apply q ?6) ?7) ?8 =>= apply ?7 (apply ?6 ?8) [8, 7, 6] by q_definition ?6 ?7 ?8 14812: Goal: 14812: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_model ?1 % SZS status Timeout for COL047-1.p FINAL WATCH: 194.9 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL049-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 14881 TreeLimitedRun: ---------------------------------------------------------- 14883: Facts: 14883: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 14883: Id : 3, {_}: apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 [8, 7] by w_definition ?7 ?8 14883: Id : 4, {_}: apply m ?10 =?= apply ?10 ?10 [10] by m_definition ?10 14883: Goal: 14883: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 Goal subsumed Statistics : Max weight : 54 Found proof, 10.347517s % SZS status Unsatisfiable for COL049-1.p % SZS output start CNFRefutation for COL049-1.p Id : 3, {_}: apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 [8, 7] by w_definition ?7 ?8 Id : 4, {_}: apply m ?10 =?= apply ?10 ?10 [10] by m_definition ?10 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 Id : 221, {_}: apply (apply w (apply b ?340)) ?341 =?= apply ?340 (apply ?341 ?341) [341, 340] by Super 2 with 3 at 2 Id : 227, {_}: apply (apply w (apply b ?356)) ?357 =>= apply ?356 (apply m ?357) [357, 356] by Super 221 with 4 at 2,3 Id : 495, {_}: apply m (apply w (apply b ?830)) =<= apply ?830 (apply m (apply w (apply b ?830))) [830] by Super 4 with 227 at 3 Id : 10502, {_}: apply (f (apply (apply b m) (apply (apply b w) b))) (apply m (apply w (apply b (f (apply (apply b m) (apply (apply b w) b)))))) === apply (f (apply (apply b m) (apply (apply b w) b))) (apply m (apply w (apply b (f (apply (apply b m) (apply (apply b w) b)))))) [] by Super 68 with 495 at 2 Id : 68, {_}: apply ?116 (apply ?117 (apply ?118 (f (apply (apply b ?116) (apply (apply b ?117) ?118))))) =<= apply (f (apply (apply b ?116) (apply (apply b ?117) ?118))) (apply ?116 (apply ?117 (apply ?118 (f (apply (apply b ?116) (apply (apply b ?117) ?118)))))) [118, 117, 116] by Demod 57 with 2 at 2,2 Id : 57, {_}: apply ?116 (apply (apply (apply b ?117) ?118) (f (apply (apply b ?116) (apply (apply b ?117) ?118)))) =<= apply (f (apply (apply b ?116) (apply (apply b ?117) ?118))) (apply ?116 (apply ?117 (apply ?118 (f (apply (apply b ?116) (apply (apply b ?117) ?118)))))) [118, 117, 116] by Super 8 with 2 at 2,2,3 Id : 8, {_}: apply ?20 (apply ?21 (f (apply (apply b ?20) ?21))) =<= apply (f (apply (apply b ?20) ?21)) (apply ?20 (apply ?21 (f (apply (apply b ?20) ?21)))) [21, 20] by Demod 7 with 2 at 2 Id : 7, {_}: apply (apply (apply b ?20) ?21) (f (apply (apply b ?20) ?21)) =<= apply (f (apply (apply b ?20) ?21)) (apply ?20 (apply ?21 (f (apply (apply b ?20) ?21)))) [21, 20] by Super 1 with 2 at 2,3 Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 % SZS output end CNFRefutation for COL049-1.p 14883: solved COL049-1.p in 3.496218 using nrkbo WARNING: TreeLimitedRun lost 11.50s, total lost is 11.50s FINAL WATCH: 15.0 CPU 10.4 WC Killed 1 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL057-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 14894 TreeLimitedRun: ---------------------------------------------------------- 14896: Facts: 14896: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 14896: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 14896: Id : 4, {_}: apply (apply (apply c ?11) ?12) ?13 =>= apply (apply ?11 ?13) ?12 [13, 12, 11] by c_definition ?11 ?12 ?13 14896: Id : 5, {_}: apply i ?15 =>= ?15 [15] by i_definition ?15 14896: Goal: 14896: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 Goal subsumed Statistics : Max weight : 84 Found proof, 6.712931s % SZS status Unsatisfiable for COL057-1.p % SZS output start CNFRefutation for COL057-1.p Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 Id : 5, {_}: apply i ?15 =>= ?15 [15] by i_definition ?15 Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 Id : 33, {_}: apply (apply (apply s i) ?122) ?123 =?= apply ?123 (apply ?122 ?123) [123, 122] by Super 2 with 5 at 1,3 Id : 16, {_}: apply (apply (apply s (apply b ?63)) ?64) ?65 =?= apply ?63 (apply ?65 (apply ?64 ?65)) [65, 64, 63] by Super 2 with 3 at 3 Id : 15073, {_}: apply (apply (apply (apply s (apply b (apply s i))) i) (apply (apply s (apply b (apply s i))) i)) (f (apply (apply (apply s (apply b (apply s i))) i) (apply i (apply (apply s (apply b (apply s i))) i)))) === apply (apply (apply (apply s (apply b (apply s i))) i) (apply (apply s (apply b (apply s i))) i)) (f (apply (apply (apply s (apply b (apply s i))) i) (apply i (apply (apply s (apply b (apply s i))) i)))) [] by Super 15064 with 5 at 2,1,2 Id : 15064, {_}: apply (apply ?19447 (apply ?19448 ?19447)) (f (apply ?19447 (apply ?19448 ?19447))) =?= apply (apply (apply (apply s (apply b (apply s i))) ?19448) ?19447) (f (apply ?19447 (apply ?19448 ?19447))) [19448, 19447] by Super 15061 with 16 at 1,3 Id : 15061, {_}: apply ?19439 (f ?19439) =<= apply (apply (apply s i) ?19439) (f ?19439) [19439] by Super 1 with 33 at 3 Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 % SZS output end CNFRefutation for COL057-1.p 14896: solved COL057-1.p in 3.312206 using nrkbo FINAL WATCH: 3.3 CPU 6.8 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL060-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 14905 TreeLimitedRun: ---------------------------------------------------------- 14907: Facts: 14907: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 14907: Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 14907: Goal: 14907: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (g ?1) (apply (f ?1) (h ?1)) [1] by prove_q_combinator ?1 Goal subsumed Statistics : Max weight : 76 Found proof, 0.746965s % SZS status Unsatisfiable for COL060-1.p % SZS output start CNFRefutation for COL060-1.p Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 Id : 407, {_}: apply (g (apply (apply b (apply t b)) (apply (apply b b) t))) (apply (f (apply (apply b (apply t b)) (apply (apply b b) t))) (h (apply (apply b (apply t b)) (apply (apply b b) t)))) === apply (g (apply (apply b (apply t b)) (apply (apply b b) t))) (apply (f (apply (apply b (apply t b)) (apply (apply b b) t))) (h (apply (apply b (apply t b)) (apply (apply b b) t)))) [] by Super 405 with 2 at 2 Id : 405, {_}: apply (apply (apply ?1205 (g (apply (apply b (apply t ?1205)) (apply (apply b b) t)))) (f (apply (apply b (apply t ?1205)) (apply (apply b b) t)))) (h (apply (apply b (apply t ?1205)) (apply (apply b b) t))) =>= apply (g (apply (apply b (apply t ?1205)) (apply (apply b b) t))) (apply (f (apply (apply b (apply t ?1205)) (apply (apply b b) t))) (h (apply (apply b (apply t ?1205)) (apply (apply b b) t)))) [1205] by Super 386 with 3 at 1,2 Id : 386, {_}: apply (apply (apply ?1151 (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (apply ?1152 (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) =>= apply (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (apply (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) [1152, 1151] by Super 47 with 2 at 1,2 Id : 47, {_}: apply (apply (apply (apply ?123 (apply ?124 (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))))) ?125) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) =>= apply (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (apply (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) [125, 124, 123] by Super 22 with 2 at 1,1,1,2 Id : 22, {_}: apply (apply (apply (apply ?57 (f (apply (apply b (apply t ?58)) ?57))) ?58) (g (apply (apply b (apply t ?58)) ?57))) (h (apply (apply b (apply t ?58)) ?57)) =>= apply (g (apply (apply b (apply t ?58)) ?57)) (apply (f (apply (apply b (apply t ?58)) ?57)) (h (apply (apply b (apply t ?58)) ?57))) [58, 57] by Super 8 with 3 at 1,1,2 Id : 8, {_}: apply (apply (apply ?24 (apply ?25 (f (apply (apply b ?24) ?25)))) (g (apply (apply b ?24) ?25))) (h (apply (apply b ?24) ?25)) =>= apply (g (apply (apply b ?24) ?25)) (apply (f (apply (apply b ?24) ?25)) (h (apply (apply b ?24) ?25))) [25, 24] by Super 1 with 2 at 1,1,2 Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (g ?1) (apply (f ?1) (h ?1)) [1] by prove_q_combinator ?1 % SZS output end CNFRefutation for COL060-1.p 14910: solved COL060-1.p in 0.33602 using nrkbo FINAL WATCH: 0.3 CPU 0.8 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL061-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 14914 TreeLimitedRun: ---------------------------------------------------------- 14916: Facts: 14916: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 14916: Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 14916: Goal: 14916: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (f ?1) (apply (h ?1) (g ?1)) [1] by prove_q1_combinator ?1 Goal subsumed Statistics : Max weight : 76 Found proof, 0.607441s % SZS status Unsatisfiable for COL061-1.p % SZS output start CNFRefutation for COL061-1.p Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 Id : 407, {_}: apply (f (apply (apply b (apply t t)) (apply (apply b b) b))) (apply (h (apply (apply b (apply t t)) (apply (apply b b) b))) (g (apply (apply b (apply t t)) (apply (apply b b) b)))) === apply (f (apply (apply b (apply t t)) (apply (apply b b) b))) (apply (h (apply (apply b (apply t t)) (apply (apply b b) b))) (g (apply (apply b (apply t t)) (apply (apply b b) b)))) [] by Super 406 with 3 at 2,2 Id : 406, {_}: apply (f (apply (apply b (apply t ?1207)) (apply (apply b b) b))) (apply (apply ?1207 (g (apply (apply b (apply t ?1207)) (apply (apply b b) b)))) (h (apply (apply b (apply t ?1207)) (apply (apply b b) b)))) =>= apply (f (apply (apply b (apply t ?1207)) (apply (apply b b) b))) (apply (h (apply (apply b (apply t ?1207)) (apply (apply b b) b))) (g (apply (apply b (apply t ?1207)) (apply (apply b b) b)))) [1207] by Super 386 with 2 at 2 Id : 386, {_}: apply (apply (apply ?1151 (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (apply ?1152 (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) =>= apply (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (apply (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) [1152, 1151] by Super 47 with 2 at 1,2 Id : 47, {_}: apply (apply (apply (apply ?123 (apply ?124 (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))))) ?125) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) =>= apply (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (apply (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) [125, 124, 123] by Super 22 with 2 at 1,1,1,2 Id : 22, {_}: apply (apply (apply (apply ?57 (f (apply (apply b (apply t ?58)) ?57))) ?58) (g (apply (apply b (apply t ?58)) ?57))) (h (apply (apply b (apply t ?58)) ?57)) =>= apply (f (apply (apply b (apply t ?58)) ?57)) (apply (h (apply (apply b (apply t ?58)) ?57)) (g (apply (apply b (apply t ?58)) ?57))) [58, 57] by Super 8 with 3 at 1,1,2 Id : 8, {_}: apply (apply (apply ?24 (apply ?25 (f (apply (apply b ?24) ?25)))) (g (apply (apply b ?24) ?25))) (h (apply (apply b ?24) ?25)) =>= apply (f (apply (apply b ?24) ?25)) (apply (h (apply (apply b ?24) ?25)) (g (apply (apply b ?24) ?25))) [25, 24] by Super 1 with 2 at 1,1,2 Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (f ?1) (apply (h ?1) (g ?1)) [1] by prove_q1_combinator ?1 % SZS output end CNFRefutation for COL061-1.p 14919: solved COL061-1.p in 0.336021 using nrkbo FINAL WATCH: 0.3 CPU 0.6 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL062-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 14925 TreeLimitedRun: ---------------------------------------------------------- 14927: Facts: 14927: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 14927: Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 14927: Goal: 14927: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (f ?1) (h ?1)) (g ?1) [1] by prove_c_combinator ?1 Goal subsumed Statistics : Max weight : 100 Found proof, 2.647272s % SZS status Unsatisfiable for COL062-1.p % SZS output start CNFRefutation for COL062-1.p Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 Id : 1574, {_}: apply (apply (f (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))) (h (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)))) (g (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))) =?= apply (apply (f (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))) (h (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)))) (g (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))) [] by Super 1573 with 3 at 2 Id : 1573, {_}: apply (apply ?5215 (g (apply (apply b (apply t (apply (apply b b) ?5215))) (apply (apply b b) t)))) (apply (f (apply (apply b (apply t (apply (apply b b) ?5215))) (apply (apply b b) t))) (h (apply (apply b (apply t (apply (apply b b) ?5215))) (apply (apply b b) t)))) =>= apply (apply (f (apply (apply b (apply t (apply (apply b b) ?5215))) (apply (apply b b) t))) (h (apply (apply b (apply t (apply (apply b b) ?5215))) (apply (apply b b) t)))) (g (apply (apply b (apply t (apply (apply b b) ?5215))) (apply (apply b b) t))) [5215] by Super 447 with 2 at 2 Id : 447, {_}: apply (apply (apply ?1408 (apply ?1409 (g (apply (apply b (apply t (apply (apply b ?1408) ?1409))) (apply (apply b b) t))))) (f (apply (apply b (apply t (apply (apply b ?1408) ?1409))) (apply (apply b b) t)))) (h (apply (apply b (apply t (apply (apply b ?1408) ?1409))) (apply (apply b b) t))) =>= apply (apply (f (apply (apply b (apply t (apply (apply b ?1408) ?1409))) (apply (apply b b) t))) (h (apply (apply b (apply t (apply (apply b ?1408) ?1409))) (apply (apply b b) t)))) (g (apply (apply b (apply t (apply (apply b ?1408) ?1409))) (apply (apply b b) t))) [1409, 1408] by Super 445 with 2 at 1,1,2 Id : 445, {_}: apply (apply (apply ?1404 (g (apply (apply b (apply t ?1404)) (apply (apply b b) t)))) (f (apply (apply b (apply t ?1404)) (apply (apply b b) t)))) (h (apply (apply b (apply t ?1404)) (apply (apply b b) t))) =>= apply (apply (f (apply (apply b (apply t ?1404)) (apply (apply b b) t))) (h (apply (apply b (apply t ?1404)) (apply (apply b b) t)))) (g (apply (apply b (apply t ?1404)) (apply (apply b b) t))) [1404] by Super 277 with 3 at 1,2 Id : 277, {_}: apply (apply (apply ?900 (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (apply ?901 (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))))) (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) =>= apply (apply (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) [901, 900] by Super 29 with 2 at 1,2 Id : 29, {_}: apply (apply (apply (apply ?85 (apply ?86 (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))))) ?87) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) =>= apply (apply (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) [87, 86, 85] by Super 13 with 3 at 1,1,2 Id : 13, {_}: apply (apply (apply ?33 (apply ?34 (apply ?35 (f (apply (apply b ?33) (apply (apply b ?34) ?35)))))) (g (apply (apply b ?33) (apply (apply b ?34) ?35)))) (h (apply (apply b ?33) (apply (apply b ?34) ?35))) =>= apply (apply (f (apply (apply b ?33) (apply (apply b ?34) ?35))) (h (apply (apply b ?33) (apply (apply b ?34) ?35)))) (g (apply (apply b ?33) (apply (apply b ?34) ?35))) [35, 34, 33] by Super 6 with 2 at 2,1,1,2 Id : 6, {_}: apply (apply (apply ?18 (apply ?19 (f (apply (apply b ?18) ?19)))) (g (apply (apply b ?18) ?19))) (h (apply (apply b ?18) ?19)) =>= apply (apply (f (apply (apply b ?18) ?19)) (h (apply (apply b ?18) ?19))) (g (apply (apply b ?18) ?19)) [19, 18] by Super 1 with 2 at 1,1,2 Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (f ?1) (h ?1)) (g ?1) [1] by prove_c_combinator ?1 % SZS output end CNFRefutation for COL062-1.p 14928: solved COL062-1.p in 1.800112 using kbo FINAL WATCH: 1.8 CPU 2.7 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL063-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 14934 TreeLimitedRun: ---------------------------------------------------------- 14936: Facts: 14936: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 14936: Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 14936: Goal: 14936: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (g ?1)) (f ?1) [1] by prove_f_combinator ?1 Goal subsumed Statistics : Max weight : 100 Found proof, 10.467552s % SZS status Unsatisfiable for COL063-1.p % SZS output start CNFRefutation for COL063-1.p Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 Id : 3189, {_}: apply (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) === apply (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) [] by Super 3184 with 3 at 2 Id : 3184, {_}: apply (apply ?10590 (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?10590))))) (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?10590)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?10590))))) =>= apply (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?10590)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?10590))))) (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?10590)))) [10590] by Super 3164 with 3 at 2,2 Id : 3164, {_}: apply (apply ?10539 (f (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) (apply (apply ?10540 (g (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) (h (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) =>= apply (apply (h (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539)))) (g (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) (f (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539)))) [10540, 10539] by Super 442 with 2 at 2 Id : 442, {_}: apply (apply (apply ?1394 (apply ?1395 (f (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))))) (apply ?1396 (g (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))))) (h (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))) =>= apply (apply (h (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))) (g (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395))))) (f (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))) [1396, 1395, 1394] by Super 277 with 2 at 1,1,2 Id : 277, {_}: apply (apply (apply ?900 (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (apply ?901 (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))))) (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) =>= apply (apply (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) [901, 900] by Super 29 with 2 at 1,2 Id : 29, {_}: apply (apply (apply (apply ?85 (apply ?86 (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))))) ?87) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) =>= apply (apply (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) [87, 86, 85] by Super 13 with 3 at 1,1,2 Id : 13, {_}: apply (apply (apply ?33 (apply ?34 (apply ?35 (f (apply (apply b ?33) (apply (apply b ?34) ?35)))))) (g (apply (apply b ?33) (apply (apply b ?34) ?35)))) (h (apply (apply b ?33) (apply (apply b ?34) ?35))) =>= apply (apply (h (apply (apply b ?33) (apply (apply b ?34) ?35))) (g (apply (apply b ?33) (apply (apply b ?34) ?35)))) (f (apply (apply b ?33) (apply (apply b ?34) ?35))) [35, 34, 33] by Super 6 with 2 at 2,1,1,2 Id : 6, {_}: apply (apply (apply ?18 (apply ?19 (f (apply (apply b ?18) ?19)))) (g (apply (apply b ?18) ?19))) (h (apply (apply b ?18) ?19)) =>= apply (apply (h (apply (apply b ?18) ?19)) (g (apply (apply b ?18) ?19))) (f (apply (apply b ?18) ?19)) [19, 18] by Super 1 with 2 at 1,1,2 Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (g ?1)) (f ?1) [1] by prove_f_combinator ?1 % SZS output end CNFRefutation for COL063-1.p 14936: solved COL063-1.p in 5.316331 using nrkbo WARNING: TreeLimitedRun lost 9.70s, total lost is 9.70s FINAL WATCH: 15.0 CPU 10.5 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL064-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 14947 TreeLimitedRun: ---------------------------------------------------------- 14949: Facts: 14949: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 14949: Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 14949: Goal: 14949: Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (f ?1)) (g ?1) [1] by prove_v_combinator ?1 Goal subsumed Statistics : Max weight : 124 Found proof, 74.025213s % SZS status Unsatisfiable for COL064-1.p % SZS output start CNFRefutation for COL064-1.p Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 Id : 10863, {_}: apply (apply (h (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) === apply (apply (h (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) [] by Super 10862 with 3 at 2 Id : 10862, {_}: apply (apply ?36992 (g (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t))))) (apply (h (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t))))) =>= apply (apply (h (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t)))) [36992] by Super 3085 with 2 at 2 Id : 3085, {_}: apply (apply (apply ?10013 (apply ?10014 (g (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t)))))) (h (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t)))) =>= apply (apply (h (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t)))) [10014, 10013] by Super 3080 with 2 at 1,1,2 Id : 3080, {_}: apply (apply (apply ?10003 (g (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t))))) (h (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t)))) =>= apply (apply (h (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t)))) [10003] by Super 3056 with 3 at 2 Id : 3056, {_}: apply (apply ?9940 (f (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (apply (apply ?9941 (g (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (h (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) =>= apply (apply (h (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940)))) (f (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (g (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940)))) [9941, 9940] by Super 402 with 2 at 2 Id : 402, {_}: apply (apply (apply ?1195 (apply ?1196 (f (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))))) (apply ?1197 (g (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))))) (h (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) =>= apply (apply (h (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) (f (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196))))) (g (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) [1197, 1196, 1195] by Super 386 with 2 at 1,1,2 Id : 386, {_}: apply (apply (apply ?1151 (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (apply ?1152 (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) =>= apply (apply (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) [1152, 1151] by Super 47 with 2 at 1,2 Id : 47, {_}: apply (apply (apply (apply ?123 (apply ?124 (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))))) ?125) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) =>= apply (apply (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) [125, 124, 123] by Super 22 with 2 at 1,1,1,2 Id : 22, {_}: apply (apply (apply (apply ?57 (f (apply (apply b (apply t ?58)) ?57))) ?58) (g (apply (apply b (apply t ?58)) ?57))) (h (apply (apply b (apply t ?58)) ?57)) =>= apply (apply (h (apply (apply b (apply t ?58)) ?57)) (f (apply (apply b (apply t ?58)) ?57))) (g (apply (apply b (apply t ?58)) ?57)) [58, 57] by Super 8 with 3 at 1,1,2 Id : 8, {_}: apply (apply (apply ?24 (apply ?25 (f (apply (apply b ?24) ?25)))) (g (apply (apply b ?24) ?25))) (h (apply (apply b ?24) ?25)) =>= apply (apply (h (apply (apply b ?24) ?25)) (f (apply (apply b ?24) ?25))) (g (apply (apply b ?24) ?25)) [25, 24] by Super 1 with 2 at 1,1,2 Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (f ?1)) (g ?1) [1] by prove_v_combinator ?1 % SZS output end CNFRefutation for COL064-1.p 14952: solved COL064-1.p in 35.254203 using nrkbo WARNING: TreeLimitedRun lost 79.68s, total lost is 79.68s FINAL WATCH: 114.9 CPU 74.1 WC Killed 3 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL065-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 15008 TreeLimitedRun: ---------------------------------------------------------- 15010: Facts: 15010: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 15010: Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 15010: Goal: 15010: Id : 1, {_}: apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)) (i ?1) =>= apply (apply (f ?1) (i ?1)) (apply (g ?1) (h ?1)) [1] by prove_g_combinator ?1 % SZS status Timeout for COL065-1.p FINAL WATCH: 196.5 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL066-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 15087 TreeLimitedRun: ---------------------------------------------------------- 15089: Facts: 15089: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 15089: Id : 3, {_}: apply (apply (apply q ?7) ?8) ?9 =>= apply ?8 (apply ?7 ?9) [9, 8, 7] by q_definition ?7 ?8 ?9 15089: Id : 4, {_}: apply (apply w ?11) ?12 =?= apply (apply ?11 ?12) ?12 [12, 11] by w_definition ?11 ?12 15089: Goal: 15089: Id : 1, {_}: apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (g ?1)) (h ?1) =<= apply (apply (f ?1) (g ?1)) (apply (apply (f ?1) (g ?1)) (h ?1)) [1] by prove_p_combinator ?1 % SZS status Timeout for COL066-1.p FINAL WATCH: 181.6 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL067-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 15156 TreeLimitedRun: ---------------------------------------------------------- 15158: Facts: 15158: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 15158: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 15158: Goal: 15158: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 % SZS status Timeout for COL067-1.p FINAL WATCH: 183.2 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL068-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 15251 TreeLimitedRun: ---------------------------------------------------------- 15253: Facts: 15253: Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 15253: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 15253: Goal: 15253: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_fixed_point ?1 % SZS status Timeout for COL068-1.p FINAL WATCH: 196.5 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL069-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 15321 TreeLimitedRun: ---------------------------------------------------------- 15323: Facts: 15323: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 15323: Id : 3, {_}: apply (apply l ?7) ?8 =?= apply ?7 (apply ?8 ?8) [8, 7] by l_definition ?7 ?8 15323: Goal: 15323: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 % SZS status Timeout for COL069-1.p FINAL WATCH: 193.2 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL071-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 15411 TreeLimitedRun: ---------------------------------------------------------- 15413: Facts: 15413: Id : 2, {_}: apply (apply (apply n ?3) ?4) ?5 =?= apply (apply (apply ?3 ?5) ?4) ?5 [5, 4, 3] by n_definition ?3 ?4 ?5 15413: Id : 3, {_}: apply (apply (apply q ?7) ?8) ?9 =>= apply ?8 (apply ?7 ?9) [9, 8, 7] by q_definition ?7 ?8 ?9 15413: Goal: 15413: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1 % SZS status Timeout for COL071-1.p FINAL WATCH: 182.9 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL073-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 15507 TreeLimitedRun: ---------------------------------------------------------- 15509: Facts: 15509: Id : 2, {_}: apply (apply (apply n1 ?3) ?4) ?5 =?= apply (apply (apply ?3 ?4) ?4) ?5 [5, 4, 3] by n1_definition ?3 ?4 ?5 15509: Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 15509: Goal: 15509: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 % SZS status Timeout for COL073-1.p FINAL WATCH: 181.4 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ COL087-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 15586 TreeLimitedRun: ---------------------------------------------------------- 15588: Facts: 15588: Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by definition_B ?3 ?4 ?5 15588: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by definition_M ?7 15588: Goal: 15588: Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by strong_fixpoint ?1 % SZS status Timeout for COL087-1.p FINAL WATCH: 181.6 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP014-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 15662 TreeLimitedRun: ---------------------------------------------------------- 15664: Facts: 15664: Id : 2, {_}: multiply ?2 (inverse (multiply (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5) (inverse (multiply ?3 ?5)))) =>= ?4 [5, 4, 3, 2] by group_axiom ?2 ?3 ?4 ?5 15664: Goal: 15664: Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity Statistics : Max weight : 50 Found proof, 9.705190s % SZS status Unsatisfiable for GRP014-1.p % SZS output start CNFRefutation for GRP014-1.p Id : 2, {_}: multiply ?2 (inverse (multiply (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5) (inverse (multiply ?3 ?5)))) =>= ?4 [5, 4, 3, 2] by group_axiom ?2 ?3 ?4 ?5 Id : 3, {_}: multiply ?7 (inverse (multiply (multiply (inverse (multiply (inverse ?8) (multiply (inverse ?7) ?9))) ?10) (inverse (multiply ?8 ?10)))) =>= ?9 [10, 9, 8, 7] by group_axiom ?7 ?8 ?9 ?10 Id : 6, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (inverse (multiply (inverse ?29) (multiply (inverse (inverse (multiply (inverse ?28) (multiply (inverse ?26) ?30)))) ?27))) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 30, 29, 28, 27, 26] by Super 3 with 2 at 1,1,2,2 Id : 5, {_}: multiply ?19 (inverse (multiply (multiply (inverse (multiply (inverse ?20) ?21)) ?22) (inverse (multiply ?20 ?22)))) =?= inverse (multiply (multiply (inverse (multiply (inverse ?23) (multiply (inverse (inverse ?19)) ?21))) ?24) (inverse (multiply ?23 ?24))) [24, 23, 22, 21, 20, 19] by Super 3 with 2 at 2,1,1,1,1,2,2 Id : 63, {_}: multiply (inverse ?569) (multiply ?569 (inverse (multiply (multiply (inverse (multiply (inverse ?570) ?571)) ?572) (inverse (multiply ?570 ?572))))) =>= ?571 [572, 571, 570, 569] by Super 2 with 5 at 2,2 Id : 64, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?574) (multiply (inverse (inverse ?575)) (multiply (inverse ?575) ?576)))) ?577) (inverse (multiply ?574 ?577))) =>= ?576 [577, 576, 575, 574] by Super 2 with 5 at 2 Id : 282, {_}: multiply (inverse ?2263) (multiply ?2263 ?2264) =?= multiply (inverse (inverse ?2265)) (multiply (inverse ?2265) ?2264) [2265, 2264, 2263] by Super 63 with 64 at 2,2,2 Id : 186, {_}: multiply (inverse ?1640) (multiply ?1640 ?1641) =?= multiply (inverse (inverse ?1642)) (multiply (inverse ?1642) ?1641) [1642, 1641, 1640] by Super 63 with 64 at 2,2,2 Id : 296, {_}: multiply (inverse ?2354) (multiply ?2354 ?2355) =?= multiply (inverse ?2356) (multiply ?2356 ?2355) [2356, 2355, 2354] by Super 282 with 186 at 3 Id : 388, {_}: multiply (inverse ?2841) (multiply ?2841 (inverse (multiply (multiply (inverse (multiply (inverse ?2842) (multiply ?2842 ?2843))) ?2844) (inverse (multiply ?2845 ?2844))))) =>= multiply ?2845 ?2843 [2845, 2844, 2843, 2842, 2841] by Super 63 with 296 at 1,1,1,1,2,2,2 Id : 534, {_}: multiply ?3731 (inverse (multiply (multiply (inverse (multiply (inverse ?3732) (multiply ?3732 ?3733))) ?3734) (inverse (multiply (inverse ?3731) ?3734)))) =>= ?3733 [3734, 3733, 3732, 3731] by Super 2 with 296 at 1,1,1,1,2,2 Id : 2439, {_}: multiply ?16014 (inverse (multiply (multiply (inverse (multiply (inverse ?16015) (multiply ?16015 ?16016))) (multiply ?16014 ?16017)) (inverse (multiply (inverse ?16018) (multiply ?16018 ?16017))))) =>= ?16016 [16018, 16017, 16016, 16015, 16014] by Super 534 with 296 at 1,2,1,2,2 Id : 2524, {_}: multiply (multiply (inverse ?16722) (multiply ?16722 ?16723)) (inverse (multiply ?16724 (inverse (multiply (inverse ?16725) (multiply ?16725 (inverse (multiply (multiply (inverse (multiply (inverse ?16726) ?16724)) ?16727) (inverse (multiply ?16726 ?16727))))))))) =>= ?16723 [16727, 16726, 16725, 16724, 16723, 16722] by Super 2439 with 63 at 1,1,2,2 Id : 2563, {_}: multiply (multiply (inverse ?16722) (multiply ?16722 ?16723)) (inverse (multiply ?16724 (inverse ?16724))) =>= ?16723 [16724, 16723, 16722] by Demod 2524 with 63 at 1,2,1,2,2 Id : 2592, {_}: multiply (inverse (multiply (inverse ?16966) (multiply ?16966 ?16967))) ?16967 =?= multiply (inverse (multiply (inverse ?16968) (multiply ?16968 ?16969))) ?16969 [16969, 16968, 16967, 16966] by Super 388 with 2563 at 2,2 Id : 2821, {_}: multiply (inverse (inverse (multiply (inverse ?18345) (multiply ?18345 (inverse (multiply (multiply (inverse (multiply (inverse ?18346) ?18347)) ?18348) (inverse (multiply ?18346 ?18348)))))))) (multiply (inverse (multiply (inverse ?18349) (multiply ?18349 ?18350))) ?18350) =>= ?18347 [18350, 18349, 18348, 18347, 18346, 18345] by Super 63 with 2592 at 2,2 Id : 3012, {_}: multiply (inverse (inverse ?18347)) (multiply (inverse (multiply (inverse ?18349) (multiply ?18349 ?18350))) ?18350) =>= ?18347 [18350, 18349, 18347] by Demod 2821 with 63 at 1,1,1,2 Id : 135, {_}: multiply (inverse ?1251) (multiply ?1251 (inverse (multiply (multiply (inverse (multiply (inverse ?1252) ?1253)) ?1254) (inverse (multiply ?1252 ?1254))))) =>= ?1253 [1254, 1253, 1252, 1251] by Super 2 with 5 at 2,2 Id : 154, {_}: multiply (inverse ?1406) (multiply ?1406 (multiply ?1407 (inverse (multiply (multiply (inverse (multiply (inverse ?1408) ?1409)) ?1410) (inverse (multiply ?1408 ?1410)))))) =>= multiply (inverse (inverse ?1407)) ?1409 [1410, 1409, 1408, 1407, 1406] by Super 135 with 5 at 2,2,2 Id : 3082, {_}: multiply (inverse (inverse (inverse ?20094))) ?20094 =?= multiply (inverse (inverse (inverse (multiply (inverse ?20095) (multiply ?20095 (inverse (multiply (multiply (inverse (multiply (inverse ?20096) ?20097)) ?20098) (inverse (multiply ?20096 ?20098))))))))) ?20097 [20098, 20097, 20096, 20095, 20094] by Super 154 with 3012 at 2,2 Id : 3171, {_}: multiply (inverse (inverse (inverse ?20094))) ?20094 =?= multiply (inverse (inverse (inverse ?20097))) ?20097 [20097, 20094] by Demod 3082 with 63 at 1,1,1,1,3 Id : 3346, {_}: multiply (inverse (inverse ?21386)) (multiply (inverse (multiply (inverse (inverse (inverse (inverse ?21387)))) (multiply (inverse (inverse (inverse ?21388))) ?21388))) ?21387) =>= ?21386 [21388, 21387, 21386] by Super 3012 with 3171 at 2,1,1,2,2 Id : 372, {_}: multiply ?2725 (inverse (multiply (multiply (inverse ?2726) (multiply ?2726 ?2727)) (inverse (multiply ?2728 (multiply (multiply (inverse ?2728) (multiply (inverse ?2725) ?2729)) ?2727))))) =>= ?2729 [2729, 2728, 2727, 2726, 2725] by Super 2 with 296 at 1,1,2,2 Id : 188, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1652) (multiply (inverse (inverse ?1653)) (multiply (inverse ?1653) ?1654)))) ?1655) (inverse (multiply ?1652 ?1655))) =>= ?1654 [1655, 1654, 1653, 1652] by Super 2 with 5 at 2 Id : 196, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1714) (multiply (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?1715) (multiply (inverse (inverse ?1716)) (multiply (inverse ?1716) ?1717)))) ?1718) (inverse (multiply ?1715 ?1718))))) (multiply ?1717 ?1719)))) ?1720) (inverse (multiply ?1714 ?1720))) =>= ?1719 [1720, 1719, 1718, 1717, 1716, 1715, 1714] by Super 188 with 64 at 1,2,2,1,1,1,1,2 Id : 221, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1714) (multiply (inverse ?1717) (multiply ?1717 ?1719)))) ?1720) (inverse (multiply ?1714 ?1720))) =>= ?1719 [1720, 1719, 1717, 1714] by Demod 196 with 64 at 1,1,2,1,1,1,1,2 Id : 620, {_}: multiply (inverse ?4319) (multiply ?4319 (multiply ?4320 (inverse (multiply (multiply (inverse (multiply (inverse ?4321) ?4322)) ?4323) (inverse (multiply ?4321 ?4323)))))) =>= multiply (inverse (inverse ?4320)) ?4322 [4323, 4322, 4321, 4320, 4319] by Super 135 with 5 at 2,2,2 Id : 653, {_}: multiply (inverse ?4603) (multiply ?4603 (multiply ?4604 ?4605)) =?= multiply (inverse (inverse ?4604)) (multiply (inverse ?4606) (multiply ?4606 ?4605)) [4606, 4605, 4604, 4603] by Super 620 with 221 at 2,2,2,2 Id : 742, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?5193) (multiply ?5193 (multiply ?5194 ?5195)))) ?5196) (inverse (multiply (inverse ?5194) ?5196))) =>= ?5195 [5196, 5195, 5194, 5193] by Super 221 with 653 at 1,1,1,1,2 Id : 2795, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?18165) (multiply ?18165 ?18166))) ?18166) (inverse (multiply (inverse ?18167) (multiply ?18167 ?18168)))) =>= ?18168 [18168, 18167, 18166, 18165] by Super 742 with 2592 at 1,1,2 Id : 3210, {_}: multiply (multiply (inverse (inverse (inverse (inverse ?20600)))) (multiply (inverse (inverse (inverse ?20601))) ?20601)) (inverse (multiply ?20602 (inverse ?20602))) =>= ?20600 [20602, 20601, 20600] by Super 2563 with 3171 at 2,1,2 Id : 3081, {_}: multiply (inverse ?20087) (multiply ?20087 (multiply ?20088 (inverse (multiply (multiply (inverse ?20089) ?20090) (inverse (multiply (inverse ?20089) ?20090)))))) =?= multiply (inverse (inverse ?20088)) (multiply (inverse (multiply (inverse ?20091) (multiply ?20091 ?20092))) ?20092) [20092, 20091, 20090, 20089, 20088, 20087] by Super 154 with 3012 at 1,1,1,1,2,2,2,2 Id : 4777, {_}: multiply (inverse ?29667) (multiply ?29667 (multiply ?29668 (inverse (multiply (multiply (inverse ?29669) ?29670) (inverse (multiply (inverse ?29669) ?29670)))))) =>= ?29668 [29670, 29669, 29668, 29667] by Demod 3081 with 3012 at 3 Id : 4785, {_}: multiply (inverse ?29731) (multiply ?29731 (multiply ?29732 (inverse (multiply (multiply (inverse ?29733) (inverse (multiply (multiply (inverse (multiply (inverse ?29734) (multiply (inverse (inverse ?29733)) ?29735))) ?29736) (inverse (multiply ?29734 ?29736))))) (inverse ?29735))))) =>= ?29732 [29736, 29735, 29734, 29733, 29732, 29731] by Super 4777 with 2 at 1,2,1,2,2,2,2 Id : 4909, {_}: multiply (inverse ?29731) (multiply ?29731 (multiply ?29732 (inverse (multiply ?29735 (inverse ?29735))))) =>= ?29732 [29735, 29732, 29731] by Demod 4785 with 2 at 1,1,2,2,2,2 Id : 4962, {_}: multiply ?30464 (inverse (multiply ?30465 (inverse ?30465))) =?= multiply ?30464 (inverse (multiply ?30466 (inverse ?30466))) [30466, 30465, 30464] by Super 3210 with 4909 at 1,2 Id : 5592, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?33658) (multiply ?33658 ?33659))) ?33659) (inverse (multiply (inverse ?33660) (multiply ?33660 (inverse (multiply ?33661 (inverse ?33661))))))) =?= inverse (multiply ?33662 (inverse ?33662)) [33662, 33661, 33660, 33659, 33658] by Super 2795 with 4962 at 2,1,2,1,2 Id : 5653, {_}: inverse (multiply ?33661 (inverse ?33661)) =?= inverse (multiply ?33662 (inverse ?33662)) [33662, 33661] by Demod 5592 with 2795 at 2 Id : 5929, {_}: multiply (inverse (inverse (multiply ?35194 (inverse ?35194)))) (multiply (inverse (multiply (inverse (inverse (inverse (inverse ?35195)))) (multiply (inverse (inverse (inverse ?35196))) ?35196))) ?35195) =?= multiply ?35197 (inverse ?35197) [35197, 35196, 35195, 35194] by Super 3346 with 5653 at 1,1,2 Id : 5986, {_}: multiply ?35194 (inverse ?35194) =?= multiply ?35197 (inverse ?35197) [35197, 35194] by Demod 5929 with 3346 at 2 Id : 6042, {_}: multiply (multiply (inverse ?35573) (multiply ?35574 (inverse ?35574))) (inverse (multiply ?35575 (inverse ?35575))) =>= inverse ?35573 [35575, 35574, 35573] by Super 2563 with 5986 at 2,1,2 Id : 6543, {_}: multiply ?38358 (inverse (multiply (multiply (inverse ?38359) (multiply ?38359 (inverse (multiply ?38360 (inverse ?38360))))) (inverse (multiply ?38361 (inverse ?38361))))) =>= inverse (inverse ?38358) [38361, 38360, 38359, 38358] by Super 372 with 6042 at 2,1,2,1,2,2 Id : 6618, {_}: multiply ?38358 (inverse (inverse (multiply ?38360 (inverse ?38360)))) =>= inverse (inverse ?38358) [38360, 38358] by Demod 6543 with 2563 at 1,2,2 Id : 6657, {_}: multiply (inverse (inverse ?38833)) (multiply (inverse (multiply (inverse ?38834) (inverse (inverse ?38834)))) (inverse (inverse (multiply ?38835 (inverse ?38835))))) =>= ?38833 [38835, 38834, 38833] by Super 3012 with 6618 at 2,1,1,2,2 Id : 7408, {_}: multiply (inverse (inverse ?41918)) (inverse (inverse (inverse (multiply (inverse ?41919) (inverse (inverse ?41919)))))) =>= ?41918 [41919, 41918] by Demod 6657 with 6618 at 2,2 Id : 6739, {_}: multiply ?39280 (inverse ?39280) =?= inverse (inverse (inverse (multiply ?39281 (inverse ?39281)))) [39281, 39280] by Super 5986 with 6618 at 3 Id : 7438, {_}: multiply (inverse (inverse ?42063)) (multiply ?42064 (inverse ?42064)) =>= ?42063 [42064, 42063] by Super 7408 with 6739 at 2,2 Id : 7572, {_}: multiply ?42586 (inverse (multiply ?42587 (inverse ?42587))) =>= inverse (inverse ?42586) [42587, 42586] by Super 2563 with 7438 at 1,2 Id : 7757, {_}: multiply (inverse (inverse ?43376)) (inverse (inverse (inverse (multiply (inverse (inverse (inverse (inverse (inverse (multiply ?43377 (inverse ?43377))))))) (multiply (inverse (inverse (inverse ?43378))) ?43378))))) =>= ?43376 [43378, 43377, 43376] by Super 3346 with 7572 at 2,2 Id : 7643, {_}: inverse (inverse (multiply (inverse (inverse (inverse (inverse ?20600)))) (multiply (inverse (inverse (inverse ?20601))) ?20601))) =>= ?20600 [20601, 20600] by Demod 3210 with 7572 at 2 Id : 7812, {_}: multiply (inverse (inverse ?43376)) (inverse (inverse (multiply ?43377 (inverse ?43377)))) =>= ?43376 [43377, 43376] by Demod 7757 with 7643 at 1,2,2 Id : 7813, {_}: inverse (inverse (inverse (inverse ?43376))) =>= ?43376 [43376] by Demod 7812 with 6618 at 2 Id : 869, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?5935) (multiply ?5935 (multiply ?5936 ?5937)))) ?5938) (inverse (multiply (inverse ?5936) ?5938))) =>= ?5937 [5938, 5937, 5936, 5935] by Super 221 with 653 at 1,1,1,1,2 Id : 890, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?6097) (multiply ?6097 (multiply (inverse ?6098) (multiply ?6098 ?6099))))) ?6100) (inverse (multiply (inverse (inverse ?6101)) ?6100))) =>= multiply ?6101 ?6099 [6101, 6100, 6099, 6098, 6097] by Super 869 with 296 at 2,2,1,1,1,1,2 Id : 7644, {_}: multiply (inverse ?29731) (multiply ?29731 (inverse (inverse ?29732))) =>= ?29732 [29732, 29731] by Demod 4909 with 7572 at 2,2,2 Id : 8034, {_}: multiply (inverse ?44083) (multiply ?44083 ?44084) =>= inverse (inverse ?44084) [44084, 44083] by Super 7644 with 7813 at 2,2,2 Id : 8444, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?6097) (multiply ?6097 (inverse (inverse ?6099))))) ?6100) (inverse (multiply (inverse (inverse ?6101)) ?6100))) =>= multiply ?6101 ?6099 [6101, 6100, 6099, 6097] by Demod 890 with 8034 at 2,2,1,1,1,1,2 Id : 8445, {_}: inverse (multiply (multiply (inverse (inverse (inverse (inverse (inverse ?6099))))) ?6100) (inverse (multiply (inverse (inverse ?6101)) ?6100))) =>= multiply ?6101 ?6099 [6101, 6100, 6099] by Demod 8444 with 8034 at 1,1,1,1,2 Id : 8478, {_}: inverse (multiply (multiply (inverse ?6099) ?6100) (inverse (multiply (inverse (inverse ?6101)) ?6100))) =>= multiply ?6101 ?6099 [6101, 6100, 6099] by Demod 8445 with 7813 at 1,1,1,1,2 Id : 7937, {_}: multiply ?43614 (inverse (multiply (inverse (inverse (inverse ?43615))) ?43615)) =>= inverse (inverse ?43614) [43615, 43614] by Super 7572 with 7813 at 2,1,2,2 Id : 8626, {_}: inverse (inverse (inverse (multiply (inverse ?45427) ?45428))) =>= multiply (inverse ?45428) ?45427 [45428, 45427] by Super 8478 with 7937 at 1,2 Id : 8922, {_}: inverse (multiply (inverse ?46068) ?46069) =>= multiply (inverse ?46069) ?46068 [46069, 46068] by Super 7813 with 8626 at 1,2 Id : 9088, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (inverse (multiply (inverse ?29) (multiply (inverse (multiply (inverse (multiply (inverse ?26) ?30)) ?28)) ?27))) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 30, 29, 28, 27, 26] by Demod 6 with 8922 at 1,1,2,1,1,1,1,2,1,2,1,2,2 Id : 9089, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (inverse (multiply (inverse ?29) (multiply (inverse (multiply (multiply (inverse ?30) ?26) ?28)) ?27))) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 30, 29, 28, 27, 26] by Demod 9088 with 8922 at 1,1,1,2,1,1,1,1,2,1,2,1,2,2 Id : 9090, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (multiply (inverse (multiply (inverse (multiply (multiply (inverse ?30) ?26) ?28)) ?27)) ?29) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 29, 30, 28, 27, 26] by Demod 9089 with 8922 at 1,1,1,2,1,2,1,2,2 Id : 9091, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (multiply (multiply (inverse ?27) (multiply (multiply (inverse ?30) ?26) ?28)) ?29) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 29, 30, 28, 27, 26] by Demod 9090 with 8922 at 1,1,1,1,2,1,2,1,2,2 Id : 8456, {_}: multiply (inverse ?2841) (multiply ?2841 (inverse (multiply (multiply (inverse (inverse (inverse ?2843))) ?2844) (inverse (multiply ?2845 ?2844))))) =>= multiply ?2845 ?2843 [2845, 2844, 2843, 2841] by Demod 388 with 8034 at 1,1,1,1,2,2,2 Id : 8457, {_}: inverse (inverse (inverse (multiply (multiply (inverse (inverse (inverse ?2843))) ?2844) (inverse (multiply ?2845 ?2844))))) =>= multiply ?2845 ?2843 [2845, 2844, 2843] by Demod 8456 with 8034 at 2 Id : 8637, {_}: inverse (inverse (inverse (inverse (inverse (multiply (inverse (inverse (inverse ?45472))) ?45473))))) =>= multiply (inverse (inverse (inverse ?45473))) ?45472 [45473, 45472] by Super 8457 with 7937 at 1,1,1,2 Id : 8820, {_}: inverse (multiply (inverse (inverse (inverse ?45472))) ?45473) =>= multiply (inverse (inverse (inverse ?45473))) ?45472 [45473, 45472] by Demod 8637 with 7813 at 1,2 Id : 9270, {_}: multiply (inverse ?45473) (inverse (inverse ?45472)) =?= multiply (inverse (inverse (inverse ?45473))) ?45472 [45472, 45473] by Demod 8820 with 8922 at 2 Id : 9362, {_}: multiply (inverse ?47429) (inverse (inverse (multiply (inverse (inverse ?47429)) ?47430))) =>= inverse (inverse ?47430) [47430, 47429] by Super 8034 with 9270 at 2 Id : 9489, {_}: multiply (inverse ?47429) (inverse (multiply (inverse ?47430) (inverse ?47429))) =>= inverse (inverse ?47430) [47430, 47429] by Demod 9362 with 8922 at 1,2,2 Id : 9490, {_}: multiply (inverse ?47429) (multiply (inverse (inverse ?47429)) ?47430) =>= inverse (inverse ?47430) [47430, 47429] by Demod 9489 with 8922 at 2,2 Id : 8461, {_}: multiply ?2725 (inverse (multiply (inverse (inverse ?2727)) (inverse (multiply ?2728 (multiply (multiply (inverse ?2728) (multiply (inverse ?2725) ?2729)) ?2727))))) =>= ?2729 [2729, 2728, 2727, 2725] by Demod 372 with 8034 at 1,1,2,2 Id : 9078, {_}: multiply ?2725 (multiply (inverse (inverse (multiply ?2728 (multiply (multiply (inverse ?2728) (multiply (inverse ?2725) ?2729)) ?2727)))) (inverse ?2727)) =>= ?2729 [2727, 2729, 2728, 2725] by Demod 8461 with 8922 at 2,2 Id : 390, {_}: multiply (inverse ?2853) (multiply ?2853 (inverse (multiply (multiply (inverse ?2854) (multiply ?2854 ?2855)) (inverse (multiply ?2856 (multiply (multiply (inverse ?2856) ?2857) ?2855)))))) =>= ?2857 [2857, 2856, 2855, 2854, 2853] by Super 63 with 296 at 1,1,2,2,2 Id : 8442, {_}: multiply (inverse ?2853) (multiply ?2853 (inverse (multiply (inverse (inverse ?2855)) (inverse (multiply ?2856 (multiply (multiply (inverse ?2856) ?2857) ?2855)))))) =>= ?2857 [2857, 2856, 2855, 2853] by Demod 390 with 8034 at 1,1,2,2,2 Id : 8443, {_}: inverse (inverse (inverse (multiply (inverse (inverse ?2855)) (inverse (multiply ?2856 (multiply (multiply (inverse ?2856) ?2857) ?2855)))))) =>= ?2857 [2857, 2856, 2855] by Demod 8442 with 8034 at 2 Id : 8892, {_}: multiply (inverse (inverse (multiply ?2856 (multiply (multiply (inverse ?2856) ?2857) ?2855)))) (inverse ?2855) =>= ?2857 [2855, 2857, 2856] by Demod 8443 with 8626 at 2 Id : 9096, {_}: multiply ?2725 (multiply (inverse ?2725) ?2729) =>= ?2729 [2729, 2725] by Demod 9078 with 8892 at 2,2 Id : 9491, {_}: ?47430 =<= inverse (inverse ?47430) [47430] by Demod 9490 with 9096 at 2 Id : 9854, {_}: inverse (multiply ?48264 ?48265) =<= multiply (inverse ?48265) (inverse ?48264) [48265, 48264] by Super 8922 with 9491 at 1,1,2 Id : 9871, {_}: inverse (multiply ?48336 (inverse ?48337)) =>= multiply ?48337 (inverse ?48336) [48337, 48336] by Super 9854 with 9491 at 1,3 Id : 9980, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (multiply (multiply (inverse ?27) (multiply (multiply (inverse ?30) ?26) ?28)) ?29) ?31))))))) =>= ?30 [30, 31, 29, 28, 27, 26] by Demod 9091 with 9871 at 2,1,2,1,2,2 Id : 9981, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (multiply (multiply (inverse ?27) (multiply (multiply (inverse ?30) ?26) ?28)) ?29) ?31)))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 9980 with 9871 at 2,2 Id : 9745, {_}: inverse (multiply ?47897 ?47898) =<= multiply (inverse ?47898) (inverse ?47897) [47898, 47897] by Super 8922 with 9491 at 1,1,2 Id : 10105, {_}: multiply ?48773 (inverse (multiply ?48774 ?48773)) =>= inverse ?48774 [48774, 48773] by Super 9096 with 9745 at 2,2 Id : 9836, {_}: multiply ?48200 (inverse (multiply ?48201 ?48200)) =>= inverse ?48201 [48201, 48200] by Super 9096 with 9745 at 2,2 Id : 10114, {_}: multiply (inverse (multiply ?48803 ?48804)) (inverse (inverse ?48803)) =>= inverse ?48804 [48804, 48803] by Super 10105 with 9836 at 1,2,2 Id : 10433, {_}: multiply (inverse (multiply ?49357 ?49358)) ?49357 =>= inverse ?49358 [49358, 49357] by Demod 10114 with 9491 at 2,2 Id : 8450, {_}: inverse (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?570) ?571)) ?572) (inverse (multiply ?570 ?572))))) =>= ?571 [572, 571, 570] by Demod 63 with 8034 at 2 Id : 9077, {_}: inverse (inverse (inverse (multiply (multiply (multiply (inverse ?571) ?570) ?572) (inverse (multiply ?570 ?572))))) =>= ?571 [572, 570, 571] by Demod 8450 with 8922 at 1,1,1,1,1,2 Id : 9730, {_}: inverse (multiply (multiply (multiply (inverse ?571) ?570) ?572) (inverse (multiply ?570 ?572))) =>= ?571 [572, 570, 571] by Demod 9077 with 9491 at 1,2 Id : 9984, {_}: multiply (multiply ?570 ?572) (inverse (multiply (multiply (inverse ?571) ?570) ?572)) =>= ?571 [571, 572, 570] by Demod 9730 with 9871 at 2 Id : 10446, {_}: multiply (inverse ?49409) (multiply ?49410 ?49411) =<= inverse (inverse (multiply (multiply (inverse ?49409) ?49410) ?49411)) [49411, 49410, 49409] by Super 10433 with 9984 at 1,1,2 Id : 10511, {_}: multiply (inverse ?49409) (multiply ?49410 ?49411) =<= multiply (multiply (inverse ?49409) ?49410) ?49411 [49411, 49410, 49409] by Demod 10446 with 9491 at 3 Id : 10913, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (multiply (multiply (inverse ?27) (multiply (inverse ?30) (multiply ?26 ?28))) ?29) ?31)))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 9981 with 10511 at 2,1,1,1,2,2,1,2,2 Id : 10914, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (multiply (inverse ?27) (multiply (multiply (inverse ?30) (multiply ?26 ?28)) ?29)) ?31)))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 10913 with 10511 at 1,1,2,2,1,2,2 Id : 10915, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (multiply (inverse ?27) (multiply (inverse ?30) (multiply (multiply ?26 ?28) ?29))) ?31)))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 10914 with 10511 at 2,1,1,2,2,1,2,2 Id : 10916, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (inverse ?27) (multiply (multiply (inverse ?30) (multiply (multiply ?26 ?28) ?29)) ?31))))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 10915 with 10511 at 1,2,2,1,2,2 Id : 10917, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (inverse ?27) (multiply (inverse ?30) (multiply (multiply (multiply ?26 ?28) ?29) ?31)))))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 10916 with 10511 at 2,1,2,2,1,2,2 Id : 10933, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (multiply (inverse (multiply (inverse ?30) (multiply (multiply (multiply ?26 ?28) ?29) ?31))) ?27))) (inverse ?27)) =>= ?30 [27, 30, 31, 29, 28, 26] by Demod 10917 with 8922 at 2,2,1,2,2 Id : 10934, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (multiply (multiply (inverse (multiply (multiply (multiply ?26 ?28) ?29) ?31)) ?30) ?27))) (inverse ?27)) =>= ?30 [27, 30, 31, 29, 28, 26] by Demod 10933 with 8922 at 1,2,2,1,2,2 Id : 10935, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (multiply (inverse (multiply (multiply (multiply ?26 ?28) ?29) ?31)) (multiply ?30 ?27)))) (inverse ?27)) =>= ?30 [27, 30, 31, 29, 28, 26] by Demod 10934 with 10511 at 2,2,1,2,2 Id : 3348, {_}: multiply (inverse (inverse (inverse ?21394))) ?21394 =?= inverse (multiply (inverse (multiply (inverse ?21395) (multiply ?21395 ?21396))) ?21396) [21396, 21395, 21394] by Super 3012 with 3171 at 2 Id : 8465, {_}: multiply (inverse (inverse (inverse ?21394))) ?21394 =?= inverse (multiply (inverse (inverse (inverse ?21396))) ?21396) [21396, 21394] by Demod 3348 with 8034 at 1,1,1,3 Id : 9092, {_}: multiply (inverse (inverse (inverse ?21394))) ?21394 =?= multiply (inverse ?21396) (inverse (inverse ?21396)) [21396, 21394] by Demod 8465 with 8922 at 3 Id : 9728, {_}: multiply (inverse ?21394) ?21394 =?= multiply (inverse ?21396) (inverse (inverse ?21396)) [21396, 21394] by Demod 9092 with 9491 at 1,1,2 Id : 9729, {_}: multiply (inverse ?21394) ?21394 =?= multiply (inverse ?21396) ?21396 [21396, 21394] by Demod 9728 with 9491 at 2,3 Id : 9742, {_}: multiply (inverse ?47887) ?47887 =?= multiply ?47888 (inverse ?47888) [47888, 47887] by Super 9729 with 9491 at 1,3 Id : 12132, {_}: multiply ?52071 (multiply (multiply ?52072 (multiply (multiply ?52073 ?52074) (multiply ?52075 (inverse ?52075)))) (inverse ?52074)) =>= multiply (multiply ?52071 ?52072) ?52073 [52075, 52074, 52073, 52072, 52071] by Super 10935 with 9742 at 2,2,1,2,2 Id : 7945, {_}: multiply ?43641 (multiply ?43642 (inverse ?43642)) =>= inverse (inverse ?43641) [43642, 43641] by Super 7438 with 7813 at 1,2 Id : 9718, {_}: multiply ?43641 (multiply ?43642 (inverse ?43642)) =>= ?43641 [43642, 43641] by Demod 7945 with 9491 at 3 Id : 12361, {_}: multiply ?52071 (multiply (multiply ?52072 (multiply ?52073 ?52074)) (inverse ?52074)) =>= multiply (multiply ?52071 ?52072) ?52073 [52074, 52073, 52072, 52071] by Demod 12132 with 9718 at 2,1,2,2 Id : 9706, {_}: inverse (inverse (inverse (multiply (multiply (inverse ?2843) ?2844) (inverse (multiply ?2845 ?2844))))) =>= multiply ?2845 ?2843 [2845, 2844, 2843] by Demod 8457 with 9491 at 1,1,1,1,1,1,2 Id : 9707, {_}: inverse (multiply (multiply (inverse ?2843) ?2844) (inverse (multiply ?2845 ?2844))) =>= multiply ?2845 ?2843 [2845, 2844, 2843] by Demod 9706 with 9491 at 1,2 Id : 9986, {_}: multiply (multiply ?2845 ?2844) (inverse (multiply (inverse ?2843) ?2844)) =>= multiply ?2845 ?2843 [2843, 2844, 2845] by Demod 9707 with 9871 at 2 Id : 9987, {_}: multiply (multiply ?2845 ?2844) (multiply (inverse ?2844) ?2843) =>= multiply ?2845 ?2843 [2843, 2844, 2845] by Demod 9986 with 8922 at 2,2 Id : 10192, {_}: multiply (inverse (multiply ?48803 ?48804)) ?48803 =>= inverse ?48804 [48804, 48803] by Demod 10114 with 9491 at 2,2 Id : 10424, {_}: multiply (multiply ?49312 (multiply ?49313 ?49314)) (inverse ?49314) =>= multiply ?49312 ?49313 [49314, 49313, 49312] by Super 9987 with 10192 at 2,2 Id : 21560, {_}: multiply ?52071 (multiply ?52072 ?52073) =?= multiply (multiply ?52071 ?52072) ?52073 [52073, 52072, 52071] by Demod 12361 with 10424 at 2,2 Id : 21998, {_}: multiply a (multiply b c) === multiply a (multiply b c) [] by Demod 1 with 21560 at 3 Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity % SZS output end CNFRefutation for GRP014-1.p 15667: solved GRP014-1.p in 4.960309 using nrkbo FINAL WATCH: 5.0 CPU 9.9 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP024-5.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 15675 TreeLimitedRun: ---------------------------------------------------------- 15677: Facts: 15677: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 15677: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 15677: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 15677: Id : 5, {_}: commutator ?10 ?11 =<= multiply (inverse ?10) (multiply (inverse ?11) (multiply ?10 ?11)) [11, 10] by name ?10 ?11 15677: Id : 6, {_}: commutator (commutator ?13 ?14) ?15 =?= commutator ?13 (commutator ?14 ?15) [15, 14, 13] by associativity_of_commutator ?13 ?14 ?15 15677: Goal: 15677: Id : 1, {_}: multiply a (commutator b c) =<= multiply (commutator b c) a [] by prove_center % SZS status Timeout for GRP024-5.p FINAL WATCH: 191.7 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP114-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 15744 TreeLimitedRun: ---------------------------------------------------------- 15746: Facts: 15746: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 15746: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 15746: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 15746: Id : 5, {_}: inverse identity =>= identity [] by inverse_of_identity 15746: Id : 6, {_}: inverse (inverse ?11) =>= ?11 [11] by inverse_involution ?11 15746: Id : 7, {_}: inverse (multiply ?13 ?14) =<= multiply (inverse ?14) (inverse ?13) [14, 13] by inverse_product_lemma ?13 ?14 15746: Id : 8, {_}: intersection ?16 ?16 =>= ?16 [16] by intersection_idempotent ?16 15746: Id : 9, {_}: union ?18 ?18 =>= ?18 [18] by union_idempotent ?18 15746: Id : 10, {_}: intersection ?20 ?21 =<->= intersection ?21 ?20 [21, 20] by intersection_commutative ?20 ?21 15746: Id : 11, {_}: union ?23 ?24 =<->= union ?24 ?23 [24, 23] by union_commutative ?23 ?24 15746: Id : 12, {_}: intersection ?26 (intersection ?27 ?28) =?= intersection (intersection ?26 ?27) ?28 [28, 27, 26] by intersection_associative ?26 ?27 ?28 15746: Id : 13, {_}: union ?30 (union ?31 ?32) =?= union (union ?30 ?31) ?32 [32, 31, 30] by union_associative ?30 ?31 ?32 15746: Id : 14, {_}: union (intersection ?34 ?35) ?35 =>= ?35 [35, 34] by union_intersection_absorbtion ?34 ?35 15746: Id : 15, {_}: intersection (union ?37 ?38) ?38 =>= ?38 [38, 37] by intersection_union_absorbtion ?37 ?38 15746: Id : 16, {_}: multiply ?40 (union ?41 ?42) =<= union (multiply ?40 ?41) (multiply ?40 ?42) [42, 41, 40] by multiply_union1 ?40 ?41 ?42 15746: Id : 17, {_}: multiply ?44 (intersection ?45 ?46) =<= intersection (multiply ?44 ?45) (multiply ?44 ?46) [46, 45, 44] by multiply_intersection1 ?44 ?45 ?46 15746: Id : 18, {_}: multiply (union ?48 ?49) ?50 =<= union (multiply ?48 ?50) (multiply ?49 ?50) [50, 49, 48] by multiply_union2 ?48 ?49 ?50 15746: Id : 19, {_}: multiply (intersection ?52 ?53) ?54 =<= intersection (multiply ?52 ?54) (multiply ?53 ?54) [54, 53, 52] by multiply_intersection2 ?52 ?53 ?54 15746: Id : 20, {_}: positive_part ?56 =<= union ?56 identity [56] by positive_part ?56 15746: Id : 21, {_}: negative_part ?58 =<= intersection ?58 identity [58] by negative_part ?58 15746: Goal: 15746: Id : 1, {_}: multiply (positive_part a) (negative_part a) =>= a [] by prove_product Statistics : Max weight : 16 Found proof, 8.825173s % SZS status Unsatisfiable for GRP114-1.p % SZS output start CNFRefutation for GRP114-1.p Id : 207, {_}: multiply (union ?586 ?587) ?588 =<= union (multiply ?586 ?588) (multiply ?587 ?588) [588, 587, 586] by multiply_union2 ?586 ?587 ?588 Id : 8, {_}: intersection ?16 ?16 =>= ?16 [16] by intersection_idempotent ?16 Id : 12, {_}: intersection ?26 (intersection ?27 ?28) =?= intersection (intersection ?26 ?27) ?28 [28, 27, 26] by intersection_associative ?26 ?27 ?28 Id : 17, {_}: multiply ?44 (intersection ?45 ?46) =<= intersection (multiply ?44 ?45) (multiply ?44 ?46) [46, 45, 44] by multiply_intersection1 ?44 ?45 ?46 Id : 14, {_}: union (intersection ?34 ?35) ?35 =>= ?35 [35, 34] by union_intersection_absorbtion ?34 ?35 Id : 13, {_}: union ?30 (union ?31 ?32) =?= union (union ?30 ?31) ?32 [32, 31, 30] by union_associative ?30 ?31 ?32 Id : 15, {_}: intersection (union ?37 ?38) ?38 =>= ?38 [38, 37] by intersection_union_absorbtion ?37 ?38 Id : 237, {_}: multiply (intersection ?663 ?664) ?665 =<= intersection (multiply ?663 ?665) (multiply ?664 ?665) [665, 664, 663] by multiply_intersection2 ?663 ?664 ?665 Id : 21, {_}: negative_part ?58 =<= intersection ?58 identity [58] by negative_part ?58 Id : 10, {_}: intersection ?20 ?21 =<->= intersection ?21 ?20 [21, 20] by intersection_commutative ?20 ?21 Id : 176, {_}: multiply ?512 (intersection ?513 ?514) =<= intersection (multiply ?512 ?513) (multiply ?512 ?514) [514, 513, 512] by multiply_intersection1 ?512 ?513 ?514 Id : 11, {_}: union ?23 ?24 =<->= union ?24 ?23 [24, 23] by union_commutative ?23 ?24 Id : 20, {_}: positive_part ?56 =<= union ?56 identity [56] by positive_part ?56 Id : 5, {_}: inverse identity =>= identity [] by inverse_of_identity Id : 16, {_}: multiply ?40 (union ?41 ?42) =<= union (multiply ?40 ?41) (multiply ?40 ?42) [42, 41, 40] by multiply_union1 ?40 ?41 ?42 Id : 6, {_}: inverse (inverse ?11) =>= ?11 [11] by inverse_involution ?11 Id : 54, {_}: inverse (multiply ?143 ?144) =<= multiply (inverse ?144) (inverse ?143) [144, 143] by inverse_product_lemma ?143 ?144 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 Id : 26, {_}: multiply (multiply ?67 ?68) ?69 =?= multiply ?67 (multiply ?68 ?69) [69, 68, 67] by associativity ?67 ?68 ?69 Id : 34, {_}: multiply identity ?99 =<= multiply (inverse ?100) (multiply ?100 ?99) [100, 99] by Super 26 with 3 at 1,2 Id : 5871, {_}: ?7344 =<= multiply (inverse ?7345) (multiply ?7345 ?7344) [7345, 7344] by Demod 34 with 2 at 2 Id : 56, {_}: inverse (multiply (inverse ?148) ?149) =>= multiply (inverse ?149) ?148 [149, 148] by Super 54 with 6 at 2,3 Id : 55, {_}: inverse (multiply identity ?146) =<= multiply (inverse ?146) identity [146] by Super 54 with 5 at 2,3 Id : 358, {_}: inverse ?856 =<= multiply (inverse ?856) identity [856] by Demod 55 with 2 at 1,2 Id : 360, {_}: inverse (inverse ?859) =<= multiply ?859 identity [859] by Super 358 with 6 at 1,3 Id : 375, {_}: ?859 =<= multiply ?859 identity [859] by Demod 360 with 6 at 2 Id : 380, {_}: multiply ?870 (union ?871 identity) =?= union (multiply ?870 ?871) ?870 [871, 870] by Super 16 with 375 at 2,3 Id : 2262, {_}: multiply ?3132 (positive_part ?3133) =<= union (multiply ?3132 ?3133) ?3132 [3133, 3132] by Demod 380 with 20 at 2,2 Id : 2264, {_}: multiply (inverse ?3137) (positive_part ?3137) =>= union identity (inverse ?3137) [3137] by Super 2262 with 3 at 1,3 Id : 266, {_}: positive_part ?724 =<= union identity ?724 [724] by Super 11 with 20 at 2 Id : 2299, {_}: multiply (inverse ?3137) (positive_part ?3137) =>= positive_part (inverse ?3137) [3137] by Demod 2264 with 266 at 3 Id : 2317, {_}: inverse (positive_part (inverse ?3182)) =<= multiply (inverse (positive_part ?3182)) ?3182 [3182] by Super 56 with 2299 at 1,2 Id : 5886, {_}: ?7382 =<= multiply (inverse (inverse (positive_part ?7382))) (inverse (positive_part (inverse ?7382))) [7382] by Super 5871 with 2317 at 2,3 Id : 5909, {_}: ?7382 =<= multiply (positive_part ?7382) (inverse (positive_part (inverse ?7382))) [7382] by Demod 5886 with 6 at 1,3 Id : 183, {_}: multiply (inverse ?539) (intersection ?539 ?540) =>= intersection identity (multiply (inverse ?539) ?540) [540, 539] by Super 176 with 3 at 1,3 Id : 283, {_}: negative_part ?752 =<= intersection identity ?752 [752] by Super 10 with 21 at 2 Id : 6122, {_}: multiply (inverse ?539) (intersection ?539 ?540) =>= negative_part (multiply (inverse ?539) ?540) [540, 539] by Demod 183 with 283 at 3 Id : 239, {_}: multiply (intersection ?670 (inverse ?671)) ?671 =>= intersection (multiply ?670 ?671) identity [671, 670] by Super 237 with 3 at 2,3 Id : 258, {_}: multiply (intersection ?670 (inverse ?671)) ?671 =>= intersection identity (multiply ?670 ?671) [671, 670] by Demod 239 with 10 at 3 Id : 11416, {_}: multiply (intersection ?670 (inverse ?671)) ?671 =>= negative_part (multiply ?670 ?671) [671, 670] by Demod 258 with 283 at 3 Id : 268, {_}: union ?729 (union ?730 identity) =>= positive_part (union ?729 ?730) [730, 729] by Super 13 with 20 at 3 Id : 278, {_}: union ?729 (positive_part ?730) =>= positive_part (union ?729 ?730) [730, 729] by Demod 268 with 20 at 2,2 Id : 33654, {_}: intersection (positive_part (union ?34352 ?34353)) (positive_part ?34353) =>= positive_part ?34353 [34353, 34352] by Super 15 with 278 at 1,2 Id : 406, {_}: multiply ?870 (positive_part ?871) =<= union (multiply ?870 ?871) ?870 [871, 870] by Demod 380 with 20 at 2,2 Id : 58, {_}: inverse (multiply ?153 (inverse ?154)) =>= multiply ?154 (inverse ?153) [154, 153] by Super 54 with 6 at 1,3 Id : 244, {_}: multiply (intersection (inverse ?690) ?691) ?690 =>= intersection identity (multiply ?691 ?690) [691, 690] by Super 237 with 3 at 1,3 Id : 9431, {_}: multiply (intersection (inverse ?10413) ?10414) ?10413 =>= negative_part (multiply ?10414 ?10413) [10414, 10413] by Demod 244 with 283 at 3 Id : 9441, {_}: multiply (negative_part (inverse ?10443)) ?10443 =>= negative_part (multiply identity ?10443) [10443] by Super 9431 with 21 at 1,2 Id : 9489, {_}: multiply (negative_part (inverse ?10443)) ?10443 =>= negative_part ?10443 [10443] by Demod 9441 with 2 at 1,3 Id : 9537, {_}: inverse (negative_part (inverse ?10506)) =<= multiply ?10506 (inverse (negative_part (inverse (inverse ?10506)))) [10506] by Super 58 with 9489 at 1,2 Id : 9566, {_}: inverse (negative_part (inverse ?10506)) =<= multiply ?10506 (inverse (negative_part ?10506)) [10506] by Demod 9537 with 6 at 1,1,2,3 Id : 9718, {_}: multiply ?10688 (positive_part (inverse (negative_part ?10688))) =>= union (inverse (negative_part (inverse ?10688))) ?10688 [10688] by Super 406 with 9566 at 1,3 Id : 329, {_}: union (negative_part ?811) ?811 =>= ?811 [811] by Super 14 with 283 at 1,2 Id : 387, {_}: multiply ?887 (intersection ?888 identity) =?= intersection (multiply ?887 ?888) ?887 [888, 887] by Super 17 with 375 at 2,3 Id : 1773, {_}: multiply ?2622 (negative_part ?2623) =<= intersection (multiply ?2622 ?2623) ?2622 [2623, 2622] by Demod 387 with 21 at 2,2 Id : 1775, {_}: multiply (inverse ?2627) (negative_part ?2627) =>= intersection identity (inverse ?2627) [2627] by Super 1773 with 3 at 1,3 Id : 1823, {_}: multiply (inverse ?2696) (negative_part ?2696) =>= negative_part (inverse ?2696) [2696] by Demod 1775 with 283 at 3 Id : 285, {_}: intersection ?757 (intersection ?758 identity) =>= negative_part (intersection ?757 ?758) [758, 757] by Super 12 with 21 at 3 Id : 522, {_}: intersection ?1051 (negative_part ?1052) =>= negative_part (intersection ?1051 ?1052) [1052, 1051] by Demod 285 with 21 at 2,2 Id : 282, {_}: negative_part identity =>= identity [] by Super 8 with 21 at 2 Id : 523, {_}: intersection ?1054 identity =<= negative_part (intersection ?1054 identity) [1054] by Super 522 with 282 at 2,2 Id : 536, {_}: negative_part ?1054 =<= negative_part (intersection ?1054 identity) [1054] by Demod 523 with 21 at 2 Id : 537, {_}: negative_part ?1054 =<= negative_part (negative_part ?1054) [1054] by Demod 536 with 21 at 1,3 Id : 1828, {_}: multiply (inverse (negative_part ?2707)) (negative_part ?2707) =>= negative_part (inverse (negative_part ?2707)) [2707] by Super 1823 with 537 at 2,2 Id : 1854, {_}: identity =<= negative_part (inverse (negative_part ?2707)) [2707] by Demod 1828 with 3 at 2 Id : 1907, {_}: union identity (inverse (negative_part ?2776)) =>= inverse (negative_part ?2776) [2776] by Super 329 with 1854 at 1,2 Id : 1924, {_}: positive_part (inverse (negative_part ?2776)) =>= inverse (negative_part ?2776) [2776] by Demod 1907 with 266 at 2 Id : 9745, {_}: multiply ?10688 (inverse (negative_part ?10688)) =<= union (inverse (negative_part (inverse ?10688))) ?10688 [10688] by Demod 9718 with 1924 at 2,2 Id : 9746, {_}: inverse (negative_part (inverse ?10688)) =<= union (inverse (negative_part (inverse ?10688))) ?10688 [10688] by Demod 9745 with 9566 at 2 Id : 33724, {_}: intersection (positive_part (inverse (negative_part (inverse ?34575)))) (positive_part ?34575) =>= positive_part ?34575 [34575] by Super 33654 with 9746 at 1,1,2 Id : 33947, {_}: intersection (inverse (negative_part (inverse ?34575))) (positive_part ?34575) =>= positive_part ?34575 [34575] by Demod 33724 with 1924 at 1,2 Id : 33948, {_}: intersection (positive_part ?34575) (inverse (negative_part (inverse ?34575))) =>= positive_part ?34575 [34575] by Demod 33947 with 10 at 2 Id : 33998, {_}: multiply (positive_part ?34664) (negative_part (inverse ?34664)) =<= negative_part (multiply (positive_part ?34664) (negative_part (inverse ?34664))) [34664] by Super 11416 with 33948 at 1,2 Id : 388, {_}: multiply ?890 (intersection identity ?891) =?= intersection ?890 (multiply ?890 ?891) [891, 890] by Super 17 with 375 at 1,3 Id : 401, {_}: multiply ?890 (negative_part ?891) =<= intersection ?890 (multiply ?890 ?891) [891, 890] by Demod 388 with 283 at 2,2 Id : 214, {_}: multiply (union (inverse ?613) ?614) ?613 =>= union identity (multiply ?614 ?613) [614, 613] by Super 207 with 3 at 1,3 Id : 6357, {_}: multiply (union (inverse ?8050) ?8051) ?8050 =>= positive_part (multiply ?8051 ?8050) [8051, 8050] by Demod 214 with 266 at 3 Id : 6367, {_}: multiply (positive_part (inverse ?8080)) ?8080 =>= positive_part (multiply identity ?8080) [8080] by Super 6357 with 20 at 1,2 Id : 6441, {_}: multiply (positive_part (inverse ?8149)) ?8149 =>= positive_part ?8149 [8149] by Demod 6367 with 2 at 1,3 Id : 6443, {_}: multiply (positive_part ?8152) (inverse ?8152) =>= positive_part (inverse ?8152) [8152] by Super 6441 with 6 at 1,1,2 Id : 6494, {_}: multiply (positive_part ?8169) (negative_part (inverse ?8169)) =>= intersection (positive_part ?8169) (positive_part (inverse ?8169)) [8169] by Super 401 with 6443 at 2,3 Id : 34089, {_}: intersection (positive_part ?34664) (positive_part (inverse ?34664)) =<= negative_part (multiply (positive_part ?34664) (negative_part (inverse ?34664))) [34664] by Demod 33998 with 6494 at 2 Id : 34090, {_}: intersection (positive_part ?34664) (positive_part (inverse ?34664)) =<= negative_part (intersection (positive_part ?34664) (positive_part (inverse ?34664))) [34664] by Demod 34089 with 6494 at 1,3 Id : 327, {_}: intersection identity (intersection ?805 ?806) =>= intersection (negative_part ?805) ?806 [806, 805] by Super 12 with 283 at 1,3 Id : 673, {_}: negative_part (intersection ?1210 ?1211) =<= intersection (negative_part ?1210) ?1211 [1211, 1210] by Demod 327 with 283 at 2 Id : 281, {_}: negative_part (union ?749 identity) =>= identity [749] by Super 15 with 21 at 2 Id : 297, {_}: negative_part (positive_part ?749) =>= identity [749] by Demod 281 with 20 at 1,2 Id : 675, {_}: negative_part (intersection (positive_part ?1215) ?1216) =>= intersection identity ?1216 [1216, 1215] by Super 673 with 297 at 1,3 Id : 701, {_}: negative_part (intersection (positive_part ?1215) ?1216) =>= negative_part ?1216 [1216, 1215] by Demod 675 with 283 at 3 Id : 34091, {_}: intersection (positive_part ?34664) (positive_part (inverse ?34664)) =>= negative_part (positive_part (inverse ?34664)) [34664] by Demod 34090 with 701 at 3 Id : 34092, {_}: intersection (positive_part ?34664) (positive_part (inverse ?34664)) =>= identity [34664] by Demod 34091 with 297 at 3 Id : 34319, {_}: multiply (inverse (positive_part ?34842)) identity =<= negative_part (multiply (inverse (positive_part ?34842)) (positive_part (inverse ?34842))) [34842] by Super 6122 with 34092 at 2,2 Id : 34456, {_}: inverse (positive_part ?34842) =<= negative_part (multiply (inverse (positive_part ?34842)) (positive_part (inverse ?34842))) [34842] by Demod 34319 with 375 at 2 Id : 40, {_}: ?99 =<= multiply (inverse ?100) (multiply ?100 ?99) [100, 99] by Demod 34 with 2 at 2 Id : 6493, {_}: inverse ?8167 =<= multiply (inverse (positive_part ?8167)) (positive_part (inverse ?8167)) [8167] by Super 40 with 6443 at 2,3 Id : 34457, {_}: inverse (positive_part ?34842) =>= negative_part (inverse ?34842) [34842] by Demod 34456 with 6493 at 1,3 Id : 34636, {_}: ?7382 =<= multiply (positive_part ?7382) (negative_part (inverse (inverse ?7382))) [7382] by Demod 5909 with 34457 at 2,3 Id : 34750, {_}: ?7382 =<= multiply (positive_part ?7382) (negative_part ?7382) [7382] by Demod 34636 with 6 at 1,2,3 Id : 35071, {_}: a === a [] by Demod 1 with 34750 at 2 Id : 1, {_}: multiply (positive_part a) (negative_part a) =>= a [] by prove_product % SZS output end CNFRefutation for GRP114-1.p 15749: solved GRP114-1.p in 4.428276 using nrkbo FINAL WATCH: 4.4 CPU 9.0 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP164-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 15757 TreeLimitedRun: ---------------------------------------------------------- 15759: Facts: 15759: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 15759: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 15759: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 15759: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 15759: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 15759: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 15759: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 15759: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 15759: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 15759: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 15759: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 15759: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 15759: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 15759: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 15759: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 15759: Goal: 15759: Id : 1, {_}: least_upper_bound a (greatest_lower_bound b c) =<= greatest_lower_bound (least_upper_bound a b) (least_upper_bound a c) [] by prove_distrnu % SZS status Timeout for GRP164-1.p FINAL WATCH: 195.9 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP164-2.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 15845 TreeLimitedRun: ---------------------------------------------------------- 15847: Facts: 15847: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 15847: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 15847: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 15847: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 15847: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 15847: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 15847: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 15847: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 15847: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 15847: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 15847: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 15847: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 15847: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 15847: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 15847: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 15847: Goal: 15847: Id : 1, {_}: greatest_lower_bound a (least_upper_bound b c) =<= least_upper_bound (greatest_lower_bound a b) (greatest_lower_bound a c) [] by prove_distrun % SZS status Timeout for GRP164-2.p FINAL WATCH: 183.1 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP167-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 15920 TreeLimitedRun: ---------------------------------------------------------- 15922: Facts: 15922: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 15922: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 15922: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 15922: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 15922: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 15922: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 15922: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 15922: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 15922: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 15922: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 15922: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 15922: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 15922: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 15922: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 15922: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 15922: Id : 17, {_}: positive_part ?50 =<= least_upper_bound ?50 identity [50] by lat4_1 ?50 15922: Id : 18, {_}: negative_part ?52 =<= greatest_lower_bound ?52 identity [52] by lat4_2 ?52 15922: Id : 19, {_}: least_upper_bound ?54 (greatest_lower_bound ?55 ?56) =<= greatest_lower_bound (least_upper_bound ?54 ?55) (least_upper_bound ?54 ?56) [56, 55, 54] by lat4_3 ?54 ?55 ?56 15922: Id : 20, {_}: greatest_lower_bound ?58 (least_upper_bound ?59 ?60) =<= least_upper_bound (greatest_lower_bound ?58 ?59) (greatest_lower_bound ?58 ?60) [60, 59, 58] by lat4_4 ?58 ?59 ?60 15922: Goal: 15922: Id : 1, {_}: a =<= multiply (positive_part a) (negative_part a) [] by prove_lat4 Statistics : Max weight : 16 Found proof, 23.899984s % SZS status Unsatisfiable for GRP167-1.p % SZS output start CNFRefutation for GRP167-1.p Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 Id : 185, {_}: multiply (least_upper_bound ?425 ?426) ?427 =<= least_upper_bound (multiply ?425 ?427) (multiply ?426 ?427) [427, 426, 425] by monotony_lub2 ?425 ?426 ?427 Id : 20, {_}: greatest_lower_bound ?58 (least_upper_bound ?59 ?60) =<= least_upper_bound (greatest_lower_bound ?58 ?59) (greatest_lower_bound ?58 ?60) [60, 59, 58] by lat4_4 ?58 ?59 ?60 Id : 19, {_}: least_upper_bound ?54 (greatest_lower_bound ?55 ?56) =<= greatest_lower_bound (least_upper_bound ?54 ?55) (least_upper_bound ?54 ?56) [56, 55, 54] by lat4_3 ?54 ?55 ?56 Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =<= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 Id : 328, {_}: greatest_lower_bound ?721 (least_upper_bound ?722 ?723) =<= least_upper_bound (greatest_lower_bound ?721 ?722) (greatest_lower_bound ?721 ?723) [723, 722, 721] by lat4_4 ?721 ?722 ?723 Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 Id : 17, {_}: positive_part ?50 =<= least_upper_bound ?50 identity [50] by lat4_1 ?50 Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 Id : 18, {_}: negative_part ?52 =<= greatest_lower_bound ?52 identity [52] by lat4_2 ?52 Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 Id : 215, {_}: multiply (greatest_lower_bound ?492 ?493) ?494 =<= greatest_lower_bound (multiply ?492 ?494) (multiply ?493 ?494) [494, 493, 492] by monotony_glb2 ?492 ?493 ?494 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 Id : 25, {_}: multiply (multiply ?69 ?70) ?71 =>= multiply ?69 (multiply ?70 ?71) [71, 70, 69] by associativity ?69 ?70 ?71 Id : 27, {_}: multiply identity ?76 =<= multiply (inverse ?77) (multiply ?77 ?76) [77, 76] by Super 25 with 3 at 1,2 Id : 31, {_}: ?76 =<= multiply (inverse ?77) (multiply ?77 ?76) [77, 76] by Demod 27 with 2 at 2 Id : 219, {_}: multiply (greatest_lower_bound identity ?507) ?508 =<= greatest_lower_bound ?508 (multiply ?507 ?508) [508, 507] by Super 215 with 2 at 1,3 Id : 256, {_}: greatest_lower_bound identity ?562 =>= negative_part ?562 [562] by Super 5 with 18 at 3 Id : 3664, {_}: multiply (negative_part ?5552) ?5553 =<= greatest_lower_bound ?5553 (multiply ?5552 ?5553) [5553, 5552] by Demod 219 with 256 at 1,2 Id : 3666, {_}: multiply (negative_part (inverse ?5557)) ?5557 =>= greatest_lower_bound ?5557 identity [5557] by Super 3664 with 3 at 2,3 Id : 3693, {_}: multiply (negative_part (inverse ?5557)) ?5557 =>= negative_part ?5557 [5557] by Demod 3666 with 18 at 3 Id : 3710, {_}: ?5590 =<= multiply (inverse (negative_part (inverse ?5590))) (negative_part ?5590) [5590] by Super 31 with 3693 at 2,3 Id : 458, {_}: ?912 =<= multiply (inverse ?913) (multiply ?913 ?912) [913, 912] by Demod 27 with 2 at 2 Id : 460, {_}: ?917 =<= multiply (inverse (inverse ?917)) identity [917] by Super 458 with 3 at 2,3 Id : 894, {_}: multiply (inverse (inverse ?1538)) (least_upper_bound ?1539 identity) =<= least_upper_bound (multiply (inverse (inverse ?1538)) ?1539) ?1538 [1539, 1538] by Super 13 with 460 at 2,3 Id : 903, {_}: multiply (inverse (inverse ?1538)) (positive_part ?1539) =<= least_upper_bound (multiply (inverse (inverse ?1538)) ?1539) ?1538 [1539, 1538] by Demod 894 with 17 at 2,2 Id : 904, {_}: multiply (inverse (inverse ?1538)) (positive_part ?1539) =<= least_upper_bound ?1538 (multiply (inverse (inverse ?1538)) ?1539) [1539, 1538] by Demod 903 with 6 at 3 Id : 462, {_}: multiply ?923 ?924 =<= multiply (inverse (inverse ?923)) ?924 [924, 923] by Super 458 with 31 at 2,3 Id : 1469, {_}: ?917 =<= multiply ?917 identity [917] by Demod 460 with 462 at 3 Id : 1470, {_}: inverse (inverse ?2401) =<= multiply ?2401 identity [2401] by Super 1469 with 462 at 3 Id : 1509, {_}: inverse (inverse ?2401) =>= ?2401 [2401] by Demod 1470 with 1469 at 3 Id : 39010, {_}: multiply ?1538 (positive_part ?1539) =<= least_upper_bound ?1538 (multiply (inverse (inverse ?1538)) ?1539) [1539, 1538] by Demod 904 with 1509 at 1,2 Id : 39011, {_}: multiply ?1538 (positive_part ?1539) =<= least_upper_bound ?1538 (multiply ?1538 ?1539) [1539, 1538] by Demod 39010 with 1509 at 1,2,3 Id : 1483, {_}: multiply ?2447 ?2448 =<= multiply (inverse (inverse ?2447)) ?2448 [2448, 2447] by Super 458 with 31 at 2,3 Id : 1485, {_}: multiply ?2452 (inverse ?2452) =>= identity [2452] by Super 1483 with 3 at 3 Id : 1531, {_}: multiply ?2495 (greatest_lower_bound ?2496 (inverse ?2495)) =>= greatest_lower_bound (multiply ?2495 ?2496) identity [2496, 2495] by Super 14 with 1485 at 2,3 Id : 1544, {_}: multiply ?2495 (greatest_lower_bound ?2496 (inverse ?2495)) =>= greatest_lower_bound identity (multiply ?2495 ?2496) [2496, 2495] by Demod 1531 with 5 at 3 Id : 12202, {_}: multiply ?16307 (greatest_lower_bound ?16308 (inverse ?16307)) =>= negative_part (multiply ?16307 ?16308) [16308, 16307] by Demod 1544 with 256 at 3 Id : 12204, {_}: multiply (inverse ?16312) (greatest_lower_bound ?16313 ?16312) =>= negative_part (multiply (inverse ?16312) ?16313) [16313, 16312] by Super 12202 with 1509 at 2,2,2 Id : 345, {_}: greatest_lower_bound ?793 (least_upper_bound identity ?794) =<= least_upper_bound (negative_part ?793) (greatest_lower_bound ?793 ?794) [794, 793] by Super 328 with 18 at 1,3 Id : 242, {_}: least_upper_bound identity ?537 =>= positive_part ?537 [537] by Super 6 with 17 at 3 Id : 9290, {_}: greatest_lower_bound ?12504 (positive_part ?12505) =<= least_upper_bound (negative_part ?12504) (greatest_lower_bound ?12504 ?12505) [12505, 12504] by Demod 345 with 242 at 2,2 Id : 616, {_}: greatest_lower_bound ?1129 (greatest_lower_bound ?1130 ?1131) =?= greatest_lower_bound ?1130 (greatest_lower_bound ?1131 ?1129) [1131, 1130, 1129] by Super 5 with 7 at 3 Id : 618, {_}: greatest_lower_bound ?1137 (greatest_lower_bound ?1138 ?1137) =>= greatest_lower_bound ?1138 ?1137 [1138, 1137] by Super 616 with 10 at 2,3 Id : 9301, {_}: greatest_lower_bound ?12536 (positive_part (greatest_lower_bound ?12537 ?12536)) =<= least_upper_bound (negative_part ?12536) (greatest_lower_bound ?12537 ?12536) [12537, 12536] by Super 9290 with 618 at 2,3 Id : 9291, {_}: greatest_lower_bound ?12507 (positive_part ?12508) =<= least_upper_bound (negative_part ?12507) (greatest_lower_bound ?12508 ?12507) [12508, 12507] by Super 9290 with 5 at 2,3 Id : 28116, {_}: greatest_lower_bound ?12536 (positive_part (greatest_lower_bound ?12537 ?12536)) =>= greatest_lower_bound ?12536 (positive_part ?12537) [12537, 12536] by Demod 9301 with 9291 at 3 Id : 570, {_}: greatest_lower_bound ?1031 (positive_part ?1031) =>= ?1031 [1031] by Super 12 with 17 at 2,2 Id : 479, {_}: least_upper_bound identity (negative_part ?945) =>= identity [945] by Super 11 with 256 at 2,2 Id : 489, {_}: positive_part (negative_part ?945) =>= identity [945] by Demod 479 with 242 at 2 Id : 572, {_}: greatest_lower_bound (negative_part ?1034) identity =>= negative_part ?1034 [1034] by Super 570 with 489 at 2,2 Id : 583, {_}: greatest_lower_bound identity (negative_part ?1034) =>= negative_part ?1034 [1034] by Demod 572 with 5 at 2 Id : 584, {_}: negative_part (negative_part ?1034) =>= negative_part ?1034 [1034] by Demod 583 with 256 at 2 Id : 39059, {_}: multiply ?43271 (positive_part ?43272) =<= least_upper_bound ?43271 (multiply ?43271 ?43272) [43272, 43271] by Demod 39010 with 1509 at 1,2,3 Id : 39075, {_}: multiply (negative_part (inverse ?43315)) (positive_part ?43315) =<= least_upper_bound (negative_part (inverse ?43315)) (negative_part ?43315) [43315] by Super 39059 with 3693 at 2,3 Id : 3647, {_}: multiply (negative_part ?507) ?508 =<= greatest_lower_bound ?508 (multiply ?507 ?508) [508, 507] by Demod 219 with 256 at 1,2 Id : 1526, {_}: multiply ?2482 (least_upper_bound ?2483 (inverse ?2482)) =>= least_upper_bound (multiply ?2482 ?2483) identity [2483, 2482] by Super 13 with 1485 at 2,3 Id : 1549, {_}: multiply ?2482 (least_upper_bound ?2483 (inverse ?2482)) =>= least_upper_bound identity (multiply ?2482 ?2483) [2483, 2482] by Demod 1526 with 6 at 3 Id : 14395, {_}: multiply ?18540 (least_upper_bound ?18541 (inverse ?18540)) =>= positive_part (multiply ?18540 ?18541) [18541, 18540] by Demod 1549 with 242 at 3 Id : 14400, {_}: multiply ?18553 (positive_part (inverse ?18553)) =>= positive_part (multiply ?18553 identity) [18553] by Super 14395 with 242 at 2,2 Id : 14434, {_}: multiply ?18553 (positive_part (inverse ?18553)) =>= positive_part ?18553 [18553] by Demod 14400 with 1469 at 1,3 Id : 14463, {_}: positive_part (inverse ?18621) =<= multiply (inverse ?18621) (positive_part ?18621) [18621] by Super 31 with 14434 at 2,3 Id : 14533, {_}: multiply (negative_part (inverse ?18673)) (positive_part ?18673) =<= greatest_lower_bound (positive_part ?18673) (positive_part (inverse ?18673)) [18673] by Super 3647 with 14463 at 2,3 Id : 421, {_}: least_upper_bound identity (greatest_lower_bound ?854 ?855) =<= greatest_lower_bound (least_upper_bound identity ?854) (positive_part ?855) [855, 854] by Super 19 with 242 at 2,3 Id : 432, {_}: positive_part (greatest_lower_bound ?854 ?855) =<= greatest_lower_bound (least_upper_bound identity ?854) (positive_part ?855) [855, 854] by Demod 421 with 242 at 2 Id : 433, {_}: positive_part (greatest_lower_bound ?854 ?855) =<= greatest_lower_bound (positive_part ?854) (positive_part ?855) [855, 854] by Demod 432 with 242 at 1,3 Id : 14562, {_}: multiply (negative_part (inverse ?18673)) (positive_part ?18673) =>= positive_part (greatest_lower_bound ?18673 (inverse ?18673)) [18673] by Demod 14533 with 433 at 3 Id : 39185, {_}: positive_part (greatest_lower_bound ?43315 (inverse ?43315)) =<= least_upper_bound (negative_part (inverse ?43315)) (negative_part ?43315) [43315] by Demod 39075 with 14562 at 2 Id : 39186, {_}: positive_part (greatest_lower_bound ?43315 (inverse ?43315)) =<= least_upper_bound (negative_part ?43315) (negative_part (inverse ?43315)) [43315] by Demod 39185 with 6 at 3 Id : 471, {_}: greatest_lower_bound identity (least_upper_bound ?928 ?929) =<= least_upper_bound (greatest_lower_bound identity ?928) (negative_part ?929) [929, 928] by Super 20 with 256 at 2,3 Id : 497, {_}: negative_part (least_upper_bound ?928 ?929) =<= least_upper_bound (greatest_lower_bound identity ?928) (negative_part ?929) [929, 928] by Demod 471 with 256 at 2 Id : 498, {_}: negative_part (least_upper_bound ?928 ?929) =<= least_upper_bound (negative_part ?928) (negative_part ?929) [929, 928] by Demod 497 with 256 at 1,3 Id : 39187, {_}: positive_part (greatest_lower_bound ?43315 (inverse ?43315)) =<= negative_part (least_upper_bound ?43315 (inverse ?43315)) [43315] by Demod 39186 with 498 at 3 Id : 39338, {_}: negative_part (positive_part (greatest_lower_bound ?43522 (inverse ?43522))) =>= negative_part (least_upper_bound ?43522 (inverse ?43522)) [43522] by Super 584 with 39187 at 1,2 Id : 474, {_}: negative_part (least_upper_bound identity ?935) =>= identity [935] by Super 12 with 256 at 2 Id : 494, {_}: negative_part (positive_part ?935) =>= identity [935] by Demod 474 with 242 at 1,2 Id : 39456, {_}: identity =<= negative_part (least_upper_bound ?43522 (inverse ?43522)) [43522] by Demod 39338 with 494 at 2 Id : 39457, {_}: identity =<= positive_part (greatest_lower_bound ?43522 (inverse ?43522)) [43522] by Demod 39456 with 39187 at 3 Id : 41127, {_}: greatest_lower_bound (inverse ?44923) identity =<= greatest_lower_bound (inverse ?44923) (positive_part ?44923) [44923] by Super 28116 with 39457 at 2,2 Id : 41186, {_}: greatest_lower_bound identity (inverse ?44923) =<= greatest_lower_bound (inverse ?44923) (positive_part ?44923) [44923] by Demod 41127 with 5 at 2 Id : 41187, {_}: negative_part (inverse ?44923) =<= greatest_lower_bound (inverse ?44923) (positive_part ?44923) [44923] by Demod 41186 with 256 at 2 Id : 42078, {_}: multiply (inverse (positive_part ?45517)) (negative_part (inverse ?45517)) =>= negative_part (multiply (inverse (positive_part ?45517)) (inverse ?45517)) [45517] by Super 12204 with 41187 at 2,2 Id : 51415, {_}: multiply (inverse (positive_part ?53015)) (positive_part (negative_part (inverse ?53015))) =<= least_upper_bound (inverse (positive_part ?53015)) (negative_part (multiply (inverse (positive_part ?53015)) (inverse ?53015))) [53015] by Super 39011 with 42078 at 2,3 Id : 51538, {_}: multiply (inverse (positive_part ?53015)) identity =<= least_upper_bound (inverse (positive_part ?53015)) (negative_part (multiply (inverse (positive_part ?53015)) (inverse ?53015))) [53015] by Demod 51415 with 489 at 2,2 Id : 51539, {_}: inverse (positive_part ?53015) =<= least_upper_bound (inverse (positive_part ?53015)) (negative_part (multiply (inverse (positive_part ?53015)) (inverse ?53015))) [53015] by Demod 51538 with 1469 at 2 Id : 246, {_}: greatest_lower_bound ?547 (positive_part ?547) =>= ?547 [547] by Super 12 with 17 at 2,2 Id : 189, {_}: multiply (least_upper_bound identity ?440) ?441 =<= least_upper_bound ?441 (multiply ?440 ?441) [441, 440] by Super 185 with 2 at 1,3 Id : 3256, {_}: multiply (positive_part ?5097) ?5098 =<= least_upper_bound ?5098 (multiply ?5097 ?5098) [5098, 5097] by Demod 189 with 242 at 1,2 Id : 3260, {_}: multiply (positive_part ?5108) (inverse ?5108) =>= least_upper_bound (inverse ?5108) identity [5108] by Super 3256 with 1485 at 2,3 Id : 3281, {_}: multiply (positive_part ?5108) (inverse ?5108) =>= least_upper_bound identity (inverse ?5108) [5108] by Demod 3260 with 6 at 3 Id : 3343, {_}: multiply (positive_part ?5201) (inverse ?5201) =>= positive_part (inverse ?5201) [5201] by Demod 3281 with 242 at 3 Id : 245, {_}: least_upper_bound ?544 (least_upper_bound ?545 identity) =>= positive_part (least_upper_bound ?544 ?545) [545, 544] by Super 8 with 17 at 3 Id : 253, {_}: least_upper_bound ?544 (positive_part ?545) =>= positive_part (least_upper_bound ?544 ?545) [545, 544] by Demod 245 with 17 at 2,2 Id : 692, {_}: positive_part (least_upper_bound (positive_part ?1303) ?1303) =>= positive_part ?1303 [1303] by Super 9 with 253 at 2 Id : 712, {_}: positive_part (least_upper_bound ?1303 (positive_part ?1303)) =>= positive_part ?1303 [1303] by Demod 692 with 6 at 1,2 Id : 713, {_}: positive_part (positive_part (least_upper_bound ?1303 ?1303)) =>= positive_part ?1303 [1303] by Demod 712 with 253 at 1,2 Id : 714, {_}: positive_part (positive_part ?1303) =>= positive_part ?1303 [1303] by Demod 713 with 9 at 1,1,2 Id : 3348, {_}: multiply (positive_part ?5209) (inverse (positive_part ?5209)) =>= positive_part (inverse (positive_part ?5209)) [5209] by Super 3343 with 714 at 1,2 Id : 3385, {_}: identity =<= positive_part (inverse (positive_part ?5209)) [5209] by Demod 3348 with 1485 at 2 Id : 3444, {_}: greatest_lower_bound (inverse (positive_part ?5311)) identity =>= inverse (positive_part ?5311) [5311] by Super 246 with 3385 at 2,2 Id : 3485, {_}: greatest_lower_bound identity (inverse (positive_part ?5311)) =>= inverse (positive_part ?5311) [5311] by Demod 3444 with 5 at 2 Id : 3486, {_}: negative_part (inverse (positive_part ?5311)) =>= inverse (positive_part ?5311) [5311] by Demod 3485 with 256 at 2 Id : 3582, {_}: negative_part (least_upper_bound (inverse (positive_part ?5438)) ?5439) =<= least_upper_bound (inverse (positive_part ?5438)) (negative_part ?5439) [5439, 5438] by Super 498 with 3486 at 1,3 Id : 51540, {_}: inverse (positive_part ?53015) =<= negative_part (least_upper_bound (inverse (positive_part ?53015)) (multiply (inverse (positive_part ?53015)) (inverse ?53015))) [53015] by Demod 51539 with 3582 at 3 Id : 51541, {_}: inverse (positive_part ?53015) =<= negative_part (multiply (inverse (positive_part ?53015)) (positive_part (inverse ?53015))) [53015] by Demod 51540 with 39011 at 1,3 Id : 3282, {_}: multiply (positive_part ?5108) (inverse ?5108) =>= positive_part (inverse ?5108) [5108] by Demod 3281 with 242 at 3 Id : 3342, {_}: inverse ?5199 =<= multiply (inverse (positive_part ?5199)) (positive_part (inverse ?5199)) [5199] by Super 31 with 3282 at 2,3 Id : 51542, {_}: inverse (positive_part ?53015) =<= negative_part (inverse ?53015) [53015] by Demod 51541 with 3342 at 1,3 Id : 51867, {_}: ?5590 =<= multiply (inverse (inverse (positive_part ?5590))) (negative_part ?5590) [5590] by Demod 3710 with 51542 at 1,1,3 Id : 51894, {_}: ?5590 =<= multiply (positive_part ?5590) (negative_part ?5590) [5590] by Demod 51867 with 1509 at 1,3 Id : 52230, {_}: a =?= a [] by Demod 1 with 51894 at 3 Id : 1, {_}: a =<= multiply (positive_part a) (negative_part a) [] by prove_lat4 % SZS output end CNFRefutation for GRP167-1.p 15923: solved GRP167-1.p in 7.948496 using kbo WARNING: TreeLimitedRun lost 22.01s, total lost is 22.01s FINAL WATCH: 30.0 CPU 24.0 WC Killed 2 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP167-2.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 15939 TreeLimitedRun: ---------------------------------------------------------- 15941: Facts: 15941: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 15941: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 15941: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 15941: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 15941: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 15941: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 15941: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 15941: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 15941: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 15941: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 15941: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 15941: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 15941: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 15941: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 15941: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 15941: Id : 17, {_}: inverse identity =>= identity [] by lat4_1 15941: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by lat4_2 ?51 15941: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by lat4_3 ?53 ?54 15941: Id : 20, {_}: positive_part ?56 =<= least_upper_bound ?56 identity [56] by lat4_4 ?56 15941: Id : 21, {_}: negative_part ?58 =<= greatest_lower_bound ?58 identity [58] by lat4_5 ?58 15941: Id : 22, {_}: least_upper_bound ?60 (greatest_lower_bound ?61 ?62) =<= greatest_lower_bound (least_upper_bound ?60 ?61) (least_upper_bound ?60 ?62) [62, 61, 60] by lat4_6 ?60 ?61 ?62 15941: Id : 23, {_}: greatest_lower_bound ?64 (least_upper_bound ?65 ?66) =<= least_upper_bound (greatest_lower_bound ?64 ?65) (greatest_lower_bound ?64 ?66) [66, 65, 64] by lat4_7 ?64 ?65 ?66 15941: Goal: 15941: Id : 1, {_}: a =<= multiply (positive_part a) (negative_part a) [] by prove_lat4 Statistics : Max weight : 19 Found proof, 33.298000s % SZS status Unsatisfiable for GRP167-2.p % SZS output start CNFRefutation for GRP167-2.p Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 Id : 22, {_}: least_upper_bound ?60 (greatest_lower_bound ?61 ?62) =<= greatest_lower_bound (least_upper_bound ?60 ?61) (least_upper_bound ?60 ?62) [62, 61, 60] by lat4_6 ?60 ?61 ?62 Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 Id : 188, {_}: multiply (least_upper_bound ?431 ?432) ?433 =<= least_upper_bound (multiply ?431 ?433) (multiply ?432 ?433) [433, 432, 431] by monotony_lub2 ?431 ?432 ?433 Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 Id : 23, {_}: greatest_lower_bound ?64 (least_upper_bound ?65 ?66) =<= least_upper_bound (greatest_lower_bound ?64 ?65) (greatest_lower_bound ?64 ?66) [66, 65, 64] by lat4_7 ?64 ?65 ?66 Id : 218, {_}: multiply (greatest_lower_bound ?498 ?499) ?500 =<= greatest_lower_bound (multiply ?498 ?500) (multiply ?499 ?500) [500, 499, 498] by monotony_glb2 ?498 ?499 ?500 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 Id : 20, {_}: positive_part ?56 =<= least_upper_bound ?56 identity [56] by lat4_4 ?56 Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 Id : 21, {_}: negative_part ?58 =<= greatest_lower_bound ?58 identity [58] by lat4_5 ?58 Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by lat4_2 ?51 Id : 264, {_}: inverse (multiply ?592 ?593) =<= multiply (inverse ?593) (inverse ?592) [593, 592] by lat4_3 ?592 ?593 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 Id : 28, {_}: multiply (multiply ?75 ?76) ?77 =>= multiply ?75 (multiply ?76 ?77) [77, 76, 75] by associativity ?75 ?76 ?77 Id : 30, {_}: multiply identity ?82 =<= multiply (inverse ?83) (multiply ?83 ?82) [83, 82] by Super 28 with 3 at 1,2 Id : 34, {_}: ?82 =<= multiply (inverse ?83) (multiply ?83 ?82) [83, 82] by Demod 30 with 2 at 2 Id : 266, {_}: inverse (multiply (inverse ?597) ?598) =>= multiply (inverse ?598) ?597 [598, 597] by Super 264 with 18 at 2,3 Id : 445, {_}: ?945 =<= multiply (inverse ?946) (multiply ?946 ?945) [946, 945] by Demod 30 with 2 at 2 Id : 447, {_}: ?950 =<= multiply (inverse (inverse ?950)) identity [950] by Super 445 with 3 at 2,3 Id : 460, {_}: ?950 =<= multiply ?950 identity [950] by Demod 447 with 18 at 1,3 Id : 560, {_}: multiply ?1053 (greatest_lower_bound ?1054 identity) =?= greatest_lower_bound (multiply ?1053 ?1054) ?1053 [1054, 1053] by Super 14 with 460 at 2,3 Id : 589, {_}: multiply ?1053 (negative_part ?1054) =<= greatest_lower_bound (multiply ?1053 ?1054) ?1053 [1054, 1053] by Demod 560 with 21 at 2,2 Id : 3783, {_}: multiply ?5695 (negative_part ?5696) =<= greatest_lower_bound ?5695 (multiply ?5695 ?5696) [5696, 5695] by Demod 589 with 5 at 3 Id : 3785, {_}: multiply (inverse ?5700) (negative_part ?5700) =>= greatest_lower_bound (inverse ?5700) identity [5700] by Super 3783 with 3 at 2,3 Id : 3815, {_}: multiply (inverse ?5700) (negative_part ?5700) =>= greatest_lower_bound identity (inverse ?5700) [5700] by Demod 3785 with 5 at 3 Id : 290, {_}: greatest_lower_bound identity ?643 =>= negative_part ?643 [643] by Super 5 with 21 at 3 Id : 3816, {_}: multiply (inverse ?5700) (negative_part ?5700) =>= negative_part (inverse ?5700) [5700] by Demod 3815 with 290 at 3 Id : 3845, {_}: inverse (negative_part (inverse ?5766)) =<= multiply (inverse (negative_part ?5766)) ?5766 [5766] by Super 266 with 3816 at 1,2 Id : 4204, {_}: ?6096 =<= multiply (inverse (inverse (negative_part ?6096))) (inverse (negative_part (inverse ?6096))) [6096] by Super 34 with 3845 at 2,3 Id : 4227, {_}: ?6096 =<= multiply (negative_part ?6096) (inverse (negative_part (inverse ?6096))) [6096] by Demod 4204 with 18 at 1,3 Id : 82977, {_}: multiply (inverse ?101411) (negative_part (multiply ?101411 ?101412)) =>= greatest_lower_bound (inverse ?101411) ?101412 [101412, 101411] by Super 3783 with 34 at 2,3 Id : 566, {_}: multiply ?1067 (least_upper_bound ?1068 identity) =?= least_upper_bound (multiply ?1067 ?1068) ?1067 [1068, 1067] by Super 13 with 460 at 2,3 Id : 583, {_}: multiply ?1067 (positive_part ?1068) =<= least_upper_bound (multiply ?1067 ?1068) ?1067 [1068, 1067] by Demod 566 with 20 at 2,2 Id : 584, {_}: multiply ?1067 (positive_part ?1068) =<= least_upper_bound ?1067 (multiply ?1067 ?1068) [1068, 1067] by Demod 583 with 6 at 3 Id : 223, {_}: multiply (greatest_lower_bound (inverse ?516) ?517) ?516 =>= greatest_lower_bound identity (multiply ?517 ?516) [517, 516] by Super 218 with 3 at 1,3 Id : 12355, {_}: multiply (greatest_lower_bound (inverse ?15465) ?15466) ?15465 =>= negative_part (multiply ?15466 ?15465) [15466, 15465] by Demod 223 with 290 at 3 Id : 12371, {_}: multiply (negative_part (inverse ?15514)) ?15514 =>= negative_part (multiply identity ?15514) [15514] by Super 12355 with 21 at 1,2 Id : 12458, {_}: multiply (negative_part (inverse ?15584)) ?15584 =>= negative_part ?15584 [15584] by Demod 12371 with 2 at 1,3 Id : 12460, {_}: multiply (negative_part ?15587) (inverse ?15587) =>= negative_part (inverse ?15587) [15587] by Super 12458 with 18 at 1,1,2 Id : 12524, {_}: multiply (negative_part ?15633) (positive_part (inverse ?15633)) =>= least_upper_bound (negative_part ?15633) (negative_part (inverse ?15633)) [15633] by Super 584 with 12460 at 2,3 Id : 517, {_}: greatest_lower_bound identity (least_upper_bound ?1012 ?1013) =<= least_upper_bound (greatest_lower_bound identity ?1012) (negative_part ?1013) [1013, 1012] by Super 23 with 290 at 2,3 Id : 543, {_}: negative_part (least_upper_bound ?1012 ?1013) =<= least_upper_bound (greatest_lower_bound identity ?1012) (negative_part ?1013) [1013, 1012] by Demod 517 with 290 at 2 Id : 544, {_}: negative_part (least_upper_bound ?1012 ?1013) =<= least_upper_bound (negative_part ?1012) (negative_part ?1013) [1013, 1012] by Demod 543 with 290 at 1,3 Id : 12558, {_}: multiply (negative_part ?15633) (positive_part (inverse ?15633)) =>= negative_part (least_upper_bound ?15633 (inverse ?15633)) [15633] by Demod 12524 with 544 at 3 Id : 525, {_}: negative_part (least_upper_bound identity ?1029) =>= identity [1029] by Super 12 with 290 at 2 Id : 276, {_}: least_upper_bound identity ?618 =>= positive_part ?618 [618] by Super 6 with 20 at 3 Id : 535, {_}: negative_part (positive_part ?1029) =>= identity [1029] by Demod 525 with 276 at 1,2 Id : 3275, {_}: multiply ?5137 (positive_part ?5138) =<= least_upper_bound ?5137 (multiply ?5137 ?5138) [5138, 5137] by Demod 583 with 6 at 3 Id : 67263, {_}: multiply (inverse ?87201) (positive_part (multiply ?87201 ?87202)) =>= least_upper_bound (inverse ?87201) ?87202 [87202, 87201] by Super 3275 with 34 at 2,3 Id : 3271, {_}: multiply (least_upper_bound ?5125 (multiply ?5125 ?5126)) ?5126 =>= multiply (multiply ?5125 ?5126) (positive_part ?5126) [5126, 5125] by Super 15 with 584 at 3 Id : 3293, {_}: multiply (multiply ?5125 (positive_part ?5126)) ?5126 =>= multiply (multiply ?5125 ?5126) (positive_part ?5126) [5126, 5125] by Demod 3271 with 584 at 1,2 Id : 3294, {_}: multiply ?5125 (multiply (positive_part ?5126) ?5126) =<= multiply (multiply ?5125 ?5126) (positive_part ?5126) [5126, 5125] by Demod 3293 with 4 at 2 Id : 3295, {_}: multiply ?5125 (multiply (positive_part ?5126) ?5126) =>= multiply ?5125 (multiply ?5126 (positive_part ?5126)) [5126, 5125] by Demod 3294 with 4 at 3 Id : 18498, {_}: multiply (positive_part ?22978) ?22978 =<= multiply (inverse ?22979) (multiply ?22979 (multiply ?22978 (positive_part ?22978))) [22979, 22978] by Super 34 with 3295 at 2,3 Id : 18551, {_}: multiply (positive_part ?22978) ?22978 =>= multiply ?22978 (positive_part ?22978) [22978] by Demod 18498 with 34 at 3 Id : 18649, {_}: multiply (positive_part ?23168) (positive_part ?23168) =<= least_upper_bound (positive_part ?23168) (multiply ?23168 (positive_part ?23168)) [23168] by Super 584 with 18551 at 2,3 Id : 483, {_}: least_upper_bound identity (least_upper_bound ?986 ?987) =>= least_upper_bound (positive_part ?986) ?987 [987, 986] by Super 8 with 276 at 1,3 Id : 500, {_}: positive_part (least_upper_bound ?986 ?987) =<= least_upper_bound (positive_part ?986) ?987 [987, 986] by Demod 483 with 276 at 2 Id : 18677, {_}: multiply (positive_part ?23168) (positive_part ?23168) =<= positive_part (least_upper_bound ?23168 (multiply ?23168 (positive_part ?23168))) [23168] by Demod 18649 with 500 at 3 Id : 18678, {_}: multiply (positive_part ?23168) (positive_part ?23168) =<= positive_part (multiply ?23168 (positive_part (positive_part ?23168))) [23168] by Demod 18677 with 584 at 1,3 Id : 275, {_}: least_upper_bound ?615 (least_upper_bound ?616 identity) =>= positive_part (least_upper_bound ?615 ?616) [616, 615] by Super 8 with 20 at 3 Id : 285, {_}: least_upper_bound ?615 (positive_part ?616) =>= positive_part (least_upper_bound ?615 ?616) [616, 615] by Demod 275 with 20 at 2,2 Id : 789, {_}: positive_part (least_upper_bound (positive_part ?1430) ?1430) =>= positive_part ?1430 [1430] by Super 9 with 285 at 2 Id : 811, {_}: positive_part (least_upper_bound ?1430 (positive_part ?1430)) =>= positive_part ?1430 [1430] by Demod 789 with 6 at 1,2 Id : 812, {_}: positive_part (positive_part (least_upper_bound ?1430 ?1430)) =>= positive_part ?1430 [1430] by Demod 811 with 285 at 1,2 Id : 813, {_}: positive_part (positive_part ?1430) =>= positive_part ?1430 [1430] by Demod 812 with 9 at 1,1,2 Id : 18679, {_}: multiply (positive_part ?23168) (positive_part ?23168) =>= positive_part (multiply ?23168 (positive_part ?23168)) [23168] by Demod 18678 with 813 at 2,1,3 Id : 1051, {_}: positive_part (least_upper_bound ?1948 ?1949) =<= least_upper_bound (positive_part ?1948) ?1949 [1949, 1948] by Demod 483 with 276 at 2 Id : 520, {_}: least_upper_bound identity (negative_part ?1019) =>= identity [1019] by Super 11 with 290 at 2,2 Id : 540, {_}: positive_part (negative_part ?1019) =>= identity [1019] by Demod 520 with 276 at 2 Id : 1053, {_}: positive_part (least_upper_bound (negative_part ?1953) ?1954) =>= least_upper_bound identity ?1954 [1954, 1953] by Super 1051 with 540 at 1,3 Id : 1088, {_}: positive_part (least_upper_bound (negative_part ?1953) ?1954) =>= positive_part ?1954 [1954, 1953] by Demod 1053 with 276 at 3 Id : 4589, {_}: positive_part (multiply (negative_part ?6523) (positive_part ?6524)) =>= positive_part (multiply (negative_part ?6523) ?6524) [6524, 6523] by Super 1088 with 584 at 1,2 Id : 273, {_}: greatest_lower_bound ?610 (positive_part ?610) =>= ?610 [610] by Super 12 with 20 at 2,2 Id : 3277, {_}: multiply (inverse ?5142) (positive_part ?5142) =>= least_upper_bound (inverse ?5142) identity [5142] by Super 3275 with 3 at 2,3 Id : 3301, {_}: multiply (inverse ?5142) (positive_part ?5142) =>= least_upper_bound identity (inverse ?5142) [5142] by Demod 3277 with 6 at 3 Id : 3327, {_}: multiply (inverse ?5206) (positive_part ?5206) =>= positive_part (inverse ?5206) [5206] by Demod 3301 with 276 at 3 Id : 3330, {_}: multiply (inverse (positive_part ?5211)) (positive_part ?5211) =>= positive_part (inverse (positive_part ?5211)) [5211] by Super 3327 with 813 at 2,2 Id : 3366, {_}: identity =<= positive_part (inverse (positive_part ?5211)) [5211] by Demod 3330 with 3 at 2 Id : 3431, {_}: greatest_lower_bound (inverse (positive_part ?5321)) identity =>= inverse (positive_part ?5321) [5321] by Super 273 with 3366 at 2,2 Id : 3470, {_}: greatest_lower_bound identity (inverse (positive_part ?5321)) =>= inverse (positive_part ?5321) [5321] by Demod 3431 with 5 at 2 Id : 3471, {_}: negative_part (inverse (positive_part ?5321)) =>= inverse (positive_part ?5321) [5321] by Demod 3470 with 290 at 2 Id : 4613, {_}: positive_part (multiply (inverse (positive_part ?6607)) (positive_part ?6608)) =<= positive_part (multiply (negative_part (inverse (positive_part ?6607))) ?6608) [6608, 6607] by Super 4589 with 3471 at 1,1,2 Id : 4673, {_}: positive_part (multiply (inverse (positive_part ?6607)) (positive_part ?6608)) =>= positive_part (multiply (inverse (positive_part ?6607)) ?6608) [6608, 6607] by Demod 4613 with 3471 at 1,1,3 Id : 193, {_}: multiply (least_upper_bound (inverse ?449) ?450) ?449 =>= least_upper_bound identity (multiply ?450 ?449) [450, 449] by Super 188 with 3 at 1,3 Id : 9450, {_}: multiply (least_upper_bound (inverse ?12789) ?12790) ?12789 =>= positive_part (multiply ?12790 ?12789) [12790, 12789] by Demod 193 with 276 at 3 Id : 9467, {_}: multiply (positive_part (inverse ?12842)) ?12842 =>= positive_part (multiply identity ?12842) [12842] by Super 9450 with 20 at 1,2 Id : 9508, {_}: multiply (positive_part (inverse ?12842)) ?12842 =>= positive_part ?12842 [12842] by Demod 9467 with 2 at 1,3 Id : 9743, {_}: ?13225 =<= multiply (inverse (positive_part (inverse ?13225))) (positive_part ?13225) [13225] by Super 34 with 9508 at 2,3 Id : 31901, {_}: positive_part ?36858 =<= positive_part (multiply (inverse (positive_part (inverse ?36858))) ?36858) [36858] by Super 4673 with 9743 at 1,2 Id : 268, {_}: inverse (multiply ?602 (inverse ?603)) =>= multiply ?603 (inverse ?602) [603, 602] by Super 264 with 18 at 1,3 Id : 18637, {_}: inverse (multiply (inverse ?23136) (positive_part (inverse ?23136))) =>= multiply ?23136 (inverse (positive_part (inverse ?23136))) [23136] by Super 268 with 18551 at 1,2 Id : 18686, {_}: multiply (inverse (positive_part (inverse ?23136))) ?23136 =>= multiply ?23136 (inverse (positive_part (inverse ?23136))) [23136] by Demod 18637 with 266 at 2 Id : 31949, {_}: positive_part ?36858 =<= positive_part (multiply ?36858 (inverse (positive_part (inverse ?36858)))) [36858] by Demod 31901 with 18686 at 1,3 Id : 38959, {_}: multiply (positive_part (multiply ?43778 (inverse (positive_part (inverse ?43778))))) (positive_part ?43778) =<= positive_part (multiply (multiply ?43778 (inverse (positive_part (inverse ?43778)))) (positive_part (multiply ?43778 (inverse (positive_part (inverse ?43778)))))) [43778] by Super 18679 with 31949 at 2,2 Id : 39024, {_}: multiply (positive_part ?43778) (positive_part ?43778) =<= positive_part (multiply (multiply ?43778 (inverse (positive_part (inverse ?43778)))) (positive_part (multiply ?43778 (inverse (positive_part (inverse ?43778)))))) [43778] by Demod 38959 with 31949 at 1,2 Id : 39025, {_}: positive_part (multiply ?43778 (positive_part ?43778)) =<= positive_part (multiply (multiply ?43778 (inverse (positive_part (inverse ?43778)))) (positive_part (multiply ?43778 (inverse (positive_part (inverse ?43778)))))) [43778] by Demod 39024 with 18679 at 2 Id : 39026, {_}: positive_part (multiply ?43778 (positive_part ?43778)) =<= positive_part (multiply (multiply ?43778 (inverse (positive_part (inverse ?43778)))) (positive_part ?43778)) [43778] by Demod 39025 with 31949 at 2,1,3 Id : 39027, {_}: positive_part (multiply ?43778 (positive_part ?43778)) =<= positive_part (multiply ?43778 (multiply (inverse (positive_part (inverse ?43778))) (positive_part ?43778))) [43778] by Demod 39026 with 4 at 1,3 Id : 39028, {_}: positive_part (multiply ?43778 (positive_part ?43778)) =>= positive_part (multiply ?43778 ?43778) [43778] by Demod 39027 with 9743 at 2,1,3 Id : 67345, {_}: multiply (inverse ?87413) (positive_part (multiply ?87413 ?87413)) =>= least_upper_bound (inverse ?87413) (positive_part ?87413) [87413] by Super 67263 with 39028 at 2,2 Id : 3281, {_}: multiply (inverse ?5153) (positive_part (multiply ?5153 ?5154)) =>= least_upper_bound (inverse ?5153) ?5154 [5154, 5153] by Super 3275 with 34 at 2,3 Id : 67669, {_}: least_upper_bound (inverse ?87413) ?87413 =<= least_upper_bound (inverse ?87413) (positive_part ?87413) [87413] by Demod 67345 with 3281 at 2 Id : 67670, {_}: least_upper_bound ?87413 (inverse ?87413) =<= least_upper_bound (inverse ?87413) (positive_part ?87413) [87413] by Demod 67669 with 6 at 2 Id : 67671, {_}: least_upper_bound ?87413 (inverse ?87413) =<= least_upper_bound (positive_part ?87413) (inverse ?87413) [87413] by Demod 67670 with 6 at 3 Id : 67672, {_}: least_upper_bound ?87413 (inverse ?87413) =<= positive_part (least_upper_bound ?87413 (inverse ?87413)) [87413] by Demod 67671 with 500 at 3 Id : 67763, {_}: negative_part (least_upper_bound ?87633 (inverse ?87633)) =>= identity [87633] by Super 535 with 67672 at 1,2 Id : 67957, {_}: multiply (negative_part ?15633) (positive_part (inverse ?15633)) =>= identity [15633] by Demod 12558 with 67763 at 3 Id : 83028, {_}: multiply (inverse (negative_part ?101542)) (negative_part identity) =<= greatest_lower_bound (inverse (negative_part ?101542)) (positive_part (inverse ?101542)) [101542] by Super 82977 with 67957 at 1,2,2 Id : 292, {_}: negative_part identity =>= identity [] by Super 10 with 21 at 2 Id : 83311, {_}: multiply (inverse (negative_part ?101542)) identity =<= greatest_lower_bound (inverse (negative_part ?101542)) (positive_part (inverse ?101542)) [101542] by Demod 83028 with 292 at 2,2 Id : 83312, {_}: inverse (negative_part ?101542) =<= greatest_lower_bound (inverse (negative_part ?101542)) (positive_part (inverse ?101542)) [101542] by Demod 83311 with 460 at 2 Id : 83313, {_}: inverse (negative_part ?101542) =<= greatest_lower_bound (positive_part (inverse ?101542)) (inverse (negative_part ?101542)) [101542] by Demod 83312 with 5 at 3 Id : 479, {_}: least_upper_bound identity (greatest_lower_bound ?977 ?978) =<= greatest_lower_bound (least_upper_bound identity ?977) (positive_part ?978) [978, 977] by Super 22 with 276 at 2,3 Id : 503, {_}: positive_part (greatest_lower_bound ?977 ?978) =<= greatest_lower_bound (least_upper_bound identity ?977) (positive_part ?978) [978, 977] by Demod 479 with 276 at 2 Id : 504, {_}: positive_part (greatest_lower_bound ?977 ?978) =<= greatest_lower_bound (positive_part ?977) (positive_part ?978) [978, 977] by Demod 503 with 276 at 1,3 Id : 3329, {_}: multiply (inverse (negative_part ?5209)) identity =>= positive_part (inverse (negative_part ?5209)) [5209] by Super 3327 with 540 at 2,2 Id : 3365, {_}: inverse (negative_part ?5209) =<= positive_part (inverse (negative_part ?5209)) [5209] by Demod 3329 with 460 at 2 Id : 3379, {_}: positive_part (greatest_lower_bound ?5257 (inverse (negative_part ?5258))) =<= greatest_lower_bound (positive_part ?5257) (inverse (negative_part ?5258)) [5258, 5257] by Super 504 with 3365 at 2,3 Id : 83314, {_}: inverse (negative_part ?101542) =<= positive_part (greatest_lower_bound (inverse ?101542) (inverse (negative_part ?101542))) [101542] by Demod 83313 with 3379 at 3 Id : 590, {_}: multiply ?1053 (negative_part ?1054) =<= greatest_lower_bound ?1053 (multiply ?1053 ?1054) [1054, 1053] by Demod 589 with 5 at 3 Id : 12419, {_}: multiply (negative_part (inverse ?15514)) ?15514 =>= negative_part ?15514 [15514] by Demod 12371 with 2 at 1,3 Id : 12456, {_}: inverse (negative_part (inverse ?15580)) =<= multiply ?15580 (inverse (negative_part (inverse (inverse ?15580)))) [15580] by Super 268 with 12419 at 1,2 Id : 12472, {_}: inverse (negative_part (inverse ?15580)) =<= multiply ?15580 (inverse (negative_part ?15580)) [15580] by Demod 12456 with 18 at 1,1,2,3 Id : 12610, {_}: multiply ?15712 (negative_part (inverse (negative_part ?15712))) =>= greatest_lower_bound ?15712 (inverse (negative_part (inverse ?15712))) [15712] by Super 590 with 12472 at 2,3 Id : 3383, {_}: negative_part (inverse (negative_part ?5268)) =>= identity [5268] by Super 535 with 3365 at 1,2 Id : 12673, {_}: multiply ?15712 identity =<= greatest_lower_bound ?15712 (inverse (negative_part (inverse ?15712))) [15712] by Demod 12610 with 3383 at 2,2 Id : 13601, {_}: ?16760 =<= greatest_lower_bound ?16760 (inverse (negative_part (inverse ?16760))) [16760] by Demod 12673 with 460 at 2 Id : 13603, {_}: inverse ?16763 =<= greatest_lower_bound (inverse ?16763) (inverse (negative_part ?16763)) [16763] by Super 13601 with 18 at 1,1,2,3 Id : 83315, {_}: inverse (negative_part ?101542) =>= positive_part (inverse ?101542) [101542] by Demod 83314 with 13603 at 1,3 Id : 83527, {_}: ?6096 =<= multiply (negative_part ?6096) (positive_part (inverse (inverse ?6096))) [6096] by Demod 4227 with 83315 at 2,3 Id : 83643, {_}: ?6096 =<= multiply (negative_part ?6096) (positive_part ?6096) [6096] by Demod 83527 with 18 at 1,2,3 Id : 12455, {_}: ?15578 =<= multiply (inverse (negative_part (inverse ?15578))) (negative_part ?15578) [15578] by Super 34 with 12419 at 2,3 Id : 1593, {_}: negative_part (least_upper_bound ?2588 ?2589) =<= least_upper_bound (negative_part ?2588) (negative_part ?2589) [2589, 2588] by Demod 543 with 290 at 1,3 Id : 760, {_}: greatest_lower_bound ?1408 (positive_part ?1408) =>= ?1408 [1408] by Super 12 with 20 at 2,2 Id : 762, {_}: greatest_lower_bound (negative_part ?1411) identity =>= negative_part ?1411 [1411] by Super 760 with 540 at 2,2 Id : 774, {_}: greatest_lower_bound identity (negative_part ?1411) =>= negative_part ?1411 [1411] by Demod 762 with 5 at 2 Id : 775, {_}: negative_part (negative_part ?1411) =>= negative_part ?1411 [1411] by Demod 774 with 290 at 2 Id : 1601, {_}: negative_part (least_upper_bound (negative_part ?2612) ?2613) =<= least_upper_bound (negative_part ?2612) (negative_part ?2613) [2613, 2612] by Super 1593 with 775 at 1,3 Id : 1650, {_}: negative_part (least_upper_bound (negative_part ?2612) ?2613) =>= negative_part (least_upper_bound ?2612 ?2613) [2613, 2612] by Demod 1601 with 544 at 3 Id : 61871, {_}: negative_part (multiply (negative_part ?81961) (positive_part ?81962)) =<= negative_part (least_upper_bound ?81961 (multiply (negative_part ?81961) ?81962)) [81962, 81961] by Super 1650 with 584 at 1,2 Id : 452, {_}: ?964 =<= multiply ?965 (multiply (inverse ?965) ?964) [965, 964] by Super 445 with 18 at 1,3 Id : 3774, {_}: multiply (greatest_lower_bound ?5665 (multiply ?5665 ?5666)) ?5666 =>= multiply (multiply ?5665 ?5666) (negative_part ?5666) [5666, 5665] by Super 16 with 590 at 3 Id : 3807, {_}: multiply (multiply ?5665 (negative_part ?5666)) ?5666 =>= multiply (multiply ?5665 ?5666) (negative_part ?5666) [5666, 5665] by Demod 3774 with 590 at 1,2 Id : 3808, {_}: multiply ?5665 (multiply (negative_part ?5666) ?5666) =<= multiply (multiply ?5665 ?5666) (negative_part ?5666) [5666, 5665] by Demod 3807 with 4 at 2 Id : 3809, {_}: multiply ?5665 (multiply (negative_part ?5666) ?5666) =>= multiply ?5665 (multiply ?5666 (negative_part ?5666)) [5666, 5665] by Demod 3808 with 4 at 3 Id : 19186, {_}: multiply (negative_part ?23671) ?23671 =<= multiply ?23672 (multiply (inverse ?23672) (multiply ?23671 (negative_part ?23671))) [23672, 23671] by Super 452 with 3809 at 2,3 Id : 19234, {_}: multiply (negative_part ?23671) ?23671 =>= multiply ?23671 (negative_part ?23671) [23671] by Demod 19186 with 452 at 3 Id : 61941, {_}: negative_part (multiply (negative_part ?82227) (positive_part ?82227)) =<= negative_part (least_upper_bound ?82227 (multiply ?82227 (negative_part ?82227))) [82227] by Super 61871 with 19234 at 2,1,3 Id : 62292, {_}: negative_part (multiply (negative_part ?82227) (positive_part ?82227)) =>= negative_part (multiply ?82227 (positive_part (negative_part ?82227))) [82227] by Demod 61941 with 584 at 1,3 Id : 62293, {_}: negative_part (multiply (negative_part ?82227) (positive_part ?82227)) =>= negative_part (multiply ?82227 identity) [82227] by Demod 62292 with 540 at 2,1,3 Id : 62294, {_}: negative_part (multiply (negative_part ?82227) (positive_part ?82227)) =>= negative_part ?82227 [82227] by Demod 62293 with 460 at 1,3 Id : 62774, {_}: multiply (inverse (multiply (negative_part ?82886) (positive_part ?82886))) (negative_part ?82886) =>= negative_part (inverse (multiply (negative_part ?82886) (positive_part ?82886))) [82886] by Super 3816 with 62294 at 2,2 Id : 1409, {_}: inverse (multiply (inverse ?2372) ?2373) =>= multiply (inverse ?2373) ?2372 [2373, 2372] by Super 264 with 18 at 2,3 Id : 1416, {_}: inverse ?2391 =<= multiply (inverse (multiply ?2392 ?2391)) ?2392 [2392, 2391] by Super 1409 with 34 at 1,2 Id : 63027, {_}: inverse (positive_part ?82886) =<= negative_part (inverse (multiply (negative_part ?82886) (positive_part ?82886))) [82886] by Demod 62774 with 1416 at 2 Id : 64309, {_}: multiply (negative_part ?84531) (positive_part ?84531) =<= multiply (inverse (inverse (positive_part ?84531))) (negative_part (multiply (negative_part ?84531) (positive_part ?84531))) [84531] by Super 12455 with 63027 at 1,1,3 Id : 64447, {_}: multiply (negative_part ?84531) (positive_part ?84531) =<= multiply (positive_part ?84531) (negative_part (multiply (negative_part ?84531) (positive_part ?84531))) [84531] by Demod 64309 with 18 at 1,3 Id : 64448, {_}: multiply (negative_part ?84531) (positive_part ?84531) =>= multiply (positive_part ?84531) (negative_part ?84531) [84531] by Demod 64447 with 62294 at 2,3 Id : 83644, {_}: ?6096 =<= multiply (positive_part ?6096) (negative_part ?6096) [6096] by Demod 83643 with 64448 at 3 Id : 84212, {_}: a =?= a [] by Demod 1 with 83644 at 3 Id : 1, {_}: a =<= multiply (positive_part a) (negative_part a) [] by prove_lat4 % SZS output end CNFRefutation for GRP167-2.p 15942: solved GRP167-2.p in 16.573035 using kbo WARNING: TreeLimitedRun lost 33.17s, total lost is 33.17s FINAL WATCH: 49.7 CPU 33.4 WC Killed 1 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP167-3.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 15973 TreeLimitedRun: ---------------------------------------------------------- 15975: Facts: 15975: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 15975: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 15975: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 15975: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 15975: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 15975: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 15975: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 15975: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 15975: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 15975: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 15975: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 15975: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 15975: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 15975: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 15975: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 15975: Goal: 15975: Id : 1, {_}: a =<= multiply (least_upper_bound a identity) (greatest_lower_bound a identity) [] by prove_p19 % SZS status Timeout for GRP167-3.p FINAL WATCH: 181.4 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP167-4.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 16057 TreeLimitedRun: ---------------------------------------------------------- 16059: Facts: 16059: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 16059: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 16059: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 16059: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 16059: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 16059: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 16059: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 16059: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 16059: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 16059: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 16059: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 16059: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 16059: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 16059: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 16059: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 16059: Id : 17, {_}: inverse identity =>= identity [] by p19_1 16059: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p19_2 ?51 16059: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p19_3 ?53 ?54 16059: Goal: 16059: Id : 1, {_}: a =<= multiply (least_upper_bound a identity) (greatest_lower_bound a identity) [] by prove_p19 % SZS status Timeout for GRP167-4.p FINAL WATCH: 193.3 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP177-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 16129 TreeLimitedRun: ---------------------------------------------------------- 16131: Facts: 16131: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 16131: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 16131: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 16131: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 16131: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 16131: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 16131: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 16131: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 16131: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 16131: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 16131: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 16131: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 16131: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 16131: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 16131: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 16131: Id : 17, {_}: least_upper_bound identity a =>= a [] by p08a_1 16131: Id : 18, {_}: least_upper_bound identity b =>= b [] by p08a_2 16131: Id : 19, {_}: least_upper_bound identity c =>= c [] by p08a_3 16131: Goal: 16131: Id : 1, {_}: least_upper_bound (greatest_lower_bound a (multiply b c)) (multiply (greatest_lower_bound a b) (greatest_lower_bound a c)) =>= multiply (greatest_lower_bound a b) (greatest_lower_bound a c) [] by prove_p08a % SZS status Timeout for GRP177-1.p FINAL WATCH: 194.9 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP177-2.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 16227 TreeLimitedRun: ---------------------------------------------------------- 16229: Facts: 16229: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 16229: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 16229: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 16229: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 16229: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 16229: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 16229: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 16229: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 16229: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 16229: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 16229: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 16229: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 16229: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 16229: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 16229: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 16229: Id : 17, {_}: greatest_lower_bound identity a =>= identity [] by p08b_1 16229: Id : 18, {_}: greatest_lower_bound identity b =>= identity [] by p08b_2 16229: Id : 19, {_}: greatest_lower_bound identity c =>= identity [] by p08b_3 16229: Goal: 16229: Id : 1, {_}: greatest_lower_bound (greatest_lower_bound a (multiply b c)) (multiply (greatest_lower_bound a b) (greatest_lower_bound a c)) =>= greatest_lower_bound a (multiply b c) [] by prove_p08b % SZS status Timeout for GRP177-2.p FINAL WATCH: 196.0 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP178-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 16314 TreeLimitedRun: ---------------------------------------------------------- 16316: Facts: 16316: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 16316: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 16316: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 16316: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 16316: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 16316: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 16316: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 16316: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 16316: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 16316: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 16316: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 16316: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 16316: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 16316: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 16316: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 16316: Id : 17, {_}: least_upper_bound identity a =>= a [] by p09a_1 16316: Id : 18, {_}: least_upper_bound identity b =>= b [] by p09a_2 16316: Id : 19, {_}: least_upper_bound identity c =>= c [] by p09a_3 16316: Id : 20, {_}: greatest_lower_bound a b =>= identity [] by p09a_4 16316: Goal: 16316: Id : 1, {_}: greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c [] by prove_p09a % SZS status Timeout for GRP178-1.p FINAL WATCH: 186.4 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP178-2.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 16397 TreeLimitedRun: ---------------------------------------------------------- 16399: Facts: 16399: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 16399: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 16399: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 16399: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 16399: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 16399: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 16399: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 16399: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 16399: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 16399: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 16399: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 16399: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 16399: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 16399: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 16399: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 16399: Id : 17, {_}: greatest_lower_bound identity a =>= identity [] by p09b_1 16399: Id : 18, {_}: greatest_lower_bound identity b =>= identity [] by p09b_2 16399: Id : 19, {_}: greatest_lower_bound identity c =>= identity [] by p09b_3 16399: Id : 20, {_}: greatest_lower_bound a b =>= identity [] by p09b_4 16399: Goal: 16399: Id : 1, {_}: greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c [] by prove_p09b % SZS status Timeout for GRP178-2.p FINAL WATCH: 194.9 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP179-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 16501 TreeLimitedRun: ---------------------------------------------------------- 16503: Facts: 16503: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 16503: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 16503: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 16503: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 16503: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 16503: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 16503: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 16503: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 16503: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 16503: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 16503: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 16503: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 16503: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 16503: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 16503: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 16503: Goal: 16503: Id : 1, {_}: inverse (least_upper_bound a b) =<= greatest_lower_bound (inverse a) (inverse b) [] by prove_p10 % SZS status Timeout for GRP179-1.p FINAL WATCH: 194.6 CPU 130.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP179-2.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 16603 TreeLimitedRun: ---------------------------------------------------------- 16605: Facts: 16605: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 16605: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 16605: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 16605: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 16605: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 16605: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 16605: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 16605: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 16605: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 16605: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 16605: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 16605: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 16605: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 16605: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 16605: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 16605: Goal: 16605: Id : 1, {_}: least_upper_bound (inverse a) identity =>= inverse (greatest_lower_bound a identity) [] by prove_p18 % SZS status Timeout for GRP179-2.p FINAL WATCH: 181.6 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP179-3.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 16678 TreeLimitedRun: ---------------------------------------------------------- 16680: Facts: 16680: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 16680: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 16680: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 16680: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 16680: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 16680: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 16680: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 16680: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 16680: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 16680: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 16680: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 16680: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 16680: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 16680: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 16680: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 16680: Id : 17, {_}: inverse identity =>= identity [] by p18_1 16680: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p18_2 ?51 16680: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p18_3 ?53 ?54 16680: Goal: 16680: Id : 1, {_}: least_upper_bound (inverse a) identity =>= inverse (greatest_lower_bound a identity) [] by prove_p18 % SZS status Timeout for GRP179-3.p FINAL WATCH: 183.1 CPU 110.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP180-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 16754 TreeLimitedRun: ---------------------------------------------------------- 16756: Facts: 16756: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 16756: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 16756: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 16756: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 16756: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 16756: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 16756: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 16756: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 16756: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 16756: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 16756: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 16756: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 16756: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 16756: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 16756: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 16756: Goal: 16756: Id : 1, {_}: multiply a (multiply (inverse (greatest_lower_bound a b)) b) =>= least_upper_bound a b [] by prove_p11 % SZS status Timeout for GRP180-1.p FINAL WATCH: 193.2 CPU 120.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP180-2.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 16834 TreeLimitedRun: ---------------------------------------------------------- 16836: Facts: 16836: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 16836: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 16836: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 16836: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 16836: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 16836: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 16836: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 16836: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 16836: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 16836: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 16836: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 16836: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 16836: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 16836: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 16836: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 16836: Id : 17, {_}: inverse identity =>= identity [] by p11_1 16836: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p11_2 ?51 16836: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p11_3 ?53 ?54 16836: Goal: 16836: Id : 1, {_}: multiply a (multiply (inverse (greatest_lower_bound a b)) b) =>= least_upper_bound a b [] by prove_p11 % SZS status Timeout for GRP180-2.p FINAL WATCH: 189.7 CPU 130.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP181-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 17206 TreeLimitedRun: ---------------------------------------------------------- 17209: Facts: 17209: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 17209: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 17209: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 17209: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 17209: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 17209: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 17209: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 17209: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 17209: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 17209: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 17209: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 17209: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 17209: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 17209: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 17209: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 17209: Id : 17, {_}: greatest_lower_bound a c =<= greatest_lower_bound b c [] by p12_1 17209: Id : 18, {_}: least_upper_bound a c =<= least_upper_bound b c [] by p12_2 17209: Goal: 17209: Id : 1, {_}: a =<= b [] by prove_p12 % SZS status Timeout for GRP181-1.p FINAL WATCH: 188.3 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP181-2.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 18135 TreeLimitedRun: ---------------------------------------------------------- 18137: Facts: 18137: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 18137: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 18137: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 18137: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 18137: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 18137: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 18137: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 18137: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 18137: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 18137: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 18137: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 18137: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 18137: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 18137: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 18137: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 18137: Id : 17, {_}: inverse identity =>= identity [] by p12_1 18137: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p12_2 ?51 18137: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p12_3 ?53 ?54 18137: Id : 20, {_}: greatest_lower_bound a c =<= greatest_lower_bound b c [] by p12_4 18137: Id : 21, {_}: least_upper_bound a c =<= least_upper_bound b c [] by p12_5 18137: Goal: 18137: Id : 1, {_}: a =<= b [] by prove_p12 % SZS status Timeout for GRP181-2.p FINAL WATCH: 199.6 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP181-3.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 18213 TreeLimitedRun: ---------------------------------------------------------- 18215: Facts: 18215: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 18215: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 18215: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 18215: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 18215: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 18215: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 18215: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 18215: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 18215: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 18215: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 18215: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 18215: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 18215: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 18215: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 18215: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 18215: Id : 17, {_}: greatest_lower_bound a c =<= greatest_lower_bound b c [] by p12x_1 18215: Id : 18, {_}: least_upper_bound a c =<= least_upper_bound b c [] by p12x_2 18215: Id : 19, {_}: inverse (greatest_lower_bound ?52 ?53) =<= least_upper_bound (inverse ?52) (inverse ?53) [53, 52] by p12x_3 ?52 ?53 18215: Id : 20, {_}: inverse (least_upper_bound ?55 ?56) =<= greatest_lower_bound (inverse ?55) (inverse ?56) [56, 55] by p12x_4 ?55 ?56 18215: Goal: 18215: Id : 1, {_}: a =<= b [] by prove_p12x Statistics : Max weight : 16 Found proof, 21.485629s % SZS status Unsatisfiable for GRP181-3.p % SZS output start CNFRefutation for GRP181-3.p Id : 18, {_}: least_upper_bound a c =<= least_upper_bound b c [] by p12x_2 Id : 17, {_}: greatest_lower_bound a c =<= greatest_lower_bound b c [] by p12x_1 Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 Id : 154, {_}: multiply ?474 (greatest_lower_bound ?475 ?476) =<= greatest_lower_bound (multiply ?474 ?475) (multiply ?474 ?476) [476, 475, 474] by monotony_glb1 ?474 ?475 ?476 Id : 19, {_}: inverse (greatest_lower_bound ?52 ?53) =<= least_upper_bound (inverse ?52) (inverse ?53) [53, 52] by p12x_3 ?52 ?53 Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 Id : 129, {_}: multiply ?411 (least_upper_bound ?412 ?413) =<= least_upper_bound (multiply ?411 ?412) (multiply ?411 ?413) [413, 412, 411] by monotony_lub1 ?411 ?412 ?413 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 25, {_}: multiply (multiply ?65 ?66) ?67 =?= multiply ?65 (multiply ?66 ?67) [67, 66, 65] by associativity ?65 ?66 ?67 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 Id : 597, {_}: multiply (multiply ?1157 (inverse ?1158)) ?1158 =>= multiply ?1157 identity [1158, 1157] by Super 25 with 3 at 2,3 Id : 599, {_}: multiply identity ?1162 =<= multiply (inverse (inverse ?1162)) identity [1162] by Super 597 with 3 at 1,2 Id : 612, {_}: ?1162 =<= multiply (inverse (inverse ?1162)) identity [1162] by Demod 599 with 2 at 2 Id : 26, {_}: multiply (multiply ?69 identity) ?70 =>= multiply ?69 ?70 [70, 69] by Super 25 with 2 at 2,3 Id : 641, {_}: multiply ?1224 ?1225 =<= multiply (inverse (inverse ?1224)) ?1225 [1225, 1224] by Super 26 with 612 at 1,2 Id : 645, {_}: ?1162 =<= multiply ?1162 identity [1162] by Demod 612 with 641 at 3 Id : 660, {_}: inverse (inverse ?1276) =<= multiply ?1276 identity [1276] by Super 645 with 641 at 3 Id : 665, {_}: inverse (inverse ?1276) =>= ?1276 [1276] by Demod 660 with 645 at 3 Id : 688, {_}: multiply ?1294 (inverse ?1294) =>= identity [1294] by Super 3 with 665 at 1,2 Id : 702, {_}: multiply identity ?1329 =<= multiply ?1330 (multiply (inverse ?1330) ?1329) [1330, 1329] by Super 4 with 688 at 1,2 Id : 719, {_}: ?1329 =<= multiply ?1330 (multiply (inverse ?1330) ?1329) [1330, 1329] by Demod 702 with 2 at 2 Id : 27, {_}: multiply (multiply ?72 (inverse ?73)) ?73 =>= multiply ?72 identity [73, 72] by Super 25 with 3 at 2,3 Id : 647, {_}: multiply (multiply ?72 (inverse ?73)) ?73 =>= ?72 [73, 72] by Demod 27 with 645 at 3 Id : 131, {_}: multiply (inverse ?418) (least_upper_bound ?419 ?418) =>= least_upper_bound (multiply (inverse ?418) ?419) identity [419, 418] by Super 129 with 3 at 2,3 Id : 16910, {_}: multiply (inverse ?17485) (least_upper_bound ?17486 ?17485) =>= least_upper_bound identity (multiply (inverse ?17485) ?17486) [17486, 17485] by Demod 131 with 6 at 3 Id : 700, {_}: identity =<= inverse identity [] by Super 2 with 688 at 2 Id : 732, {_}: inverse (greatest_lower_bound identity ?1366) =<= least_upper_bound identity (inverse ?1366) [1366] by Super 19 with 700 at 1,3 Id : 16958, {_}: multiply (inverse (inverse ?17596)) (inverse (greatest_lower_bound identity ?17596)) =>= least_upper_bound identity (multiply (inverse (inverse ?17596)) identity) [17596] by Super 16910 with 732 at 2,2 Id : 17057, {_}: multiply ?17596 (inverse (greatest_lower_bound identity ?17596)) =?= least_upper_bound identity (multiply (inverse (inverse ?17596)) identity) [17596] by Demod 16958 with 665 at 1,2 Id : 17058, {_}: multiply ?17596 (inverse (greatest_lower_bound identity ?17596)) =>= least_upper_bound identity (multiply ?17596 identity) [17596] by Demod 17057 with 665 at 1,2,3 Id : 17059, {_}: multiply ?17596 (inverse (greatest_lower_bound identity ?17596)) =>= least_upper_bound identity ?17596 [17596] by Demod 17058 with 645 at 2,3 Id : 44399, {_}: multiply (least_upper_bound identity ?42971) (greatest_lower_bound identity ?42971) =>= ?42971 [42971] by Super 647 with 17059 at 1,2 Id : 156, {_}: multiply (inverse ?481) (greatest_lower_bound ?482 ?481) =>= greatest_lower_bound (multiply (inverse ?481) ?482) identity [482, 481] by Super 154 with 3 at 2,3 Id : 17878, {_}: multiply (inverse ?18640) (greatest_lower_bound ?18641 ?18640) =>= greatest_lower_bound identity (multiply (inverse ?18640) ?18641) [18641, 18640] by Demod 156 with 5 at 3 Id : 17920, {_}: multiply (inverse c) (greatest_lower_bound a c) =>= greatest_lower_bound identity (multiply (inverse c) b) [] by Super 17878 with 17 at 2,2 Id : 172, {_}: multiply (inverse ?481) (greatest_lower_bound ?482 ?481) =>= greatest_lower_bound identity (multiply (inverse ?481) ?482) [482, 481] by Demod 156 with 5 at 3 Id : 18005, {_}: greatest_lower_bound identity (multiply (inverse c) a) =<= greatest_lower_bound identity (multiply (inverse c) b) [] by Demod 17920 with 172 at 2 Id : 44426, {_}: multiply (least_upper_bound identity (multiply (inverse c) b)) (greatest_lower_bound identity (multiply (inverse c) a)) =>= multiply (inverse c) b [] by Super 44399 with 18005 at 2,2 Id : 16952, {_}: multiply (inverse c) (least_upper_bound a c) =>= least_upper_bound identity (multiply (inverse c) b) [] by Super 16910 with 18 at 2,2 Id : 145, {_}: multiply (inverse ?418) (least_upper_bound ?419 ?418) =>= least_upper_bound identity (multiply (inverse ?418) ?419) [419, 418] by Demod 131 with 6 at 3 Id : 17046, {_}: least_upper_bound identity (multiply (inverse c) a) =<= least_upper_bound identity (multiply (inverse c) b) [] by Demod 16952 with 145 at 2 Id : 44514, {_}: multiply (least_upper_bound identity (multiply (inverse c) a)) (greatest_lower_bound identity (multiply (inverse c) a)) =>= multiply (inverse c) b [] by Demod 44426 with 17046 at 1,2 Id : 17197, {_}: multiply (least_upper_bound identity ?17825) (greatest_lower_bound identity ?17825) =>= ?17825 [17825] by Super 647 with 17059 at 1,2 Id : 44515, {_}: multiply (inverse c) a =<= multiply (inverse c) b [] by Demod 44514 with 17197 at 2 Id : 44589, {_}: b =<= multiply c (multiply (inverse c) a) [] by Super 719 with 44515 at 2,3 Id : 44592, {_}: b =>= a [] by Demod 44589 with 719 at 3 Id : 44829, {_}: a === a [] by Demod 1 with 44592 at 3 Id : 1, {_}: a =<= b [] by prove_p12x % SZS output end CNFRefutation for GRP181-3.p 18215: solved GRP181-3.p in 10.756671 using nrkbo WARNING: TreeLimitedRun lost 29.19s, total lost is 29.19s FINAL WATCH: 40.0 CPU 21.5 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP181-4.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 18239 TreeLimitedRun: ---------------------------------------------------------- 18241: Facts: 18241: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 18241: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 18241: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 18241: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 18241: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 18241: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 18241: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 18241: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 18241: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 18241: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 18241: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 18241: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 18241: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 18241: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 18241: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 18241: Id : 17, {_}: inverse identity =>= identity [] by p12x_1 18241: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p12x_2 ?51 18241: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p12x_3 ?53 ?54 18241: Id : 20, {_}: greatest_lower_bound a c =<= greatest_lower_bound b c [] by p12x_4 18241: Id : 21, {_}: least_upper_bound a c =<= least_upper_bound b c [] by p12x_5 18241: Id : 22, {_}: inverse (greatest_lower_bound ?58 ?59) =<= least_upper_bound (inverse ?58) (inverse ?59) [59, 58] by p12x_6 ?58 ?59 18241: Id : 23, {_}: inverse (least_upper_bound ?61 ?62) =<= greatest_lower_bound (inverse ?61) (inverse ?62) [62, 61] by p12x_7 ?61 ?62 18241: Goal: 18241: Id : 1, {_}: a =<= b [] by prove_p12x Statistics : Max weight : 16 Found proof, 23.807536s % SZS status Unsatisfiable for GRP181-4.p % SZS output start CNFRefutation for GRP181-4.p Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 Id : 20, {_}: greatest_lower_bound a c =<= greatest_lower_bound b c [] by p12x_4 Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 Id : 21, {_}: least_upper_bound a c =<= least_upper_bound b c [] by p12x_5 Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 Id : 132, {_}: multiply ?417 (least_upper_bound ?418 ?419) =<= least_upper_bound (multiply ?417 ?418) (multiply ?417 ?419) [419, 418, 417] by monotony_lub1 ?417 ?418 ?419 Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 Id : 295, {_}: inverse (greatest_lower_bound ?769 ?770) =<= least_upper_bound (inverse ?769) (inverse ?770) [770, 769] by p12x_6 ?769 ?770 Id : 314, {_}: inverse (least_upper_bound ?806 ?807) =<= greatest_lower_bound (inverse ?806) (inverse ?807) [807, 806] by p12x_7 ?806 ?807 Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 Id : 157, {_}: multiply ?480 (greatest_lower_bound ?481 ?482) =<= greatest_lower_bound (multiply ?480 ?481) (multiply ?480 ?482) [482, 481, 480] by monotony_glb1 ?480 ?481 ?482 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 17, {_}: inverse identity =>= identity [] by p12x_1 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 Id : 28, {_}: multiply (multiply ?71 ?72) ?73 =?= multiply ?71 (multiply ?72 ?73) [73, 72, 71] by associativity ?71 ?72 ?73 Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p12x_2 ?51 Id : 257, {_}: inverse (multiply ?719 ?720) =<= multiply (inverse ?720) (inverse ?719) [720, 719] by p12x_3 ?719 ?720 Id : 261, {_}: inverse (multiply ?729 (inverse ?730)) =>= multiply ?730 (inverse ?729) [730, 729] by Super 257 with 18 at 1,3 Id : 30, {_}: multiply (multiply ?78 (inverse ?79)) ?79 =>= multiply ?78 identity [79, 78] by Super 28 with 3 at 2,3 Id : 258, {_}: inverse (multiply identity ?722) =<= multiply (inverse ?722) identity [722] by Super 257 with 17 at 2,3 Id : 341, {_}: inverse ?858 =<= multiply (inverse ?858) identity [858] by Demod 258 with 2 at 1,2 Id : 343, {_}: inverse (inverse ?861) =<= multiply ?861 identity [861] by Super 341 with 18 at 1,3 Id : 354, {_}: ?861 =<= multiply ?861 identity [861] by Demod 343 with 18 at 2 Id : 14243, {_}: multiply (multiply ?78 (inverse ?79)) ?79 =>= ?78 [79, 78] by Demod 30 with 354 at 3 Id : 14244, {_}: inverse ?11368 =<= multiply ?11369 (inverse (multiply ?11368 (inverse (inverse ?11369)))) [11369, 11368] by Super 261 with 14243 at 1,2 Id : 14287, {_}: inverse ?11368 =<= multiply ?11369 (inverse (multiply ?11368 ?11369)) [11369, 11368] by Demod 14244 with 18 at 2,1,2,3 Id : 259, {_}: inverse (multiply (inverse ?724) ?725) =>= multiply (inverse ?725) ?724 [725, 724] by Super 257 with 18 at 2,3 Id : 159, {_}: multiply (inverse ?487) (greatest_lower_bound ?488 ?487) =>= greatest_lower_bound (multiply (inverse ?487) ?488) identity [488, 487] by Super 157 with 3 at 2,3 Id : 16336, {_}: multiply (inverse ?13326) (greatest_lower_bound ?13327 ?13326) =>= greatest_lower_bound identity (multiply (inverse ?13326) ?13327) [13327, 13326] by Demod 159 with 5 at 3 Id : 317, {_}: inverse (least_upper_bound identity ?814) =<= greatest_lower_bound identity (inverse ?814) [814] by Super 314 with 17 at 1,3 Id : 16379, {_}: multiply (inverse (inverse ?13425)) (inverse (least_upper_bound identity ?13425)) =>= greatest_lower_bound identity (multiply (inverse (inverse ?13425)) identity) [13425] by Super 16336 with 317 at 2,2 Id : 16479, {_}: multiply ?13425 (inverse (least_upper_bound identity ?13425)) =?= greatest_lower_bound identity (multiply (inverse (inverse ?13425)) identity) [13425] by Demod 16379 with 18 at 1,2 Id : 16480, {_}: multiply ?13425 (inverse (least_upper_bound identity ?13425)) =>= greatest_lower_bound identity (multiply ?13425 identity) [13425] by Demod 16479 with 18 at 1,2,3 Id : 16481, {_}: multiply ?13425 (inverse (least_upper_bound identity ?13425)) =>= greatest_lower_bound identity ?13425 [13425] by Demod 16480 with 354 at 2,3 Id : 16592, {_}: inverse (greatest_lower_bound identity (inverse ?13567)) =<= multiply (inverse (inverse (least_upper_bound identity (inverse ?13567)))) ?13567 [13567] by Super 259 with 16481 at 1,2 Id : 16654, {_}: inverse (inverse (least_upper_bound identity ?13567)) =<= multiply (inverse (inverse (least_upper_bound identity (inverse ?13567)))) ?13567 [13567] by Demod 16592 with 317 at 1,2 Id : 16655, {_}: least_upper_bound identity ?13567 =<= multiply (inverse (inverse (least_upper_bound identity (inverse ?13567)))) ?13567 [13567] by Demod 16654 with 18 at 2 Id : 298, {_}: inverse (greatest_lower_bound identity ?777) =<= least_upper_bound identity (inverse ?777) [777] by Super 295 with 17 at 1,3 Id : 16656, {_}: least_upper_bound identity ?13567 =<= multiply (inverse (inverse (inverse (greatest_lower_bound identity ?13567)))) ?13567 [13567] by Demod 16655 with 298 at 1,1,1,3 Id : 16657, {_}: least_upper_bound identity ?13567 =<= multiply (inverse (greatest_lower_bound identity ?13567)) ?13567 [13567] by Demod 16656 with 18 at 1,1,3 Id : 1934, {_}: ?2860 =<= greatest_lower_bound (least_upper_bound ?2860 ?2861) ?2860 [2861, 2860] by Super 5 with 12 at 2 Id : 1935, {_}: ?2863 =<= greatest_lower_bound (least_upper_bound ?2864 ?2863) ?2863 [2864, 2863] by Super 1934 with 6 at 1,3 Id : 134, {_}: multiply (inverse ?424) (least_upper_bound ?425 ?424) =>= least_upper_bound (multiply (inverse ?424) ?425) identity [425, 424] by Super 132 with 3 at 2,3 Id : 14823, {_}: multiply (inverse ?12089) (least_upper_bound ?12090 ?12089) =>= least_upper_bound identity (multiply (inverse ?12089) ?12090) [12090, 12089] by Demod 134 with 6 at 3 Id : 281, {_}: least_upper_bound b (least_upper_bound c ?746) =<= least_upper_bound (least_upper_bound a c) ?746 [746] by Super 8 with 21 at 1,3 Id : 286, {_}: least_upper_bound b (least_upper_bound c ?746) =>= least_upper_bound a (least_upper_bound c ?746) [746] by Demod 281 with 8 at 3 Id : 14831, {_}: multiply (inverse (least_upper_bound c ?12111)) (least_upper_bound a (least_upper_bound c ?12111)) =>= least_upper_bound identity (multiply (inverse (least_upper_bound c ?12111)) b) [12111] by Super 14823 with 286 at 2,2 Id : 148, {_}: multiply (inverse ?424) (least_upper_bound ?425 ?424) =>= least_upper_bound identity (multiply (inverse ?424) ?425) [425, 424] by Demod 134 with 6 at 3 Id : 51449, {_}: least_upper_bound identity (multiply (inverse (least_upper_bound c ?38005)) a) =<= least_upper_bound identity (multiply (inverse (least_upper_bound c ?38005)) b) [38005] by Demod 14831 with 148 at 2 Id : 1425, {_}: least_upper_bound ?2278 ?2279 =<= least_upper_bound (least_upper_bound ?2278 ?2279) ?2279 [2279, 2278] by Super 8 with 9 at 2,2 Id : 1438, {_}: least_upper_bound b c =<= least_upper_bound (least_upper_bound a c) c [] by Super 1425 with 21 at 1,3 Id : 1471, {_}: least_upper_bound a c =<= least_upper_bound (least_upper_bound a c) c [] by Demod 1438 with 21 at 2 Id : 1472, {_}: least_upper_bound a c =<= least_upper_bound c (least_upper_bound a c) [] by Demod 1471 with 6 at 3 Id : 1482, {_}: least_upper_bound c (least_upper_bound (least_upper_bound a c) ?2339) =>= least_upper_bound (least_upper_bound a c) ?2339 [2339] by Super 8 with 1472 at 1,3 Id : 1496, {_}: least_upper_bound c (least_upper_bound a (least_upper_bound c ?2339)) =>= least_upper_bound (least_upper_bound a c) ?2339 [2339] by Demod 1482 with 8 at 2,2 Id : 3559, {_}: least_upper_bound c (least_upper_bound a (least_upper_bound c ?4517)) =>= least_upper_bound a (least_upper_bound c ?4517) [4517] by Demod 1496 with 8 at 3 Id : 3560, {_}: least_upper_bound c (least_upper_bound a (least_upper_bound ?4519 c)) =>= least_upper_bound a (least_upper_bound c ?4519) [4519] by Super 3559 with 6 at 2,2,2 Id : 1483, {_}: least_upper_bound ?2341 (least_upper_bound a c) =<= least_upper_bound (least_upper_bound ?2341 c) (least_upper_bound a c) [2341] by Super 8 with 1472 at 2,2 Id : 3473, {_}: least_upper_bound ?4448 (least_upper_bound a c) =<= least_upper_bound (least_upper_bound (least_upper_bound ?4448 c) a) c [4448] by Super 8 with 1483 at 2 Id : 3510, {_}: least_upper_bound ?4448 (least_upper_bound a c) =<= least_upper_bound (least_upper_bound a (least_upper_bound ?4448 c)) c [4448] by Demod 3473 with 6 at 1,3 Id : 3511, {_}: least_upper_bound ?4448 (least_upper_bound a c) =<= least_upper_bound c (least_upper_bound a (least_upper_bound ?4448 c)) [4448] by Demod 3510 with 6 at 3 Id : 7630, {_}: least_upper_bound ?4519 (least_upper_bound a c) =?= least_upper_bound a (least_upper_bound c ?4519) [4519] by Demod 3560 with 3511 at 2 Id : 51458, {_}: least_upper_bound identity (multiply (inverse (least_upper_bound c (least_upper_bound a c))) a) =>= least_upper_bound identity (multiply (inverse (least_upper_bound a (least_upper_bound c c))) b) [] by Super 51449 with 7630 at 1,1,2,3 Id : 1191, {_}: least_upper_bound ?2023 (least_upper_bound ?2023 ?2024) =>= least_upper_bound ?2023 ?2024 [2024, 2023] by Super 8 with 9 at 1,3 Id : 1192, {_}: least_upper_bound ?2026 (least_upper_bound ?2027 ?2026) =>= least_upper_bound ?2026 ?2027 [2027, 2026] by Super 1191 with 6 at 2,2 Id : 51550, {_}: least_upper_bound identity (multiply (inverse (least_upper_bound c a)) a) =<= least_upper_bound identity (multiply (inverse (least_upper_bound a (least_upper_bound c c))) b) [] by Demod 51458 with 1192 at 1,1,2,2 Id : 51551, {_}: least_upper_bound identity (multiply (inverse (least_upper_bound a c)) a) =<= least_upper_bound identity (multiply (inverse (least_upper_bound a (least_upper_bound c c))) b) [] by Demod 51550 with 6 at 1,1,2,2 Id : 51552, {_}: least_upper_bound identity (multiply (inverse (least_upper_bound a c)) a) =<= least_upper_bound identity (multiply (inverse (least_upper_bound a c)) b) [] by Demod 51551 with 9 at 2,1,1,2,3 Id : 14361, {_}: multiply (inverse ?11663) (least_upper_bound ?11663 ?11664) =>= least_upper_bound identity (multiply (inverse ?11663) ?11664) [11664, 11663] by Super 132 with 3 at 1,3 Id : 14402, {_}: multiply (inverse b) (least_upper_bound a c) =>= least_upper_bound identity (multiply (inverse b) c) [] by Super 14361 with 21 at 2,2 Id : 14563, {_}: inverse (least_upper_bound identity (multiply (inverse b) c)) =>= multiply (inverse (least_upper_bound a c)) b [] by Super 259 with 14402 at 1,2 Id : 671, {_}: inverse (least_upper_bound identity (multiply (inverse ?1230) ?1231)) =>= greatest_lower_bound identity (multiply (inverse ?1231) ?1230) [1231, 1230] by Super 317 with 259 at 2,3 Id : 21867, {_}: greatest_lower_bound identity (multiply (inverse c) b) =<= multiply (inverse (least_upper_bound a c)) b [] by Demod 14563 with 671 at 2 Id : 16375, {_}: multiply (inverse c) (greatest_lower_bound a c) =>= greatest_lower_bound identity (multiply (inverse c) b) [] by Super 16336 with 20 at 2,2 Id : 175, {_}: multiply (inverse ?487) (greatest_lower_bound ?488 ?487) =>= greatest_lower_bound identity (multiply (inverse ?487) ?488) [488, 487] by Demod 159 with 5 at 3 Id : 16470, {_}: greatest_lower_bound identity (multiply (inverse c) a) =<= greatest_lower_bound identity (multiply (inverse c) b) [] by Demod 16375 with 175 at 2 Id : 21868, {_}: greatest_lower_bound identity (multiply (inverse c) a) =<= multiply (inverse (least_upper_bound a c)) b [] by Demod 21867 with 16470 at 2 Id : 51553, {_}: least_upper_bound identity (multiply (inverse (least_upper_bound a c)) a) =>= least_upper_bound identity (greatest_lower_bound identity (multiply (inverse c) a)) [] by Demod 51552 with 21868 at 2,3 Id : 51554, {_}: least_upper_bound identity (multiply (inverse (least_upper_bound a c)) a) =>= identity [] by Demod 51553 with 11 at 3 Id : 51593, {_}: multiply (inverse (least_upper_bound a c)) a =<= greatest_lower_bound identity (multiply (inverse (least_upper_bound a c)) a) [] by Super 1935 with 51554 at 1,3 Id : 51784, {_}: least_upper_bound identity (multiply (inverse (least_upper_bound a c)) a) =<= multiply (inverse (multiply (inverse (least_upper_bound a c)) a)) (multiply (inverse (least_upper_bound a c)) a) [] by Super 16657 with 51593 at 1,1,3 Id : 51815, {_}: identity =<= multiply (inverse (multiply (inverse (least_upper_bound a c)) a)) (multiply (inverse (least_upper_bound a c)) a) [] by Demod 51784 with 51554 at 2 Id : 51816, {_}: identity =<= multiply (multiply (inverse a) (least_upper_bound a c)) (multiply (inverse (least_upper_bound a c)) a) [] by Demod 51815 with 259 at 1,3 Id : 138, {_}: multiply (inverse ?440) (least_upper_bound ?440 ?441) =>= least_upper_bound identity (multiply (inverse ?440) ?441) [441, 440] by Super 132 with 3 at 1,3 Id : 51817, {_}: identity =<= multiply (least_upper_bound identity (multiply (inverse a) c)) (multiply (inverse (least_upper_bound a c)) a) [] by Demod 51816 with 138 at 1,3 Id : 14569, {_}: multiply (least_upper_bound identity (multiply (inverse b) c)) ?11887 =>= multiply (inverse b) (multiply (least_upper_bound a c) ?11887) [11887] by Super 4 with 14402 at 1,2 Id : 22256, {_}: inverse (greatest_lower_bound identity (multiply (inverse ?18862) ?18863)) =>= least_upper_bound identity (multiply (inverse ?18863) ?18862) [18863, 18862] by Super 298 with 259 at 2,3 Id : 22301, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound identity (multiply (inverse c) a))) =>= least_upper_bound identity (multiply (inverse b) (least_upper_bound a c)) [] by Super 22256 with 21868 at 2,1,2 Id : 88, {_}: greatest_lower_bound ?295 (greatest_lower_bound ?295 ?296) =>= greatest_lower_bound ?295 ?296 [296, 295] by Super 7 with 10 at 1,3 Id : 22468, {_}: inverse (greatest_lower_bound identity (multiply (inverse c) a)) =<= least_upper_bound identity (multiply (inverse b) (least_upper_bound a c)) [] by Demod 22301 with 88 at 1,2 Id : 680, {_}: inverse (greatest_lower_bound identity (multiply (inverse ?1263) ?1264)) =>= least_upper_bound identity (multiply (inverse ?1264) ?1263) [1264, 1263] by Super 298 with 259 at 2,3 Id : 22469, {_}: least_upper_bound identity (multiply (inverse a) c) =<= least_upper_bound identity (multiply (inverse b) (least_upper_bound a c)) [] by Demod 22468 with 680 at 2 Id : 22470, {_}: least_upper_bound identity (multiply (inverse a) c) =<= least_upper_bound identity (least_upper_bound identity (multiply (inverse b) c)) [] by Demod 22469 with 14402 at 2,3 Id : 78, {_}: least_upper_bound ?271 (least_upper_bound ?271 ?272) =>= least_upper_bound ?271 ?272 [272, 271] by Super 8 with 9 at 1,3 Id : 22471, {_}: least_upper_bound identity (multiply (inverse a) c) =<= least_upper_bound identity (multiply (inverse b) c) [] by Demod 22470 with 78 at 3 Id : 50833, {_}: multiply (least_upper_bound identity (multiply (inverse a) c)) ?11887 =>= multiply (inverse b) (multiply (least_upper_bound a c) ?11887) [11887] by Demod 14569 with 22471 at 1,2 Id : 51818, {_}: identity =<= multiply (inverse b) (multiply (least_upper_bound a c) (multiply (inverse (least_upper_bound a c)) a)) [] by Demod 51817 with 50833 at 3 Id : 240, {_}: multiply ?668 (inverse ?668) =>= identity [668] by Super 3 with 18 at 1,2 Id : 549, {_}: multiply identity ?1105 =<= multiply ?1106 (multiply (inverse ?1106) ?1105) [1106, 1105] by Super 4 with 240 at 1,2 Id : 574, {_}: ?1105 =<= multiply ?1106 (multiply (inverse ?1106) ?1105) [1106, 1105] by Demod 549 with 2 at 2 Id : 51819, {_}: identity =<= multiply (inverse b) a [] by Demod 51818 with 574 at 2,3 Id : 51890, {_}: inverse (inverse b) =<= multiply a (inverse identity) [] by Super 14287 with 51819 at 1,2,3 Id : 51893, {_}: b =<= multiply a (inverse identity) [] by Demod 51890 with 18 at 2 Id : 51894, {_}: b =<= multiply a identity [] by Demod 51893 with 17 at 2,3 Id : 51895, {_}: b =>= a [] by Demod 51894 with 354 at 3 Id : 52214, {_}: a === a [] by Demod 1 with 51895 at 3 Id : 1, {_}: a =<= b [] by prove_p12x % SZS output end CNFRefutation for GRP181-4.p 18244: solved GRP181-4.p in 11.868741 using nrkbo WARNING: TreeLimitedRun lost 28.05s, total lost is 28.05s FINAL WATCH: 39.9 CPU 23.9 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP183-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 18264 TreeLimitedRun: ---------------------------------------------------------- 18266: Facts: 18266: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 18266: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 18266: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 18266: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 18266: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 18266: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 18266: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 18266: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 18266: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 18266: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 18266: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 18266: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 18266: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 18266: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 18266: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 18266: Goal: 18266: Id : 1, {_}: greatest_lower_bound (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= identity [] by prove_p20 % SZS status Timeout for GRP183-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP183-2.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 18335 TreeLimitedRun: ---------------------------------------------------------- 18337: Facts: 18337: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 18337: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 18337: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 18337: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 18337: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 18337: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 18337: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 18337: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 18337: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 18337: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 18337: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 18337: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 18337: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 18337: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 18337: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 18337: Id : 17, {_}: inverse identity =>= identity [] by p20_1 18337: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p20_2 ?51 18337: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p20_3 ?53 ?54 18337: Goal: 18337: Id : 1, {_}: greatest_lower_bound (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= identity [] by prove_p20 % SZS status Timeout for GRP183-2.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP183-3.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 18395 TreeLimitedRun: ---------------------------------------------------------- 18397: Facts: 18397: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 18397: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 18397: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 18397: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 18397: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 18397: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 18397: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 18397: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 18397: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 18397: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 18397: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 18397: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 18397: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 18397: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 18397: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 18397: Goal: 18397: Id : 1, {_}: greatest_lower_bound (least_upper_bound a identity) (least_upper_bound (inverse a) identity) =>= identity [] by prove_20x % SZS status Timeout for GRP183-3.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP183-4.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 18467 TreeLimitedRun: ---------------------------------------------------------- 18469: Facts: 18469: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 18469: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 18469: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 18469: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 18469: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 18469: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 18469: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 18469: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 18469: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 18469: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 18469: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 18469: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 18469: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 18469: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 18469: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 18469: Id : 17, {_}: inverse identity =>= identity [] by p20x_1 18469: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p20x_1 ?51 18469: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p20x_3 ?53 ?54 18469: Goal: 18469: Id : 1, {_}: greatest_lower_bound (least_upper_bound a identity) (least_upper_bound (inverse a) identity) =>= identity [] by prove_20x % SZS status Timeout for GRP183-4.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP184-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 18529 TreeLimitedRun: ---------------------------------------------------------- 18531: Facts: 18531: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 18531: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 18531: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 18531: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 18531: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 18531: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 18531: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 18531: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 18531: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 18531: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 18531: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 18531: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 18531: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 18531: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 18531: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 18531: Goal: 18531: Id : 1, {_}: multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by prove_p21 % SZS status Timeout for GRP184-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP184-2.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 18590 TreeLimitedRun: ---------------------------------------------------------- 18592: Facts: 18592: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 18592: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 18592: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 18592: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 18592: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 18592: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 18592: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 18592: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 18592: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 18592: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 18592: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 18592: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 18592: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 18592: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 18592: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 18592: Id : 17, {_}: inverse identity =>= identity [] by p21_1 18592: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p21_2 ?51 18592: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p21_3 ?53 ?54 18592: Goal: 18592: Id : 1, {_}: multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by prove_p21 % SZS status Timeout for GRP184-2.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP184-3.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 18662 TreeLimitedRun: ---------------------------------------------------------- 18664: Facts: 18664: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 18664: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 18664: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 18664: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 18664: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 18664: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 18664: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 18664: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 18664: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 18664: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 18664: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 18664: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 18664: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 18664: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 18664: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 18664: Goal: 18664: Id : 1, {_}: multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by prove_p21x % SZS status Timeout for GRP184-3.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP185-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 18733 TreeLimitedRun: ---------------------------------------------------------- 18735: Facts: 18735: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 18735: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 18735: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 18735: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 18735: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 18735: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 18735: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 18735: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 18735: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 18735: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 18735: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 18735: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 18735: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 18735: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 18735: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 18735: Goal: 18735: Id : 1, {_}: least_upper_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by prove_p22a Statistics : Max weight : 18 Found proof, 2.162165s % SZS status Unsatisfiable for GRP185-1.p % SZS output start CNFRefutation for GRP185-1.p Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 Id : 59, {_}: least_upper_bound ?151 (least_upper_bound ?152 ?153) =<= least_upper_bound (least_upper_bound ?151 ?152) ?153 [153, 152, 151] by associativity_of_lub ?151 ?152 ?153 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 Id : 21, {_}: multiply (multiply ?57 ?58) ?59 =>= multiply ?57 (multiply ?58 ?59) [59, 58, 57] by associativity ?57 ?58 ?59 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 Id : 23, {_}: multiply identity ?64 =<= multiply (inverse ?65) (multiply ?65 ?64) [65, 64] by Super 21 with 3 at 1,2 Id : 416, {_}: ?582 =<= multiply (inverse ?583) (multiply ?583 ?582) [583, 582] by Demod 23 with 2 at 2 Id : 418, {_}: ?587 =<= multiply (inverse (inverse ?587)) identity [587] by Super 416 with 3 at 2,3 Id : 27, {_}: ?64 =<= multiply (inverse ?65) (multiply ?65 ?64) [65, 64] by Demod 23 with 2 at 2 Id : 424, {_}: multiply ?609 ?610 =<= multiply (inverse (inverse ?609)) ?610 [610, 609] by Super 416 with 27 at 2,3 Id : 595, {_}: ?587 =<= multiply ?587 identity [587] by Demod 418 with 424 at 3 Id : 60, {_}: least_upper_bound ?155 (least_upper_bound ?156 ?157) =<= least_upper_bound (least_upper_bound ?156 ?155) ?157 [157, 156, 155] by Super 59 with 6 at 1,3 Id : 66, {_}: least_upper_bound ?155 (least_upper_bound ?156 ?157) =?= least_upper_bound ?156 (least_upper_bound ?155 ?157) [157, 156, 155] by Demod 60 with 8 at 3 Id : 57, {_}: least_upper_bound ?143 (least_upper_bound ?144 ?145) =?= least_upper_bound ?144 (least_upper_bound ?145 ?143) [145, 144, 143] by Super 6 with 8 at 3 Id : 4316, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) === least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) [] by Demod 4315 with 66 at 3 Id : 4315, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) =<= least_upper_bound b (least_upper_bound a (least_upper_bound identity (multiply a b))) [] by Demod 4314 with 8 at 2,3 Id : 4314, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) =<= least_upper_bound b (least_upper_bound (least_upper_bound a identity) (multiply a b)) [] by Demod 4313 with 66 at 3 Id : 4313, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) =<= least_upper_bound (least_upper_bound a identity) (least_upper_bound b (multiply a b)) [] by Demod 4312 with 6 at 3 Id : 4312, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) =<= least_upper_bound (least_upper_bound b (multiply a b)) (least_upper_bound a identity) [] by Demod 4311 with 2 at 2,2,3 Id : 4311, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) =<= least_upper_bound (least_upper_bound b (multiply a b)) (least_upper_bound a (multiply identity identity)) [] by Demod 4310 with 595 at 1,2,3 Id : 4310, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) =<= least_upper_bound (least_upper_bound b (multiply a b)) (least_upper_bound (multiply a identity) (multiply identity identity)) [] by Demod 4309 with 15 at 2,3 Id : 4309, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) =<= least_upper_bound (least_upper_bound b (multiply a b)) (multiply (least_upper_bound a identity) identity) [] by Demod 4308 with 6 at 1,3 Id : 4308, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) =<= least_upper_bound (least_upper_bound (multiply a b) b) (multiply (least_upper_bound a identity) identity) [] by Demod 4307 with 2 at 2,1,3 Id : 4307, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) =<= least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (multiply (least_upper_bound a identity) identity) [] by Demod 4306 with 15 at 1,3 Id : 4306, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) =<= least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity) [] by Demod 4305 with 13 at 3 Id : 4305, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 4304 with 9 at 2,2,2 Id : 4304, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound identity (multiply a b)))) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 4303 with 57 at 2,2 Id : 4303, {_}: least_upper_bound a (least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound identity (multiply a b)))) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 4302 with 66 at 2 Id : 4302, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b)))) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 4301 with 66 at 2,2 Id : 4301, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound a (least_upper_bound identity (multiply a b)))) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 4300 with 8 at 2,2,2 Id : 4300, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound (least_upper_bound a identity) (multiply a b))) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 4299 with 66 at 2,2 Id : 4299, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound a identity) (least_upper_bound b (multiply a b))) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 4298 with 6 at 2,2 Id : 4298, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound b (multiply a b)) (least_upper_bound a identity)) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 4297 with 2 at 2,2,2,2 Id : 4297, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound b (multiply a b)) (least_upper_bound a (multiply identity identity))) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 4296 with 595 at 1,2,2,2 Id : 4296, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound b (multiply a b)) (least_upper_bound (multiply a identity) (multiply identity identity))) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 4295 with 15 at 2,2,2 Id : 4295, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound b (multiply a b)) (multiply (least_upper_bound a identity) identity)) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 4294 with 6 at 1,2,2 Id : 4294, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound (multiply a b) b) (multiply (least_upper_bound a identity) identity)) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 4293 with 2 at 2,1,2,2 Id : 4293, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (multiply (least_upper_bound a identity) identity)) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 4292 with 15 at 1,2,2 Id : 4292, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity)) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 4291 with 13 at 2,2 Id : 4291, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 1 with 6 at 1,2 Id : 1, {_}: least_upper_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by prove_p22a % SZS output end CNFRefutation for GRP185-1.p 18737: solved GRP185-1.p in 1.068066 using lpo FINAL WATCH: 1.1 CPU 2.2 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP185-2.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 18744 TreeLimitedRun: ---------------------------------------------------------- 18746: Facts: 18746: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 18746: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 18746: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 18746: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 18746: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 18746: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 18746: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 18746: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 18746: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 18746: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 18746: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 18746: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 18746: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 18746: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 18746: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 18746: Id : 17, {_}: inverse identity =>= identity [] by p22a_1 18746: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22a_2 ?51 18746: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p22a_3 ?53 ?54 18746: Goal: 18746: Id : 1, {_}: least_upper_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by prove_p22a Statistics : Max weight : 18 Found proof, 3.192003s % SZS status Unsatisfiable for GRP185-2.p % SZS output start CNFRefutation for GRP185-2.p Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 Id : 62, {_}: least_upper_bound ?157 (least_upper_bound ?158 ?159) =<= least_upper_bound (least_upper_bound ?157 ?158) ?159 [159, 158, 157] by associativity_of_lub ?157 ?158 ?159 Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22a_2 ?51 Id : 17, {_}: inverse identity =>= identity [] by p22a_1 Id : 368, {_}: inverse (multiply ?514 ?515) =?= multiply (inverse ?515) (inverse ?514) [515, 514] by p22a_3 ?514 ?515 Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 Id : 369, {_}: inverse (multiply identity ?517) =<= multiply (inverse ?517) identity [517] by Super 368 with 17 at 2,3 Id : 413, {_}: inverse ?572 =<= multiply (inverse ?572) identity [572] by Demod 369 with 2 at 1,2 Id : 415, {_}: inverse (inverse ?575) =<= multiply ?575 identity [575] by Super 413 with 18 at 1,3 Id : 427, {_}: ?575 =<= multiply ?575 identity [575] by Demod 415 with 18 at 2 Id : 63, {_}: least_upper_bound ?161 (least_upper_bound ?162 ?163) =<= least_upper_bound (least_upper_bound ?162 ?161) ?163 [163, 162, 161] by Super 62 with 6 at 1,3 Id : 69, {_}: least_upper_bound ?161 (least_upper_bound ?162 ?163) =?= least_upper_bound ?162 (least_upper_bound ?161 ?163) [163, 162, 161] by Demod 63 with 8 at 3 Id : 60, {_}: least_upper_bound ?149 (least_upper_bound ?150 ?151) =?= least_upper_bound ?150 (least_upper_bound ?151 ?149) [151, 150, 149] by Super 6 with 8 at 3 Id : 76, {_}: least_upper_bound ?186 (least_upper_bound ?186 ?187) =>= least_upper_bound ?186 ?187 [187, 186] by Super 8 with 9 at 1,3 Id : 6956, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) === least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) [] by Demod 6955 with 69 at 3 Id : 6955, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) =<= least_upper_bound b (least_upper_bound a (least_upper_bound identity (multiply a b))) [] by Demod 6954 with 8 at 2,3 Id : 6954, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) =<= least_upper_bound b (least_upper_bound (least_upper_bound a identity) (multiply a b)) [] by Demod 6953 with 6 at 2,3 Id : 6953, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) =<= least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound a identity)) [] by Demod 6952 with 6 at 2,2,3 Id : 6952, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) =<= least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity a)) [] by Demod 6951 with 427 at 2,2,2,3 Id : 6951, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) =<= least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))) [] by Demod 6950 with 76 at 2,2,2 Id : 6950, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (least_upper_bound identity (multiply a b)))) =<= least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))) [] by Demod 6949 with 69 at 2,2 Id : 6949, {_}: least_upper_bound a (least_upper_bound identity (least_upper_bound b (least_upper_bound identity (multiply a b)))) =<= least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))) [] by Demod 6948 with 69 at 2 Id : 6948, {_}: least_upper_bound identity (least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b)))) =<= least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))) [] by Demod 6947 with 9 at 2,2,2,2,2 Id : 6947, {_}: least_upper_bound identity (least_upper_bound a (least_upper_bound b (least_upper_bound identity (least_upper_bound (multiply a b) (multiply a b))))) =<= least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))) [] by Demod 6946 with 60 at 2,2,2,2 Id : 6946, {_}: least_upper_bound identity (least_upper_bound a (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a b))))) =<= least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))) [] by Demod 6945 with 69 at 2,2,2 Id : 6945, {_}: least_upper_bound identity (least_upper_bound a (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound identity (multiply a b))))) =<= least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))) [] by Demod 6944 with 69 at 2,2 Id : 6944, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))))) =<= least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))) [] by Demod 6943 with 69 at 2,2,2 Id : 6943, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound a (least_upper_bound identity (multiply a b))))) =<= least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))) [] by Demod 6942 with 8 at 2,2,2,2 Id : 6942, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (least_upper_bound a identity) (multiply a b)))) =<= least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))) [] by Demod 6941 with 6 at 2,2,2,2 Id : 6941, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound a identity)))) =<= least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))) [] by Demod 6940 with 6 at 2,2,2,2,2 Id : 6940, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity a)))) =<= least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))) [] by Demod 448 with 427 at 2,2,2,2,2,2 Id : 448, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))))) =>= least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))) [] by Demod 447 with 8 at 3 Id : 447, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))))) =<= least_upper_bound (least_upper_bound b (multiply a b)) (least_upper_bound identity (multiply a identity)) [] by Demod 446 with 6 at 2,3 Id : 446, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))))) =<= least_upper_bound (least_upper_bound b (multiply a b)) (least_upper_bound (multiply a identity) identity) [] by Demod 445 with 2 at 2,2,3 Id : 445, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))))) =<= least_upper_bound (least_upper_bound b (multiply a b)) (least_upper_bound (multiply a identity) (multiply identity identity)) [] by Demod 444 with 15 at 2,3 Id : 444, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))))) =<= least_upper_bound (least_upper_bound b (multiply a b)) (multiply (least_upper_bound a identity) identity) [] by Demod 443 with 6 at 1,3 Id : 443, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))))) =<= least_upper_bound (least_upper_bound (multiply a b) b) (multiply (least_upper_bound a identity) identity) [] by Demod 442 with 2 at 2,1,3 Id : 442, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))))) =<= least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (multiply (least_upper_bound a identity) identity) [] by Demod 441 with 15 at 1,3 Id : 441, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))))) =<= least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity) [] by Demod 440 with 13 at 3 Id : 440, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))))) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 439 with 8 at 2 Id : 439, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity)))) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 438 with 8 at 2,2 Id : 438, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound b (multiply a b)) (least_upper_bound identity (multiply a identity))) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 437 with 6 at 2,2,2 Id : 437, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound b (multiply a b)) (least_upper_bound (multiply a identity) identity)) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 436 with 2 at 2,2,2,2 Id : 436, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound b (multiply a b)) (least_upper_bound (multiply a identity) (multiply identity identity))) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 435 with 15 at 2,2,2 Id : 435, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound b (multiply a b)) (multiply (least_upper_bound a identity) identity)) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 434 with 6 at 1,2,2 Id : 434, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound (multiply a b) b) (multiply (least_upper_bound a identity) identity)) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 433 with 2 at 2,1,2,2 Id : 433, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (multiply (least_upper_bound a identity) identity)) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 432 with 15 at 1,2,2 Id : 432, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity)) =<= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 431 with 13 at 2,2 Id : 431, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 1 with 6 at 1,2 Id : 1, {_}: least_upper_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by prove_p22a % SZS output end CNFRefutation for GRP185-2.p 18748: solved GRP185-2.p in 1.596099 using lpo FINAL WATCH: 1.6 CPU 3.2 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP185-3.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 18755 TreeLimitedRun: ---------------------------------------------------------- 18757: Facts: 18757: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 18757: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 18757: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 18757: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 18757: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 18757: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 18757: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 18757: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 18757: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 18757: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 18757: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 18757: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 18757: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 18757: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 18757: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 18757: Goal: 18757: Id : 1, {_}: greatest_lower_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by prove_p22b Statistics : Max weight : 19 Found proof, 1.027034s % SZS status Unsatisfiable for GRP185-3.p % SZS output start CNFRefutation for GRP185-3.p Id : 104, {_}: greatest_lower_bound ?245 (least_upper_bound ?245 ?246) =>= ?245 [246, 245] by glb_absorbtion ?245 ?246 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 Id : 21, {_}: multiply (multiply ?57 ?58) ?59 =>= multiply ?57 (multiply ?58 ?59) [59, 58, 57] by associativity ?57 ?58 ?59 Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 Id : 23, {_}: multiply identity ?64 =<= multiply (inverse ?65) (multiply ?65 ?64) [65, 64] by Super 21 with 3 at 1,2 Id : 384, {_}: ?582 =<= multiply (inverse ?583) (multiply ?583 ?582) [583, 582] by Demod 23 with 2 at 2 Id : 386, {_}: ?587 =<= multiply (inverse (inverse ?587)) identity [587] by Super 384 with 3 at 2,3 Id : 27, {_}: ?64 =<= multiply (inverse ?65) (multiply ?65 ?64) [65, 64] by Demod 23 with 2 at 2 Id : 392, {_}: multiply ?609 ?610 =<= multiply (inverse (inverse ?609)) ?610 [610, 609] by Super 384 with 27 at 2,3 Id : 523, {_}: ?587 =<= multiply ?587 identity [587] by Demod 386 with 392 at 3 Id : 808, {_}: greatest_lower_bound ?1077 (least_upper_bound ?1078 ?1077) =>= ?1077 [1078, 1077] by Super 104 with 6 at 2,2 Id : 815, {_}: greatest_lower_bound ?1097 (least_upper_bound ?1098 (least_upper_bound ?1099 ?1097)) =>= ?1097 [1099, 1098, 1097] by Super 808 with 8 at 2,2 Id : 2293, {_}: least_upper_bound identity (multiply a b) === least_upper_bound identity (multiply a b) [] by Demod 2292 with 815 at 2 Id : 2292, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound a (least_upper_bound identity (multiply a b)))) =>= least_upper_bound identity (multiply a b) [] by Demod 2291 with 8 at 2,2,2 Id : 2291, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound (least_upper_bound a identity) (multiply a b))) =>= least_upper_bound identity (multiply a b) [] by Demod 2290 with 6 at 2,2,2 Id : 2290, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound a identity))) =>= least_upper_bound identity (multiply a b) [] by Demod 2289 with 6 at 2,2,2,2 Id : 2289, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity a))) =>= least_upper_bound identity (multiply a b) [] by Demod 521 with 523 at 2,2,2,2,2 Id : 521, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity)))) =>= least_upper_bound identity (multiply a b) [] by Demod 520 with 6 at 3 Id : 520, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity)))) =>= least_upper_bound (multiply a b) identity [] by Demod 519 with 8 at 2,2 Id : 519, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound b (multiply a b)) (least_upper_bound identity (multiply a identity))) =>= least_upper_bound (multiply a b) identity [] by Demod 518 with 6 at 2,2,2 Id : 518, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound b (multiply a b)) (least_upper_bound (multiply a identity) identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 517 with 2 at 2,2,2,2 Id : 517, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound b (multiply a b)) (least_upper_bound (multiply a identity) (multiply identity identity))) =>= least_upper_bound (multiply a b) identity [] by Demod 516 with 15 at 2,2,2 Id : 516, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound b (multiply a b)) (multiply (least_upper_bound a identity) identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 515 with 6 at 1,2,2 Id : 515, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound (multiply a b) b) (multiply (least_upper_bound a identity) identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 514 with 2 at 2,1,2,2 Id : 514, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (multiply (least_upper_bound a identity) identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 513 with 15 at 1,2,2 Id : 513, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 512 with 13 at 2,2 Id : 512, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 1 with 6 at 1,2 Id : 1, {_}: greatest_lower_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by prove_p22b % SZS output end CNFRefutation for GRP185-3.p 18759: solved GRP185-3.p in 0.516031 using lpo FINAL WATCH: 0.5 CPU 1.1 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP185-4.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 18764 TreeLimitedRun: ---------------------------------------------------------- 18766: Facts: 18766: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 18766: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 18766: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 18766: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 18766: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 18766: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 18766: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 18766: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 18766: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 18766: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 18766: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 18766: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 18766: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 18766: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 18766: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 18766: Id : 17, {_}: inverse identity =>= identity [] by p22b_1 18766: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22b_2 ?51 18766: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p22b_3 ?53 ?54 18766: Goal: 18766: Id : 1, {_}: greatest_lower_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by prove_p22b Statistics : Max weight : 19 Found proof, 0.713810s % SZS status Unsatisfiable for GRP185-4.p % SZS output start CNFRefutation for GRP185-4.p Id : 107, {_}: greatest_lower_bound ?251 (least_upper_bound ?251 ?252) =>= ?251 [252, 251] by glb_absorbtion ?251 ?252 Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22b_2 ?51 Id : 17, {_}: inverse identity =>= identity [] by p22b_1 Id : 336, {_}: inverse (multiply ?514 ?515) =?= multiply (inverse ?515) (inverse ?514) [515, 514] by p22b_3 ?514 ?515 Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 Id : 337, {_}: inverse (multiply identity ?517) =<= multiply (inverse ?517) identity [517] by Super 336 with 17 at 2,3 Id : 373, {_}: inverse ?572 =<= multiply (inverse ?572) identity [572] by Demod 337 with 2 at 1,2 Id : 375, {_}: inverse (inverse ?575) =<= multiply ?575 identity [575] by Super 373 with 18 at 1,3 Id : 387, {_}: ?575 =<= multiply ?575 identity [575] by Demod 375 with 18 at 2 Id : 696, {_}: greatest_lower_bound ?874 (least_upper_bound ?875 ?874) =>= ?874 [875, 874] by Super 107 with 6 at 2,2 Id : 703, {_}: greatest_lower_bound ?894 (least_upper_bound ?895 (least_upper_bound ?896 ?894)) =>= ?894 [896, 895, 894] by Super 696 with 8 at 2,2 Id : 1864, {_}: least_upper_bound identity (multiply a b) === least_upper_bound identity (multiply a b) [] by Demod 1863 with 703 at 2 Id : 1863, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound a (least_upper_bound identity (multiply a b)))) =>= least_upper_bound identity (multiply a b) [] by Demod 1862 with 8 at 2,2,2 Id : 1862, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound (least_upper_bound a identity) (multiply a b))) =>= least_upper_bound identity (multiply a b) [] by Demod 1861 with 6 at 2,2,2 Id : 1861, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound a identity))) =>= least_upper_bound identity (multiply a b) [] by Demod 1860 with 6 at 2,2,2,2 Id : 1860, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity a))) =>= least_upper_bound identity (multiply a b) [] by Demod 400 with 387 at 2,2,2,2,2 Id : 400, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity)))) =>= least_upper_bound identity (multiply a b) [] by Demod 399 with 6 at 3 Id : 399, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity)))) =>= least_upper_bound (multiply a b) identity [] by Demod 398 with 8 at 2,2 Id : 398, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound b (multiply a b)) (least_upper_bound identity (multiply a identity))) =>= least_upper_bound (multiply a b) identity [] by Demod 397 with 6 at 2,2,2 Id : 397, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound b (multiply a b)) (least_upper_bound (multiply a identity) identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 396 with 2 at 2,2,2,2 Id : 396, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound b (multiply a b)) (least_upper_bound (multiply a identity) (multiply identity identity))) =>= least_upper_bound (multiply a b) identity [] by Demod 395 with 15 at 2,2,2 Id : 395, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound b (multiply a b)) (multiply (least_upper_bound a identity) identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 394 with 6 at 1,2,2 Id : 394, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound (multiply a b) b) (multiply (least_upper_bound a identity) identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 393 with 2 at 2,1,2,2 Id : 393, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (multiply (least_upper_bound a identity) identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 392 with 15 at 1,2,2 Id : 392, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 391 with 13 at 2,2 Id : 391, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 1 with 6 at 1,2 Id : 1, {_}: greatest_lower_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by prove_p22b % SZS output end CNFRefutation for GRP185-4.p 18768: solved GRP185-4.p in 0.316019 using lpo FINAL WATCH: 0.3 CPU 0.8 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP186-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 18773 TreeLimitedRun: ---------------------------------------------------------- 18775: Facts: 18775: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 18775: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 18775: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 18775: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 18775: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 18775: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 18775: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 18775: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 18775: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 18775: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 18775: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 18775: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 18775: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 18775: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 18775: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 18775: Goal: 18775: Id : 1, {_}: least_upper_bound (multiply a b) identity =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by prove_p23 % SZS status Timeout for GRP186-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP186-2.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 18840 TreeLimitedRun: ---------------------------------------------------------- 18842: Facts: 18842: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 18842: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 18842: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 18842: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 18842: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 18842: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 18842: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 18842: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 18842: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 18842: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 18842: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 18842: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 18842: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 18842: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 18842: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 18842: Id : 17, {_}: inverse identity =>= identity [] by p23_1 18842: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p23_2 ?51 18842: Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p23_3 ?53 ?54 18842: Goal: 18842: Id : 1, {_}: least_upper_bound (multiply a b) identity =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by prove_p23 % SZS status Timeout for GRP186-2.p FINAL WATCH: 199.8 CPU 100.2 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP187-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 18912 TreeLimitedRun: ---------------------------------------------------------- 18914: Facts: 18914: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 18914: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 18914: Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 18914: Id : 5, {_}: greatest_lower_bound ?10 ?11 =<->= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 18914: Id : 6, {_}: least_upper_bound ?13 ?14 =<->= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 18914: Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 18914: Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 18914: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 18914: Id : 10, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 18914: Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 18914: Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 18914: Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 18914: Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 18914: Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 18914: Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 18914: Id : 17, {_}: greatest_lower_bound (least_upper_bound a (inverse a)) (least_upper_bound b (inverse b)) =>= identity [] by p33_1 18914: Goal: 18914: Id : 1, {_}: multiply a b =<= multiply b a [] by prove_p33 % SZS status Timeout for GRP187-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP196-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 18996 TreeLimitedRun: ---------------------------------------------------------- 18998: Facts: 18998: Id : 2, {_}: multiply (multiply ?2 ?3) ?4 =?= multiply ?2 (multiply ?3 ?4) [4, 3, 2] by associativity_of_multiply ?2 ?3 ?4 18998: Id : 3, {_}: multiply ?6 (multiply ?7 (multiply ?7 ?7)) =?= multiply ?7 (multiply ?7 (multiply ?7 ?6)) [7, 6] by condition ?6 ?7 18998: Goal: 18998: Id : 1, {_}: multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a b)))))))))))))))) =>= multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply b (multiply b (multiply b (multiply b (multiply b (multiply b (multiply b (multiply b b)))))))))))))))) [] by prove_this % SZS status Timeout for GRP196-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP200-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19056 TreeLimitedRun: ---------------------------------------------------------- 19058: Facts: 19058: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 19058: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 19058: Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 19058: Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 19058: Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 19058: Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 19058: Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 19058: Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 19058: Id : 10, {_}: multiply (multiply ?22 (multiply ?23 ?24)) ?22 =?= multiply (multiply ?22 ?23) (multiply ?24 ?22) [24, 23, 22] by moufang1 ?22 ?23 ?24 19058: Goal: 19058: Id : 1, {_}: multiply (multiply (multiply a b) c) b =>= multiply a (multiply b (multiply c b)) [] by prove_moufang2 % SZS status Timeout for GRP200-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP201-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19127 TreeLimitedRun: ---------------------------------------------------------- 19129: Facts: 19129: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 19129: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 19129: Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 19129: Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 19129: Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 19129: Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 19129: Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 19129: Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 19129: Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?24) ?23 =?= multiply ?22 (multiply ?23 (multiply ?24 ?23)) [24, 23, 22] by moufang2 ?22 ?23 ?24 19129: Goal: 19129: Id : 1, {_}: multiply (multiply (multiply a b) a) c =>= multiply a (multiply b (multiply a c)) [] by prove_moufang3 Statistics : Max weight : 15 Found proof, 9.556231s % SZS status Unsatisfiable for GRP201-1.p % SZS output start CNFRefutation for GRP201-1.p Id : 22, {_}: left_division ?48 (multiply ?48 ?49) =>= ?49 [49, 48] by left_division_multiply ?48 ?49 Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?24) ?23 =>= multiply ?22 (multiply ?23 (multiply ?24 ?23)) [24, 23, 22] by moufang2 ?22 ?23 ?24 Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 Id : 54, {_}: multiply (multiply (multiply ?119 ?120) ?121) ?120 =>= multiply ?119 (multiply ?120 (multiply ?121 ?120)) [121, 120, 119] by moufang2 ?119 ?120 ?121 Id : 55, {_}: multiply (multiply ?123 ?124) ?123 =<= multiply identity (multiply ?123 (multiply ?124 ?123)) [124, 123] by Super 54 with 2 at 1,1,2 Id : 71, {_}: multiply (multiply ?123 ?124) ?123 =>= multiply ?123 (multiply ?124 ?123) [124, 123] by Demod 55 with 2 at 3 Id : 483, {_}: right_division (multiply ?676 (multiply ?677 (multiply ?678 ?677))) ?677 =>= multiply (multiply ?676 ?677) ?678 [678, 677, 676] by Super 7 with 10 at 1,2 Id : 488, {_}: right_division (multiply ?694 (multiply ?695 identity)) ?695 =>= multiply (multiply ?694 ?695) (left_inverse ?695) [695, 694] by Super 483 with 9 at 2,2,1,2 Id : 512, {_}: right_division (multiply ?694 ?695) ?695 =<= multiply (multiply ?694 ?695) (left_inverse ?695) [695, 694] by Demod 488 with 3 at 2,1,2 Id : 513, {_}: ?694 =<= multiply (multiply ?694 ?695) (left_inverse ?695) [695, 694] by Demod 512 with 7 at 2 Id : 746, {_}: left_division (multiply ?1012 ?1013) ?1012 =>= left_inverse ?1013 [1013, 1012] by Super 5 with 513 at 2,2 Id : 749, {_}: left_division ?1019 ?1020 =<= left_inverse (left_division ?1020 ?1019) [1020, 1019] by Super 746 with 4 at 1,2 Id : 598, {_}: left_division (multiply ?806 ?807) ?806 =>= left_inverse ?807 [807, 806] by Super 5 with 513 at 2,2 Id : 606, {_}: ?834 =<= multiply (multiply ?834 ?835) (left_inverse ?835) [835, 834] by Demod 512 with 7 at 2 Id : 612, {_}: right_division ?849 ?850 =<= multiply ?849 (left_inverse ?850) [850, 849] by Super 606 with 6 at 1,3 Id : 693, {_}: right_division (multiply (left_inverse ?967) ?968) ?967 =<= multiply (left_inverse ?967) (multiply ?968 (left_inverse ?967)) [968, 967] by Super 71 with 612 at 2 Id : 710, {_}: right_division (multiply (left_inverse ?967) ?968) ?967 =<= multiply (left_inverse ?967) (right_division ?968 ?967) [968, 967] by Demod 693 with 612 at 2,3 Id : 241, {_}: right_division (multiply ?328 (multiply ?329 ?328)) ?328 =>= multiply ?328 ?329 [329, 328] by Super 7 with 71 at 1,2 Id : 1677, {_}: right_division (multiply (left_inverse ?2005) (multiply ?2005 (multiply ?2006 ?2005))) ?2005 =>= multiply (left_inverse ?2005) (multiply ?2005 ?2006) [2006, 2005] by Super 710 with 241 at 2,3 Id : 53, {_}: right_division (multiply ?115 (multiply ?116 (multiply ?117 ?116))) ?116 =>= multiply (multiply ?115 ?116) ?117 [117, 116, 115] by Super 7 with 10 at 1,2 Id : 1715, {_}: multiply (multiply (left_inverse ?2005) ?2005) ?2006 =>= multiply (left_inverse ?2005) (multiply ?2005 ?2006) [2006, 2005] by Demod 1677 with 53 at 2 Id : 1716, {_}: multiply identity ?2006 =<= multiply (left_inverse ?2005) (multiply ?2005 ?2006) [2005, 2006] by Demod 1715 with 9 at 1,2 Id : 1717, {_}: ?2006 =<= multiply (left_inverse ?2005) (multiply ?2005 ?2006) [2005, 2006] by Demod 1716 with 2 at 2 Id : 2015, {_}: left_division ?2492 (left_inverse ?2493) =>= left_inverse (multiply ?2493 ?2492) [2493, 2492] by Super 598 with 1717 at 1,2 Id : 2124, {_}: left_division (left_inverse ?2600) ?2601 =>= multiply ?2600 ?2601 [2601, 2600] by Super 5 with 1717 at 2,2 Id : 40, {_}: left_division ?91 identity =>= right_inverse ?91 [91] by Super 5 with 8 at 2,2 Id : 28, {_}: left_division (right_division ?62 ?63) ?62 =>= ?63 [63, 62] by Super 5 with 6 at 2,2 Id : 176, {_}: ?256 =<= right_inverse (right_division identity ?256) [256] by Super 40 with 28 at 2 Id : 45, {_}: right_division identity ?99 =>= left_inverse ?99 [99] by Super 7 with 9 at 1,2 Id : 183, {_}: ?256 =<= right_inverse (left_inverse ?256) [256] by Demod 176 with 45 at 1,3 Id : 246, {_}: multiply (multiply ?343 ?344) ?343 =>= multiply ?343 (multiply ?344 ?343) [344, 343] by Demod 55 with 2 at 3 Id : 251, {_}: multiply identity ?356 =<= multiply ?356 (multiply (right_inverse ?356) ?356) [356] by Super 246 with 8 at 1,2 Id : 264, {_}: ?356 =<= multiply ?356 (multiply (right_inverse ?356) ?356) [356] by Demod 251 with 2 at 2 Id : 370, {_}: left_division ?577 ?577 =<= multiply (right_inverse ?577) ?577 [577] by Super 5 with 264 at 2,2 Id : 24, {_}: left_division ?53 ?53 =>= identity [53] by Super 22 with 3 at 2,2 Id : 382, {_}: identity =<= multiply (right_inverse ?577) ?577 [577] by Demod 370 with 24 at 2 Id : 398, {_}: right_division identity ?598 =>= right_inverse ?598 [598] by Super 7 with 382 at 1,2 Id : 416, {_}: left_inverse ?598 =<= right_inverse ?598 [598] by Demod 398 with 45 at 2 Id : 429, {_}: ?256 =<= left_inverse (left_inverse ?256) [256] by Demod 183 with 416 at 3 Id : 2126, {_}: left_division ?2605 ?2606 =<= multiply (left_inverse ?2605) ?2606 [2606, 2605] by Super 2124 with 429 at 1,2 Id : 2223, {_}: multiply (multiply (left_division ?2711 ?2712) ?2713) ?2712 =<= multiply (left_inverse ?2711) (multiply ?2712 (multiply ?2713 ?2712)) [2713, 2712, 2711] by Super 10 with 2126 at 1,1,2 Id : 2293, {_}: multiply (multiply (left_division ?2711 ?2712) ?2713) ?2712 =>= left_division ?2711 (multiply ?2712 (multiply ?2713 ?2712)) [2713, 2712, 2711] by Demod 2223 with 2126 at 3 Id : 2127, {_}: left_division (left_division ?2608 ?2609) ?2610 =<= multiply (left_division ?2609 ?2608) ?2610 [2610, 2609, 2608] by Super 2124 with 749 at 1,2 Id : 6502, {_}: multiply (left_division (left_division ?2712 ?2711) ?2713) ?2712 =>= left_division ?2711 (multiply ?2712 (multiply ?2713 ?2712)) [2713, 2711, 2712] by Demod 2293 with 2127 at 1,2 Id : 6503, {_}: left_division (left_division ?2713 (left_division ?2712 ?2711)) ?2712 =>= left_division ?2711 (multiply ?2712 (multiply ?2713 ?2712)) [2711, 2712, 2713] by Demod 6502 with 2127 at 2 Id : 6511, {_}: left_division ?7200 (multiply (left_inverse ?7201) (multiply ?7202 (left_inverse ?7201))) =>= left_inverse (multiply ?7201 (left_division ?7202 (left_division (left_inverse ?7201) ?7200))) [7202, 7201, 7200] by Super 2015 with 6503 at 2 Id : 6569, {_}: left_division ?7200 (multiply (left_inverse ?7201) (right_division ?7202 ?7201)) =<= left_inverse (multiply ?7201 (left_division ?7202 (left_division (left_inverse ?7201) ?7200))) [7202, 7201, 7200] by Demod 6511 with 612 at 2,2,2 Id : 6570, {_}: left_division ?7200 (left_division ?7201 (right_division ?7202 ?7201)) =<= left_inverse (multiply ?7201 (left_division ?7202 (left_division (left_inverse ?7201) ?7200))) [7202, 7201, 7200] by Demod 6569 with 2126 at 2,2 Id : 2205, {_}: right_division (left_division ?967 ?968) ?967 =<= multiply (left_inverse ?967) (right_division ?968 ?967) [968, 967] by Demod 710 with 2126 at 1,2 Id : 2206, {_}: right_division (left_division ?967 ?968) ?967 =<= left_division ?967 (right_division ?968 ?967) [968, 967] by Demod 2205 with 2126 at 3 Id : 6571, {_}: left_division ?7200 (right_division (left_division ?7201 ?7202) ?7201) =<= left_inverse (multiply ?7201 (left_division ?7202 (left_division (left_inverse ?7201) ?7200))) [7202, 7201, 7200] by Demod 6570 with 2206 at 2,2 Id : 2011, {_}: left_division (left_inverse ?2480) ?2481 =>= multiply ?2480 ?2481 [2481, 2480] by Super 5 with 1717 at 2,2 Id : 6572, {_}: left_division ?7200 (right_division (left_division ?7201 ?7202) ?7201) =<= left_inverse (multiply ?7201 (left_division ?7202 (multiply ?7201 ?7200))) [7202, 7201, 7200] by Demod 6571 with 2011 at 2,2,1,3 Id : 772, {_}: right_division ?1046 (left_division ?1047 ?1048) =<= multiply ?1046 (left_division ?1048 ?1047) [1048, 1047, 1046] by Super 612 with 749 at 2,3 Id : 6573, {_}: left_division ?7200 (right_division (left_division ?7201 ?7202) ?7201) =<= left_inverse (right_division ?7201 (left_division (multiply ?7201 ?7200) ?7202)) [7202, 7201, 7200] by Demod 6572 with 772 at 1,3 Id : 2164, {_}: left_inverse (multiply ?2655 (left_inverse ?2656)) =>= multiply ?2656 (left_inverse ?2655) [2656, 2655] by Super 2011 with 2015 at 2 Id : 2175, {_}: left_inverse (right_division ?2655 ?2656) =<= multiply ?2656 (left_inverse ?2655) [2656, 2655] by Demod 2164 with 612 at 1,2 Id : 2176, {_}: left_inverse (right_division ?2655 ?2656) =>= right_division ?2656 ?2655 [2656, 2655] by Demod 2175 with 612 at 3 Id : 6574, {_}: left_division ?7200 (right_division (left_division ?7201 ?7202) ?7201) =>= right_division (left_division (multiply ?7201 ?7200) ?7202) ?7201 [7202, 7201, 7200] by Demod 6573 with 2176 at 3 Id : 19627, {_}: left_division (right_division (left_division ?20029 ?20030) ?20029) ?20031 =<= left_inverse (right_division (left_division (multiply ?20029 ?20031) ?20030) ?20029) [20031, 20030, 20029] by Super 749 with 6574 at 1,3 Id : 30606, {_}: left_division (right_division (left_division ?32485 ?32486) ?32485) ?32487 =>= right_division ?32485 (left_division (multiply ?32485 ?32487) ?32486) [32487, 32486, 32485] by Demod 19627 with 2176 at 3 Id : 30615, {_}: left_division (right_division (left_inverse (multiply ?32520 ?32521)) ?32521) ?32522 =>= right_division ?32521 (left_division (multiply ?32521 ?32522) (left_inverse ?32520)) [32522, 32521, 32520] by Super 30606 with 2015 at 1,1,2 Id : 2232, {_}: right_division (left_inverse ?2745) ?2746 =<= left_division ?2745 (left_inverse ?2746) [2746, 2745] by Super 612 with 2126 at 3 Id : 2273, {_}: right_division (left_inverse ?2745) ?2746 =>= left_inverse (multiply ?2746 ?2745) [2746, 2745] by Demod 2232 with 2015 at 3 Id : 30901, {_}: left_division (left_inverse (multiply ?32521 (multiply ?32520 ?32521))) ?32522 =>= right_division ?32521 (left_division (multiply ?32521 ?32522) (left_inverse ?32520)) [32522, 32520, 32521] by Demod 30615 with 2273 at 1,2 Id : 30902, {_}: multiply (multiply ?32521 (multiply ?32520 ?32521)) ?32522 =<= right_division ?32521 (left_division (multiply ?32521 ?32522) (left_inverse ?32520)) [32522, 32520, 32521] by Demod 30901 with 2011 at 2 Id : 30903, {_}: multiply (multiply ?32521 (multiply ?32520 ?32521)) ?32522 =<= right_division ?32521 (left_inverse (multiply ?32520 (multiply ?32521 ?32522))) [32522, 32520, 32521] by Demod 30902 with 2015 at 2,3 Id : 597, {_}: right_division ?803 (left_inverse ?804) =>= multiply ?803 ?804 [804, 803] by Super 7 with 513 at 1,2 Id : 30904, {_}: multiply (multiply ?32521 (multiply ?32520 ?32521)) ?32522 =>= multiply ?32521 (multiply ?32520 (multiply ?32521 ?32522)) [32522, 32520, 32521] by Demod 30903 with 597 at 3 Id : 42765, {_}: multiply a (multiply b (multiply a c)) =?= multiply a (multiply b (multiply a c)) [] by Demod 42764 with 30904 at 2 Id : 42764, {_}: multiply (multiply a (multiply b a)) c =>= multiply a (multiply b (multiply a c)) [] by Demod 1 with 71 at 1,2 Id : 1, {_}: multiply (multiply (multiply a b) a) c =>= multiply a (multiply b (multiply a c)) [] by prove_moufang3 % SZS output end CNFRefutation for GRP201-1.p 19130: solved GRP201-1.p in 4.764297 using kbo FINAL WATCH: 4.8 CPU 9.6 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP202-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19147 TreeLimitedRun: ---------------------------------------------------------- 19149: Facts: 19149: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 19149: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 19149: Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 19149: Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 19149: Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 19149: Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 19149: Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 19149: Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 19149: Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?22) ?24 =?= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by moufang3 ?22 ?23 ?24 19149: Goal: 19149: Id : 1, {_}: multiply (multiply a (multiply b c)) a =>= multiply (multiply a b) (multiply c a) [] by prove_moufang1 Statistics : Max weight : 20 Found proof, 12.208106s % SZS status Unsatisfiable for GRP202-1.p % SZS output start CNFRefutation for GRP202-1.p Id : 56, {_}: multiply (multiply (multiply ?126 ?127) ?126) ?128 =>= multiply ?126 (multiply ?127 (multiply ?126 ?128)) [128, 127, 126] by moufang3 ?126 ?127 ?128 Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?22) ?24 =>= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by moufang3 ?22 ?23 ?24 Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 Id : 53, {_}: multiply ?115 (multiply ?116 (multiply ?115 identity)) =>= multiply (multiply ?115 ?116) ?115 [116, 115] by Super 3 with 10 at 2 Id : 70, {_}: multiply ?115 (multiply ?116 ?115) =<= multiply (multiply ?115 ?116) ?115 [116, 115] by Demod 53 with 3 at 2,2,2 Id : 564, {_}: right_division (multiply ?710 (multiply ?711 ?710)) ?710 =>= multiply ?710 ?711 [711, 710] by Super 7 with 70 at 1,2 Id : 568, {_}: right_division (multiply ?720 ?721) ?720 =<= multiply ?720 (right_division ?721 ?720) [721, 720] by Super 564 with 6 at 2,1,2 Id : 55, {_}: right_division (multiply ?122 (multiply ?123 (multiply ?122 ?124))) ?124 =>= multiply (multiply ?122 ?123) ?122 [124, 123, 122] by Super 7 with 10 at 1,2 Id : 1887, {_}: right_division (multiply ?2527 (multiply ?2528 (multiply ?2527 ?2529))) ?2529 =>= multiply ?2527 (multiply ?2528 ?2527) [2529, 2528, 2527] by Demod 55 with 70 at 3 Id : 51, {_}: multiply ?108 (multiply ?109 (multiply ?108 (right_inverse (multiply (multiply ?108 ?109) ?108)))) =>= identity [109, 108] by Super 8 with 10 at 2 Id : 282, {_}: multiply ?401 (multiply ?402 (multiply ?401 (right_inverse (multiply ?401 (multiply ?402 ?401))))) =>= identity [402, 401] by Demod 51 with 70 at 1,2,2,2,2 Id : 287, {_}: multiply (right_inverse ?414) (multiply ?414 (multiply (right_inverse ?414) (right_inverse (multiply (right_inverse ?414) identity)))) =>= identity [414] by Super 282 with 8 at 2,1,2,2,2,2 Id : 316, {_}: multiply (right_inverse ?414) (multiply ?414 (multiply (right_inverse ?414) (right_inverse (right_inverse ?414)))) =>= identity [414] by Demod 287 with 3 at 1,2,2,2,2 Id : 317, {_}: multiply (right_inverse ?414) (multiply ?414 identity) =>= identity [414] by Demod 316 with 8 at 2,2,2 Id : 318, {_}: multiply (right_inverse ?414) ?414 =>= identity [414] by Demod 317 with 3 at 2,2 Id : 347, {_}: right_division identity ?453 =>= right_inverse ?453 [453] by Super 7 with 318 at 1,2 Id : 45, {_}: right_division identity ?99 =>= left_inverse ?99 [99] by Super 7 with 9 at 1,2 Id : 368, {_}: left_inverse ?453 =<= right_inverse ?453 [453] by Demod 347 with 45 at 2 Id : 374, {_}: multiply ?18 (left_inverse ?18) =>= identity [18] by Demod 8 with 368 at 2,2 Id : 1893, {_}: right_division (multiply ?2550 (multiply ?2551 identity)) (left_inverse ?2550) =>= multiply ?2550 (multiply ?2551 ?2550) [2551, 2550] by Super 1887 with 374 at 2,2,1,2 Id : 1940, {_}: right_division (multiply ?2550 ?2551) (left_inverse ?2550) =>= multiply ?2550 (multiply ?2551 ?2550) [2551, 2550] by Demod 1893 with 3 at 2,1,2 Id : 2124, {_}: right_division (multiply (left_inverse ?2786) (multiply ?2786 ?2787)) (left_inverse ?2786) =>= multiply (left_inverse ?2786) (multiply ?2786 (multiply ?2787 ?2786)) [2787, 2786] by Super 568 with 1940 at 2,3 Id : 52, {_}: multiply ?111 (multiply ?112 (multiply ?111 (left_division (multiply (multiply ?111 ?112) ?111) ?113))) =>= ?113 [113, 112, 111] by Super 4 with 10 at 2 Id : 618, {_}: multiply ?798 (multiply ?799 (multiply ?798 (left_division (multiply ?798 (multiply ?799 ?798)) ?800))) =>= ?800 [800, 799, 798] by Demod 52 with 70 at 1,2,2,2,2 Id : 623, {_}: multiply ?816 (multiply (left_inverse ?816) (multiply ?816 (left_division (multiply ?816 identity) ?817))) =>= ?817 [817, 816] by Super 618 with 9 at 2,1,2,2,2,2 Id : 660, {_}: multiply ?816 (multiply (left_inverse ?816) (multiply ?816 (left_division ?816 ?817))) =>= ?817 [817, 816] by Demod 623 with 3 at 1,2,2,2,2 Id : 661, {_}: multiply ?816 (multiply (left_inverse ?816) ?817) =>= ?817 [817, 816] by Demod 660 with 4 at 2,2,2 Id : 755, {_}: left_division ?1007 ?1008 =<= multiply (left_inverse ?1007) ?1008 [1008, 1007] by Super 5 with 661 at 2,2 Id : 2152, {_}: right_division (left_division ?2786 (multiply ?2786 ?2787)) (left_inverse ?2786) =<= multiply (left_inverse ?2786) (multiply ?2786 (multiply ?2787 ?2786)) [2787, 2786] by Demod 2124 with 755 at 1,2 Id : 2153, {_}: right_division ?2787 (left_inverse ?2786) =<= multiply (left_inverse ?2786) (multiply ?2786 (multiply ?2787 ?2786)) [2786, 2787] by Demod 2152 with 5 at 1,2 Id : 2154, {_}: right_division ?2787 (left_inverse ?2786) =<= left_division ?2786 (multiply ?2786 (multiply ?2787 ?2786)) [2786, 2787] by Demod 2153 with 755 at 3 Id : 2155, {_}: right_division ?2787 (left_inverse ?2786) =>= multiply ?2787 ?2786 [2786, 2787] by Demod 2154 with 5 at 3 Id : 933, {_}: right_division (left_division ?1218 ?1219) ?1219 =>= left_inverse ?1218 [1219, 1218] by Super 7 with 755 at 1,2 Id : 28, {_}: left_division (right_division ?62 ?63) ?62 =>= ?63 [63, 62] by Super 5 with 6 at 2,2 Id : 936, {_}: right_division ?1226 ?1227 =<= left_inverse (right_division ?1227 ?1226) [1227, 1226] by Super 933 with 28 at 1,2 Id : 2791, {_}: multiply (multiply ?3616 ?3617) ?3618 =<= multiply ?3617 (multiply (left_division ?3617 ?3616) (multiply ?3617 ?3618)) [3618, 3617, 3616] by Super 56 with 4 at 1,1,2 Id : 2794, {_}: multiply (multiply ?3626 ?3627) (left_division ?3627 ?3628) =>= multiply ?3627 (multiply (left_division ?3627 ?3626) ?3628) [3628, 3627, 3626] by Super 2791 with 4 at 2,2,3 Id : 2224, {_}: right_division (left_inverse ?2889) ?2890 =>= left_inverse (multiply ?2890 ?2889) [2890, 2889] by Super 936 with 2155 at 1,3 Id : 2281, {_}: left_inverse (multiply (left_inverse ?2961) ?2962) =>= multiply (left_inverse ?2962) ?2961 [2962, 2961] by Super 2155 with 2224 at 2 Id : 2292, {_}: left_inverse (left_division ?2961 ?2962) =<= multiply (left_inverse ?2962) ?2961 [2962, 2961] by Demod 2281 with 755 at 1,2 Id : 2293, {_}: left_inverse (left_division ?2961 ?2962) =>= left_division ?2962 ?2961 [2962, 2961] by Demod 2292 with 755 at 3 Id : 2455, {_}: right_division ?3131 (left_division ?3132 ?3133) =<= multiply ?3131 (left_division ?3133 ?3132) [3133, 3132, 3131] by Super 2155 with 2293 at 2,2 Id : 7661, {_}: right_division (multiply ?3626 ?3627) (left_division ?3628 ?3627) =<= multiply ?3627 (multiply (left_division ?3627 ?3626) ?3628) [3628, 3627, 3626] by Demod 2794 with 2455 at 2 Id : 763, {_}: multiply ?1028 (multiply (left_inverse ?1028) ?1029) =>= ?1029 [1029, 1028] by Demod 660 with 4 at 2,2,2 Id : 767, {_}: multiply ?1038 ?1039 =<= left_division (left_inverse ?1038) ?1039 [1039, 1038] by Super 763 with 4 at 2,2 Id : 2451, {_}: multiply (left_division ?3117 ?3118) ?3119 =>= left_division (left_division ?3118 ?3117) ?3119 [3119, 3118, 3117] by Super 767 with 2293 at 1,3 Id : 7662, {_}: right_division (multiply ?3626 ?3627) (left_division ?3628 ?3627) =<= multiply ?3627 (left_division (left_division ?3626 ?3627) ?3628) [3628, 3627, 3626] by Demod 7661 with 2451 at 2,3 Id : 7663, {_}: right_division (multiply ?3626 ?3627) (left_division ?3628 ?3627) =>= right_division ?3627 (left_division ?3628 (left_division ?3626 ?3627)) [3628, 3627, 3626] by Demod 7662 with 2455 at 3 Id : 7677, {_}: right_division (left_division ?8598 ?8599) (multiply ?8600 ?8599) =<= left_inverse (right_division ?8599 (left_division ?8598 (left_division ?8600 ?8599))) [8600, 8599, 8598] by Super 936 with 7663 at 1,3 Id : 7730, {_}: right_division (left_division ?8598 ?8599) (multiply ?8600 ?8599) =<= right_division (left_division ?8598 (left_division ?8600 ?8599)) ?8599 [8600, 8599, 8598] by Demod 7677 with 936 at 3 Id : 21106, {_}: right_division (left_division ?21413 (left_inverse ?21414)) (multiply ?21415 (left_inverse ?21414)) =>= multiply (left_division ?21413 (left_division ?21415 (left_inverse ?21414))) ?21414 [21415, 21414, 21413] by Super 2155 with 7730 at 2 Id : 2228, {_}: right_division ?2901 (left_inverse ?2902) =>= multiply ?2901 ?2902 [2902, 2901] by Demod 2154 with 5 at 3 Id : 40, {_}: left_division ?91 identity =>= right_inverse ?91 [91] by Super 5 with 8 at 2,2 Id : 177, {_}: ?263 =<= right_inverse (right_division identity ?263) [263] by Super 40 with 28 at 2 Id : 184, {_}: ?263 =<= right_inverse (left_inverse ?263) [263] by Demod 177 with 45 at 1,3 Id : 377, {_}: ?263 =<= left_inverse (left_inverse ?263) [263] by Demod 184 with 368 at 3 Id : 2230, {_}: right_division ?2906 ?2907 =<= multiply ?2906 (left_inverse ?2907) [2907, 2906] by Super 2228 with 377 at 2,2 Id : 2325, {_}: left_division ?3010 (left_inverse ?3011) =>= right_division (left_inverse ?3010) ?3011 [3011, 3010] by Super 755 with 2230 at 3 Id : 2416, {_}: left_division ?3010 (left_inverse ?3011) =>= left_inverse (multiply ?3011 ?3010) [3011, 3010] by Demod 2325 with 2224 at 3 Id : 21218, {_}: right_division (left_inverse (multiply ?21414 ?21413)) (multiply ?21415 (left_inverse ?21414)) =>= multiply (left_division ?21413 (left_division ?21415 (left_inverse ?21414))) ?21414 [21415, 21413, 21414] by Demod 21106 with 2416 at 1,2 Id : 21219, {_}: right_division (left_inverse (multiply ?21414 ?21413)) (right_division ?21415 ?21414) =<= multiply (left_division ?21413 (left_division ?21415 (left_inverse ?21414))) ?21414 [21415, 21413, 21414] by Demod 21218 with 2230 at 2,2 Id : 21220, {_}: left_inverse (multiply (right_division ?21415 ?21414) (multiply ?21414 ?21413)) =<= multiply (left_division ?21413 (left_division ?21415 (left_inverse ?21414))) ?21414 [21413, 21414, 21415] by Demod 21219 with 2224 at 2 Id : 954, {_}: multiply (right_division ?1240 ?1241) ?1242 =>= left_division (right_division ?1241 ?1240) ?1242 [1242, 1241, 1240] by Super 767 with 936 at 1,3 Id : 21221, {_}: left_inverse (left_division (right_division ?21414 ?21415) (multiply ?21414 ?21413)) =<= multiply (left_division ?21413 (left_division ?21415 (left_inverse ?21414))) ?21414 [21413, 21415, 21414] by Demod 21220 with 954 at 1,2 Id : 21222, {_}: left_division (multiply ?21414 ?21413) (right_division ?21414 ?21415) =<= multiply (left_division ?21413 (left_division ?21415 (left_inverse ?21414))) ?21414 [21415, 21413, 21414] by Demod 21221 with 2293 at 2 Id : 21223, {_}: left_division (multiply ?21414 ?21413) (right_division ?21414 ?21415) =<= multiply (left_division ?21413 (left_inverse (multiply ?21414 ?21415))) ?21414 [21415, 21413, 21414] by Demod 21222 with 2416 at 2,1,3 Id : 21224, {_}: left_division (multiply ?21414 ?21413) (right_division ?21414 ?21415) =<= multiply (left_inverse (multiply (multiply ?21414 ?21415) ?21413)) ?21414 [21415, 21413, 21414] by Demod 21223 with 2416 at 1,3 Id : 33425, {_}: left_division (multiply ?32572 ?32573) (right_division ?32572 ?32574) =<= left_division (multiply (multiply ?32572 ?32574) ?32573) ?32572 [32574, 32573, 32572] by Demod 21224 with 755 at 3 Id : 33439, {_}: left_division (multiply ?32633 ?32634) (right_division ?32633 (left_inverse ?32635)) =>= left_division (multiply (right_division ?32633 ?32635) ?32634) ?32633 [32635, 32634, 32633] by Super 33425 with 2230 at 1,1,3 Id : 33644, {_}: left_division (multiply ?32633 ?32634) (multiply ?32633 ?32635) =<= left_division (multiply (right_division ?32633 ?32635) ?32634) ?32633 [32635, 32634, 32633] by Demod 33439 with 2155 at 2,2 Id : 33645, {_}: left_division (multiply ?32633 ?32634) (multiply ?32633 ?32635) =<= left_division (left_division (right_division ?32635 ?32633) ?32634) ?32633 [32635, 32634, 32633] by Demod 33644 with 954 at 1,3 Id : 7684, {_}: right_division (multiply ?8626 ?8627) (left_division ?8628 ?8627) =>= right_division ?8627 (left_division ?8628 (left_division ?8626 ?8627)) [8628, 8627, 8626] by Demod 7662 with 2455 at 3 Id : 7695, {_}: right_division (multiply ?8669 (left_inverse ?8670)) (left_inverse (multiply ?8670 ?8671)) =>= right_division (left_inverse ?8670) (left_division ?8671 (left_division ?8669 (left_inverse ?8670))) [8671, 8670, 8669] by Super 7684 with 2416 at 2,2 Id : 7758, {_}: right_division (right_division ?8669 ?8670) (left_inverse (multiply ?8670 ?8671)) =<= right_division (left_inverse ?8670) (left_division ?8671 (left_division ?8669 (left_inverse ?8670))) [8671, 8670, 8669] by Demod 7695 with 2230 at 1,2 Id : 7759, {_}: multiply (right_division ?8669 ?8670) (multiply ?8670 ?8671) =<= right_division (left_inverse ?8670) (left_division ?8671 (left_division ?8669 (left_inverse ?8670))) [8671, 8670, 8669] by Demod 7758 with 2155 at 2 Id : 7760, {_}: left_division (right_division ?8670 ?8669) (multiply ?8670 ?8671) =<= right_division (left_inverse ?8670) (left_division ?8671 (left_division ?8669 (left_inverse ?8670))) [8671, 8669, 8670] by Demod 7759 with 954 at 2 Id : 7761, {_}: left_division (right_division ?8670 ?8669) (multiply ?8670 ?8671) =<= right_division (left_inverse ?8670) (left_division ?8671 (left_inverse (multiply ?8670 ?8669))) [8671, 8669, 8670] by Demod 7760 with 2416 at 2,2,3 Id : 7762, {_}: left_division (right_division ?8670 ?8669) (multiply ?8670 ?8671) =<= right_division (left_inverse ?8670) (left_inverse (multiply (multiply ?8670 ?8669) ?8671)) [8671, 8669, 8670] by Demod 7761 with 2416 at 2,3 Id : 7763, {_}: left_division (right_division ?8670 ?8669) (multiply ?8670 ?8671) =<= multiply (left_inverse ?8670) (multiply (multiply ?8670 ?8669) ?8671) [8671, 8669, 8670] by Demod 7762 with 2155 at 3 Id : 21442, {_}: left_division (right_division ?21938 ?21939) (multiply ?21938 ?21940) =>= left_division ?21938 (multiply (multiply ?21938 ?21939) ?21940) [21940, 21939, 21938] by Demod 7763 with 755 at 3 Id : 21475, {_}: left_division (multiply ?22075 ?22076) (multiply ?22075 ?22077) =<= left_division ?22075 (multiply (multiply ?22075 (left_inverse ?22076)) ?22077) [22077, 22076, 22075] by Super 21442 with 2155 at 1,2 Id : 21703, {_}: left_division (multiply ?22075 ?22076) (multiply ?22075 ?22077) =>= left_division ?22075 (multiply (right_division ?22075 ?22076) ?22077) [22077, 22076, 22075] by Demod 21475 with 2230 at 1,2,3 Id : 21704, {_}: left_division (multiply ?22075 ?22076) (multiply ?22075 ?22077) =>= left_division ?22075 (left_division (right_division ?22076 ?22075) ?22077) [22077, 22076, 22075] by Demod 21703 with 954 at 2,3 Id : 43755, {_}: left_division ?43014 (left_division (right_division ?43015 ?43014) ?43016) =<= left_division (left_division (right_division ?43016 ?43014) ?43015) ?43014 [43016, 43015, 43014] by Demod 33645 with 21704 at 2 Id : 842, {_}: multiply (left_inverse ?1117) (multiply ?1118 (left_inverse ?1117)) =>= multiply (left_division ?1117 ?1118) (left_inverse ?1117) [1118, 1117] by Super 70 with 755 at 1,3 Id : 872, {_}: left_division ?1117 (multiply ?1118 (left_inverse ?1117)) =<= multiply (left_division ?1117 ?1118) (left_inverse ?1117) [1118, 1117] by Demod 842 with 755 at 2 Id : 2312, {_}: left_division ?1117 (right_division ?1118 ?1117) =<= multiply (left_division ?1117 ?1118) (left_inverse ?1117) [1118, 1117] by Demod 872 with 2230 at 2,2 Id : 2313, {_}: left_division ?1117 (right_division ?1118 ?1117) =>= right_division (left_division ?1117 ?1118) ?1117 [1118, 1117] by Demod 2312 with 2230 at 3 Id : 43815, {_}: left_division ?43271 (left_division (right_division (right_division ?43272 (right_division ?43273 ?43271)) ?43271) ?43273) =<= left_division (right_division (left_division (right_division ?43273 ?43271) ?43272) (right_division ?43273 ?43271)) ?43271 [43273, 43272, 43271] by Super 43755 with 2313 at 1,3 Id : 59, {_}: multiply (multiply ?136 ?137) ?138 =<= multiply ?137 (multiply (left_division ?137 ?136) (multiply ?137 ?138)) [138, 137, 136] by Super 56 with 4 at 1,1,2 Id : 2777, {_}: left_division ?3557 (multiply (multiply ?3558 ?3557) ?3559) =<= multiply (left_division ?3557 ?3558) (multiply ?3557 ?3559) [3559, 3558, 3557] by Super 5 with 59 at 2,2 Id : 7472, {_}: left_division ?3557 (multiply (multiply ?3558 ?3557) ?3559) =<= left_division (left_division ?3558 ?3557) (multiply ?3557 ?3559) [3559, 3558, 3557] by Demod 2777 with 2451 at 3 Id : 7487, {_}: left_inverse (left_division ?8368 (multiply (multiply ?8369 ?8368) ?8370)) =>= left_division (multiply ?8368 ?8370) (left_division ?8369 ?8368) [8370, 8369, 8368] by Super 2293 with 7472 at 1,2 Id : 7540, {_}: left_division (multiply (multiply ?8369 ?8368) ?8370) ?8368 =>= left_division (multiply ?8368 ?8370) (left_division ?8369 ?8368) [8370, 8368, 8369] by Demod 7487 with 2293 at 2 Id : 20061, {_}: left_division (multiply (left_inverse ?19929) ?19930) (left_division ?19931 (left_inverse ?19929)) =>= left_inverse (multiply ?19929 (multiply (multiply ?19931 (left_inverse ?19929)) ?19930)) [19931, 19930, 19929] by Super 2416 with 7540 at 2 Id : 20142, {_}: left_division (left_division ?19929 ?19930) (left_division ?19931 (left_inverse ?19929)) =<= left_inverse (multiply ?19929 (multiply (multiply ?19931 (left_inverse ?19929)) ?19930)) [19931, 19930, 19929] by Demod 20061 with 755 at 1,2 Id : 20143, {_}: left_division (left_division ?19929 ?19930) (left_inverse (multiply ?19929 ?19931)) =<= left_inverse (multiply ?19929 (multiply (multiply ?19931 (left_inverse ?19929)) ?19930)) [19931, 19930, 19929] by Demod 20142 with 2416 at 2,2 Id : 20144, {_}: left_inverse (multiply (multiply ?19929 ?19931) (left_division ?19929 ?19930)) =<= left_inverse (multiply ?19929 (multiply (multiply ?19931 (left_inverse ?19929)) ?19930)) [19930, 19931, 19929] by Demod 20143 with 2416 at 2 Id : 20145, {_}: left_inverse (right_division (multiply ?19929 ?19931) (left_division ?19930 ?19929)) =<= left_inverse (multiply ?19929 (multiply (multiply ?19931 (left_inverse ?19929)) ?19930)) [19930, 19931, 19929] by Demod 20144 with 2455 at 1,2 Id : 20146, {_}: right_division (left_division ?19930 ?19929) (multiply ?19929 ?19931) =<= left_inverse (multiply ?19929 (multiply (multiply ?19931 (left_inverse ?19929)) ?19930)) [19931, 19929, 19930] by Demod 20145 with 936 at 2 Id : 20147, {_}: right_division (left_division ?19930 ?19929) (multiply ?19929 ?19931) =<= left_inverse (multiply ?19929 (multiply (right_division ?19931 ?19929) ?19930)) [19931, 19929, 19930] by Demod 20146 with 2230 at 1,2,1,3 Id : 20148, {_}: right_division (left_division ?19930 ?19929) (multiply ?19929 ?19931) =<= left_inverse (multiply ?19929 (left_division (right_division ?19929 ?19931) ?19930)) [19931, 19929, 19930] by Demod 20147 with 954 at 2,1,3 Id : 20149, {_}: right_division (left_division ?19930 ?19929) (multiply ?19929 ?19931) =<= left_inverse (right_division ?19929 (left_division ?19930 (right_division ?19929 ?19931))) [19931, 19929, 19930] by Demod 20148 with 2455 at 1,3 Id : 29591, {_}: right_division (left_division ?28561 ?28562) (multiply ?28562 ?28563) =<= right_division (left_division ?28561 (right_division ?28562 ?28563)) ?28562 [28563, 28562, 28561] by Demod 20149 with 936 at 3 Id : 29662, {_}: right_division (left_division (left_inverse ?28855) ?28856) (multiply ?28856 ?28857) =>= right_division (multiply ?28855 (right_division ?28856 ?28857)) ?28856 [28857, 28856, 28855] by Super 29591 with 767 at 1,3 Id : 29946, {_}: right_division (multiply ?28855 ?28856) (multiply ?28856 ?28857) =<= right_division (multiply ?28855 (right_division ?28856 ?28857)) ?28856 [28857, 28856, 28855] by Demod 29662 with 767 at 1,2 Id : 2231, {_}: right_division ?2909 (right_division ?2910 ?2911) =<= multiply ?2909 (right_division ?2911 ?2910) [2911, 2910, 2909] by Super 2228 with 936 at 2,2 Id : 29947, {_}: right_division (multiply ?28855 ?28856) (multiply ?28856 ?28857) =<= right_division (right_division ?28855 (right_division ?28857 ?28856)) ?28856 [28857, 28856, 28855] by Demod 29946 with 2231 at 1,3 Id : 44167, {_}: left_division ?43271 (left_division (right_division (multiply ?43272 ?43271) (multiply ?43271 ?43273)) ?43273) =<= left_division (right_division (left_division (right_division ?43273 ?43271) ?43272) (right_division ?43273 ?43271)) ?43271 [43273, 43272, 43271] by Demod 43815 with 29947 at 1,2,2 Id : 242, {_}: multiply (multiply ?22 (multiply ?23 ?22)) ?24 =>= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by Demod 10 with 70 at 1,2 Id : 2333, {_}: multiply (multiply (left_inverse ?3033) (right_division ?3034 ?3033)) ?3035 =<= multiply (left_inverse ?3033) (multiply ?3034 (multiply (left_inverse ?3033) ?3035)) [3035, 3034, 3033] by Super 242 with 2230 at 2,1,2 Id : 2392, {_}: multiply (left_division ?3033 (right_division ?3034 ?3033)) ?3035 =<= multiply (left_inverse ?3033) (multiply ?3034 (multiply (left_inverse ?3033) ?3035)) [3035, 3034, 3033] by Demod 2333 with 755 at 1,2 Id : 2393, {_}: multiply (right_division (left_division ?3033 ?3034) ?3033) ?3035 =<= multiply (left_inverse ?3033) (multiply ?3034 (multiply (left_inverse ?3033) ?3035)) [3035, 3034, 3033] by Demod 2392 with 2313 at 1,2 Id : 2394, {_}: left_division (right_division ?3033 (left_division ?3033 ?3034)) ?3035 =<= multiply (left_inverse ?3033) (multiply ?3034 (multiply (left_inverse ?3033) ?3035)) [3035, 3034, 3033] by Demod 2393 with 954 at 2 Id : 2395, {_}: left_division (right_division ?3033 (left_division ?3033 ?3034)) ?3035 =<= multiply (left_inverse ?3033) (multiply ?3034 (left_division ?3033 ?3035)) [3035, 3034, 3033] by Demod 2394 with 755 at 2,2,3 Id : 2396, {_}: left_division (right_division ?3033 (left_division ?3033 ?3034)) ?3035 =>= left_division ?3033 (multiply ?3034 (left_division ?3033 ?3035)) [3035, 3034, 3033] by Demod 2395 with 755 at 3 Id : 6554, {_}: left_division (right_division ?3033 (left_division ?3033 ?3034)) ?3035 =>= left_division ?3033 (right_division ?3034 (left_division ?3035 ?3033)) [3035, 3034, 3033] by Demod 2396 with 2455 at 2,3 Id : 6571, {_}: left_division ?7212 (right_division ?7213 (left_division (left_inverse ?7214) ?7212)) =>= left_inverse (multiply ?7214 (right_division ?7212 (left_division ?7212 ?7213))) [7214, 7213, 7212] by Super 2416 with 6554 at 2 Id : 6673, {_}: left_division ?7212 (right_division ?7213 (multiply ?7214 ?7212)) =<= left_inverse (multiply ?7214 (right_division ?7212 (left_division ?7212 ?7213))) [7214, 7213, 7212] by Demod 6571 with 767 at 2,2,2 Id : 6674, {_}: left_division ?7212 (right_division ?7213 (multiply ?7214 ?7212)) =<= left_inverse (right_division ?7214 (right_division (left_division ?7212 ?7213) ?7212)) [7214, 7213, 7212] by Demod 6673 with 2231 at 1,3 Id : 6675, {_}: left_division ?7212 (right_division ?7213 (multiply ?7214 ?7212)) =>= right_division (right_division (left_division ?7212 ?7213) ?7212) ?7214 [7214, 7213, 7212] by Demod 6674 with 936 at 3 Id : 19039, {_}: left_inverse (right_division (right_division (left_division ?18567 ?18568) ?18567) ?18569) =>= left_division (right_division ?18568 (multiply ?18569 ?18567)) ?18567 [18569, 18568, 18567] by Super 2293 with 6675 at 1,2 Id : 19157, {_}: right_division ?18569 (right_division (left_division ?18567 ?18568) ?18567) =<= left_division (right_division ?18568 (multiply ?18569 ?18567)) ?18567 [18568, 18567, 18569] by Demod 19039 with 936 at 2 Id : 44168, {_}: left_division ?43271 (right_division ?43271 (right_division (left_division ?43273 (multiply ?43272 ?43271)) ?43273)) =<= left_division (right_division (left_division (right_division ?43273 ?43271) ?43272) (right_division ?43273 ?43271)) ?43271 [43272, 43273, 43271] by Demod 44167 with 19157 at 2,2 Id : 2331, {_}: left_division ?3028 (right_division ?3028 ?3029) =>= left_inverse ?3029 [3029, 3028] by Super 5 with 2230 at 2,2 Id : 44169, {_}: left_inverse (right_division (left_division ?43273 (multiply ?43272 ?43271)) ?43273) =<= left_division (right_division (left_division (right_division ?43273 ?43271) ?43272) (right_division ?43273 ?43271)) ?43271 [43271, 43272, 43273] by Demod 44168 with 2331 at 2 Id : 44170, {_}: right_division ?43273 (left_division ?43273 (multiply ?43272 ?43271)) =<= left_division (right_division (left_division (right_division ?43273 ?43271) ?43272) (right_division ?43273 ?43271)) ?43271 [43271, 43272, 43273] by Demod 44169 with 936 at 2 Id : 840, {_}: multiply (multiply ?1109 (left_division ?1110 ?1109)) ?1111 =<= multiply ?1109 (multiply (left_inverse ?1110) (multiply ?1109 ?1111)) [1111, 1110, 1109] by Super 242 with 755 at 2,1,2 Id : 873, {_}: multiply (multiply ?1109 (left_division ?1110 ?1109)) ?1111 =>= multiply ?1109 (left_division ?1110 (multiply ?1109 ?1111)) [1111, 1110, 1109] by Demod 840 with 755 at 2,3 Id : 3973, {_}: multiply (right_division ?1109 (left_division ?1109 ?1110)) ?1111 =>= multiply ?1109 (left_division ?1110 (multiply ?1109 ?1111)) [1111, 1110, 1109] by Demod 873 with 2455 at 1,2 Id : 3974, {_}: left_division (right_division (left_division ?1109 ?1110) ?1109) ?1111 =<= multiply ?1109 (left_division ?1110 (multiply ?1109 ?1111)) [1111, 1110, 1109] by Demod 3973 with 954 at 2 Id : 3975, {_}: left_division (right_division (left_division ?1109 ?1110) ?1109) ?1111 =>= right_division ?1109 (left_division (multiply ?1109 ?1111) ?1110) [1111, 1110, 1109] by Demod 3974 with 2455 at 3 Id : 44171, {_}: right_division ?43273 (left_division ?43273 (multiply ?43272 ?43271)) =<= right_division (right_division ?43273 ?43271) (left_division (multiply (right_division ?43273 ?43271) ?43271) ?43272) [43271, 43272, 43273] by Demod 44170 with 3975 at 3 Id : 44172, {_}: right_division ?43273 (left_division ?43273 (multiply ?43272 ?43271)) =<= right_division (right_division ?43273 ?43271) (left_division (left_division (right_division ?43271 ?43273) ?43271) ?43272) [43271, 43272, 43273] by Demod 44171 with 954 at 1,2,3 Id : 44173, {_}: right_division ?43273 (left_division ?43273 (multiply ?43272 ?43271)) =<= right_division (right_division ?43273 ?43271) (left_division ?43273 ?43272) [43271, 43272, 43273] by Demod 44172 with 28 at 1,2,3 Id : 48140, {_}: right_division (left_division ?47996 ?47997) (right_division ?47996 ?47998) =<= left_inverse (right_division ?47996 (left_division ?47996 (multiply ?47997 ?47998))) [47998, 47997, 47996] by Super 936 with 44173 at 1,3 Id : 48431, {_}: right_division (left_division ?47996 ?47997) (right_division ?47996 ?47998) =<= right_division (left_division ?47996 (multiply ?47997 ?47998)) ?47996 [47998, 47997, 47996] by Demod 48140 with 936 at 3 Id : 50579, {_}: right_division (left_division (left_inverse ?50808) ?50809) (right_division (left_inverse ?50808) ?50810) =>= multiply (left_division (left_inverse ?50808) (multiply ?50809 ?50810)) ?50808 [50810, 50809, 50808] by Super 2155 with 48431 at 2 Id : 50758, {_}: right_division (multiply ?50808 ?50809) (right_division (left_inverse ?50808) ?50810) =<= multiply (left_division (left_inverse ?50808) (multiply ?50809 ?50810)) ?50808 [50810, 50809, 50808] by Demod 50579 with 767 at 1,2 Id : 50759, {_}: right_division (multiply ?50808 ?50809) (left_inverse (multiply ?50810 ?50808)) =<= multiply (left_division (left_inverse ?50808) (multiply ?50809 ?50810)) ?50808 [50810, 50809, 50808] by Demod 50758 with 2224 at 2,2 Id : 50760, {_}: multiply (multiply ?50808 ?50809) (multiply ?50810 ?50808) =<= multiply (left_division (left_inverse ?50808) (multiply ?50809 ?50810)) ?50808 [50810, 50809, 50808] by Demod 50759 with 2155 at 2 Id : 50761, {_}: multiply (multiply ?50808 ?50809) (multiply ?50810 ?50808) =<= multiply (multiply ?50808 (multiply ?50809 ?50810)) ?50808 [50810, 50809, 50808] by Demod 50760 with 767 at 1,3 Id : 50762, {_}: multiply (multiply ?50808 ?50809) (multiply ?50810 ?50808) =>= multiply ?50808 (multiply (multiply ?50809 ?50810) ?50808) [50810, 50809, 50808] by Demod 50761 with 70 at 3 Id : 52412, {_}: multiply a (multiply (multiply b c) a) =?= multiply a (multiply (multiply b c) a) [] by Demod 52411 with 50762 at 3 Id : 52411, {_}: multiply a (multiply (multiply b c) a) =<= multiply (multiply a b) (multiply c a) [] by Demod 1 with 70 at 2 Id : 1, {_}: multiply (multiply a (multiply b c)) a =>= multiply (multiply a b) (multiply c a) [] by prove_moufang1 % SZS output end CNFRefutation for GRP202-1.p 19150: solved GRP202-1.p in 6.108381 using kbo WARNING: TreeLimitedRun lost 13.87s, total lost is 13.87s FINAL WATCH: 20.0 CPU 12.4 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP204-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19162 TreeLimitedRun: ---------------------------------------------------------- 19164: Facts: 19164: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 19164: Id : 3, {_}: multiply (left_inverse ?4) ?4 =>= identity [4] by left_inverse ?4 19164: Id : 4, {_}: multiply (multiply ?6 (multiply ?7 ?8)) ?6 =?= multiply (multiply ?6 ?7) (multiply ?8 ?6) [8, 7, 6] by moufang1 ?6 ?7 ?8 19164: Goal: 19164: Id : 1, {_}: multiply (multiply (multiply a b) c) b =>= multiply a (multiply b (multiply c b)) [] by prove_moufang2 % SZS status Timeout for GRP204-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP205-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19235 TreeLimitedRun: ---------------------------------------------------------- 19237: Facts: 19237: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 19237: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 19237: Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 19237: Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 19237: Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 19237: Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 19237: Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 19237: Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 19237: Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?22) ?24 =?= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by moufang3 ?22 ?23 ?24 19237: Goal: 19237: Id : 1, {_}: multiply x (multiply (multiply y z) x) =<= multiply (multiply x y) (multiply z x) [] by prove_moufang4 Statistics : Max weight : 20 Found proof, 12.264398s % SZS status Unsatisfiable for GRP205-1.p % SZS output start CNFRefutation for GRP205-1.p Id : 56, {_}: multiply (multiply (multiply ?126 ?127) ?126) ?128 =>= multiply ?126 (multiply ?127 (multiply ?126 ?128)) [128, 127, 126] by moufang3 ?126 ?127 ?128 Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?22) ?24 =>= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by moufang3 ?22 ?23 ?24 Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 Id : 53, {_}: multiply ?115 (multiply ?116 (multiply ?115 identity)) =>= multiply (multiply ?115 ?116) ?115 [116, 115] by Super 3 with 10 at 2 Id : 70, {_}: multiply ?115 (multiply ?116 ?115) =<= multiply (multiply ?115 ?116) ?115 [116, 115] by Demod 53 with 3 at 2,2,2 Id : 557, {_}: right_division (multiply ?710 (multiply ?711 ?710)) ?710 =>= multiply ?710 ?711 [711, 710] by Super 7 with 70 at 1,2 Id : 561, {_}: right_division (multiply ?720 ?721) ?720 =<= multiply ?720 (right_division ?721 ?720) [721, 720] by Super 557 with 6 at 2,1,2 Id : 55, {_}: right_division (multiply ?122 (multiply ?123 (multiply ?122 ?124))) ?124 =>= multiply (multiply ?122 ?123) ?122 [124, 123, 122] by Super 7 with 10 at 1,2 Id : 1861, {_}: right_division (multiply ?2527 (multiply ?2528 (multiply ?2527 ?2529))) ?2529 =>= multiply ?2527 (multiply ?2528 ?2527) [2529, 2528, 2527] by Demod 55 with 70 at 3 Id : 51, {_}: multiply ?108 (multiply ?109 (multiply ?108 (right_inverse (multiply (multiply ?108 ?109) ?108)))) =>= identity [109, 108] by Super 8 with 10 at 2 Id : 281, {_}: multiply ?401 (multiply ?402 (multiply ?401 (right_inverse (multiply ?401 (multiply ?402 ?401))))) =>= identity [402, 401] by Demod 51 with 70 at 1,2,2,2,2 Id : 286, {_}: multiply (right_inverse ?414) (multiply ?414 (multiply (right_inverse ?414) (right_inverse (multiply (right_inverse ?414) identity)))) =>= identity [414] by Super 281 with 8 at 2,1,2,2,2,2 Id : 315, {_}: multiply (right_inverse ?414) (multiply ?414 (multiply (right_inverse ?414) (right_inverse (right_inverse ?414)))) =>= identity [414] by Demod 286 with 3 at 1,2,2,2,2 Id : 316, {_}: multiply (right_inverse ?414) (multiply ?414 identity) =>= identity [414] by Demod 315 with 8 at 2,2,2 Id : 317, {_}: multiply (right_inverse ?414) ?414 =>= identity [414] by Demod 316 with 3 at 2,2 Id : 345, {_}: right_division identity ?453 =>= right_inverse ?453 [453] by Super 7 with 317 at 1,2 Id : 45, {_}: right_division identity ?99 =>= left_inverse ?99 [99] by Super 7 with 9 at 1,2 Id : 366, {_}: left_inverse ?453 =<= right_inverse ?453 [453] by Demod 345 with 45 at 2 Id : 371, {_}: multiply ?18 (left_inverse ?18) =>= identity [18] by Demod 8 with 366 at 2,2 Id : 1867, {_}: right_division (multiply ?2550 (multiply ?2551 identity)) (left_inverse ?2550) =>= multiply ?2550 (multiply ?2551 ?2550) [2551, 2550] by Super 1861 with 371 at 2,2,1,2 Id : 1914, {_}: right_division (multiply ?2550 ?2551) (left_inverse ?2550) =>= multiply ?2550 (multiply ?2551 ?2550) [2551, 2550] by Demod 1867 with 3 at 2,1,2 Id : 2094, {_}: right_division (multiply (left_inverse ?2786) (multiply ?2786 ?2787)) (left_inverse ?2786) =>= multiply (left_inverse ?2786) (multiply ?2786 (multiply ?2787 ?2786)) [2787, 2786] by Super 561 with 1914 at 2,3 Id : 52, {_}: multiply ?111 (multiply ?112 (multiply ?111 (left_division (multiply (multiply ?111 ?112) ?111) ?113))) =>= ?113 [113, 112, 111] by Super 4 with 10 at 2 Id : 610, {_}: multiply ?798 (multiply ?799 (multiply ?798 (left_division (multiply ?798 (multiply ?799 ?798)) ?800))) =>= ?800 [800, 799, 798] by Demod 52 with 70 at 1,2,2,2,2 Id : 615, {_}: multiply ?816 (multiply (left_inverse ?816) (multiply ?816 (left_division (multiply ?816 identity) ?817))) =>= ?817 [817, 816] by Super 610 with 9 at 2,1,2,2,2,2 Id : 652, {_}: multiply ?816 (multiply (left_inverse ?816) (multiply ?816 (left_division ?816 ?817))) =>= ?817 [817, 816] by Demod 615 with 3 at 1,2,2,2,2 Id : 653, {_}: multiply ?816 (multiply (left_inverse ?816) ?817) =>= ?817 [817, 816] by Demod 652 with 4 at 2,2,2 Id : 745, {_}: left_division ?1007 ?1008 =<= multiply (left_inverse ?1007) ?1008 [1008, 1007] by Super 5 with 653 at 2,2 Id : 2122, {_}: right_division (left_division ?2786 (multiply ?2786 ?2787)) (left_inverse ?2786) =<= multiply (left_inverse ?2786) (multiply ?2786 (multiply ?2787 ?2786)) [2787, 2786] by Demod 2094 with 745 at 1,2 Id : 2123, {_}: right_division ?2787 (left_inverse ?2786) =<= multiply (left_inverse ?2786) (multiply ?2786 (multiply ?2787 ?2786)) [2786, 2787] by Demod 2122 with 5 at 1,2 Id : 2124, {_}: right_division ?2787 (left_inverse ?2786) =<= left_division ?2786 (multiply ?2786 (multiply ?2787 ?2786)) [2786, 2787] by Demod 2123 with 745 at 3 Id : 2125, {_}: right_division ?2787 (left_inverse ?2786) =>= multiply ?2787 ?2786 [2786, 2787] by Demod 2124 with 5 at 3 Id : 920, {_}: right_division (left_division ?1218 ?1219) ?1219 =>= left_inverse ?1218 [1219, 1218] by Super 7 with 745 at 1,2 Id : 28, {_}: left_division (right_division ?62 ?63) ?62 =>= ?63 [63, 62] by Super 5 with 6 at 2,2 Id : 923, {_}: right_division ?1226 ?1227 =<= left_inverse (right_division ?1227 ?1226) [1227, 1226] by Super 920 with 28 at 1,2 Id : 2753, {_}: multiply (multiply ?3616 ?3617) ?3618 =<= multiply ?3617 (multiply (left_division ?3617 ?3616) (multiply ?3617 ?3618)) [3618, 3617, 3616] by Super 56 with 4 at 1,1,2 Id : 2756, {_}: multiply (multiply ?3626 ?3627) (left_division ?3627 ?3628) =>= multiply ?3627 (multiply (left_division ?3627 ?3626) ?3628) [3628, 3627, 3626] by Super 2753 with 4 at 2,2,3 Id : 2193, {_}: right_division (left_inverse ?2889) ?2890 =>= left_inverse (multiply ?2890 ?2889) [2890, 2889] by Super 923 with 2125 at 1,3 Id : 2249, {_}: left_inverse (multiply (left_inverse ?2961) ?2962) =>= multiply (left_inverse ?2962) ?2961 [2962, 2961] by Super 2125 with 2193 at 2 Id : 2260, {_}: left_inverse (left_division ?2961 ?2962) =<= multiply (left_inverse ?2962) ?2961 [2962, 2961] by Demod 2249 with 745 at 1,2 Id : 2261, {_}: left_inverse (left_division ?2961 ?2962) =>= left_division ?2962 ?2961 [2962, 2961] by Demod 2260 with 745 at 3 Id : 2421, {_}: right_division ?3131 (left_division ?3132 ?3133) =<= multiply ?3131 (left_division ?3133 ?3132) [3133, 3132, 3131] by Super 2125 with 2261 at 2,2 Id : 7593, {_}: right_division (multiply ?3626 ?3627) (left_division ?3628 ?3627) =<= multiply ?3627 (multiply (left_division ?3627 ?3626) ?3628) [3628, 3627, 3626] by Demod 2756 with 2421 at 2 Id : 753, {_}: multiply ?1028 (multiply (left_inverse ?1028) ?1029) =>= ?1029 [1029, 1028] by Demod 652 with 4 at 2,2,2 Id : 757, {_}: multiply ?1038 ?1039 =<= left_division (left_inverse ?1038) ?1039 [1039, 1038] by Super 753 with 4 at 2,2 Id : 2417, {_}: multiply (left_division ?3117 ?3118) ?3119 =>= left_division (left_division ?3118 ?3117) ?3119 [3119, 3118, 3117] by Super 757 with 2261 at 1,3 Id : 7594, {_}: right_division (multiply ?3626 ?3627) (left_division ?3628 ?3627) =<= multiply ?3627 (left_division (left_division ?3626 ?3627) ?3628) [3628, 3627, 3626] by Demod 7593 with 2417 at 2,3 Id : 7595, {_}: right_division (multiply ?3626 ?3627) (left_division ?3628 ?3627) =>= right_division ?3627 (left_division ?3628 (left_division ?3626 ?3627)) [3628, 3627, 3626] by Demod 7594 with 2421 at 3 Id : 7609, {_}: right_division (left_division ?8598 ?8599) (multiply ?8600 ?8599) =<= left_inverse (right_division ?8599 (left_division ?8598 (left_division ?8600 ?8599))) [8600, 8599, 8598] by Super 923 with 7595 at 1,3 Id : 7662, {_}: right_division (left_division ?8598 ?8599) (multiply ?8600 ?8599) =<= right_division (left_division ?8598 (left_division ?8600 ?8599)) ?8599 [8600, 8599, 8598] by Demod 7609 with 923 at 3 Id : 20997, {_}: right_division (left_division ?21413 (left_inverse ?21414)) (multiply ?21415 (left_inverse ?21414)) =>= multiply (left_division ?21413 (left_division ?21415 (left_inverse ?21414))) ?21414 [21415, 21414, 21413] by Super 2125 with 7662 at 2 Id : 2197, {_}: right_division ?2901 (left_inverse ?2902) =>= multiply ?2901 ?2902 [2902, 2901] by Demod 2124 with 5 at 3 Id : 40, {_}: left_division ?91 identity =>= right_inverse ?91 [91] by Super 5 with 8 at 2,2 Id : 177, {_}: ?263 =<= right_inverse (right_division identity ?263) [263] by Super 40 with 28 at 2 Id : 184, {_}: ?263 =<= right_inverse (left_inverse ?263) [263] by Demod 177 with 45 at 1,3 Id : 374, {_}: ?263 =<= left_inverse (left_inverse ?263) [263] by Demod 184 with 366 at 3 Id : 2199, {_}: right_division ?2906 ?2907 =<= multiply ?2906 (left_inverse ?2907) [2907, 2906] by Super 2197 with 374 at 2,2 Id : 2292, {_}: left_division ?3010 (left_inverse ?3011) =>= right_division (left_inverse ?3010) ?3011 [3011, 3010] by Super 745 with 2199 at 3 Id : 2383, {_}: left_division ?3010 (left_inverse ?3011) =>= left_inverse (multiply ?3011 ?3010) [3011, 3010] by Demod 2292 with 2193 at 3 Id : 21109, {_}: right_division (left_inverse (multiply ?21414 ?21413)) (multiply ?21415 (left_inverse ?21414)) =>= multiply (left_division ?21413 (left_division ?21415 (left_inverse ?21414))) ?21414 [21415, 21413, 21414] by Demod 20997 with 2383 at 1,2 Id : 21110, {_}: right_division (left_inverse (multiply ?21414 ?21413)) (right_division ?21415 ?21414) =<= multiply (left_division ?21413 (left_division ?21415 (left_inverse ?21414))) ?21414 [21415, 21413, 21414] by Demod 21109 with 2199 at 2,2 Id : 21111, {_}: left_inverse (multiply (right_division ?21415 ?21414) (multiply ?21414 ?21413)) =<= multiply (left_division ?21413 (left_division ?21415 (left_inverse ?21414))) ?21414 [21413, 21414, 21415] by Demod 21110 with 2193 at 2 Id : 940, {_}: multiply (right_division ?1240 ?1241) ?1242 =>= left_division (right_division ?1241 ?1240) ?1242 [1242, 1241, 1240] by Super 757 with 923 at 1,3 Id : 21112, {_}: left_inverse (left_division (right_division ?21414 ?21415) (multiply ?21414 ?21413)) =<= multiply (left_division ?21413 (left_division ?21415 (left_inverse ?21414))) ?21414 [21413, 21415, 21414] by Demod 21111 with 940 at 1,2 Id : 21113, {_}: left_division (multiply ?21414 ?21413) (right_division ?21414 ?21415) =<= multiply (left_division ?21413 (left_division ?21415 (left_inverse ?21414))) ?21414 [21415, 21413, 21414] by Demod 21112 with 2261 at 2 Id : 21114, {_}: left_division (multiply ?21414 ?21413) (right_division ?21414 ?21415) =<= multiply (left_division ?21413 (left_inverse (multiply ?21414 ?21415))) ?21414 [21415, 21413, 21414] by Demod 21113 with 2383 at 2,1,3 Id : 21115, {_}: left_division (multiply ?21414 ?21413) (right_division ?21414 ?21415) =<= multiply (left_inverse (multiply (multiply ?21414 ?21415) ?21413)) ?21414 [21415, 21413, 21414] by Demod 21114 with 2383 at 1,3 Id : 33290, {_}: left_division (multiply ?32572 ?32573) (right_division ?32572 ?32574) =<= left_division (multiply (multiply ?32572 ?32574) ?32573) ?32572 [32574, 32573, 32572] by Demod 21115 with 745 at 3 Id : 33304, {_}: left_division (multiply ?32633 ?32634) (right_division ?32633 (left_inverse ?32635)) =>= left_division (multiply (right_division ?32633 ?32635) ?32634) ?32633 [32635, 32634, 32633] by Super 33290 with 2199 at 1,1,3 Id : 33509, {_}: left_division (multiply ?32633 ?32634) (multiply ?32633 ?32635) =<= left_division (multiply (right_division ?32633 ?32635) ?32634) ?32633 [32635, 32634, 32633] by Demod 33304 with 2125 at 2,2 Id : 33510, {_}: left_division (multiply ?32633 ?32634) (multiply ?32633 ?32635) =<= left_division (left_division (right_division ?32635 ?32633) ?32634) ?32633 [32635, 32634, 32633] by Demod 33509 with 940 at 1,3 Id : 7616, {_}: right_division (multiply ?8626 ?8627) (left_division ?8628 ?8627) =>= right_division ?8627 (left_division ?8628 (left_division ?8626 ?8627)) [8628, 8627, 8626] by Demod 7594 with 2421 at 3 Id : 7627, {_}: right_division (multiply ?8669 (left_inverse ?8670)) (left_inverse (multiply ?8670 ?8671)) =>= right_division (left_inverse ?8670) (left_division ?8671 (left_division ?8669 (left_inverse ?8670))) [8671, 8670, 8669] by Super 7616 with 2383 at 2,2 Id : 7690, {_}: right_division (right_division ?8669 ?8670) (left_inverse (multiply ?8670 ?8671)) =<= right_division (left_inverse ?8670) (left_division ?8671 (left_division ?8669 (left_inverse ?8670))) [8671, 8670, 8669] by Demod 7627 with 2199 at 1,2 Id : 7691, {_}: multiply (right_division ?8669 ?8670) (multiply ?8670 ?8671) =<= right_division (left_inverse ?8670) (left_division ?8671 (left_division ?8669 (left_inverse ?8670))) [8671, 8670, 8669] by Demod 7690 with 2125 at 2 Id : 7692, {_}: left_division (right_division ?8670 ?8669) (multiply ?8670 ?8671) =<= right_division (left_inverse ?8670) (left_division ?8671 (left_division ?8669 (left_inverse ?8670))) [8671, 8669, 8670] by Demod 7691 with 940 at 2 Id : 7693, {_}: left_division (right_division ?8670 ?8669) (multiply ?8670 ?8671) =<= right_division (left_inverse ?8670) (left_division ?8671 (left_inverse (multiply ?8670 ?8669))) [8671, 8669, 8670] by Demod 7692 with 2383 at 2,2,3 Id : 7694, {_}: left_division (right_division ?8670 ?8669) (multiply ?8670 ?8671) =<= right_division (left_inverse ?8670) (left_inverse (multiply (multiply ?8670 ?8669) ?8671)) [8671, 8669, 8670] by Demod 7693 with 2383 at 2,3 Id : 7695, {_}: left_division (right_division ?8670 ?8669) (multiply ?8670 ?8671) =<= multiply (left_inverse ?8670) (multiply (multiply ?8670 ?8669) ?8671) [8671, 8669, 8670] by Demod 7694 with 2125 at 3 Id : 21332, {_}: left_division (right_division ?21938 ?21939) (multiply ?21938 ?21940) =>= left_division ?21938 (multiply (multiply ?21938 ?21939) ?21940) [21940, 21939, 21938] by Demod 7695 with 745 at 3 Id : 21365, {_}: left_division (multiply ?22075 ?22076) (multiply ?22075 ?22077) =<= left_division ?22075 (multiply (multiply ?22075 (left_inverse ?22076)) ?22077) [22077, 22076, 22075] by Super 21332 with 2125 at 1,2 Id : 21593, {_}: left_division (multiply ?22075 ?22076) (multiply ?22075 ?22077) =>= left_division ?22075 (multiply (right_division ?22075 ?22076) ?22077) [22077, 22076, 22075] by Demod 21365 with 2199 at 1,2,3 Id : 21594, {_}: left_division (multiply ?22075 ?22076) (multiply ?22075 ?22077) =>= left_division ?22075 (left_division (right_division ?22076 ?22075) ?22077) [22077, 22076, 22075] by Demod 21593 with 940 at 2,3 Id : 43599, {_}: left_division ?43014 (left_division (right_division ?43015 ?43014) ?43016) =<= left_division (left_division (right_division ?43016 ?43014) ?43015) ?43014 [43016, 43015, 43014] by Demod 33510 with 21594 at 2 Id : 831, {_}: multiply (left_inverse ?1117) (multiply ?1118 (left_inverse ?1117)) =>= multiply (left_division ?1117 ?1118) (left_inverse ?1117) [1118, 1117] by Super 70 with 745 at 1,3 Id : 861, {_}: left_division ?1117 (multiply ?1118 (left_inverse ?1117)) =<= multiply (left_division ?1117 ?1118) (left_inverse ?1117) [1118, 1117] by Demod 831 with 745 at 2 Id : 2279, {_}: left_division ?1117 (right_division ?1118 ?1117) =<= multiply (left_division ?1117 ?1118) (left_inverse ?1117) [1118, 1117] by Demod 861 with 2199 at 2,2 Id : 2280, {_}: left_division ?1117 (right_division ?1118 ?1117) =>= right_division (left_division ?1117 ?1118) ?1117 [1118, 1117] by Demod 2279 with 2199 at 3 Id : 43659, {_}: left_division ?43271 (left_division (right_division (right_division ?43272 (right_division ?43273 ?43271)) ?43271) ?43273) =<= left_division (right_division (left_division (right_division ?43273 ?43271) ?43272) (right_division ?43273 ?43271)) ?43271 [43273, 43272, 43271] by Super 43599 with 2280 at 1,3 Id : 59, {_}: multiply (multiply ?136 ?137) ?138 =<= multiply ?137 (multiply (left_division ?137 ?136) (multiply ?137 ?138)) [138, 137, 136] by Super 56 with 4 at 1,1,2 Id : 2739, {_}: left_division ?3557 (multiply (multiply ?3558 ?3557) ?3559) =<= multiply (left_division ?3557 ?3558) (multiply ?3557 ?3559) [3559, 3558, 3557] by Super 5 with 59 at 2,2 Id : 7405, {_}: left_division ?3557 (multiply (multiply ?3558 ?3557) ?3559) =<= left_division (left_division ?3558 ?3557) (multiply ?3557 ?3559) [3559, 3558, 3557] by Demod 2739 with 2417 at 3 Id : 7420, {_}: left_inverse (left_division ?8368 (multiply (multiply ?8369 ?8368) ?8370)) =>= left_division (multiply ?8368 ?8370) (left_division ?8369 ?8368) [8370, 8369, 8368] by Super 2261 with 7405 at 1,2 Id : 7473, {_}: left_division (multiply (multiply ?8369 ?8368) ?8370) ?8368 =>= left_division (multiply ?8368 ?8370) (left_division ?8369 ?8368) [8370, 8368, 8369] by Demod 7420 with 2261 at 2 Id : 19956, {_}: left_division (multiply (left_inverse ?19929) ?19930) (left_division ?19931 (left_inverse ?19929)) =>= left_inverse (multiply ?19929 (multiply (multiply ?19931 (left_inverse ?19929)) ?19930)) [19931, 19930, 19929] by Super 2383 with 7473 at 2 Id : 20037, {_}: left_division (left_division ?19929 ?19930) (left_division ?19931 (left_inverse ?19929)) =<= left_inverse (multiply ?19929 (multiply (multiply ?19931 (left_inverse ?19929)) ?19930)) [19931, 19930, 19929] by Demod 19956 with 745 at 1,2 Id : 20038, {_}: left_division (left_division ?19929 ?19930) (left_inverse (multiply ?19929 ?19931)) =<= left_inverse (multiply ?19929 (multiply (multiply ?19931 (left_inverse ?19929)) ?19930)) [19931, 19930, 19929] by Demod 20037 with 2383 at 2,2 Id : 20039, {_}: left_inverse (multiply (multiply ?19929 ?19931) (left_division ?19929 ?19930)) =<= left_inverse (multiply ?19929 (multiply (multiply ?19931 (left_inverse ?19929)) ?19930)) [19930, 19931, 19929] by Demod 20038 with 2383 at 2 Id : 20040, {_}: left_inverse (right_division (multiply ?19929 ?19931) (left_division ?19930 ?19929)) =<= left_inverse (multiply ?19929 (multiply (multiply ?19931 (left_inverse ?19929)) ?19930)) [19930, 19931, 19929] by Demod 20039 with 2421 at 1,2 Id : 20041, {_}: right_division (left_division ?19930 ?19929) (multiply ?19929 ?19931) =<= left_inverse (multiply ?19929 (multiply (multiply ?19931 (left_inverse ?19929)) ?19930)) [19931, 19929, 19930] by Demod 20040 with 923 at 2 Id : 20042, {_}: right_division (left_division ?19930 ?19929) (multiply ?19929 ?19931) =<= left_inverse (multiply ?19929 (multiply (right_division ?19931 ?19929) ?19930)) [19931, 19929, 19930] by Demod 20041 with 2199 at 1,2,1,3 Id : 20043, {_}: right_division (left_division ?19930 ?19929) (multiply ?19929 ?19931) =<= left_inverse (multiply ?19929 (left_division (right_division ?19929 ?19931) ?19930)) [19931, 19929, 19930] by Demod 20042 with 940 at 2,1,3 Id : 20044, {_}: right_division (left_division ?19930 ?19929) (multiply ?19929 ?19931) =<= left_inverse (right_division ?19929 (left_division ?19930 (right_division ?19929 ?19931))) [19931, 19929, 19930] by Demod 20043 with 2421 at 1,3 Id : 29464, {_}: right_division (left_division ?28561 ?28562) (multiply ?28562 ?28563) =<= right_division (left_division ?28561 (right_division ?28562 ?28563)) ?28562 [28563, 28562, 28561] by Demod 20044 with 923 at 3 Id : 29535, {_}: right_division (left_division (left_inverse ?28855) ?28856) (multiply ?28856 ?28857) =>= right_division (multiply ?28855 (right_division ?28856 ?28857)) ?28856 [28857, 28856, 28855] by Super 29464 with 757 at 1,3 Id : 29819, {_}: right_division (multiply ?28855 ?28856) (multiply ?28856 ?28857) =<= right_division (multiply ?28855 (right_division ?28856 ?28857)) ?28856 [28857, 28856, 28855] by Demod 29535 with 757 at 1,2 Id : 2200, {_}: right_division ?2909 (right_division ?2910 ?2911) =<= multiply ?2909 (right_division ?2911 ?2910) [2911, 2910, 2909] by Super 2197 with 923 at 2,2 Id : 29820, {_}: right_division (multiply ?28855 ?28856) (multiply ?28856 ?28857) =<= right_division (right_division ?28855 (right_division ?28857 ?28856)) ?28856 [28857, 28856, 28855] by Demod 29819 with 2200 at 1,3 Id : 44011, {_}: left_division ?43271 (left_division (right_division (multiply ?43272 ?43271) (multiply ?43271 ?43273)) ?43273) =<= left_division (right_division (left_division (right_division ?43273 ?43271) ?43272) (right_division ?43273 ?43271)) ?43271 [43273, 43272, 43271] by Demod 43659 with 29820 at 1,2,2 Id : 242, {_}: multiply (multiply ?22 (multiply ?23 ?22)) ?24 =>= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by Demod 10 with 70 at 1,2 Id : 2300, {_}: multiply (multiply (left_inverse ?3033) (right_division ?3034 ?3033)) ?3035 =<= multiply (left_inverse ?3033) (multiply ?3034 (multiply (left_inverse ?3033) ?3035)) [3035, 3034, 3033] by Super 242 with 2199 at 2,1,2 Id : 2359, {_}: multiply (left_division ?3033 (right_division ?3034 ?3033)) ?3035 =<= multiply (left_inverse ?3033) (multiply ?3034 (multiply (left_inverse ?3033) ?3035)) [3035, 3034, 3033] by Demod 2300 with 745 at 1,2 Id : 2360, {_}: multiply (right_division (left_division ?3033 ?3034) ?3033) ?3035 =<= multiply (left_inverse ?3033) (multiply ?3034 (multiply (left_inverse ?3033) ?3035)) [3035, 3034, 3033] by Demod 2359 with 2280 at 1,2 Id : 2361, {_}: left_division (right_division ?3033 (left_division ?3033 ?3034)) ?3035 =<= multiply (left_inverse ?3033) (multiply ?3034 (multiply (left_inverse ?3033) ?3035)) [3035, 3034, 3033] by Demod 2360 with 940 at 2 Id : 2362, {_}: left_division (right_division ?3033 (left_division ?3033 ?3034)) ?3035 =<= multiply (left_inverse ?3033) (multiply ?3034 (left_division ?3033 ?3035)) [3035, 3034, 3033] by Demod 2361 with 745 at 2,2,3 Id : 2363, {_}: left_division (right_division ?3033 (left_division ?3033 ?3034)) ?3035 =>= left_division ?3033 (multiply ?3034 (left_division ?3033 ?3035)) [3035, 3034, 3033] by Demod 2362 with 745 at 3 Id : 6491, {_}: left_division (right_division ?3033 (left_division ?3033 ?3034)) ?3035 =>= left_division ?3033 (right_division ?3034 (left_division ?3035 ?3033)) [3035, 3034, 3033] by Demod 2363 with 2421 at 2,3 Id : 6508, {_}: left_division ?7212 (right_division ?7213 (left_division (left_inverse ?7214) ?7212)) =>= left_inverse (multiply ?7214 (right_division ?7212 (left_division ?7212 ?7213))) [7214, 7213, 7212] by Super 2383 with 6491 at 2 Id : 6610, {_}: left_division ?7212 (right_division ?7213 (multiply ?7214 ?7212)) =<= left_inverse (multiply ?7214 (right_division ?7212 (left_division ?7212 ?7213))) [7214, 7213, 7212] by Demod 6508 with 757 at 2,2,2 Id : 6611, {_}: left_division ?7212 (right_division ?7213 (multiply ?7214 ?7212)) =<= left_inverse (right_division ?7214 (right_division (left_division ?7212 ?7213) ?7212)) [7214, 7213, 7212] by Demod 6610 with 2200 at 1,3 Id : 6612, {_}: left_division ?7212 (right_division ?7213 (multiply ?7214 ?7212)) =>= right_division (right_division (left_division ?7212 ?7213) ?7212) ?7214 [7214, 7213, 7212] by Demod 6611 with 923 at 3 Id : 18937, {_}: left_inverse (right_division (right_division (left_division ?18567 ?18568) ?18567) ?18569) =>= left_division (right_division ?18568 (multiply ?18569 ?18567)) ?18567 [18569, 18568, 18567] by Super 2261 with 6612 at 1,2 Id : 19055, {_}: right_division ?18569 (right_division (left_division ?18567 ?18568) ?18567) =<= left_division (right_division ?18568 (multiply ?18569 ?18567)) ?18567 [18568, 18567, 18569] by Demod 18937 with 923 at 2 Id : 44012, {_}: left_division ?43271 (right_division ?43271 (right_division (left_division ?43273 (multiply ?43272 ?43271)) ?43273)) =<= left_division (right_division (left_division (right_division ?43273 ?43271) ?43272) (right_division ?43273 ?43271)) ?43271 [43272, 43273, 43271] by Demod 44011 with 19055 at 2,2 Id : 2298, {_}: left_division ?3028 (right_division ?3028 ?3029) =>= left_inverse ?3029 [3029, 3028] by Super 5 with 2199 at 2,2 Id : 44013, {_}: left_inverse (right_division (left_division ?43273 (multiply ?43272 ?43271)) ?43273) =<= left_division (right_division (left_division (right_division ?43273 ?43271) ?43272) (right_division ?43273 ?43271)) ?43271 [43271, 43272, 43273] by Demod 44012 with 2298 at 2 Id : 44014, {_}: right_division ?43273 (left_division ?43273 (multiply ?43272 ?43271)) =<= left_division (right_division (left_division (right_division ?43273 ?43271) ?43272) (right_division ?43273 ?43271)) ?43271 [43271, 43272, 43273] by Demod 44013 with 923 at 2 Id : 829, {_}: multiply (multiply ?1109 (left_division ?1110 ?1109)) ?1111 =<= multiply ?1109 (multiply (left_inverse ?1110) (multiply ?1109 ?1111)) [1111, 1110, 1109] by Super 242 with 745 at 2,1,2 Id : 862, {_}: multiply (multiply ?1109 (left_division ?1110 ?1109)) ?1111 =>= multiply ?1109 (left_division ?1110 (multiply ?1109 ?1111)) [1111, 1110, 1109] by Demod 829 with 745 at 2,3 Id : 3925, {_}: multiply (right_division ?1109 (left_division ?1109 ?1110)) ?1111 =>= multiply ?1109 (left_division ?1110 (multiply ?1109 ?1111)) [1111, 1110, 1109] by Demod 862 with 2421 at 1,2 Id : 3926, {_}: left_division (right_division (left_division ?1109 ?1110) ?1109) ?1111 =<= multiply ?1109 (left_division ?1110 (multiply ?1109 ?1111)) [1111, 1110, 1109] by Demod 3925 with 940 at 2 Id : 3927, {_}: left_division (right_division (left_division ?1109 ?1110) ?1109) ?1111 =>= right_division ?1109 (left_division (multiply ?1109 ?1111) ?1110) [1111, 1110, 1109] by Demod 3926 with 2421 at 3 Id : 44015, {_}: right_division ?43273 (left_division ?43273 (multiply ?43272 ?43271)) =<= right_division (right_division ?43273 ?43271) (left_division (multiply (right_division ?43273 ?43271) ?43271) ?43272) [43271, 43272, 43273] by Demod 44014 with 3927 at 3 Id : 44016, {_}: right_division ?43273 (left_division ?43273 (multiply ?43272 ?43271)) =<= right_division (right_division ?43273 ?43271) (left_division (left_division (right_division ?43271 ?43273) ?43271) ?43272) [43271, 43272, 43273] by Demod 44015 with 940 at 1,2,3 Id : 44017, {_}: right_division ?43273 (left_division ?43273 (multiply ?43272 ?43271)) =<= right_division (right_division ?43273 ?43271) (left_division ?43273 ?43272) [43271, 43272, 43273] by Demod 44016 with 28 at 1,2,3 Id : 47975, {_}: right_division (left_division ?47996 ?47997) (right_division ?47996 ?47998) =<= left_inverse (right_division ?47996 (left_division ?47996 (multiply ?47997 ?47998))) [47998, 47997, 47996] by Super 923 with 44017 at 1,3 Id : 48266, {_}: right_division (left_division ?47996 ?47997) (right_division ?47996 ?47998) =<= right_division (left_division ?47996 (multiply ?47997 ?47998)) ?47996 [47998, 47997, 47996] by Demod 47975 with 923 at 3 Id : 50410, {_}: right_division (left_division (left_inverse ?50808) ?50809) (right_division (left_inverse ?50808) ?50810) =>= multiply (left_division (left_inverse ?50808) (multiply ?50809 ?50810)) ?50808 [50810, 50809, 50808] by Super 2125 with 48266 at 2 Id : 50589, {_}: right_division (multiply ?50808 ?50809) (right_division (left_inverse ?50808) ?50810) =<= multiply (left_division (left_inverse ?50808) (multiply ?50809 ?50810)) ?50808 [50810, 50809, 50808] by Demod 50410 with 757 at 1,2 Id : 50590, {_}: right_division (multiply ?50808 ?50809) (left_inverse (multiply ?50810 ?50808)) =<= multiply (left_division (left_inverse ?50808) (multiply ?50809 ?50810)) ?50808 [50810, 50809, 50808] by Demod 50589 with 2193 at 2,2 Id : 50591, {_}: multiply (multiply ?50808 ?50809) (multiply ?50810 ?50808) =<= multiply (left_division (left_inverse ?50808) (multiply ?50809 ?50810)) ?50808 [50810, 50809, 50808] by Demod 50590 with 2125 at 2 Id : 50592, {_}: multiply (multiply ?50808 ?50809) (multiply ?50810 ?50808) =<= multiply (multiply ?50808 (multiply ?50809 ?50810)) ?50808 [50810, 50809, 50808] by Demod 50591 with 757 at 1,3 Id : 50593, {_}: multiply (multiply ?50808 ?50809) (multiply ?50810 ?50808) =>= multiply ?50808 (multiply (multiply ?50809 ?50810) ?50808) [50810, 50809, 50808] by Demod 50592 with 70 at 3 Id : 52239, {_}: multiply x (multiply (multiply y z) x) =?= multiply x (multiply (multiply y z) x) [] by Demod 1 with 50593 at 3 Id : 1, {_}: multiply x (multiply (multiply y z) x) =<= multiply (multiply x y) (multiply z x) [] by prove_moufang4 % SZS output end CNFRefutation for GRP205-1.p 19238: solved GRP205-1.p in 6.160384 using kbo WARNING: TreeLimitedRun lost 13.80s, total lost is 13.80s FINAL WATCH: 20.0 CPU 12.4 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP207-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19248 TreeLimitedRun: ---------------------------------------------------------- 19250: Facts: 19250: Id : 2, {_}: multiply ?2 (inverse (multiply ?3 (multiply (multiply (multiply ?4 (inverse ?4)) (inverse (multiply ?2 ?3))) ?2))) =>= ?2 [4, 3, 2] by single_non_axiom ?2 ?3 ?4 19250: Goal: 19250: Id : 1, {_}: multiply x (inverse (multiply y (multiply (multiply (multiply z (inverse z)) (inverse (multiply u y))) x))) =>= u [] by try_prove_this_axiom % SZS status Timeout for GRP207-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP399-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19324 TreeLimitedRun: ---------------------------------------------------------- Fatal error: exception Assert_failure("matitaprover.ml", 280, 46) FINAL WATCH: 0.0 CPU 0.0 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP404-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19329 TreeLimitedRun: ---------------------------------------------------------- 19331: Facts: 19331: Id : 2, {_}: multiply ?2 (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4)) (inverse (multiply ?3 (multiply (inverse ?3) ?3))))) =>= ?4 [4, 3, 2] by single_axiom ?2 ?3 ?4 19331: Goal: 19331: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 % SZS status Timeout for GRP404-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP405-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19391 TreeLimitedRun: ---------------------------------------------------------- 19393: Facts: 19393: Id : 2, {_}: multiply ?2 (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4)) (inverse (multiply ?3 (multiply (inverse ?3) ?3))))) =>= ?4 [4, 3, 2] by single_axiom ?2 ?3 ?4 19393: Goal: 19393: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 % SZS status Timeout for GRP405-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP410-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19463 TreeLimitedRun: ---------------------------------------------------------- 19465: Facts: 19465: Id : 2, {_}: multiply (multiply (inverse (multiply ?2 (inverse (multiply ?3 ?4)))) (multiply ?2 (inverse ?4))) (inverse (multiply (inverse ?4) ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 19465: Goal: 19465: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 Statistics : Max weight : 68 Found proof, 12.633322s % SZS status Unsatisfiable for GRP410-1.p % SZS output start CNFRefutation for GRP410-1.p Id : 3, {_}: multiply (multiply (inverse (multiply ?6 (inverse (multiply ?7 ?8)))) (multiply ?6 (inverse ?8))) (inverse (multiply (inverse ?8) ?8)) =>= ?7 [8, 7, 6] by single_axiom ?6 ?7 ?8 Id : 2, {_}: multiply (multiply (inverse (multiply ?2 (inverse (multiply ?3 ?4)))) (multiply ?2 (inverse ?4))) (inverse (multiply (inverse ?4) ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 Id : 5, {_}: multiply (multiply (inverse (multiply ?15 (inverse ?16))) (multiply ?15 (inverse (inverse (multiply (inverse ?17) ?17))))) (inverse (multiply (inverse (inverse (multiply (inverse ?17) ?17))) (inverse (multiply (inverse ?17) ?17)))) =?= multiply (inverse (multiply ?18 (inverse (multiply ?16 ?17)))) (multiply ?18 (inverse ?17)) [18, 17, 16, 15] by Super 3 with 2 at 1,2,1,1,1,2 Id : 106, {_}: multiply (inverse (multiply ?503 (inverse (multiply (multiply ?504 (inverse (multiply (inverse ?505) ?505))) ?505)))) (multiply ?503 (inverse ?505)) =>= ?504 [505, 504, 503] by Super 2 with 5 at 2 Id : 117, {_}: multiply (multiply (inverse (multiply ?561 (inverse ?562))) (multiply ?561 (inverse (inverse (multiply (inverse ?563) ?563))))) (inverse (multiply (inverse (inverse (multiply (inverse ?563) ?563))) (inverse (multiply (inverse ?563) ?563)))) =?= multiply (inverse (multiply ?564 (inverse (multiply ?562 ?563)))) (multiply ?564 (inverse ?563)) [564, 563, 562, 561] by Super 3 with 2 at 1,2,1,1,1,2 Id : 216, {_}: multiply (inverse (multiply ?1036 (inverse (multiply ?1037 ?1038)))) (multiply ?1036 (inverse ?1038)) =?= multiply (inverse (multiply ?1039 (inverse (multiply ?1037 ?1038)))) (multiply ?1039 (inverse ?1038)) [1039, 1038, 1037, 1036] by Super 117 with 5 at 2 Id : 229, {_}: multiply (inverse (multiply ?1117 (inverse (multiply (inverse (multiply ?1118 (inverse (multiply (multiply ?1119 (inverse (multiply (inverse ?1120) ?1120))) ?1120)))) (multiply ?1118 (inverse ?1120)))))) (multiply ?1117 (inverse (multiply ?1118 (inverse ?1120)))) =?= multiply (inverse (multiply ?1121 (inverse ?1119))) (multiply ?1121 (inverse (multiply ?1118 (inverse ?1120)))) [1121, 1120, 1119, 1118, 1117] by Super 216 with 106 at 1,2,1,1,3 Id : 704, {_}: multiply (inverse (multiply ?2676 (inverse ?2677))) (multiply ?2676 (inverse (multiply ?2678 (inverse ?2679)))) =?= multiply (inverse (multiply ?2680 (inverse ?2677))) (multiply ?2680 (inverse (multiply ?2678 (inverse ?2679)))) [2680, 2679, 2678, 2677, 2676] by Demod 229 with 106 at 1,2,1,1,2 Id : 151, {_}: multiply (multiply (inverse (multiply ?754 (inverse ?755))) (multiply ?754 (inverse (multiply ?756 (inverse ?757))))) (inverse (multiply (inverse (multiply ?756 (inverse ?757))) (multiply ?756 (inverse ?757)))) =>= inverse (multiply ?756 (inverse (multiply (multiply ?755 (inverse (multiply (inverse ?757) ?757))) ?757))) [757, 756, 755, 754] by Super 2 with 106 at 1,2,1,1,1,2 Id : 310, {_}: inverse (multiply ?1412 (inverse (multiply (multiply (multiply ?1413 (multiply ?1412 (inverse ?1414))) (inverse (multiply (inverse ?1414) ?1414))) ?1414))) =>= ?1413 [1414, 1413, 1412] by Super 2 with 151 at 2 Id : 713, {_}: multiply (inverse (multiply ?2742 (inverse ?2743))) (multiply ?2742 (inverse (multiply ?2744 (inverse (multiply (multiply (multiply ?2745 (multiply ?2744 (inverse ?2746))) (inverse (multiply (inverse ?2746) ?2746))) ?2746))))) =?= multiply (inverse (multiply ?2747 (inverse ?2743))) (multiply ?2747 ?2745) [2747, 2746, 2745, 2744, 2743, 2742] by Super 704 with 310 at 2,2,3 Id : 869, {_}: multiply (inverse (multiply ?3440 (inverse ?3441))) (multiply ?3440 ?3442) =?= multiply (inverse (multiply ?3443 (inverse ?3441))) (multiply ?3443 ?3442) [3443, 3442, 3441, 3440] by Demod 713 with 310 at 2,2,2 Id : 881, {_}: multiply (inverse (multiply ?3517 (inverse (multiply ?3518 (inverse (multiply (multiply (multiply ?3519 (multiply ?3518 (inverse ?3520))) (inverse (multiply (inverse ?3520) ?3520))) ?3520)))))) (multiply ?3517 ?3521) =?= multiply (inverse (multiply ?3522 ?3519)) (multiply ?3522 ?3521) [3522, 3521, 3520, 3519, 3518, 3517] by Super 869 with 310 at 2,1,1,3 Id : 932, {_}: multiply (inverse (multiply ?3517 ?3519)) (multiply ?3517 ?3521) =?= multiply (inverse (multiply ?3522 ?3519)) (multiply ?3522 ?3521) [3522, 3521, 3519, 3517] by Demod 881 with 310 at 2,1,1,2 Id : 940, {_}: multiply (inverse (multiply ?3765 (inverse (multiply (multiply ?3766 (inverse (multiply (inverse (multiply ?3767 ?3768)) (multiply ?3767 ?3768)))) (multiply ?3769 ?3768))))) (multiply ?3765 (inverse (multiply ?3769 ?3768))) =>= ?3766 [3769, 3768, 3767, 3766, 3765] by Super 106 with 932 at 1,2,1,1,2,1,1,2 Id : 1923, {_}: multiply ?8185 (inverse (multiply (inverse (multiply ?8186 ?8187)) (multiply ?8186 ?8187))) =?= multiply ?8185 (inverse (multiply (inverse (multiply ?8188 ?8187)) (multiply ?8188 ?8187))) [8188, 8187, 8186, 8185] by Super 2 with 940 at 1,2 Id : 6, {_}: multiply (multiply (inverse ?20) (multiply (multiply (inverse (multiply ?21 (inverse (multiply ?20 ?22)))) (multiply ?21 (inverse ?22))) (inverse ?22))) (inverse (multiply (inverse ?22) ?22)) =>= inverse ?22 [22, 21, 20] by Super 3 with 2 at 1,1,1,2 Id : 1927, {_}: multiply ?8210 (inverse (multiply (inverse (multiply ?8211 (inverse (multiply (inverse ?8212) ?8212)))) (multiply ?8211 (inverse (multiply (inverse ?8212) ?8212))))) =?= multiply ?8210 (inverse (multiply (inverse (multiply (multiply (inverse ?8213) (multiply (multiply (inverse (multiply ?8214 (inverse (multiply ?8213 ?8212)))) (multiply ?8214 (inverse ?8212))) (inverse ?8212))) (inverse (multiply (inverse ?8212) ?8212)))) (inverse ?8212))) [8214, 8213, 8212, 8211, 8210] by Super 1923 with 6 at 2,1,2,3 Id : 2148, {_}: multiply ?9208 (inverse (multiply (inverse (multiply ?9209 (inverse (multiply (inverse ?9210) ?9210)))) (multiply ?9209 (inverse (multiply (inverse ?9210) ?9210))))) =>= multiply ?9208 (inverse (multiply (inverse (inverse ?9210)) (inverse ?9210))) [9210, 9209, 9208] by Demod 1927 with 6 at 1,1,1,2,3 Id : 2158, {_}: multiply ?9267 (inverse (multiply (inverse (multiply (multiply (inverse (multiply ?9268 (inverse (multiply ?9269 ?9270)))) (multiply ?9268 (inverse ?9270))) (inverse (multiply (inverse ?9270) ?9270)))) ?9269)) =>= multiply ?9267 (inverse (multiply (inverse (inverse ?9270)) (inverse ?9270))) [9270, 9269, 9268, 9267] by Super 2148 with 2 at 2,1,2,2 Id : 2524, {_}: multiply ?10398 (inverse (multiply (inverse ?10399) ?10399)) =?= multiply ?10398 (inverse (multiply (inverse (inverse ?10400)) (inverse ?10400))) [10400, 10399, 10398] by Demod 2158 with 2 at 1,1,1,2,2 Id : 2333, {_}: multiply ?9267 (inverse (multiply (inverse ?9269) ?9269)) =?= multiply ?9267 (inverse (multiply (inverse (inverse ?9270)) (inverse ?9270))) [9270, 9269, 9267] by Demod 2158 with 2 at 1,1,1,2,2 Id : 2540, {_}: multiply ?10486 (inverse (multiply (inverse ?10487) ?10487)) =?= multiply ?10486 (inverse (multiply (inverse ?10488) ?10488)) [10488, 10487, 10486] by Super 2524 with 2333 at 3 Id : 2606, {_}: multiply (inverse (multiply ?10821 (inverse (multiply (multiply ?10822 (inverse (multiply (inverse ?10823) ?10823))) ?10824)))) (multiply ?10821 (inverse ?10824)) =>= ?10822 [10824, 10823, 10822, 10821] by Super 106 with 2540 at 1,1,2,1,1,2 Id : 4, {_}: multiply (multiply (inverse (multiply (multiply (inverse (multiply ?10 (inverse (multiply ?11 ?12)))) (multiply ?10 (inverse ?12))) (inverse (multiply ?13 (multiply (inverse ?12) ?12))))) ?11) (inverse (multiply (inverse (multiply (inverse ?12) ?12)) (multiply (inverse ?12) ?12))) =>= ?13 [13, 12, 11, 10] by Super 3 with 2 at 2,1,2 Id : 2648, {_}: multiply (multiply (inverse (multiply ?11025 (inverse (multiply ?11026 ?11027)))) (multiply ?11025 (inverse ?11027))) (inverse (multiply (inverse ?11028) ?11028)) =>= ?11026 [11028, 11027, 11026, 11025] by Super 2 with 2540 at 2 Id : 3251, {_}: multiply (multiply (inverse ?14256) ?14256) (inverse (multiply (inverse (multiply (inverse ?14257) ?14257)) (multiply (inverse ?14257) ?14257))) =>= inverse (multiply (inverse ?14257) ?14257) [14257, 14256] by Super 4 with 2648 at 1,1,1,2 Id : 936, {_}: multiply (multiply (inverse (multiply ?3743 (inverse ?3744))) (multiply ?3743 (inverse (multiply ?3745 (inverse ?3746))))) (inverse (multiply (inverse (multiply ?3747 (inverse ?3746))) (multiply ?3747 (inverse ?3746)))) =>= inverse (multiply ?3745 (inverse (multiply (multiply ?3744 (inverse (multiply (inverse ?3746) ?3746))) ?3746))) [3747, 3746, 3745, 3744, 3743] by Super 151 with 932 at 1,2,2 Id : 3285, {_}: inverse (multiply ?14417 (inverse (multiply (multiply (multiply ?14417 (inverse ?14418)) (inverse (multiply (inverse ?14418) ?14418))) ?14418))) =>= inverse (multiply (inverse (inverse ?14418)) (inverse ?14418)) [14418, 14417] by Super 3251 with 936 at 2 Id : 10419, {_}: multiply (inverse (multiply (inverse (inverse ?33757)) (inverse ?33757))) (multiply ?33758 (inverse ?33757)) =>= multiply ?33758 (inverse ?33757) [33758, 33757] by Super 2606 with 3285 at 1,2 Id : 10420, {_}: multiply (inverse (multiply (inverse (inverse (multiply ?33760 (inverse (multiply (multiply (multiply ?33761 (multiply ?33760 (inverse ?33762))) (inverse (multiply (inverse ?33762) ?33762))) ?33762))))) (inverse (multiply ?33760 (inverse (multiply (multiply (multiply ?33761 (multiply ?33760 (inverse ?33762))) (inverse (multiply (inverse ?33762) ?33762))) ?33762)))))) (multiply ?33763 ?33761) =>= multiply ?33763 (inverse (multiply ?33760 (inverse (multiply (multiply (multiply ?33761 (multiply ?33760 (inverse ?33762))) (inverse (multiply (inverse ?33762) ?33762))) ?33762)))) [33763, 33762, 33761, 33760] by Super 10419 with 310 at 2,2,2 Id : 10540, {_}: multiply (inverse (multiply (inverse ?33761) (inverse (multiply ?33760 (inverse (multiply (multiply (multiply ?33761 (multiply ?33760 (inverse ?33762))) (inverse (multiply (inverse ?33762) ?33762))) ?33762)))))) (multiply ?33763 ?33761) =>= multiply ?33763 (inverse (multiply ?33760 (inverse (multiply (multiply (multiply ?33761 (multiply ?33760 (inverse ?33762))) (inverse (multiply (inverse ?33762) ?33762))) ?33762)))) [33763, 33762, 33760, 33761] by Demod 10420 with 310 at 1,1,1,1,2 Id : 10541, {_}: multiply (inverse (multiply (inverse ?33761) ?33761)) (multiply ?33763 ?33761) =?= multiply ?33763 (inverse (multiply ?33760 (inverse (multiply (multiply (multiply ?33761 (multiply ?33760 (inverse ?33762))) (inverse (multiply (inverse ?33762) ?33762))) ?33762)))) [33762, 33760, 33763, 33761] by Demod 10540 with 310 at 2,1,1,2 Id : 10771, {_}: multiply (inverse (multiply (inverse ?34484) ?34484)) (multiply ?34485 ?34484) =>= multiply ?34485 ?34484 [34485, 34484] by Demod 10541 with 310 at 2,3 Id : 4587, {_}: multiply (multiply (inverse ?18346) ?18346) (inverse (multiply (inverse ?18347) ?18347)) =?= inverse (multiply (inverse ?18348) ?18348) [18348, 18347, 18346] by Super 3251 with 2540 at 2 Id : 3286, {_}: multiply (multiply (inverse ?14420) ?14420) (inverse (multiply (inverse ?14421) ?14421)) =?= inverse (multiply (inverse ?14422) ?14422) [14422, 14421, 14420] by Super 3251 with 2540 at 2 Id : 4643, {_}: inverse (multiply (inverse ?18648) ?18648) =?= inverse (multiply (inverse ?18649) ?18649) [18649, 18648] by Super 4587 with 3286 at 2 Id : 11169, {_}: multiply (inverse (multiply (inverse ?35665) ?35665)) (multiply ?35666 ?35667) =>= multiply ?35666 ?35667 [35667, 35666, 35665] by Super 10771 with 4643 at 1,2 Id : 11177, {_}: multiply (inverse (multiply (inverse ?35708) ?35708)) ?35709 =?= multiply (inverse (multiply ?35710 (inverse (multiply (multiply ?35709 (inverse (multiply (inverse ?35711) ?35711))) ?35712)))) (multiply ?35710 (inverse ?35712)) [35712, 35711, 35710, 35709, 35708] by Super 11169 with 2606 at 2,2 Id : 11281, {_}: multiply (inverse (multiply (inverse ?35708) ?35708)) ?35709 =>= ?35709 [35709, 35708] by Demod 11177 with 2606 at 3 Id : 11432, {_}: inverse (multiply (inverse (multiply (inverse ?36500) ?36500)) (inverse (multiply (multiply (inverse ?36501) (inverse (multiply (inverse ?36501) ?36501))) ?36501))) =>= inverse (multiply (inverse (inverse ?36501)) (inverse ?36501)) [36501, 36500] by Super 3285 with 11281 at 1,1,1,2,1,2 Id : 11797, {_}: inverse (inverse (multiply (multiply (inverse ?37264) (inverse (multiply (inverse ?37264) ?37264))) ?37264)) =>= inverse (multiply (inverse (inverse ?37264)) (inverse ?37264)) [37264] by Demod 11432 with 11281 at 1,2 Id : 11802, {_}: inverse (inverse (multiply (multiply (inverse (multiply (inverse ?37280) ?37280)) (inverse (multiply (inverse (multiply (inverse ?37281) ?37281)) (multiply (inverse ?37280) ?37280)))) (multiply (inverse ?37280) ?37280))) =>= inverse (multiply (inverse (inverse (multiply (inverse ?37280) ?37280))) (inverse (multiply (inverse ?37280) ?37280))) [37281, 37280] by Super 11797 with 4643 at 1,1,2,1,1,1,2 Id : 12149, {_}: inverse (inverse (multiply (multiply (inverse (multiply (inverse ?37280) ?37280)) (inverse (multiply (inverse ?37280) ?37280))) (multiply (inverse ?37280) ?37280))) =>= inverse (multiply (inverse (inverse (multiply (inverse ?37280) ?37280))) (inverse (multiply (inverse ?37280) ?37280))) [37280] by Demod 11802 with 11281 at 1,2,1,1,1,2 Id : 12150, {_}: inverse (inverse (multiply (inverse (multiply (inverse ?37280) ?37280)) (multiply (inverse ?37280) ?37280))) =<= inverse (multiply (inverse (inverse (multiply (inverse ?37280) ?37280))) (inverse (multiply (inverse ?37280) ?37280))) [37280] by Demod 12149 with 11281 at 1,1,1,2 Id : 11226, {_}: multiply (inverse (multiply ?35979 ?35980)) (multiply ?35979 ?35981) =>= multiply (inverse ?35980) ?35981 [35981, 35980, 35979] by Super 11169 with 932 at 2 Id : 12151, {_}: inverse (inverse (multiply (inverse ?37280) ?37280)) =<= inverse (multiply (inverse (inverse (multiply (inverse ?37280) ?37280))) (inverse (multiply (inverse ?37280) ?37280))) [37280] by Demod 12150 with 11226 at 1,1,2 Id : 11604, {_}: multiply (multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (multiply (inverse (inverse (multiply (inverse ?17) ?17))) (inverse (multiply (inverse ?17) ?17)))) =?= multiply (inverse (multiply ?18 (inverse (multiply ?16 ?17)))) (multiply ?18 (inverse ?17)) [18, 17, 16] by Demod 5 with 11226 at 1,2 Id : 11605, {_}: multiply (multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (multiply (inverse (inverse (multiply (inverse ?17) ?17))) (inverse (multiply (inverse ?17) ?17)))) =>= multiply (inverse (inverse (multiply ?16 ?17))) (inverse ?17) [17, 16] by Demod 11604 with 11226 at 3 Id : 11635, {_}: multiply (multiply (inverse (inverse ?36802)) (inverse (inverse (multiply (inverse (multiply ?36803 ?36804)) (multiply ?36803 ?36804))))) (inverse (multiply (inverse (inverse (multiply (inverse (multiply ?36803 ?36804)) (multiply ?36803 ?36804)))) (inverse (multiply (inverse ?36804) ?36804)))) =>= multiply (inverse (inverse (multiply ?36802 (multiply ?36803 ?36804)))) (inverse (multiply ?36803 ?36804)) [36804, 36803, 36802] by Super 11605 with 11226 at 1,2,1,2,2 Id : 11692, {_}: multiply (multiply (inverse (inverse ?36802)) (inverse (inverse (multiply (inverse ?36804) ?36804)))) (inverse (multiply (inverse (inverse (multiply (inverse (multiply ?36803 ?36804)) (multiply ?36803 ?36804)))) (inverse (multiply (inverse ?36804) ?36804)))) =>= multiply (inverse (inverse (multiply ?36802 (multiply ?36803 ?36804)))) (inverse (multiply ?36803 ?36804)) [36803, 36804, 36802] by Demod 11635 with 11226 at 1,1,2,1,2 Id : 11693, {_}: multiply (multiply (inverse (inverse ?36802)) (inverse (inverse (multiply (inverse ?36804) ?36804)))) (inverse (multiply (inverse (inverse (multiply (inverse ?36804) ?36804))) (inverse (multiply (inverse ?36804) ?36804)))) =?= multiply (inverse (inverse (multiply ?36802 (multiply ?36803 ?36804)))) (inverse (multiply ?36803 ?36804)) [36803, 36804, 36802] by Demod 11692 with 11226 at 1,1,1,1,2,2 Id : 12703, {_}: multiply (inverse (inverse (multiply ?38022 ?38023))) (inverse ?38023) =<= multiply (inverse (inverse (multiply ?38022 (multiply ?38024 ?38023)))) (inverse (multiply ?38024 ?38023)) [38024, 38023, 38022] by Demod 11693 with 11605 at 2 Id : 12744, {_}: multiply (inverse (inverse (multiply (inverse (multiply (inverse ?38213) ?38213)) ?38214))) (inverse ?38214) =?= multiply (inverse (inverse (multiply ?38215 ?38214))) (inverse (multiply ?38215 ?38214)) [38215, 38214, 38213] by Super 12703 with 11281 at 1,1,1,3 Id : 12814, {_}: multiply (inverse (inverse ?38214)) (inverse ?38214) =<= multiply (inverse (inverse (multiply ?38215 ?38214))) (inverse (multiply ?38215 ?38214)) [38215, 38214] by Demod 12744 with 11281 at 1,1,1,2 Id : 12842, {_}: multiply (inverse (inverse (multiply (inverse ?38347) ?38347))) (inverse (multiply (inverse ?38348) ?38348)) =>= multiply (inverse (inverse ?38347)) (inverse ?38347) [38348, 38347] by Super 2540 with 12814 at 3 Id : 13769, {_}: inverse (inverse (multiply (inverse ?37280) ?37280)) =<= inverse (multiply (inverse (inverse ?37280)) (inverse ?37280)) [37280] by Demod 12151 with 12842 at 1,3 Id : 13843, {_}: multiply (inverse (inverse (multiply (inverse ?40444) ?40444))) ?40445 =>= ?40445 [40445, 40444] by Super 11281 with 13769 at 1,2 Id : 12822, {_}: multiply (multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (multiply (inverse (inverse ?17)) (inverse ?17))) =>= multiply (inverse (inverse (multiply ?16 ?17))) (inverse ?17) [17, 16] by Demod 11605 with 12814 at 1,2,2 Id : 13773, {_}: multiply (multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (inverse (multiply (inverse ?17) ?17))) =>= multiply (inverse (inverse (multiply ?16 ?17))) (inverse ?17) [17, 16] by Demod 12822 with 13769 at 2,2 Id : 11607, {_}: multiply (multiply (inverse (inverse (multiply ?11026 ?11027))) (inverse ?11027)) (inverse (multiply (inverse ?11028) ?11028)) =>= ?11026 [11028, 11027, 11026] by Demod 2648 with 11226 at 1,2 Id : 14468, {_}: multiply (inverse ?41330) (inverse (multiply (inverse ?41331) ?41331)) =>= inverse ?41330 [41331, 41330] by Super 11607 with 13843 at 1,2 Id : 14500, {_}: multiply ?41451 (inverse (multiply (inverse ?41452) ?41452)) =?= inverse (multiply ?41453 (inverse (multiply (multiply (multiply ?41451 (multiply ?41453 (inverse ?41454))) (inverse (multiply (inverse ?41454) ?41454))) ?41454))) [41454, 41453, 41452, 41451] by Super 14468 with 310 at 1,2 Id : 14608, {_}: multiply ?41451 (inverse (multiply (inverse ?41452) ?41452)) =>= ?41451 [41452, 41451] by Demod 14500 with 310 at 3 Id : 15616, {_}: multiply (inverse (inverse (multiply ?11026 ?11027))) (inverse ?11027) =>= ?11026 [11027, 11026] by Demod 11607 with 14608 at 2 Id : 15624, {_}: multiply (multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (inverse (multiply (inverse ?17) ?17))) =>= ?16 [17, 16] by Demod 13773 with 15616 at 3 Id : 15658, {_}: multiply (inverse (multiply ?42282 ?42283)) ?42282 =?= multiply (inverse ?42283) (inverse (multiply (inverse ?42284) ?42284)) [42284, 42283, 42282] by Super 11226 with 14608 at 2,2 Id : 15785, {_}: multiply (inverse (multiply ?42492 ?42493)) ?42492 =>= inverse ?42493 [42493, 42492] by Demod 15658 with 14608 at 3 Id : 11603, {_}: multiply (multiply (inverse ?20) (multiply (multiply (inverse (inverse (multiply ?20 ?22))) (inverse ?22)) (inverse ?22))) (inverse (multiply (inverse ?22) ?22)) =>= inverse ?22 [22, 20] by Demod 6 with 11226 at 1,2,1,2 Id : 15607, {_}: multiply (inverse ?20) (multiply (multiply (inverse (inverse (multiply ?20 ?22))) (inverse ?22)) (inverse ?22)) =>= inverse ?22 [22, 20] by Demod 11603 with 14608 at 2 Id : 15627, {_}: multiply (inverse ?20) (multiply ?20 (inverse ?22)) =>= inverse ?22 [22, 20] by Demod 15607 with 15616 at 1,2,2 Id : 15795, {_}: multiply (inverse (inverse ?42526)) (inverse ?42527) =>= inverse (multiply ?42527 (inverse ?42526)) [42527, 42526] by Super 15785 with 15627 at 1,1,2 Id : 15825, {_}: multiply (inverse (multiply (inverse (multiply (inverse ?17) ?17)) (inverse ?16))) (inverse (inverse (multiply (inverse ?17) ?17))) =>= ?16 [16, 17] by Demod 15624 with 15795 at 1,2 Id : 15826, {_}: multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17))) =>= ?16 [17, 16] by Demod 15825 with 11281 at 1,1,2 Id : 15827, {_}: inverse (multiply (inverse (multiply (inverse ?17) ?17)) (inverse ?16)) =>= ?16 [16, 17] by Demod 15826 with 15795 at 2 Id : 15828, {_}: inverse (inverse ?16) =>= ?16 [16] by Demod 15827 with 11281 at 1,2 Id : 15831, {_}: multiply (multiply (inverse ?40444) ?40444) ?40445 =>= ?40445 [40445, 40444] by Demod 13843 with 15828 at 1,2 Id : 16168, {_}: a2 === a2 [] by Demod 1 with 15831 at 2 Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 % SZS output end CNFRefutation for GRP410-1.p 19468: solved GRP410-1.p in 6.324395 using nrkbo WARNING: TreeLimitedRun lost 13.62s, total lost is 13.62s FINAL WATCH: 19.9 CPU 12.8 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP411-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19484 TreeLimitedRun: ---------------------------------------------------------- 19486: Facts: 19486: Id : 2, {_}: multiply (multiply (inverse (multiply ?2 (inverse (multiply ?3 ?4)))) (multiply ?2 (inverse ?4))) (inverse (multiply (inverse ?4) ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 19486: Goal: 19486: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 Statistics : Max weight : 68 Found proof, 13.530372s % SZS status Unsatisfiable for GRP411-1.p % SZS output start CNFRefutation for GRP411-1.p Id : 2, {_}: multiply (multiply (inverse (multiply ?2 (inverse (multiply ?3 ?4)))) (multiply ?2 (inverse ?4))) (inverse (multiply (inverse ?4) ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 Id : 3, {_}: multiply (multiply (inverse (multiply ?6 (inverse (multiply ?7 ?8)))) (multiply ?6 (inverse ?8))) (inverse (multiply (inverse ?8) ?8)) =>= ?7 [8, 7, 6] by single_axiom ?6 ?7 ?8 Id : 117, {_}: multiply (multiply (inverse (multiply ?561 (inverse ?562))) (multiply ?561 (inverse (inverse (multiply (inverse ?563) ?563))))) (inverse (multiply (inverse (inverse (multiply (inverse ?563) ?563))) (inverse (multiply (inverse ?563) ?563)))) =?= multiply (inverse (multiply ?564 (inverse (multiply ?562 ?563)))) (multiply ?564 (inverse ?563)) [564, 563, 562, 561] by Super 3 with 2 at 1,2,1,1,1,2 Id : 5, {_}: multiply (multiply (inverse (multiply ?15 (inverse ?16))) (multiply ?15 (inverse (inverse (multiply (inverse ?17) ?17))))) (inverse (multiply (inverse (inverse (multiply (inverse ?17) ?17))) (inverse (multiply (inverse ?17) ?17)))) =?= multiply (inverse (multiply ?18 (inverse (multiply ?16 ?17)))) (multiply ?18 (inverse ?17)) [18, 17, 16, 15] by Super 3 with 2 at 1,2,1,1,1,2 Id : 216, {_}: multiply (inverse (multiply ?1036 (inverse (multiply ?1037 ?1038)))) (multiply ?1036 (inverse ?1038)) =?= multiply (inverse (multiply ?1039 (inverse (multiply ?1037 ?1038)))) (multiply ?1039 (inverse ?1038)) [1039, 1038, 1037, 1036] by Super 117 with 5 at 2 Id : 106, {_}: multiply (inverse (multiply ?503 (inverse (multiply (multiply ?504 (inverse (multiply (inverse ?505) ?505))) ?505)))) (multiply ?503 (inverse ?505)) =>= ?504 [505, 504, 503] by Super 2 with 5 at 2 Id : 229, {_}: multiply (inverse (multiply ?1117 (inverse (multiply (inverse (multiply ?1118 (inverse (multiply (multiply ?1119 (inverse (multiply (inverse ?1120) ?1120))) ?1120)))) (multiply ?1118 (inverse ?1120)))))) (multiply ?1117 (inverse (multiply ?1118 (inverse ?1120)))) =?= multiply (inverse (multiply ?1121 (inverse ?1119))) (multiply ?1121 (inverse (multiply ?1118 (inverse ?1120)))) [1121, 1120, 1119, 1118, 1117] by Super 216 with 106 at 1,2,1,1,3 Id : 704, {_}: multiply (inverse (multiply ?2676 (inverse ?2677))) (multiply ?2676 (inverse (multiply ?2678 (inverse ?2679)))) =?= multiply (inverse (multiply ?2680 (inverse ?2677))) (multiply ?2680 (inverse (multiply ?2678 (inverse ?2679)))) [2680, 2679, 2678, 2677, 2676] by Demod 229 with 106 at 1,2,1,1,2 Id : 151, {_}: multiply (multiply (inverse (multiply ?754 (inverse ?755))) (multiply ?754 (inverse (multiply ?756 (inverse ?757))))) (inverse (multiply (inverse (multiply ?756 (inverse ?757))) (multiply ?756 (inverse ?757)))) =>= inverse (multiply ?756 (inverse (multiply (multiply ?755 (inverse (multiply (inverse ?757) ?757))) ?757))) [757, 756, 755, 754] by Super 2 with 106 at 1,2,1,1,1,2 Id : 310, {_}: inverse (multiply ?1412 (inverse (multiply (multiply (multiply ?1413 (multiply ?1412 (inverse ?1414))) (inverse (multiply (inverse ?1414) ?1414))) ?1414))) =>= ?1413 [1414, 1413, 1412] by Super 2 with 151 at 2 Id : 713, {_}: multiply (inverse (multiply ?2742 (inverse ?2743))) (multiply ?2742 (inverse (multiply ?2744 (inverse (multiply (multiply (multiply ?2745 (multiply ?2744 (inverse ?2746))) (inverse (multiply (inverse ?2746) ?2746))) ?2746))))) =?= multiply (inverse (multiply ?2747 (inverse ?2743))) (multiply ?2747 ?2745) [2747, 2746, 2745, 2744, 2743, 2742] by Super 704 with 310 at 2,2,3 Id : 869, {_}: multiply (inverse (multiply ?3440 (inverse ?3441))) (multiply ?3440 ?3442) =?= multiply (inverse (multiply ?3443 (inverse ?3441))) (multiply ?3443 ?3442) [3443, 3442, 3441, 3440] by Demod 713 with 310 at 2,2,2 Id : 889, {_}: multiply (inverse (multiply ?3569 (inverse (multiply (multiply (multiply ?3570 (multiply ?3571 (inverse ?3572))) (inverse (multiply (inverse ?3572) ?3572))) ?3572)))) (multiply ?3569 ?3573) =>= multiply ?3570 (multiply ?3571 ?3573) [3573, 3572, 3571, 3570, 3569] by Super 869 with 310 at 1,3 Id : 881, {_}: multiply (inverse (multiply ?3517 (inverse (multiply ?3518 (inverse (multiply (multiply (multiply ?3519 (multiply ?3518 (inverse ?3520))) (inverse (multiply (inverse ?3520) ?3520))) ?3520)))))) (multiply ?3517 ?3521) =?= multiply (inverse (multiply ?3522 ?3519)) (multiply ?3522 ?3521) [3522, 3521, 3520, 3519, 3518, 3517] by Super 869 with 310 at 2,1,1,3 Id : 932, {_}: multiply (inverse (multiply ?3517 ?3519)) (multiply ?3517 ?3521) =?= multiply (inverse (multiply ?3522 ?3519)) (multiply ?3522 ?3521) [3522, 3521, 3519, 3517] by Demod 881 with 310 at 2,1,1,2 Id : 940, {_}: multiply (inverse (multiply ?3765 (inverse (multiply (multiply ?3766 (inverse (multiply (inverse (multiply ?3767 ?3768)) (multiply ?3767 ?3768)))) (multiply ?3769 ?3768))))) (multiply ?3765 (inverse (multiply ?3769 ?3768))) =>= ?3766 [3769, 3768, 3767, 3766, 3765] by Super 106 with 932 at 1,2,1,1,2,1,1,2 Id : 1923, {_}: multiply ?8185 (inverse (multiply (inverse (multiply ?8186 ?8187)) (multiply ?8186 ?8187))) =?= multiply ?8185 (inverse (multiply (inverse (multiply ?8188 ?8187)) (multiply ?8188 ?8187))) [8188, 8187, 8186, 8185] by Super 2 with 940 at 1,2 Id : 6, {_}: multiply (multiply (inverse ?20) (multiply (multiply (inverse (multiply ?21 (inverse (multiply ?20 ?22)))) (multiply ?21 (inverse ?22))) (inverse ?22))) (inverse (multiply (inverse ?22) ?22)) =>= inverse ?22 [22, 21, 20] by Super 3 with 2 at 1,1,1,2 Id : 1927, {_}: multiply ?8210 (inverse (multiply (inverse (multiply ?8211 (inverse (multiply (inverse ?8212) ?8212)))) (multiply ?8211 (inverse (multiply (inverse ?8212) ?8212))))) =?= multiply ?8210 (inverse (multiply (inverse (multiply (multiply (inverse ?8213) (multiply (multiply (inverse (multiply ?8214 (inverse (multiply ?8213 ?8212)))) (multiply ?8214 (inverse ?8212))) (inverse ?8212))) (inverse (multiply (inverse ?8212) ?8212)))) (inverse ?8212))) [8214, 8213, 8212, 8211, 8210] by Super 1923 with 6 at 2,1,2,3 Id : 2148, {_}: multiply ?9208 (inverse (multiply (inverse (multiply ?9209 (inverse (multiply (inverse ?9210) ?9210)))) (multiply ?9209 (inverse (multiply (inverse ?9210) ?9210))))) =>= multiply ?9208 (inverse (multiply (inverse (inverse ?9210)) (inverse ?9210))) [9210, 9209, 9208] by Demod 1927 with 6 at 1,1,1,2,3 Id : 2158, {_}: multiply ?9267 (inverse (multiply (inverse (multiply (multiply (inverse (multiply ?9268 (inverse (multiply ?9269 ?9270)))) (multiply ?9268 (inverse ?9270))) (inverse (multiply (inverse ?9270) ?9270)))) ?9269)) =>= multiply ?9267 (inverse (multiply (inverse (inverse ?9270)) (inverse ?9270))) [9270, 9269, 9268, 9267] by Super 2148 with 2 at 2,1,2,2 Id : 2524, {_}: multiply ?10398 (inverse (multiply (inverse ?10399) ?10399)) =?= multiply ?10398 (inverse (multiply (inverse (inverse ?10400)) (inverse ?10400))) [10400, 10399, 10398] by Demod 2158 with 2 at 1,1,1,2,2 Id : 2333, {_}: multiply ?9267 (inverse (multiply (inverse ?9269) ?9269)) =?= multiply ?9267 (inverse (multiply (inverse (inverse ?9270)) (inverse ?9270))) [9270, 9269, 9267] by Demod 2158 with 2 at 1,1,1,2,2 Id : 2540, {_}: multiply ?10486 (inverse (multiply (inverse ?10487) ?10487)) =?= multiply ?10486 (inverse (multiply (inverse ?10488) ?10488)) [10488, 10487, 10486] by Super 2524 with 2333 at 3 Id : 2606, {_}: multiply (inverse (multiply ?10821 (inverse (multiply (multiply ?10822 (inverse (multiply (inverse ?10823) ?10823))) ?10824)))) (multiply ?10821 (inverse ?10824)) =>= ?10822 [10824, 10823, 10822, 10821] by Super 106 with 2540 at 1,1,2,1,1,2 Id : 4, {_}: multiply (multiply (inverse (multiply (multiply (inverse (multiply ?10 (inverse (multiply ?11 ?12)))) (multiply ?10 (inverse ?12))) (inverse (multiply ?13 (multiply (inverse ?12) ?12))))) ?11) (inverse (multiply (inverse (multiply (inverse ?12) ?12)) (multiply (inverse ?12) ?12))) =>= ?13 [13, 12, 11, 10] by Super 3 with 2 at 2,1,2 Id : 2648, {_}: multiply (multiply (inverse (multiply ?11025 (inverse (multiply ?11026 ?11027)))) (multiply ?11025 (inverse ?11027))) (inverse (multiply (inverse ?11028) ?11028)) =>= ?11026 [11028, 11027, 11026, 11025] by Super 2 with 2540 at 2 Id : 3251, {_}: multiply (multiply (inverse ?14256) ?14256) (inverse (multiply (inverse (multiply (inverse ?14257) ?14257)) (multiply (inverse ?14257) ?14257))) =>= inverse (multiply (inverse ?14257) ?14257) [14257, 14256] by Super 4 with 2648 at 1,1,1,2 Id : 936, {_}: multiply (multiply (inverse (multiply ?3743 (inverse ?3744))) (multiply ?3743 (inverse (multiply ?3745 (inverse ?3746))))) (inverse (multiply (inverse (multiply ?3747 (inverse ?3746))) (multiply ?3747 (inverse ?3746)))) =>= inverse (multiply ?3745 (inverse (multiply (multiply ?3744 (inverse (multiply (inverse ?3746) ?3746))) ?3746))) [3747, 3746, 3745, 3744, 3743] by Super 151 with 932 at 1,2,2 Id : 3285, {_}: inverse (multiply ?14417 (inverse (multiply (multiply (multiply ?14417 (inverse ?14418)) (inverse (multiply (inverse ?14418) ?14418))) ?14418))) =>= inverse (multiply (inverse (inverse ?14418)) (inverse ?14418)) [14418, 14417] by Super 3251 with 936 at 2 Id : 10419, {_}: multiply (inverse (multiply (inverse (inverse ?33757)) (inverse ?33757))) (multiply ?33758 (inverse ?33757)) =>= multiply ?33758 (inverse ?33757) [33758, 33757] by Super 2606 with 3285 at 1,2 Id : 10420, {_}: multiply (inverse (multiply (inverse (inverse (multiply ?33760 (inverse (multiply (multiply (multiply ?33761 (multiply ?33760 (inverse ?33762))) (inverse (multiply (inverse ?33762) ?33762))) ?33762))))) (inverse (multiply ?33760 (inverse (multiply (multiply (multiply ?33761 (multiply ?33760 (inverse ?33762))) (inverse (multiply (inverse ?33762) ?33762))) ?33762)))))) (multiply ?33763 ?33761) =>= multiply ?33763 (inverse (multiply ?33760 (inverse (multiply (multiply (multiply ?33761 (multiply ?33760 (inverse ?33762))) (inverse (multiply (inverse ?33762) ?33762))) ?33762)))) [33763, 33762, 33761, 33760] by Super 10419 with 310 at 2,2,2 Id : 10540, {_}: multiply (inverse (multiply (inverse ?33761) (inverse (multiply ?33760 (inverse (multiply (multiply (multiply ?33761 (multiply ?33760 (inverse ?33762))) (inverse (multiply (inverse ?33762) ?33762))) ?33762)))))) (multiply ?33763 ?33761) =>= multiply ?33763 (inverse (multiply ?33760 (inverse (multiply (multiply (multiply ?33761 (multiply ?33760 (inverse ?33762))) (inverse (multiply (inverse ?33762) ?33762))) ?33762)))) [33763, 33762, 33760, 33761] by Demod 10420 with 310 at 1,1,1,1,2 Id : 10541, {_}: multiply (inverse (multiply (inverse ?33761) ?33761)) (multiply ?33763 ?33761) =?= multiply ?33763 (inverse (multiply ?33760 (inverse (multiply (multiply (multiply ?33761 (multiply ?33760 (inverse ?33762))) (inverse (multiply (inverse ?33762) ?33762))) ?33762)))) [33762, 33760, 33763, 33761] by Demod 10540 with 310 at 2,1,1,2 Id : 10771, {_}: multiply (inverse (multiply (inverse ?34484) ?34484)) (multiply ?34485 ?34484) =>= multiply ?34485 ?34484 [34485, 34484] by Demod 10541 with 310 at 2,3 Id : 4587, {_}: multiply (multiply (inverse ?18346) ?18346) (inverse (multiply (inverse ?18347) ?18347)) =?= inverse (multiply (inverse ?18348) ?18348) [18348, 18347, 18346] by Super 3251 with 2540 at 2 Id : 3286, {_}: multiply (multiply (inverse ?14420) ?14420) (inverse (multiply (inverse ?14421) ?14421)) =?= inverse (multiply (inverse ?14422) ?14422) [14422, 14421, 14420] by Super 3251 with 2540 at 2 Id : 4643, {_}: inverse (multiply (inverse ?18648) ?18648) =?= inverse (multiply (inverse ?18649) ?18649) [18649, 18648] by Super 4587 with 3286 at 2 Id : 11169, {_}: multiply (inverse (multiply (inverse ?35665) ?35665)) (multiply ?35666 ?35667) =>= multiply ?35666 ?35667 [35667, 35666, 35665] by Super 10771 with 4643 at 1,2 Id : 11226, {_}: multiply (inverse (multiply ?35979 ?35980)) (multiply ?35979 ?35981) =>= multiply (inverse ?35980) ?35981 [35981, 35980, 35979] by Super 11169 with 932 at 2 Id : 11598, {_}: multiply (inverse (inverse (multiply (multiply (multiply ?3570 (multiply ?3571 (inverse ?3572))) (inverse (multiply (inverse ?3572) ?3572))) ?3572))) ?3573 =>= multiply ?3570 (multiply ?3571 ?3573) [3573, 3572, 3571, 3570] by Demod 889 with 11226 at 2 Id : 11607, {_}: multiply (multiply (inverse (inverse (multiply ?11026 ?11027))) (inverse ?11027)) (inverse (multiply (inverse ?11028) ?11028)) =>= ?11026 [11028, 11027, 11026] by Demod 2648 with 11226 at 1,2 Id : 11177, {_}: multiply (inverse (multiply (inverse ?35708) ?35708)) ?35709 =?= multiply (inverse (multiply ?35710 (inverse (multiply (multiply ?35709 (inverse (multiply (inverse ?35711) ?35711))) ?35712)))) (multiply ?35710 (inverse ?35712)) [35712, 35711, 35710, 35709, 35708] by Super 11169 with 2606 at 2,2 Id : 11281, {_}: multiply (inverse (multiply (inverse ?35708) ?35708)) ?35709 =>= ?35709 [35709, 35708] by Demod 11177 with 2606 at 3 Id : 11432, {_}: inverse (multiply (inverse (multiply (inverse ?36500) ?36500)) (inverse (multiply (multiply (inverse ?36501) (inverse (multiply (inverse ?36501) ?36501))) ?36501))) =>= inverse (multiply (inverse (inverse ?36501)) (inverse ?36501)) [36501, 36500] by Super 3285 with 11281 at 1,1,1,2,1,2 Id : 11797, {_}: inverse (inverse (multiply (multiply (inverse ?37264) (inverse (multiply (inverse ?37264) ?37264))) ?37264)) =>= inverse (multiply (inverse (inverse ?37264)) (inverse ?37264)) [37264] by Demod 11432 with 11281 at 1,2 Id : 11802, {_}: inverse (inverse (multiply (multiply (inverse (multiply (inverse ?37280) ?37280)) (inverse (multiply (inverse (multiply (inverse ?37281) ?37281)) (multiply (inverse ?37280) ?37280)))) (multiply (inverse ?37280) ?37280))) =>= inverse (multiply (inverse (inverse (multiply (inverse ?37280) ?37280))) (inverse (multiply (inverse ?37280) ?37280))) [37281, 37280] by Super 11797 with 4643 at 1,1,2,1,1,1,2 Id : 12149, {_}: inverse (inverse (multiply (multiply (inverse (multiply (inverse ?37280) ?37280)) (inverse (multiply (inverse ?37280) ?37280))) (multiply (inverse ?37280) ?37280))) =>= inverse (multiply (inverse (inverse (multiply (inverse ?37280) ?37280))) (inverse (multiply (inverse ?37280) ?37280))) [37280] by Demod 11802 with 11281 at 1,2,1,1,1,2 Id : 12150, {_}: inverse (inverse (multiply (inverse (multiply (inverse ?37280) ?37280)) (multiply (inverse ?37280) ?37280))) =<= inverse (multiply (inverse (inverse (multiply (inverse ?37280) ?37280))) (inverse (multiply (inverse ?37280) ?37280))) [37280] by Demod 12149 with 11281 at 1,1,1,2 Id : 12151, {_}: inverse (inverse (multiply (inverse ?37280) ?37280)) =<= inverse (multiply (inverse (inverse (multiply (inverse ?37280) ?37280))) (inverse (multiply (inverse ?37280) ?37280))) [37280] by Demod 12150 with 11226 at 1,1,2 Id : 11604, {_}: multiply (multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (multiply (inverse (inverse (multiply (inverse ?17) ?17))) (inverse (multiply (inverse ?17) ?17)))) =?= multiply (inverse (multiply ?18 (inverse (multiply ?16 ?17)))) (multiply ?18 (inverse ?17)) [18, 17, 16] by Demod 5 with 11226 at 1,2 Id : 11605, {_}: multiply (multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (multiply (inverse (inverse (multiply (inverse ?17) ?17))) (inverse (multiply (inverse ?17) ?17)))) =>= multiply (inverse (inverse (multiply ?16 ?17))) (inverse ?17) [17, 16] by Demod 11604 with 11226 at 3 Id : 11635, {_}: multiply (multiply (inverse (inverse ?36802)) (inverse (inverse (multiply (inverse (multiply ?36803 ?36804)) (multiply ?36803 ?36804))))) (inverse (multiply (inverse (inverse (multiply (inverse (multiply ?36803 ?36804)) (multiply ?36803 ?36804)))) (inverse (multiply (inverse ?36804) ?36804)))) =>= multiply (inverse (inverse (multiply ?36802 (multiply ?36803 ?36804)))) (inverse (multiply ?36803 ?36804)) [36804, 36803, 36802] by Super 11605 with 11226 at 1,2,1,2,2 Id : 11692, {_}: multiply (multiply (inverse (inverse ?36802)) (inverse (inverse (multiply (inverse ?36804) ?36804)))) (inverse (multiply (inverse (inverse (multiply (inverse (multiply ?36803 ?36804)) (multiply ?36803 ?36804)))) (inverse (multiply (inverse ?36804) ?36804)))) =>= multiply (inverse (inverse (multiply ?36802 (multiply ?36803 ?36804)))) (inverse (multiply ?36803 ?36804)) [36803, 36804, 36802] by Demod 11635 with 11226 at 1,1,2,1,2 Id : 11693, {_}: multiply (multiply (inverse (inverse ?36802)) (inverse (inverse (multiply (inverse ?36804) ?36804)))) (inverse (multiply (inverse (inverse (multiply (inverse ?36804) ?36804))) (inverse (multiply (inverse ?36804) ?36804)))) =?= multiply (inverse (inverse (multiply ?36802 (multiply ?36803 ?36804)))) (inverse (multiply ?36803 ?36804)) [36803, 36804, 36802] by Demod 11692 with 11226 at 1,1,1,1,2,2 Id : 12703, {_}: multiply (inverse (inverse (multiply ?38022 ?38023))) (inverse ?38023) =<= multiply (inverse (inverse (multiply ?38022 (multiply ?38024 ?38023)))) (inverse (multiply ?38024 ?38023)) [38024, 38023, 38022] by Demod 11693 with 11605 at 2 Id : 12744, {_}: multiply (inverse (inverse (multiply (inverse (multiply (inverse ?38213) ?38213)) ?38214))) (inverse ?38214) =?= multiply (inverse (inverse (multiply ?38215 ?38214))) (inverse (multiply ?38215 ?38214)) [38215, 38214, 38213] by Super 12703 with 11281 at 1,1,1,3 Id : 12814, {_}: multiply (inverse (inverse ?38214)) (inverse ?38214) =<= multiply (inverse (inverse (multiply ?38215 ?38214))) (inverse (multiply ?38215 ?38214)) [38215, 38214] by Demod 12744 with 11281 at 1,1,1,2 Id : 12842, {_}: multiply (inverse (inverse (multiply (inverse ?38347) ?38347))) (inverse (multiply (inverse ?38348) ?38348)) =>= multiply (inverse (inverse ?38347)) (inverse ?38347) [38348, 38347] by Super 2540 with 12814 at 3 Id : 13769, {_}: inverse (inverse (multiply (inverse ?37280) ?37280)) =<= inverse (multiply (inverse (inverse ?37280)) (inverse ?37280)) [37280] by Demod 12151 with 12842 at 1,3 Id : 13843, {_}: multiply (inverse (inverse (multiply (inverse ?40444) ?40444))) ?40445 =>= ?40445 [40445, 40444] by Super 11281 with 13769 at 1,2 Id : 14468, {_}: multiply (inverse ?41330) (inverse (multiply (inverse ?41331) ?41331)) =>= inverse ?41330 [41331, 41330] by Super 11607 with 13843 at 1,2 Id : 14500, {_}: multiply ?41451 (inverse (multiply (inverse ?41452) ?41452)) =?= inverse (multiply ?41453 (inverse (multiply (multiply (multiply ?41451 (multiply ?41453 (inverse ?41454))) (inverse (multiply (inverse ?41454) ?41454))) ?41454))) [41454, 41453, 41452, 41451] by Super 14468 with 310 at 1,2 Id : 14608, {_}: multiply ?41451 (inverse (multiply (inverse ?41452) ?41452)) =>= ?41451 [41452, 41451] by Demod 14500 with 310 at 3 Id : 15618, {_}: multiply (inverse (inverse (multiply (multiply ?3570 (multiply ?3571 (inverse ?3572))) ?3572))) ?3573 =>= multiply ?3570 (multiply ?3571 ?3573) [3573, 3572, 3571, 3570] by Demod 11598 with 14608 at 1,1,1,1,2 Id : 12822, {_}: multiply (multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (multiply (inverse (inverse ?17)) (inverse ?17))) =>= multiply (inverse (inverse (multiply ?16 ?17))) (inverse ?17) [17, 16] by Demod 11605 with 12814 at 1,2,2 Id : 13773, {_}: multiply (multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (inverse (multiply (inverse ?17) ?17))) =>= multiply (inverse (inverse (multiply ?16 ?17))) (inverse ?17) [17, 16] by Demod 12822 with 13769 at 2,2 Id : 15616, {_}: multiply (inverse (inverse (multiply ?11026 ?11027))) (inverse ?11027) =>= ?11026 [11027, 11026] by Demod 11607 with 14608 at 2 Id : 15624, {_}: multiply (multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (inverse (multiply (inverse ?17) ?17))) =>= ?16 [17, 16] by Demod 13773 with 15616 at 3 Id : 15658, {_}: multiply (inverse (multiply ?42282 ?42283)) ?42282 =?= multiply (inverse ?42283) (inverse (multiply (inverse ?42284) ?42284)) [42284, 42283, 42282] by Super 11226 with 14608 at 2,2 Id : 15785, {_}: multiply (inverse (multiply ?42492 ?42493)) ?42492 =>= inverse ?42493 [42493, 42492] by Demod 15658 with 14608 at 3 Id : 11603, {_}: multiply (multiply (inverse ?20) (multiply (multiply (inverse (inverse (multiply ?20 ?22))) (inverse ?22)) (inverse ?22))) (inverse (multiply (inverse ?22) ?22)) =>= inverse ?22 [22, 20] by Demod 6 with 11226 at 1,2,1,2 Id : 15607, {_}: multiply (inverse ?20) (multiply (multiply (inverse (inverse (multiply ?20 ?22))) (inverse ?22)) (inverse ?22)) =>= inverse ?22 [22, 20] by Demod 11603 with 14608 at 2 Id : 15627, {_}: multiply (inverse ?20) (multiply ?20 (inverse ?22)) =>= inverse ?22 [22, 20] by Demod 15607 with 15616 at 1,2,2 Id : 15795, {_}: multiply (inverse (inverse ?42526)) (inverse ?42527) =>= inverse (multiply ?42527 (inverse ?42526)) [42527, 42526] by Super 15785 with 15627 at 1,1,2 Id : 15825, {_}: multiply (inverse (multiply (inverse (multiply (inverse ?17) ?17)) (inverse ?16))) (inverse (inverse (multiply (inverse ?17) ?17))) =>= ?16 [16, 17] by Demod 15624 with 15795 at 1,2 Id : 15826, {_}: multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17))) =>= ?16 [17, 16] by Demod 15825 with 11281 at 1,1,2 Id : 15827, {_}: inverse (multiply (inverse (multiply (inverse ?17) ?17)) (inverse ?16)) =>= ?16 [16, 17] by Demod 15826 with 15795 at 2 Id : 15828, {_}: inverse (inverse ?16) =>= ?16 [16] by Demod 15827 with 11281 at 1,2 Id : 15835, {_}: multiply (multiply (multiply ?3570 (multiply ?3571 (inverse ?3572))) ?3572) ?3573 =>= multiply ?3570 (multiply ?3571 ?3573) [3573, 3572, 3571, 3570] by Demod 15618 with 15828 at 1,2 Id : 15721, {_}: multiply (inverse (multiply ?42282 ?42283)) ?42282 =>= inverse ?42283 [42283, 42282] by Demod 15658 with 14608 at 3 Id : 15838, {_}: multiply ?42526 (inverse ?42527) =<= inverse (multiply ?42527 (inverse ?42526)) [42527, 42526] by Demod 15795 with 15828 at 1,2 Id : 15874, {_}: multiply (multiply ?42649 (inverse ?42650)) ?42650 =>= inverse (inverse ?42649) [42650, 42649] by Super 15721 with 15838 at 1,2 Id : 16184, {_}: multiply (multiply ?43075 (inverse ?43076)) ?43076 =>= ?43075 [43076, 43075] by Demod 15874 with 15828 at 3 Id : 10542, {_}: multiply (inverse (multiply (inverse ?33761) ?33761)) (multiply ?33763 ?33761) =>= multiply ?33763 ?33761 [33763, 33761] by Demod 10541 with 310 at 2,3 Id : 10730, {_}: multiply (inverse (multiply ?34328 ?34329)) (multiply ?34328 ?34329) =>= multiply (inverse ?34329) ?34329 [34329, 34328] by Super 932 with 10542 at 3 Id : 10866, {_}: multiply (multiply (inverse (multiply ?3743 (inverse ?3744))) (multiply ?3743 (inverse (multiply ?3745 (inverse ?3746))))) (inverse (multiply (inverse (inverse ?3746)) (inverse ?3746))) =>= inverse (multiply ?3745 (inverse (multiply (multiply ?3744 (inverse (multiply (inverse ?3746) ?3746))) ?3746))) [3746, 3745, 3744, 3743] by Demod 936 with 10730 at 1,2,2 Id : 11590, {_}: multiply (multiply (inverse (inverse ?3744)) (inverse (multiply ?3745 (inverse ?3746)))) (inverse (multiply (inverse (inverse ?3746)) (inverse ?3746))) =>= inverse (multiply ?3745 (inverse (multiply (multiply ?3744 (inverse (multiply (inverse ?3746) ?3746))) ?3746))) [3746, 3745, 3744] by Demod 10866 with 11226 at 1,2 Id : 13771, {_}: multiply (multiply (inverse (inverse ?3744)) (inverse (multiply ?3745 (inverse ?3746)))) (inverse (inverse (multiply (inverse ?3746) ?3746))) =>= inverse (multiply ?3745 (inverse (multiply (multiply ?3744 (inverse (multiply (inverse ?3746) ?3746))) ?3746))) [3746, 3745, 3744] by Demod 11590 with 13769 at 2,2 Id : 15620, {_}: multiply (multiply (inverse (inverse ?3744)) (inverse (multiply ?3745 (inverse ?3746)))) (inverse (inverse (multiply (inverse ?3746) ?3746))) =>= inverse (multiply ?3745 (inverse (multiply ?3744 ?3746))) [3746, 3745, 3744] by Demod 13771 with 14608 at 1,1,2,1,3 Id : 15823, {_}: multiply (inverse (multiply (multiply ?3745 (inverse ?3746)) (inverse ?3744))) (inverse (inverse (multiply (inverse ?3746) ?3746))) =>= inverse (multiply ?3745 (inverse (multiply ?3744 ?3746))) [3744, 3746, 3745] by Demod 15620 with 15795 at 1,2 Id : 15845, {_}: multiply (multiply ?3744 (inverse (multiply ?3745 (inverse ?3746)))) (inverse (inverse (multiply (inverse ?3746) ?3746))) =>= inverse (multiply ?3745 (inverse (multiply ?3744 ?3746))) [3746, 3745, 3744] by Demod 15823 with 15838 at 1,2 Id : 15846, {_}: multiply (multiply ?3744 (multiply ?3746 (inverse ?3745))) (inverse (inverse (multiply (inverse ?3746) ?3746))) =>= inverse (multiply ?3745 (inverse (multiply ?3744 ?3746))) [3745, 3746, 3744] by Demod 15845 with 15838 at 2,1,2 Id : 15847, {_}: multiply (multiply ?3744 (multiply ?3746 (inverse ?3745))) (multiply (inverse ?3746) ?3746) =>= inverse (multiply ?3745 (inverse (multiply ?3744 ?3746))) [3745, 3746, 3744] by Demod 15846 with 15828 at 2,2 Id : 10696, {_}: multiply (multiply (inverse (multiply (multiply (inverse (multiply ?10 (inverse (multiply ?11 ?12)))) (multiply ?10 (inverse ?12))) (inverse (multiply ?13 (multiply (inverse ?12) ?12))))) ?11) (inverse (multiply (inverse ?12) ?12)) =>= ?13 [13, 12, 11, 10] by Demod 4 with 10542 at 1,2,2 Id : 11591, {_}: multiply (multiply (inverse (multiply (multiply (inverse (inverse (multiply ?11 ?12))) (inverse ?12)) (inverse (multiply ?13 (multiply (inverse ?12) ?12))))) ?11) (inverse (multiply (inverse ?12) ?12)) =>= ?13 [13, 12, 11] by Demod 10696 with 11226 at 1,1,1,1,2 Id : 15619, {_}: multiply (inverse (multiply (multiply (inverse (inverse (multiply ?11 ?12))) (inverse ?12)) (inverse (multiply ?13 (multiply (inverse ?12) ?12))))) ?11 =>= ?13 [13, 12, 11] by Demod 11591 with 14608 at 2 Id : 15623, {_}: multiply (inverse (multiply ?11 (inverse (multiply ?13 (multiply (inverse ?12) ?12))))) ?11 =>= ?13 [12, 13, 11] by Demod 15619 with 15616 at 1,1,1,2 Id : 15769, {_}: inverse (inverse (multiply ?13 (multiply (inverse ?12) ?12))) =>= ?13 [12, 13] by Demod 15623 with 15721 at 2 Id : 15837, {_}: multiply ?13 (multiply (inverse ?12) ?12) =>= ?13 [12, 13] by Demod 15769 with 15828 at 2 Id : 15848, {_}: multiply ?3744 (multiply ?3746 (inverse ?3745)) =<= inverse (multiply ?3745 (inverse (multiply ?3744 ?3746))) [3745, 3746, 3744] by Demod 15847 with 15837 at 2 Id : 15849, {_}: multiply ?3744 (multiply ?3746 (inverse ?3745)) =?= multiply (multiply ?3744 ?3746) (inverse ?3745) [3745, 3746, 3744] by Demod 15848 with 15838 at 3 Id : 16199, {_}: multiply (multiply ?43123 (multiply ?43124 (inverse ?43125))) ?43125 =>= multiply ?43123 ?43124 [43125, 43124, 43123] by Super 16184 with 15849 at 1,2 Id : 17806, {_}: multiply (multiply ?3570 ?3571) ?3573 =?= multiply ?3570 (multiply ?3571 ?3573) [3573, 3571, 3570] by Demod 15835 with 16199 at 1,2 Id : 17939, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 1 with 17806 at 2 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 % SZS output end CNFRefutation for GRP411-1.p 19489: solved GRP411-1.p in 6.752422 using nrkbo WARNING: TreeLimitedRun lost 13.18s, total lost is 13.18s FINAL WATCH: 19.9 CPU 13.6 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP419-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19504 TreeLimitedRun: ---------------------------------------------------------- 19506: Facts: 19506: Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (inverse (multiply ?4 (inverse (multiply (inverse ?4) ?4)))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 19506: Goal: 19506: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 Statistics : Max weight : 83 Found proof, 37.170034s % SZS status Unsatisfiable for GRP419-1.p % SZS output start CNFRefutation for GRP419-1.p Id : 3, {_}: inverse (multiply (inverse (multiply ?6 (inverse (multiply (inverse ?7) (inverse (multiply ?8 (inverse (multiply (inverse ?8) ?8)))))))) (multiply ?6 ?8)) =>= ?7 [8, 7, 6] by single_axiom ?6 ?7 ?8 Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (inverse (multiply ?4 (inverse (multiply (inverse ?4) ?4)))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 Id : 5, {_}: inverse (multiply (inverse (multiply ?16 (inverse (multiply ?17 (inverse (multiply ?18 (inverse (multiply (inverse ?18) ?18)))))))) (multiply ?16 ?18)) =?= multiply (inverse (multiply ?19 (inverse (multiply (inverse ?17) (inverse (multiply ?20 (inverse (multiply (inverse ?20) ?20)))))))) (multiply ?19 ?20) [20, 19, 18, 17, 16] by Super 3 with 2 at 1,1,2,1,1,1,2 Id : 50, {_}: multiply (inverse (multiply ?270 (inverse (multiply (inverse (inverse ?271)) (inverse (multiply ?272 (inverse (multiply (inverse ?272) ?272)))))))) (multiply ?270 ?272) =>= ?271 [272, 271, 270] by Super 2 with 5 at 2 Id : 11, {_}: multiply (inverse (multiply ?51 (inverse (multiply (inverse (inverse ?52)) (inverse (multiply ?53 (inverse (multiply (inverse ?53) ?53)))))))) (multiply ?51 ?53) =>= ?52 [53, 52, 51] by Super 2 with 5 at 2 Id : 51, {_}: multiply (inverse (multiply (inverse (multiply ?274 (inverse (multiply (inverse (inverse ?275)) (inverse (multiply ?276 (inverse (multiply (inverse ?276) ?276)))))))) (inverse (multiply (inverse (inverse ?277)) (inverse (multiply (multiply ?274 ?276) (inverse (multiply (inverse (multiply ?274 ?276)) (multiply ?274 ?276))))))))) ?275 =>= ?277 [277, 276, 275, 274] by Super 50 with 11 at 2,2 Id : 46, {_}: inverse (multiply (inverse (multiply (inverse (multiply ?256 (inverse (multiply (inverse (inverse ?257)) (inverse (multiply ?258 (inverse (multiply (inverse ?258) ?258)))))))) (inverse (multiply (inverse ?259) (inverse (multiply (multiply ?256 ?258) (inverse (multiply (inverse (multiply ?256 ?258)) (multiply ?256 ?258))))))))) ?257) =>= ?259 [259, 258, 257, 256] by Super 2 with 11 at 2,1,2 Id : 206, {_}: inverse (multiply (inverse (multiply ?1179 ?1180)) (multiply ?1179 ?1181)) =?= multiply (inverse (multiply ?1182 (inverse (multiply (inverse (inverse (inverse (multiply ?1181 (inverse (multiply (inverse ?1181) ?1181)))))) (inverse (multiply ?1183 (inverse (multiply (inverse ?1183) ?1183)))))))) (inverse (multiply (inverse ?1180) (inverse (multiply (multiply ?1182 ?1183) (inverse (multiply (inverse (multiply ?1182 ?1183)) (multiply ?1182 ?1183))))))) [1183, 1182, 1181, 1180, 1179] by Super 2 with 46 at 2,1,1,1,2 Id : 578, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?3435 (inverse ?3436))) (multiply ?3435 ?3437)))) (inverse (multiply ?3437 (inverse (multiply (inverse ?3437) ?3437)))) =>= ?3436 [3437, 3436, 3435] by Super 51 with 206 at 1,1,2 Id : 589, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?3520 ?3521)) (multiply ?3520 ?3522)))) (inverse (multiply ?3522 (inverse (multiply (inverse ?3522) ?3522))))) =>= ?3521 [3522, 3521, 3520] by Super 46 with 206 at 1,1,1,2 Id : 655, {_}: inverse (multiply (inverse (multiply ?4057 ?4058)) (multiply ?4057 ?4059)) =?= multiply (inverse (multiply ?4060 (inverse (multiply (inverse (inverse (inverse (multiply ?4059 (inverse (multiply (inverse ?4059) ?4059)))))) (inverse (multiply ?4061 (inverse (multiply (inverse ?4061) ?4061)))))))) (inverse (multiply (inverse ?4058) (inverse (multiply (multiply ?4060 ?4061) (inverse (multiply (inverse (multiply ?4060 ?4061)) (multiply ?4060 ?4061))))))) [4061, 4060, 4059, 4058, 4057] by Super 2 with 46 at 2,1,1,1,2 Id : 715, {_}: inverse (multiply (inverse (multiply ?4585 ?4586)) (multiply ?4585 ?4587)) =?= inverse (multiply (inverse (multiply ?4588 ?4586)) (multiply ?4588 ?4587)) [4588, 4587, 4586, 4585] by Super 655 with 206 at 3 Id : 3336, {_}: multiply (inverse (multiply ?23865 (inverse (multiply (inverse (inverse ?23866)) (inverse (multiply (multiply ?23867 ?23868) (inverse (multiply (inverse (multiply ?23869 ?23868)) (multiply ?23869 ?23868))))))))) (multiply ?23865 (multiply ?23867 ?23868)) =>= ?23866 [23869, 23868, 23867, 23866, 23865] by Super 11 with 715 at 2,1,2,1,2,1,1,2 Id : 3339, {_}: multiply (inverse (multiply ?23887 (inverse (multiply (inverse (inverse ?23888)) (inverse (multiply (multiply (inverse (multiply (inverse (multiply ?23889 (inverse (multiply (inverse (inverse ?23890)) (inverse (multiply ?23891 (inverse (multiply (inverse ?23891) ?23891)))))))) (inverse (multiply (inverse (inverse ?23892)) (inverse (multiply (multiply ?23889 ?23891) (inverse (multiply (inverse (multiply ?23889 ?23891)) (multiply ?23889 ?23891))))))))) ?23890) (inverse (multiply (inverse (multiply ?23893 ?23890)) (multiply ?23893 ?23890))))))))) (multiply ?23887 ?23892) =>= ?23888 [23893, 23892, 23891, 23890, 23889, 23888, 23887] by Super 3336 with 51 at 2,2,2 Id : 3662, {_}: multiply (inverse (multiply ?25821 (inverse (multiply (inverse (inverse ?25822)) (inverse (multiply ?25823 (inverse (multiply (inverse (multiply ?25824 ?25825)) (multiply ?25824 ?25825))))))))) (multiply ?25821 ?25823) =>= ?25822 [25825, 25824, 25823, 25822, 25821] by Demod 3339 with 51 at 1,1,2,1,2,1,1,2 Id : 3679, {_}: multiply (inverse (multiply ?25970 (inverse (multiply (inverse (inverse ?25971)) (inverse (multiply ?25972 (inverse (multiply (inverse (multiply (inverse (multiply ?25973 (inverse (multiply (inverse (inverse ?25974)) (inverse (multiply ?25975 (inverse (multiply (inverse ?25975) ?25975)))))))) (multiply ?25973 ?25975))) ?25974)))))))) (multiply ?25970 ?25972) =>= ?25971 [25975, 25974, 25973, 25972, 25971, 25970] by Super 3662 with 11 at 2,1,2,1,2,1,2,1,1,2 Id : 3818, {_}: multiply (inverse (multiply ?25970 (inverse (multiply (inverse (inverse ?25971)) (inverse (multiply ?25972 (inverse (multiply (inverse ?25974) ?25974)))))))) (multiply ?25970 ?25972) =>= ?25971 [25974, 25972, 25971, 25970] by Demod 3679 with 11 at 1,1,1,2,1,2,1,2,1,1,2 Id : 3879, {_}: multiply (inverse (inverse ?26903)) (inverse (multiply ?26904 (inverse (multiply (inverse ?26904) ?26904)))) =?= multiply (inverse (inverse ?26903)) (inverse (multiply ?26904 (inverse (multiply (inverse ?26905) ?26905)))) [26905, 26904, 26903] by Super 578 with 3818 at 1,1,1,2 Id : 4264, {_}: multiply (inverse (inverse (multiply (inverse (multiply (inverse (inverse ?29074)) (inverse (multiply ?29075 (inverse (multiply (inverse ?29076) ?29076)))))) (multiply (inverse (inverse ?29074)) ?29077)))) (inverse (multiply ?29077 (inverse (multiply (inverse ?29077) ?29077)))) =?= multiply ?29075 (inverse (multiply (inverse ?29075) ?29075)) [29077, 29076, 29075, 29074] by Super 578 with 3879 at 1,1,1,1,1,2 Id : 4418, {_}: multiply ?29075 (inverse (multiply (inverse ?29076) ?29076)) =?= multiply ?29075 (inverse (multiply (inverse ?29075) ?29075)) [29076, 29075] by Demod 4264 with 578 at 2 Id : 4624, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?30943 (inverse (multiply (inverse ?30943) ?30943)))) (multiply ?30943 ?30944)))) (inverse (multiply ?30944 (inverse (multiply (inverse ?30944) ?30944))))) =?= inverse (multiply (inverse ?30945) ?30945) [30945, 30944, 30943] by Super 589 with 4418 at 1,1,1,1,1,1,2 Id : 4724, {_}: inverse (multiply (inverse ?30943) ?30943) =?= inverse (multiply (inverse ?30945) ?30945) [30945, 30943] by Demod 4624 with 578 at 1,2 Id : 4507, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?30326 (inverse (multiply (inverse ?30326) ?30326)))) (multiply ?30326 ?30327)))) (inverse (multiply ?30327 (inverse (multiply (inverse ?30327) ?30327)))) =?= multiply (inverse ?30328) ?30328 [30328, 30327, 30326] by Super 578 with 4418 at 1,1,1,1,1,2 Id : 4738, {_}: multiply (inverse ?30326) ?30326 =?= multiply (inverse ?30328) ?30328 [30328, 30326] by Demod 4507 with 578 at 2 Id : 6411, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?41035) ?41035))) (inverse (multiply ?41036 (inverse (multiply (inverse ?41036) ?41036))))) =>= ?41036 [41036, 41035] by Super 589 with 4738 at 1,1,1,1,2 Id : 6438, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?41193) ?41193))) (inverse (multiply ?41194 (inverse (multiply (inverse ?41195) ?41195))))) =>= ?41194 [41195, 41194, 41193] by Super 6411 with 4738 at 1,2,1,2,1,2 Id : 6907, {_}: inverse (multiply (inverse ?43301) ?43301) =?= inverse (inverse (multiply (inverse ?43302) ?43302)) [43302, 43301] by Super 4724 with 6438 at 3 Id : 19786, {_}: inverse (multiply (inverse (multiply (inverse ?102345) ?102345)) (inverse (multiply ?102346 (inverse (multiply (inverse ?102346) ?102346))))) =>= ?102346 [102346, 102345] by Super 589 with 6907 at 1,1,2 Id : 4656, {_}: multiply ?31155 (inverse (multiply (inverse ?31156) ?31156)) =?= multiply ?31155 (inverse (multiply (inverse ?31155) ?31155)) [31156, 31155] by Demod 4264 with 578 at 2 Id : 4689, {_}: multiply ?31355 (inverse (multiply (inverse ?31356) ?31356)) =?= multiply ?31355 (inverse (multiply (inverse ?31357) ?31357)) [31357, 31356, 31355] by Super 4656 with 4418 at 3 Id : 7234, {_}: multiply (inverse (multiply (inverse (multiply ?44811 (inverse (multiply (inverse (inverse ?44812)) (inverse (multiply ?44813 (inverse (multiply (inverse ?44813) ?44813)))))))) (inverse (multiply (inverse (inverse (inverse (multiply (inverse ?44814) ?44814)))) (inverse (multiply (multiply ?44811 ?44813) (inverse (multiply (inverse (multiply ?44811 ?44813)) (multiply ?44811 ?44813))))))))) ?44812 =?= multiply (inverse ?44815) ?44815 [44815, 44814, 44813, 44812, 44811] by Super 51 with 6907 at 1,1,1,2,1,1,2 Id : 7415, {_}: inverse (multiply (inverse ?44814) ?44814) =?= multiply (inverse ?44815) ?44815 [44815, 44814] by Demod 7234 with 51 at 2 Id : 7453, {_}: multiply ?45768 (inverse (multiply (inverse ?45769) ?45769)) =?= multiply ?45768 (multiply (inverse ?45770) ?45770) [45770, 45769, 45768] by Super 4689 with 7415 at 2,3 Id : 19854, {_}: inverse (multiply (inverse (multiply (inverse ?102672) ?102672)) (inverse (multiply (inverse (multiply (inverse ?102673) ?102673)) (inverse (multiply (inverse (inverse (multiply (inverse ?102673) ?102673))) (multiply (inverse ?102674) ?102674)))))) =>= inverse (multiply (inverse ?102673) ?102673) [102674, 102673, 102672] by Super 19786 with 7453 at 1,2,1,2,1,2 Id : 7450, {_}: multiply (inverse ?45756) ?45756 =?= inverse (inverse (multiply (inverse ?45757) ?45757)) [45757, 45756] by Super 6438 with 7415 at 2 Id : 13841, {_}: inverse (multiply (multiply (inverse ?77841) ?77841) (inverse (multiply ?77842 (inverse (multiply (inverse ?77842) ?77842))))) =>= ?77842 [77842, 77841] by Super 589 with 7450 at 1,1,2 Id : 14147, {_}: inverse (multiply (multiply (inverse ?79356) ?79356) (inverse (multiply ?79357 (multiply (inverse ?79358) ?79358)))) =>= ?79357 [79358, 79357, 79356] by Super 13841 with 7415 at 2,1,2,1,2 Id : 14329, {_}: inverse (multiply (inverse (multiply (inverse ?80354) ?80354)) (inverse (multiply ?80355 (multiply (inverse ?80356) ?80356)))) =>= ?80355 [80356, 80355, 80354] by Super 14147 with 7415 at 1,1,2 Id : 20222, {_}: inverse (multiply (inverse (multiply (inverse ?103937) ?103937)) (inverse (inverse (multiply (inverse ?103938) ?103938)))) =>= inverse (multiply (inverse ?103938) ?103938) [103938, 103937] by Demod 19854 with 14329 at 2,1,2 Id : 20428, {_}: inverse (multiply (multiply (inverse ?104876) ?104876) (inverse (inverse (multiply (inverse ?104877) ?104877)))) =>= inverse (multiply (inverse ?104877) ?104877) [104877, 104876] by Super 20222 with 7415 at 1,1,2 Id : 20649, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?105328 (inverse (multiply (inverse ?105329) ?105329)))) (multiply ?105328 ?105330)))) (inverse (multiply ?105330 (inverse (multiply (inverse ?105330) ?105330)))) =?= multiply (multiply (inverse ?105331) ?105331) (inverse (inverse (multiply (inverse ?105329) ?105329))) [105331, 105330, 105329, 105328] by Super 578 with 20428 at 2,1,1,1,1,1,2 Id : 20904, {_}: multiply (inverse ?105329) ?105329 =<= multiply (multiply (inverse ?105331) ?105331) (inverse (inverse (multiply (inverse ?105329) ?105329))) [105331, 105329] by Demod 20649 with 578 at 2 Id : 21048, {_}: inverse (multiply (inverse (multiply (multiply (inverse ?106633) ?106633) (inverse (multiply (inverse ?106634) (inverse (multiply (inverse (inverse (multiply (inverse ?106635) ?106635))) (inverse (multiply (inverse (inverse (inverse (multiply (inverse ?106635) ?106635)))) (inverse (inverse (multiply (inverse ?106635) ?106635))))))))))) (multiply (inverse ?106635) ?106635)) =>= ?106634 [106635, 106634, 106633] by Super 2 with 20904 at 2,1,2 Id : 8071, {_}: inverse (multiply (multiply (inverse ?49016) ?49016) (inverse (multiply ?49017 (inverse (multiply (inverse ?49017) ?49017))))) =>= ?49017 [49017, 49016] by Super 589 with 7450 at 1,1,2 Id : 13919, {_}: inverse (multiply (multiply (inverse ?78219) ?78219) (inverse (multiply ?78220 (multiply (inverse ?78221) ?78221)))) =>= ?78220 [78221, 78220, 78219] by Super 13841 with 7415 at 2,1,2,1,2 Id : 14512, {_}: inverse (multiply (multiply (inverse ?81125) ?81125) (inverse (multiply (inverse ?81126) ?81126))) =>= multiply (inverse ?81126) ?81126 [81126, 81125] by Super 8071 with 13919 at 2,1,2 Id : 14651, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?81799) ?81799))) (inverse (multiply (inverse ?81800) ?81800))) =>= multiply (inverse ?81800) ?81800 [81800, 81799] by Super 14512 with 7450 at 1,1,2 Id : 21336, {_}: inverse (multiply (inverse (multiply (multiply (inverse ?106633) ?106633) (inverse (multiply (inverse ?106634) (multiply (inverse (inverse (inverse (multiply (inverse ?106635) ?106635)))) (inverse (inverse (multiply (inverse ?106635) ?106635)))))))) (multiply (inverse ?106635) ?106635)) =>= ?106634 [106635, 106634, 106633] by Demod 21048 with 14651 at 2,1,2,1,1,1,2 Id : 21337, {_}: inverse (multiply (inverse ?106634) (multiply (inverse ?106635) ?106635)) =>= ?106634 [106635, 106634] by Demod 21336 with 13919 at 1,1,2 Id : 21992, {_}: inverse (multiply (multiply (inverse ?110029) ?110029) ?110030) =>= inverse ?110030 [110030, 110029] by Super 13919 with 21337 at 2,1,2 Id : 22493, {_}: inverse (multiply (inverse ?111936) (multiply (inverse ?111937) ?111937)) =?= multiply (multiply (inverse ?111938) ?111938) ?111936 [111938, 111937, 111936] by Super 21337 with 21992 at 1,1,2 Id : 22594, {_}: ?111936 =<= multiply (multiply (inverse ?111938) ?111938) ?111936 [111938, 111936] by Demod 22493 with 21337 at 2 Id : 23128, {_}: a2 === a2 [] by Demod 1 with 22594 at 2 Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 % SZS output end CNFRefutation for GRP419-1.p 19509: solved GRP419-1.p in 18.525157 using nrkbo WARNING: TreeLimitedRun lost 41.46s, total lost is 41.46s FINAL WATCH: 60.0 CPU 37.2 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP420-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19527 TreeLimitedRun: ---------------------------------------------------------- 19529: Facts: 19529: Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (inverse (multiply ?4 (inverse (multiply (inverse ?4) ?4)))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 19529: Goal: 19529: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 Statistics : Max weight : 83 Found proof, 46.435770s % SZS status Unsatisfiable for GRP420-1.p % SZS output start CNFRefutation for GRP420-1.p Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (inverse (multiply ?4 (inverse (multiply (inverse ?4) ?4)))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 Id : 3, {_}: inverse (multiply (inverse (multiply ?6 (inverse (multiply (inverse ?7) (inverse (multiply ?8 (inverse (multiply (inverse ?8) ?8)))))))) (multiply ?6 ?8)) =>= ?7 [8, 7, 6] by single_axiom ?6 ?7 ?8 Id : 5, {_}: inverse (multiply (inverse (multiply ?16 (inverse (multiply ?17 (inverse (multiply ?18 (inverse (multiply (inverse ?18) ?18)))))))) (multiply ?16 ?18)) =?= multiply (inverse (multiply ?19 (inverse (multiply (inverse ?17) (inverse (multiply ?20 (inverse (multiply (inverse ?20) ?20)))))))) (multiply ?19 ?20) [20, 19, 18, 17, 16] by Super 3 with 2 at 1,1,2,1,1,1,2 Id : 50, {_}: multiply (inverse (multiply ?270 (inverse (multiply (inverse (inverse ?271)) (inverse (multiply ?272 (inverse (multiply (inverse ?272) ?272)))))))) (multiply ?270 ?272) =>= ?271 [272, 271, 270] by Super 2 with 5 at 2 Id : 11, {_}: multiply (inverse (multiply ?51 (inverse (multiply (inverse (inverse ?52)) (inverse (multiply ?53 (inverse (multiply (inverse ?53) ?53)))))))) (multiply ?51 ?53) =>= ?52 [53, 52, 51] by Super 2 with 5 at 2 Id : 51, {_}: multiply (inverse (multiply (inverse (multiply ?274 (inverse (multiply (inverse (inverse ?275)) (inverse (multiply ?276 (inverse (multiply (inverse ?276) ?276)))))))) (inverse (multiply (inverse (inverse ?277)) (inverse (multiply (multiply ?274 ?276) (inverse (multiply (inverse (multiply ?274 ?276)) (multiply ?274 ?276))))))))) ?275 =>= ?277 [277, 276, 275, 274] by Super 50 with 11 at 2,2 Id : 46, {_}: inverse (multiply (inverse (multiply (inverse (multiply ?256 (inverse (multiply (inverse (inverse ?257)) (inverse (multiply ?258 (inverse (multiply (inverse ?258) ?258)))))))) (inverse (multiply (inverse ?259) (inverse (multiply (multiply ?256 ?258) (inverse (multiply (inverse (multiply ?256 ?258)) (multiply ?256 ?258))))))))) ?257) =>= ?259 [259, 258, 257, 256] by Super 2 with 11 at 2,1,2 Id : 655, {_}: inverse (multiply (inverse (multiply ?4057 ?4058)) (multiply ?4057 ?4059)) =?= multiply (inverse (multiply ?4060 (inverse (multiply (inverse (inverse (inverse (multiply ?4059 (inverse (multiply (inverse ?4059) ?4059)))))) (inverse (multiply ?4061 (inverse (multiply (inverse ?4061) ?4061)))))))) (inverse (multiply (inverse ?4058) (inverse (multiply (multiply ?4060 ?4061) (inverse (multiply (inverse (multiply ?4060 ?4061)) (multiply ?4060 ?4061))))))) [4061, 4060, 4059, 4058, 4057] by Super 2 with 46 at 2,1,1,1,2 Id : 206, {_}: inverse (multiply (inverse (multiply ?1179 ?1180)) (multiply ?1179 ?1181)) =?= multiply (inverse (multiply ?1182 (inverse (multiply (inverse (inverse (inverse (multiply ?1181 (inverse (multiply (inverse ?1181) ?1181)))))) (inverse (multiply ?1183 (inverse (multiply (inverse ?1183) ?1183)))))))) (inverse (multiply (inverse ?1180) (inverse (multiply (multiply ?1182 ?1183) (inverse (multiply (inverse (multiply ?1182 ?1183)) (multiply ?1182 ?1183))))))) [1183, 1182, 1181, 1180, 1179] by Super 2 with 46 at 2,1,1,1,2 Id : 715, {_}: inverse (multiply (inverse (multiply ?4585 ?4586)) (multiply ?4585 ?4587)) =?= inverse (multiply (inverse (multiply ?4588 ?4586)) (multiply ?4588 ?4587)) [4588, 4587, 4586, 4585] by Super 655 with 206 at 3 Id : 879, {_}: multiply (inverse (multiply (inverse (multiply ?5484 (inverse (multiply (inverse (inverse ?5485)) (inverse (multiply ?5486 (inverse (multiply (inverse ?5486) ?5486)))))))) (inverse (multiply (inverse (inverse (multiply (inverse (multiply ?5487 ?5488)) (multiply ?5487 ?5489)))) (inverse (multiply (multiply ?5484 ?5486) (inverse (multiply (inverse (multiply ?5484 ?5486)) (multiply ?5484 ?5486))))))))) ?5485 =?= multiply (inverse (multiply ?5490 ?5488)) (multiply ?5490 ?5489) [5490, 5489, 5488, 5487, 5486, 5485, 5484] by Super 51 with 715 at 1,1,1,2,1,1,2 Id : 968, {_}: multiply (inverse (multiply ?5487 ?5488)) (multiply ?5487 ?5489) =?= multiply (inverse (multiply ?5490 ?5488)) (multiply ?5490 ?5489) [5490, 5489, 5488, 5487] by Demod 879 with 51 at 2 Id : 578, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?3435 (inverse ?3436))) (multiply ?3435 ?3437)))) (inverse (multiply ?3437 (inverse (multiply (inverse ?3437) ?3437)))) =>= ?3436 [3437, 3436, 3435] by Super 51 with 206 at 1,1,2 Id : 589, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?3520 ?3521)) (multiply ?3520 ?3522)))) (inverse (multiply ?3522 (inverse (multiply (inverse ?3522) ?3522))))) =>= ?3521 [3522, 3521, 3520] by Super 46 with 206 at 1,1,1,2 Id : 3336, {_}: multiply (inverse (multiply ?23865 (inverse (multiply (inverse (inverse ?23866)) (inverse (multiply (multiply ?23867 ?23868) (inverse (multiply (inverse (multiply ?23869 ?23868)) (multiply ?23869 ?23868))))))))) (multiply ?23865 (multiply ?23867 ?23868)) =>= ?23866 [23869, 23868, 23867, 23866, 23865] by Super 11 with 715 at 2,1,2,1,2,1,1,2 Id : 3339, {_}: multiply (inverse (multiply ?23887 (inverse (multiply (inverse (inverse ?23888)) (inverse (multiply (multiply (inverse (multiply (inverse (multiply ?23889 (inverse (multiply (inverse (inverse ?23890)) (inverse (multiply ?23891 (inverse (multiply (inverse ?23891) ?23891)))))))) (inverse (multiply (inverse (inverse ?23892)) (inverse (multiply (multiply ?23889 ?23891) (inverse (multiply (inverse (multiply ?23889 ?23891)) (multiply ?23889 ?23891))))))))) ?23890) (inverse (multiply (inverse (multiply ?23893 ?23890)) (multiply ?23893 ?23890))))))))) (multiply ?23887 ?23892) =>= ?23888 [23893, 23892, 23891, 23890, 23889, 23888, 23887] by Super 3336 with 51 at 2,2,2 Id : 3662, {_}: multiply (inverse (multiply ?25821 (inverse (multiply (inverse (inverse ?25822)) (inverse (multiply ?25823 (inverse (multiply (inverse (multiply ?25824 ?25825)) (multiply ?25824 ?25825))))))))) (multiply ?25821 ?25823) =>= ?25822 [25825, 25824, 25823, 25822, 25821] by Demod 3339 with 51 at 1,1,2,1,2,1,1,2 Id : 3679, {_}: multiply (inverse (multiply ?25970 (inverse (multiply (inverse (inverse ?25971)) (inverse (multiply ?25972 (inverse (multiply (inverse (multiply (inverse (multiply ?25973 (inverse (multiply (inverse (inverse ?25974)) (inverse (multiply ?25975 (inverse (multiply (inverse ?25975) ?25975)))))))) (multiply ?25973 ?25975))) ?25974)))))))) (multiply ?25970 ?25972) =>= ?25971 [25975, 25974, 25973, 25972, 25971, 25970] by Super 3662 with 11 at 2,1,2,1,2,1,2,1,1,2 Id : 3818, {_}: multiply (inverse (multiply ?25970 (inverse (multiply (inverse (inverse ?25971)) (inverse (multiply ?25972 (inverse (multiply (inverse ?25974) ?25974)))))))) (multiply ?25970 ?25972) =>= ?25971 [25974, 25972, 25971, 25970] by Demod 3679 with 11 at 1,1,1,2,1,2,1,2,1,1,2 Id : 3879, {_}: multiply (inverse (inverse ?26903)) (inverse (multiply ?26904 (inverse (multiply (inverse ?26904) ?26904)))) =?= multiply (inverse (inverse ?26903)) (inverse (multiply ?26904 (inverse (multiply (inverse ?26905) ?26905)))) [26905, 26904, 26903] by Super 578 with 3818 at 1,1,1,2 Id : 4264, {_}: multiply (inverse (inverse (multiply (inverse (multiply (inverse (inverse ?29074)) (inverse (multiply ?29075 (inverse (multiply (inverse ?29076) ?29076)))))) (multiply (inverse (inverse ?29074)) ?29077)))) (inverse (multiply ?29077 (inverse (multiply (inverse ?29077) ?29077)))) =?= multiply ?29075 (inverse (multiply (inverse ?29075) ?29075)) [29077, 29076, 29075, 29074] by Super 578 with 3879 at 1,1,1,1,1,2 Id : 4418, {_}: multiply ?29075 (inverse (multiply (inverse ?29076) ?29076)) =?= multiply ?29075 (inverse (multiply (inverse ?29075) ?29075)) [29076, 29075] by Demod 4264 with 578 at 2 Id : 4624, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?30943 (inverse (multiply (inverse ?30943) ?30943)))) (multiply ?30943 ?30944)))) (inverse (multiply ?30944 (inverse (multiply (inverse ?30944) ?30944))))) =?= inverse (multiply (inverse ?30945) ?30945) [30945, 30944, 30943] by Super 589 with 4418 at 1,1,1,1,1,1,2 Id : 4724, {_}: inverse (multiply (inverse ?30943) ?30943) =?= inverse (multiply (inverse ?30945) ?30945) [30945, 30943] by Demod 4624 with 578 at 1,2 Id : 4507, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?30326 (inverse (multiply (inverse ?30326) ?30326)))) (multiply ?30326 ?30327)))) (inverse (multiply ?30327 (inverse (multiply (inverse ?30327) ?30327)))) =?= multiply (inverse ?30328) ?30328 [30328, 30327, 30326] by Super 578 with 4418 at 1,1,1,1,1,2 Id : 4738, {_}: multiply (inverse ?30326) ?30326 =?= multiply (inverse ?30328) ?30328 [30328, 30326] by Demod 4507 with 578 at 2 Id : 6411, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?41035) ?41035))) (inverse (multiply ?41036 (inverse (multiply (inverse ?41036) ?41036))))) =>= ?41036 [41036, 41035] by Super 589 with 4738 at 1,1,1,1,2 Id : 6438, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?41193) ?41193))) (inverse (multiply ?41194 (inverse (multiply (inverse ?41195) ?41195))))) =>= ?41194 [41195, 41194, 41193] by Super 6411 with 4738 at 1,2,1,2,1,2 Id : 6907, {_}: inverse (multiply (inverse ?43301) ?43301) =?= inverse (inverse (multiply (inverse ?43302) ?43302)) [43302, 43301] by Super 4724 with 6438 at 3 Id : 19786, {_}: inverse (multiply (inverse (multiply (inverse ?102345) ?102345)) (inverse (multiply ?102346 (inverse (multiply (inverse ?102346) ?102346))))) =>= ?102346 [102346, 102345] by Super 589 with 6907 at 1,1,2 Id : 4656, {_}: multiply ?31155 (inverse (multiply (inverse ?31156) ?31156)) =?= multiply ?31155 (inverse (multiply (inverse ?31155) ?31155)) [31156, 31155] by Demod 4264 with 578 at 2 Id : 4689, {_}: multiply ?31355 (inverse (multiply (inverse ?31356) ?31356)) =?= multiply ?31355 (inverse (multiply (inverse ?31357) ?31357)) [31357, 31356, 31355] by Super 4656 with 4418 at 3 Id : 7234, {_}: multiply (inverse (multiply (inverse (multiply ?44811 (inverse (multiply (inverse (inverse ?44812)) (inverse (multiply ?44813 (inverse (multiply (inverse ?44813) ?44813)))))))) (inverse (multiply (inverse (inverse (inverse (multiply (inverse ?44814) ?44814)))) (inverse (multiply (multiply ?44811 ?44813) (inverse (multiply (inverse (multiply ?44811 ?44813)) (multiply ?44811 ?44813))))))))) ?44812 =?= multiply (inverse ?44815) ?44815 [44815, 44814, 44813, 44812, 44811] by Super 51 with 6907 at 1,1,1,2,1,1,2 Id : 7415, {_}: inverse (multiply (inverse ?44814) ?44814) =?= multiply (inverse ?44815) ?44815 [44815, 44814] by Demod 7234 with 51 at 2 Id : 7453, {_}: multiply ?45768 (inverse (multiply (inverse ?45769) ?45769)) =?= multiply ?45768 (multiply (inverse ?45770) ?45770) [45770, 45769, 45768] by Super 4689 with 7415 at 2,3 Id : 19854, {_}: inverse (multiply (inverse (multiply (inverse ?102672) ?102672)) (inverse (multiply (inverse (multiply (inverse ?102673) ?102673)) (inverse (multiply (inverse (inverse (multiply (inverse ?102673) ?102673))) (multiply (inverse ?102674) ?102674)))))) =>= inverse (multiply (inverse ?102673) ?102673) [102674, 102673, 102672] by Super 19786 with 7453 at 1,2,1,2,1,2 Id : 7450, {_}: multiply (inverse ?45756) ?45756 =?= inverse (inverse (multiply (inverse ?45757) ?45757)) [45757, 45756] by Super 6438 with 7415 at 2 Id : 13841, {_}: inverse (multiply (multiply (inverse ?77841) ?77841) (inverse (multiply ?77842 (inverse (multiply (inverse ?77842) ?77842))))) =>= ?77842 [77842, 77841] by Super 589 with 7450 at 1,1,2 Id : 14147, {_}: inverse (multiply (multiply (inverse ?79356) ?79356) (inverse (multiply ?79357 (multiply (inverse ?79358) ?79358)))) =>= ?79357 [79358, 79357, 79356] by Super 13841 with 7415 at 2,1,2,1,2 Id : 14329, {_}: inverse (multiply (inverse (multiply (inverse ?80354) ?80354)) (inverse (multiply ?80355 (multiply (inverse ?80356) ?80356)))) =>= ?80355 [80356, 80355, 80354] by Super 14147 with 7415 at 1,1,2 Id : 20222, {_}: inverse (multiply (inverse (multiply (inverse ?103937) ?103937)) (inverse (inverse (multiply (inverse ?103938) ?103938)))) =>= inverse (multiply (inverse ?103938) ?103938) [103938, 103937] by Demod 19854 with 14329 at 2,1,2 Id : 20428, {_}: inverse (multiply (multiply (inverse ?104876) ?104876) (inverse (inverse (multiply (inverse ?104877) ?104877)))) =>= inverse (multiply (inverse ?104877) ?104877) [104877, 104876] by Super 20222 with 7415 at 1,1,2 Id : 20649, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?105328 (inverse (multiply (inverse ?105329) ?105329)))) (multiply ?105328 ?105330)))) (inverse (multiply ?105330 (inverse (multiply (inverse ?105330) ?105330)))) =?= multiply (multiply (inverse ?105331) ?105331) (inverse (inverse (multiply (inverse ?105329) ?105329))) [105331, 105330, 105329, 105328] by Super 578 with 20428 at 2,1,1,1,1,1,2 Id : 20904, {_}: multiply (inverse ?105329) ?105329 =<= multiply (multiply (inverse ?105331) ?105331) (inverse (inverse (multiply (inverse ?105329) ?105329))) [105331, 105329] by Demod 20649 with 578 at 2 Id : 21048, {_}: inverse (multiply (inverse (multiply (multiply (inverse ?106633) ?106633) (inverse (multiply (inverse ?106634) (inverse (multiply (inverse (inverse (multiply (inverse ?106635) ?106635))) (inverse (multiply (inverse (inverse (inverse (multiply (inverse ?106635) ?106635)))) (inverse (inverse (multiply (inverse ?106635) ?106635))))))))))) (multiply (inverse ?106635) ?106635)) =>= ?106634 [106635, 106634, 106633] by Super 2 with 20904 at 2,1,2 Id : 8071, {_}: inverse (multiply (multiply (inverse ?49016) ?49016) (inverse (multiply ?49017 (inverse (multiply (inverse ?49017) ?49017))))) =>= ?49017 [49017, 49016] by Super 589 with 7450 at 1,1,2 Id : 13919, {_}: inverse (multiply (multiply (inverse ?78219) ?78219) (inverse (multiply ?78220 (multiply (inverse ?78221) ?78221)))) =>= ?78220 [78221, 78220, 78219] by Super 13841 with 7415 at 2,1,2,1,2 Id : 14512, {_}: inverse (multiply (multiply (inverse ?81125) ?81125) (inverse (multiply (inverse ?81126) ?81126))) =>= multiply (inverse ?81126) ?81126 [81126, 81125] by Super 8071 with 13919 at 2,1,2 Id : 14651, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?81799) ?81799))) (inverse (multiply (inverse ?81800) ?81800))) =>= multiply (inverse ?81800) ?81800 [81800, 81799] by Super 14512 with 7450 at 1,1,2 Id : 21336, {_}: inverse (multiply (inverse (multiply (multiply (inverse ?106633) ?106633) (inverse (multiply (inverse ?106634) (multiply (inverse (inverse (inverse (multiply (inverse ?106635) ?106635)))) (inverse (inverse (multiply (inverse ?106635) ?106635)))))))) (multiply (inverse ?106635) ?106635)) =>= ?106634 [106635, 106634, 106633] by Demod 21048 with 14651 at 2,1,2,1,1,1,2 Id : 21337, {_}: inverse (multiply (inverse ?106634) (multiply (inverse ?106635) ?106635)) =>= ?106634 [106635, 106634] by Demod 21336 with 13919 at 1,1,2 Id : 21992, {_}: inverse (multiply (multiply (inverse ?110029) ?110029) ?110030) =>= inverse ?110030 [110030, 110029] by Super 13919 with 21337 at 2,1,2 Id : 22493, {_}: inverse (multiply (inverse ?111936) (multiply (inverse ?111937) ?111937)) =?= multiply (multiply (inverse ?111938) ?111938) ?111936 [111938, 111937, 111936] by Super 21337 with 21992 at 1,1,2 Id : 22594, {_}: ?111936 =<= multiply (multiply (inverse ?111938) ?111938) ?111936 [111938, 111936] by Demod 22493 with 21337 at 2 Id : 22775, {_}: multiply (inverse (multiply ?112829 ?112830)) (multiply ?112829 ?112831) =?= multiply (inverse (multiply (multiply (inverse ?112832) ?112832) ?112830)) ?112831 [112832, 112831, 112830, 112829] by Super 968 with 22594 at 2,3 Id : 22968, {_}: multiply (inverse (multiply ?112829 ?112830)) (multiply ?112829 ?112831) =>= multiply (inverse ?112830) ?112831 [112831, 112830, 112829] by Demod 22775 with 22594 at 1,1,3 Id : 25611, {_}: inverse (multiply (inverse (inverse (multiply ?17 (inverse (multiply ?18 (inverse (multiply (inverse ?18) ?18))))))) ?18) =?= multiply (inverse (multiply ?19 (inverse (multiply (inverse ?17) (inverse (multiply ?20 (inverse (multiply (inverse ?20) ?20)))))))) (multiply ?19 ?20) [20, 19, 18, 17] by Demod 5 with 22968 at 1,2 Id : 25612, {_}: inverse (multiply (inverse (inverse (multiply ?17 (inverse (multiply ?18 (inverse (multiply (inverse ?18) ?18))))))) ?18) =?= multiply (inverse (inverse (multiply (inverse ?17) (inverse (multiply ?20 (inverse (multiply (inverse ?20) ?20))))))) ?20 [20, 18, 17] by Demod 25611 with 22968 at 3 Id : 25658, {_}: inverse (multiply (inverse ?120473) ?120474) =>= multiply (inverse ?120474) ?120473 [120474, 120473] by Super 21337 with 22968 at 1,2 Id : 25915, {_}: inverse (multiply (inverse (inverse (multiply ?17 (inverse (multiply ?18 (multiply (inverse ?18) ?18)))))) ?18) =?= multiply (inverse (inverse (multiply (inverse ?17) (inverse (multiply ?20 (inverse (multiply (inverse ?20) ?20))))))) ?20 [20, 18, 17] by Demod 25612 with 25658 at 2,1,2,1,1,1,1,2 Id : 25916, {_}: multiply (inverse ?18) (inverse (multiply ?17 (inverse (multiply ?18 (multiply (inverse ?18) ?18))))) =?= multiply (inverse (inverse (multiply (inverse ?17) (inverse (multiply ?20 (inverse (multiply (inverse ?20) ?20))))))) ?20 [20, 17, 18] by Demod 25915 with 25658 at 2 Id : 25917, {_}: multiply (inverse ?18) (inverse (multiply ?17 (inverse (multiply ?18 (multiply (inverse ?18) ?18))))) =?= multiply (inverse (inverse (multiply (inverse ?17) (inverse (multiply ?20 (multiply (inverse ?20) ?20)))))) ?20 [20, 17, 18] by Demod 25916 with 25658 at 2,1,2,1,1,1,3 Id : 25918, {_}: multiply (inverse ?18) (inverse (multiply ?17 (inverse (multiply ?18 (multiply (inverse ?18) ?18))))) =?= multiply (inverse (multiply (inverse (inverse (multiply ?20 (multiply (inverse ?20) ?20)))) ?17)) ?20 [20, 17, 18] by Demod 25917 with 25658 at 1,1,3 Id : 25919, {_}: multiply (inverse ?18) (inverse (multiply ?17 (inverse (multiply ?18 (multiply (inverse ?18) ?18))))) =?= multiply (multiply (inverse ?17) (inverse (multiply ?20 (multiply (inverse ?20) ?20)))) ?20 [20, 17, 18] by Demod 25918 with 25658 at 1,3 Id : 10, {_}: inverse (inverse (multiply (inverse (multiply ?47 (inverse (multiply ?48 (inverse (multiply ?49 (inverse (multiply (inverse ?49) ?49)))))))) (multiply ?47 ?49))) =>= ?48 [49, 48, 47] by Super 2 with 5 at 1,2 Id : 21049, {_}: inverse (inverse (multiply (inverse (multiply (multiply (inverse ?106637) ?106637) (inverse (multiply ?106638 (inverse (multiply (inverse (inverse (multiply (inverse ?106639) ?106639))) (inverse (multiply (inverse (inverse (inverse (multiply (inverse ?106639) ?106639)))) (inverse (inverse (multiply (inverse ?106639) ?106639))))))))))) (multiply (inverse ?106639) ?106639))) =>= ?106638 [106639, 106638, 106637] by Super 10 with 20904 at 2,1,1,2 Id : 21334, {_}: inverse (inverse (multiply (inverse (multiply (multiply (inverse ?106637) ?106637) (inverse (multiply ?106638 (multiply (inverse (inverse (inverse (multiply (inverse ?106639) ?106639)))) (inverse (inverse (multiply (inverse ?106639) ?106639)))))))) (multiply (inverse ?106639) ?106639))) =>= ?106638 [106639, 106638, 106637] by Demod 21049 with 14651 at 2,1,2,1,1,1,1,2 Id : 21335, {_}: inverse (inverse (multiply ?106638 (multiply (inverse ?106639) ?106639))) =>= ?106638 [106639, 106638] by Demod 21334 with 13919 at 1,1,1,2 Id : 25614, {_}: inverse (inverse (multiply (inverse (inverse (multiply ?48 (inverse (multiply ?49 (inverse (multiply (inverse ?49) ?49))))))) ?49)) =>= ?48 [49, 48] by Demod 10 with 22968 at 1,1,2 Id : 25920, {_}: inverse (inverse (multiply (inverse (inverse (multiply ?48 (inverse (multiply ?49 (multiply (inverse ?49) ?49)))))) ?49)) =>= ?48 [49, 48] by Demod 25614 with 25658 at 2,1,2,1,1,1,1,1,2 Id : 25921, {_}: inverse (multiply (inverse ?49) (inverse (multiply ?48 (inverse (multiply ?49 (multiply (inverse ?49) ?49)))))) =>= ?48 [48, 49] by Demod 25920 with 25658 at 1,2 Id : 25922, {_}: multiply (inverse (inverse (multiply ?48 (inverse (multiply ?49 (multiply (inverse ?49) ?49)))))) ?49 =>= ?48 [49, 48] by Demod 25921 with 25658 at 2 Id : 26080, {_}: multiply (inverse (multiply (inverse (inverse (multiply ?121160 (multiply (inverse ?121160) ?121160)))) ?121161)) ?121160 =>= inverse ?121161 [121161, 121160] by Super 25922 with 25658 at 1,1,2 Id : 26217, {_}: multiply (inverse (multiply ?121160 ?121161)) ?121160 =>= inverse ?121161 [121161, 121160] by Demod 26080 with 21335 at 1,1,1,2 Id : 26349, {_}: inverse (inverse ?121672) =<= multiply (inverse ?121673) (multiply ?121673 ?121672) [121673, 121672] by Super 25658 with 26217 at 1,2 Id : 26128, {_}: multiply (inverse ?121371) (multiply (inverse (inverse (multiply ?121371 (multiply (inverse ?121371) ?121371)))) ?121372) =?= multiply (multiply (inverse (inverse ?121372)) (inverse (multiply ?121373 (multiply (inverse ?121373) ?121373)))) ?121373 [121373, 121372, 121371] by Super 25919 with 25658 at 2,2 Id : 26163, {_}: multiply (inverse ?121371) (multiply ?121371 ?121372) =?= multiply (multiply (inverse (inverse ?121372)) (inverse (multiply ?121373 (multiply (inverse ?121373) ?121373)))) ?121373 [121373, 121372, 121371] by Demod 26128 with 21335 at 1,2,2 Id : 25598, {_}: multiply (inverse (inverse (multiply (inverse (inverse ?25971)) (inverse (multiply ?25972 (inverse (multiply (inverse ?25974) ?25974))))))) ?25972 =>= ?25971 [25974, 25972, 25971] by Demod 3818 with 22968 at 2 Id : 25905, {_}: multiply (inverse (inverse (multiply (inverse (inverse ?25971)) (inverse (multiply ?25972 (multiply (inverse ?25974) ?25974)))))) ?25972 =>= ?25971 [25974, 25972, 25971] by Demod 25598 with 25658 at 2,1,2,1,1,1,2 Id : 25906, {_}: multiply (inverse (multiply (inverse (inverse (multiply ?25972 (multiply (inverse ?25974) ?25974)))) (inverse ?25971))) ?25972 =>= ?25971 [25971, 25974, 25972] by Demod 25905 with 25658 at 1,1,2 Id : 25907, {_}: multiply (multiply (inverse (inverse ?25971)) (inverse (multiply ?25972 (multiply (inverse ?25974) ?25974)))) ?25972 =>= ?25971 [25974, 25972, 25971] by Demod 25906 with 25658 at 1,2 Id : 26164, {_}: multiply (inverse ?121371) (multiply ?121371 ?121372) =>= ?121372 [121372, 121371] by Demod 26163 with 25907 at 3 Id : 26438, {_}: inverse (inverse ?121672) =>= ?121672 [121672] by Demod 26349 with 26164 at 3 Id : 26482, {_}: multiply ?106638 (multiply (inverse ?106639) ?106639) =>= ?106638 [106639, 106638] by Demod 21335 with 26438 at 2 Id : 26492, {_}: multiply (inverse ?18) (inverse (multiply ?17 (inverse ?18))) =?= multiply (multiply (inverse ?17) (inverse (multiply ?20 (multiply (inverse ?20) ?20)))) ?20 [20, 17, 18] by Demod 25919 with 26482 at 1,2,1,2,2 Id : 26493, {_}: multiply (inverse ?18) (inverse (multiply ?17 (inverse ?18))) =?= multiply (multiply (inverse ?17) (inverse ?20)) ?20 [20, 17, 18] by Demod 26492 with 26482 at 1,2,1,3 Id : 25618, {_}: multiply (inverse (multiply (inverse (multiply ?274 (inverse (multiply (inverse (inverse ?275)) (inverse (multiply ?276 (inverse (multiply (inverse ?276) ?276)))))))) (inverse (multiply (inverse (inverse ?277)) (inverse (multiply (multiply ?274 ?276) (inverse (multiply (inverse ?276) ?276)))))))) ?275 =>= ?277 [277, 276, 275, 274] by Demod 51 with 22968 at 1,2,1,2,1,2,1,1,2 Id : 8127, {_}: inverse (multiply (multiply (inverse ?49326) ?49326) (inverse (multiply ?49327 (inverse (multiply (inverse ?49328) ?49328))))) =>= ?49327 [49328, 49327, 49326] by Super 6438 with 7450 at 1,1,2 Id : 22304, {_}: inverse (inverse (multiply ?49327 (inverse (multiply (inverse ?49328) ?49328)))) =>= ?49327 [49328, 49327] by Demod 8127 with 21992 at 2 Id : 22308, {_}: inverse (multiply (inverse (multiply ?1179 ?1180)) (multiply ?1179 ?1181)) =?= multiply (inverse (multiply ?1182 (inverse (multiply (inverse ?1181) (inverse (multiply ?1183 (inverse (multiply (inverse ?1183) ?1183)))))))) (inverse (multiply (inverse ?1180) (inverse (multiply (multiply ?1182 ?1183) (inverse (multiply (inverse (multiply ?1182 ?1183)) (multiply ?1182 ?1183))))))) [1183, 1182, 1181, 1180, 1179] by Demod 206 with 22304 at 1,1,1,2,1,1,3 Id : 25632, {_}: inverse (multiply (inverse ?1180) ?1181) =<= multiply (inverse (multiply ?1182 (inverse (multiply (inverse ?1181) (inverse (multiply ?1183 (inverse (multiply (inverse ?1183) ?1183)))))))) (inverse (multiply (inverse ?1180) (inverse (multiply (multiply ?1182 ?1183) (inverse (multiply (inverse (multiply ?1182 ?1183)) (multiply ?1182 ?1183))))))) [1183, 1182, 1181, 1180] by Demod 22308 with 22968 at 1,2 Id : 25633, {_}: inverse (multiply (inverse ?1180) ?1181) =<= multiply (inverse (multiply ?1182 (inverse (multiply (inverse ?1181) (inverse (multiply ?1183 (inverse (multiply (inverse ?1183) ?1183)))))))) (inverse (multiply (inverse ?1180) (inverse (multiply (multiply ?1182 ?1183) (inverse (multiply (inverse ?1183) ?1183)))))) [1183, 1182, 1181, 1180] by Demod 25632 with 22968 at 1,2,1,2,1,2,3 Id : 25634, {_}: multiply (inverse (inverse (multiply (inverse (inverse ?277)) (inverse ?275)))) ?275 =>= ?277 [275, 277] by Demod 25618 with 25633 at 1,1,2 Id : 26044, {_}: multiply (inverse (multiply (inverse (inverse ?275)) (inverse ?277))) ?275 =>= ?277 [277, 275] by Demod 25634 with 25658 at 1,1,2 Id : 26045, {_}: multiply (multiply (inverse (inverse ?277)) (inverse ?275)) ?275 =>= ?277 [275, 277] by Demod 26044 with 25658 at 1,2 Id : 26479, {_}: multiply (multiply ?277 (inverse ?275)) ?275 =>= ?277 [275, 277] by Demod 26045 with 26438 at 1,1,2 Id : 26497, {_}: multiply (inverse ?18) (inverse (multiply ?17 (inverse ?18))) =>= inverse ?17 [17, 18] by Demod 26493 with 26479 at 3 Id : 26522, {_}: multiply (inverse (inverse ?121957)) (inverse (multiply ?121958 ?121957)) =>= inverse ?121958 [121958, 121957] by Super 26497 with 26438 at 2,1,2,2 Id : 26929, {_}: multiply ?122704 (inverse (multiply ?122705 ?122704)) =>= inverse ?122705 [122705, 122704] by Demod 26522 with 26438 at 1,2 Id : 26264, {_}: multiply (inverse (multiply (inverse ?121520) ?121521)) ?121522 =>= multiply (inverse ?121521) (multiply ?121520 ?121522) [121522, 121521, 121520] by Super 22968 with 26164 at 2,2 Id : 26310, {_}: multiply (multiply (inverse ?121521) ?121520) ?121522 =>= multiply (inverse ?121521) (multiply ?121520 ?121522) [121522, 121520, 121521] by Demod 26264 with 25658 at 1,2 Id : 26934, {_}: multiply ?122720 (inverse (multiply (inverse ?122721) (multiply ?122722 ?122720))) =>= inverse (multiply (inverse ?122721) ?122722) [122722, 122721, 122720] by Super 26929 with 26310 at 1,2,2 Id : 26993, {_}: multiply ?122720 (multiply (inverse (multiply ?122722 ?122720)) ?122721) =>= inverse (multiply (inverse ?122721) ?122722) [122721, 122722, 122720] by Demod 26934 with 25658 at 2,2 Id : 29160, {_}: multiply ?126523 (multiply (inverse (multiply ?126524 ?126523)) ?126525) =>= multiply (inverse ?126524) ?126525 [126525, 126524, 126523] by Demod 26993 with 25658 at 3 Id : 26688, {_}: multiply (multiply (inverse ?122355) ?122356) ?122357 =>= multiply (inverse ?122355) (multiply ?122356 ?122357) [122357, 122356, 122355] by Demod 26264 with 25658 at 1,2 Id : 26694, {_}: multiply ?122382 ?122383 =<= multiply (inverse ?122384) (multiply (multiply ?122384 ?122382) ?122383) [122384, 122383, 122382] by Super 26688 with 26164 at 1,2 Id : 29209, {_}: multiply ?126737 (multiply ?126738 ?126739) =<= multiply (inverse ?126740) (multiply (multiply (multiply ?126740 ?126737) ?126738) ?126739) [126740, 126739, 126738, 126737] by Super 29160 with 26694 at 2,2 Id : 28698, {_}: multiply (multiply ?125729 ?125730) ?125731 =<= multiply (inverse ?125732) (multiply (multiply (multiply ?125732 ?125729) ?125730) ?125731) [125732, 125731, 125730, 125729] by Super 26310 with 26694 at 1,2 Id : 41313, {_}: multiply ?126737 (multiply ?126738 ?126739) =?= multiply (multiply ?126737 ?126738) ?126739 [126739, 126738, 126737] by Demod 29209 with 28698 at 3 Id : 41876, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 1 with 41313 at 2 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 % SZS output end CNFRefutation for GRP420-1.p 19532: solved GRP420-1.p in 23.149446 using nrkbo WARNING: TreeLimitedRun lost 56.64s, total lost is 56.64s FINAL WATCH: 79.8 CPU 46.5 WC Killed 1 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP422-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19580 TreeLimitedRun: ---------------------------------------------------------- 19582: Facts: 19582: Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (multiply (inverse ?4) (inverse (multiply (inverse ?4) ?4))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 19582: Goal: 19582: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 Statistics : Max weight : 86 Found proof, 68.164681s % SZS status Unsatisfiable for GRP422-1.p % SZS output start CNFRefutation for GRP422-1.p Id : 3, {_}: inverse (multiply (inverse (multiply ?6 (inverse (multiply (inverse ?7) (multiply (inverse ?8) (inverse (multiply (inverse ?8) ?8))))))) (multiply ?6 ?8)) =>= ?7 [8, 7, 6] by single_axiom ?6 ?7 ?8 Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (multiply (inverse ?4) (inverse (multiply (inverse ?4) ?4))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 Id : 7, {_}: inverse (multiply (inverse (multiply ?28 ?29)) (multiply ?28 ?30)) =?= multiply (inverse ?30) (inverse (multiply (inverse ?29) (multiply (inverse (inverse (multiply (inverse ?30) ?30))) (inverse (multiply (inverse (inverse (multiply (inverse ?30) ?30))) (inverse (multiply (inverse ?30) ?30))))))) [30, 29, 28] by Super 3 with 2 at 2,1,1,1,2 Id : 16, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?62 ?63)) (multiply ?62 ?64)))) (multiply (inverse ?64) (inverse (multiply (inverse ?64) ?64)))) =>= ?63 [64, 63, 62] by Super 2 with 7 at 1,1,1,2 Id : 18, {_}: inverse (multiply (inverse (multiply ?69 ?70)) (multiply ?69 ?71)) =?= multiply (inverse ?71) (inverse (multiply (inverse ?70) (multiply (inverse (inverse (multiply (inverse ?71) ?71))) (inverse (multiply (inverse (inverse (multiply (inverse ?71) ?71))) (inverse (multiply (inverse ?71) ?71))))))) [71, 70, 69] by Super 3 with 2 at 2,1,1,1,2 Id : 33, {_}: inverse (multiply (inverse (multiply ?152 ?153)) (multiply ?152 ?154)) =?= inverse (multiply (inverse (multiply ?155 ?153)) (multiply ?155 ?154)) [155, 154, 153, 152] by Super 18 with 7 at 3 Id : 57, {_}: inverse (multiply (inverse (multiply ?218 (inverse (multiply (inverse (multiply (inverse (multiply ?219 ?220)) (multiply ?219 ?221))) (multiply (inverse ?222) (inverse (multiply (inverse ?222) ?222))))))) (multiply ?218 ?222)) =?= multiply (inverse (multiply ?223 ?220)) (multiply ?223 ?221) [223, 222, 221, 220, 219, 218] by Super 2 with 33 at 1,1,2,1,1,1,2 Id : 146, {_}: multiply (inverse (multiply ?699 ?700)) (multiply ?699 ?701) =?= multiply (inverse (multiply ?702 ?700)) (multiply ?702 ?701) [702, 701, 700, 699] by Demod 57 with 2 at 2 Id : 153, {_}: multiply (inverse (multiply ?744 (multiply ?745 ?746))) (multiply ?744 ?747) =?= multiply ?748 (multiply (inverse (multiply ?745 (inverse (multiply (inverse ?748) (multiply (inverse ?746) (inverse (multiply (inverse ?746) ?746))))))) ?747) [748, 747, 746, 745, 744] by Super 146 with 2 at 1,3 Id : 53, {_}: inverse (multiply (inverse (multiply ?192 (inverse (multiply (inverse ?193) (multiply (inverse (multiply ?194 ?195)) (inverse (multiply (inverse (multiply ?196 ?195)) (multiply ?196 ?195)))))))) (multiply ?192 (multiply ?194 ?195))) =>= ?193 [196, 195, 194, 193, 192] by Super 2 with 33 at 2,2,1,2,1,1,1,2 Id : 2898, {_}: inverse (multiply (inverse (multiply ?21411 (inverse (multiply (inverse (multiply ?21412 (multiply ?21413 ?21414))) (multiply ?21412 (inverse (multiply (inverse (multiply ?21415 (inverse (multiply (inverse (inverse ?21416)) (multiply (inverse ?21414) (inverse (multiply (inverse ?21414) ?21414))))))) (multiply ?21415 (inverse (multiply (inverse (inverse ?21416)) (multiply (inverse ?21414) (inverse (multiply (inverse ?21414) ?21414))))))))))))) (multiply ?21411 (multiply ?21413 (inverse (multiply (inverse (inverse ?21416)) (multiply (inverse ?21414) (inverse (multiply (inverse ?21414) ?21414)))))))) =>= ?21416 [21416, 21415, 21414, 21413, 21412, 21411] by Super 53 with 153 at 1,2,1,1,1,2 Id : 268, {_}: inverse (multiply (inverse (multiply ?1266 (inverse (multiply (inverse (multiply ?1267 ?1268)) (multiply ?1267 (inverse (multiply (inverse ?1269) ?1269))))))) (multiply ?1266 ?1269)) =>= multiply (inverse ?1269) ?1268 [1269, 1268, 1267, 1266] by Super 2 with 33 at 2,1,1,1,2 Id : 106, {_}: multiply (inverse (multiply ?219 ?220)) (multiply ?219 ?221) =?= multiply (inverse (multiply ?223 ?220)) (multiply ?223 ?221) [223, 221, 220, 219] by Demod 57 with 2 at 2 Id : 278, {_}: inverse (multiply (inverse (multiply ?1336 (inverse (multiply (inverse (multiply ?1337 ?1338)) (multiply ?1337 (inverse (multiply (inverse (multiply ?1339 ?1340)) (multiply ?1339 ?1340)))))))) (multiply ?1336 (multiply ?1341 ?1340))) =>= multiply (inverse (multiply ?1341 ?1340)) ?1338 [1341, 1340, 1339, 1338, 1337, 1336] by Super 268 with 106 at 1,2,2,1,2,1,1,1,2 Id : 3079, {_}: multiply (inverse (multiply ?21413 (inverse (multiply (inverse (inverse ?21416)) (multiply (inverse ?21414) (inverse (multiply (inverse ?21414) ?21414))))))) (multiply ?21413 ?21414) =>= ?21416 [21414, 21416, 21413] by Demod 2898 with 278 at 2 Id : 3614, {_}: multiply (inverse (multiply ?26517 (multiply ?26518 ?26519))) (multiply ?26517 (multiply ?26518 ?26519)) =?= multiply (inverse ?26520) ?26520 [26520, 26519, 26518, 26517] by Super 153 with 3079 at 2,3 Id : 3205, {_}: multiply (inverse (multiply ?23736 (multiply ?23737 ?23738))) (multiply ?23736 (multiply ?23737 ?23738)) =?= multiply (inverse ?23739) ?23739 [23739, 23738, 23737, 23736] by Super 153 with 3079 at 2,3 Id : 3719, {_}: multiply (inverse ?27298) ?27298 =?= multiply (inverse ?27299) ?27299 [27299, 27298] by Super 3614 with 3205 at 2 Id : 3843, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?28066 ?28067)) (multiply ?28066 ?28068)))) (multiply (inverse ?28068) (inverse (multiply (inverse ?28069) ?28069)))) =>= ?28067 [28069, 28068, 28067, 28066] by Super 16 with 3719 at 1,2,2,1,2 Id : 59, {_}: inverse (multiply (inverse (multiply ?232 (inverse (multiply (inverse (multiply ?233 ?234)) (multiply ?233 (inverse (multiply (inverse ?235) ?235))))))) (multiply ?232 ?235)) =>= multiply (inverse ?235) ?234 [235, 234, 233, 232] by Super 2 with 33 at 2,1,1,1,2 Id : 3899, {_}: inverse (multiply (inverse (multiply ?28316 (inverse (multiply (inverse (multiply ?28317 ?28318)) (multiply ?28317 (inverse (multiply (inverse ?28319) ?28319))))))) (multiply ?28316 ?28320)) =>= multiply (inverse ?28320) ?28318 [28320, 28319, 28318, 28317, 28316] by Super 59 with 3719 at 1,2,2,1,2,1,1,1,2 Id : 3865, {_}: inverse (multiply (inverse (multiply ?28162 (inverse (multiply (inverse ?28163) (multiply (inverse ?28164) (inverse (multiply (inverse ?28165) ?28165))))))) (multiply ?28162 ?28164)) =>= ?28163 [28165, 28164, 28163, 28162] by Super 2 with 3719 at 1,2,2,1,2,1,1,1,2 Id : 188, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?943 ?944)) (multiply ?943 ?945)))) (multiply (inverse ?945) (inverse (multiply (inverse ?945) ?945)))) =>= ?944 [945, 944, 943] by Super 2 with 7 at 1,1,1,2 Id : 207, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply (inverse (multiply ?1057 ?1058)) (multiply ?1057 ?1059))) (multiply (inverse (multiply ?1060 ?1058)) ?1061)))) (multiply (inverse ?1061) (inverse (multiply (inverse ?1061) ?1061)))) =>= multiply ?1060 ?1059 [1061, 1060, 1059, 1058, 1057] by Super 188 with 106 at 1,1,1,1,1,1,2 Id : 5158, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?36054) ?36054))) (multiply (inverse ?36055) (inverse (multiply (inverse ?36055) ?36055)))) =>= ?36055 [36055, 36054] by Super 16 with 3719 at 1,1,1,1,2 Id : 5184, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?36219) ?36219))) (multiply (inverse ?36220) (inverse (multiply (inverse ?36221) ?36221)))) =>= ?36220 [36221, 36220, 36219] by Super 5158 with 3719 at 1,2,2,1,2 Id : 5369, {_}: inverse (multiply (inverse (multiply ?36925 (inverse (multiply (inverse ?36926) ?36926)))) (multiply ?36925 ?36927)) =?= multiply (inverse ?36927) (inverse (multiply (inverse ?36927) ?36927)) [36927, 36926, 36925] by Super 7 with 5184 at 2,3 Id : 26400, {_}: multiply (inverse ?172741) (inverse (multiply (inverse ?172741) ?172741)) =?= multiply (inverse ?172741) (inverse (multiply (inverse ?172742) ?172742)) [172742, 172741] by Super 3865 with 5369 at 2 Id : 26943, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply (inverse (multiply (inverse ?175821) ?175822)) (multiply (inverse ?175821) (inverse (multiply (inverse ?175823) ?175823))))) (multiply (inverse (multiply ?175824 ?175822)) ?175825)))) (multiply (inverse ?175825) (inverse (multiply (inverse ?175825) ?175825)))) =>= multiply ?175824 (inverse (multiply (inverse ?175821) ?175821)) [175825, 175824, 175823, 175822, 175821] by Super 207 with 26400 at 2,1,1,1,1,1,1,2 Id : 27303, {_}: multiply ?175824 (inverse (multiply (inverse ?175823) ?175823)) =?= multiply ?175824 (inverse (multiply (inverse ?175821) ?175821)) [175821, 175823, 175824] by Demod 26943 with 207 at 2 Id : 27618, {_}: multiply (inverse ?179338) ?179338 =?= multiply (inverse (inverse (multiply (inverse ?179339) ?179339))) (inverse (multiply (inverse ?179340) ?179340)) [179340, 179339, 179338] by Super 3719 with 27303 at 3 Id : 28066, {_}: inverse (multiply (inverse (multiply ?181719 (inverse (multiply (inverse ?181720) (multiply (inverse ?181721) ?181721))))) (multiply ?181719 (inverse (multiply (inverse ?181722) ?181722)))) =>= ?181720 [181722, 181721, 181720, 181719] by Super 3865 with 27618 at 2,1,2,1,1,1,2 Id : 4270, {_}: inverse (multiply (inverse (multiply ?30679 ?30680)) (multiply ?30679 ?30680)) =?= inverse (multiply (inverse ?30681) ?30681) [30681, 30680, 30679] by Super 33 with 3719 at 1,3 Id : 4318, {_}: inverse (multiply (inverse (multiply (inverse ?30995) ?30995)) (multiply (inverse ?30996) ?30996)) =?= inverse (multiply (inverse ?30997) ?30997) [30997, 30996, 30995] by Super 4270 with 3719 at 2,1,2 Id : 30878, {_}: multiply (inverse ?197988) ?197988 =?= inverse (multiply (inverse ?197989) ?197989) [197989, 197988] by Super 4318 with 28066 at 2 Id : 32099, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?204409) ?204409))) (multiply (inverse (inverse (multiply (inverse ?204410) (multiply (inverse ?204411) ?204411)))) (inverse (multiply (inverse ?204412) ?204412)))) =>= ?204410 [204412, 204411, 204410, 204409] by Super 28066 with 30878 at 1,1,1,2 Id : 3209, {_}: multiply (inverse (multiply ?23761 (inverse (multiply (inverse (inverse ?23762)) (multiply (inverse ?23763) (inverse (multiply (inverse ?23763) ?23763))))))) (multiply ?23761 ?23763) =>= ?23762 [23763, 23762, 23761] by Demod 2898 with 278 at 2 Id : 11363, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?76010 (inverse ?76011))) (multiply ?76010 ?76012)))) (multiply (inverse ?76012) (inverse (multiply (inverse ?76012) ?76012))) =>= ?76011 [76012, 76011, 76010] by Super 3209 with 7 at 1,1,2 Id : 11703, {_}: multiply (inverse (inverse (multiply (inverse ?77738) ?77738))) (multiply (inverse (inverse ?77739)) (inverse (multiply (inverse (inverse ?77739)) (inverse ?77739)))) =>= ?77739 [77739, 77738] by Super 11363 with 3719 at 1,1,1,2 Id : 11752, {_}: multiply (inverse (inverse (multiply (inverse ?78043) ?78043))) (multiply (inverse (inverse ?78044)) (inverse (multiply (inverse ?78045) ?78045))) =>= ?78044 [78045, 78044, 78043] by Super 11703 with 3719 at 1,2,2,2 Id : 32300, {_}: inverse (multiply (inverse ?204410) (multiply (inverse ?204411) ?204411)) =>= ?204410 [204411, 204410] by Demod 32099 with 11752 at 1,2 Id : 32308, {_}: inverse (multiply (inverse (multiply ?181719 ?181720)) (multiply ?181719 (inverse (multiply (inverse ?181722) ?181722)))) =>= ?181720 [181722, 181720, 181719] by Demod 28066 with 32300 at 2,1,1,1,2 Id : 32309, {_}: inverse (multiply (inverse (multiply ?28316 ?28318)) (multiply ?28316 ?28320)) =>= multiply (inverse ?28320) ?28318 [28320, 28318, 28316] by Demod 3899 with 32308 at 2,1,1,1,2 Id : 32314, {_}: inverse (multiply (inverse (multiply (inverse ?28068) ?28067)) (multiply (inverse ?28068) (inverse (multiply (inverse ?28069) ?28069)))) =>= ?28067 [28069, 28067, 28068] by Demod 3843 with 32309 at 1,1,1,2 Id : 32315, {_}: multiply (inverse (inverse (multiply (inverse ?28069) ?28069))) ?28067 =>= ?28067 [28067, 28069] by Demod 32314 with 32309 at 2 Id : 32356, {_}: multiply (inverse (multiply (inverse ?205417) ?205417)) ?205418 =>= ?205418 [205418, 205417] by Super 32315 with 32300 at 1,1,2 Id : 3853, {_}: inverse (multiply (inverse (multiply ?28108 ?28109)) (multiply ?28108 ?28110)) =?= inverse (multiply (inverse (multiply (inverse ?28111) ?28111)) (multiply (inverse ?28109) ?28110)) [28111, 28110, 28109, 28108] by Super 33 with 3719 at 1,1,1,3 Id : 32313, {_}: multiply (inverse ?28110) ?28109 =<= inverse (multiply (inverse (multiply (inverse ?28111) ?28111)) (multiply (inverse ?28109) ?28110)) [28111, 28109, 28110] by Demod 3853 with 32309 at 2 Id : 32694, {_}: multiply (inverse ?28110) ?28109 =<= inverse (multiply (inverse ?28109) ?28110) [28109, 28110] by Demod 32313 with 32356 at 1,3 Id : 32726, {_}: multiply (multiply (inverse ?205417) ?205417) ?205418 =>= ?205418 [205418, 205417] by Demod 32356 with 32694 at 1,2 Id : 32836, {_}: a2 === a2 [] by Demod 1 with 32726 at 2 Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 % SZS output end CNFRefutation for GRP422-1.p 19585: solved GRP422-1.p in 33.926119 using nrkbo WARNING: TreeLimitedRun lost 85.86s, total lost is 85.86s FINAL WATCH: 119.8 CPU 68.2 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP423-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19633 TreeLimitedRun: ---------------------------------------------------------- 19635: Facts: 19635: Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (multiply (inverse ?4) (inverse (multiply (inverse ?4) ?4))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 19635: Goal: 19635: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 Statistics : Max weight : 86 Found proof, 71.138216s % SZS status Unsatisfiable for GRP423-1.p % SZS output start CNFRefutation for GRP423-1.p Id : 3, {_}: inverse (multiply (inverse (multiply ?6 (inverse (multiply (inverse ?7) (multiply (inverse ?8) (inverse (multiply (inverse ?8) ?8))))))) (multiply ?6 ?8)) =>= ?7 [8, 7, 6] by single_axiom ?6 ?7 ?8 Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (multiply (inverse ?4) (inverse (multiply (inverse ?4) ?4))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 Id : 18, {_}: inverse (multiply (inverse (multiply ?69 ?70)) (multiply ?69 ?71)) =?= multiply (inverse ?71) (inverse (multiply (inverse ?70) (multiply (inverse (inverse (multiply (inverse ?71) ?71))) (inverse (multiply (inverse (inverse (multiply (inverse ?71) ?71))) (inverse (multiply (inverse ?71) ?71))))))) [71, 70, 69] by Super 3 with 2 at 2,1,1,1,2 Id : 7, {_}: inverse (multiply (inverse (multiply ?28 ?29)) (multiply ?28 ?30)) =?= multiply (inverse ?30) (inverse (multiply (inverse ?29) (multiply (inverse (inverse (multiply (inverse ?30) ?30))) (inverse (multiply (inverse (inverse (multiply (inverse ?30) ?30))) (inverse (multiply (inverse ?30) ?30))))))) [30, 29, 28] by Super 3 with 2 at 2,1,1,1,2 Id : 33, {_}: inverse (multiply (inverse (multiply ?152 ?153)) (multiply ?152 ?154)) =?= inverse (multiply (inverse (multiply ?155 ?153)) (multiply ?155 ?154)) [155, 154, 153, 152] by Super 18 with 7 at 3 Id : 57, {_}: inverse (multiply (inverse (multiply ?218 (inverse (multiply (inverse (multiply (inverse (multiply ?219 ?220)) (multiply ?219 ?221))) (multiply (inverse ?222) (inverse (multiply (inverse ?222) ?222))))))) (multiply ?218 ?222)) =?= multiply (inverse (multiply ?223 ?220)) (multiply ?223 ?221) [223, 222, 221, 220, 219, 218] by Super 2 with 33 at 1,1,2,1,1,1,2 Id : 146, {_}: multiply (inverse (multiply ?699 ?700)) (multiply ?699 ?701) =?= multiply (inverse (multiply ?702 ?700)) (multiply ?702 ?701) [702, 701, 700, 699] by Demod 57 with 2 at 2 Id : 153, {_}: multiply (inverse (multiply ?744 (multiply ?745 ?746))) (multiply ?744 ?747) =?= multiply ?748 (multiply (inverse (multiply ?745 (inverse (multiply (inverse ?748) (multiply (inverse ?746) (inverse (multiply (inverse ?746) ?746))))))) ?747) [748, 747, 746, 745, 744] by Super 146 with 2 at 1,3 Id : 53, {_}: inverse (multiply (inverse (multiply ?192 (inverse (multiply (inverse ?193) (multiply (inverse (multiply ?194 ?195)) (inverse (multiply (inverse (multiply ?196 ?195)) (multiply ?196 ?195)))))))) (multiply ?192 (multiply ?194 ?195))) =>= ?193 [196, 195, 194, 193, 192] by Super 2 with 33 at 2,2,1,2,1,1,1,2 Id : 2898, {_}: inverse (multiply (inverse (multiply ?21411 (inverse (multiply (inverse (multiply ?21412 (multiply ?21413 ?21414))) (multiply ?21412 (inverse (multiply (inverse (multiply ?21415 (inverse (multiply (inverse (inverse ?21416)) (multiply (inverse ?21414) (inverse (multiply (inverse ?21414) ?21414))))))) (multiply ?21415 (inverse (multiply (inverse (inverse ?21416)) (multiply (inverse ?21414) (inverse (multiply (inverse ?21414) ?21414))))))))))))) (multiply ?21411 (multiply ?21413 (inverse (multiply (inverse (inverse ?21416)) (multiply (inverse ?21414) (inverse (multiply (inverse ?21414) ?21414)))))))) =>= ?21416 [21416, 21415, 21414, 21413, 21412, 21411] by Super 53 with 153 at 1,2,1,1,1,2 Id : 268, {_}: inverse (multiply (inverse (multiply ?1266 (inverse (multiply (inverse (multiply ?1267 ?1268)) (multiply ?1267 (inverse (multiply (inverse ?1269) ?1269))))))) (multiply ?1266 ?1269)) =>= multiply (inverse ?1269) ?1268 [1269, 1268, 1267, 1266] by Super 2 with 33 at 2,1,1,1,2 Id : 106, {_}: multiply (inverse (multiply ?219 ?220)) (multiply ?219 ?221) =?= multiply (inverse (multiply ?223 ?220)) (multiply ?223 ?221) [223, 221, 220, 219] by Demod 57 with 2 at 2 Id : 278, {_}: inverse (multiply (inverse (multiply ?1336 (inverse (multiply (inverse (multiply ?1337 ?1338)) (multiply ?1337 (inverse (multiply (inverse (multiply ?1339 ?1340)) (multiply ?1339 ?1340)))))))) (multiply ?1336 (multiply ?1341 ?1340))) =>= multiply (inverse (multiply ?1341 ?1340)) ?1338 [1341, 1340, 1339, 1338, 1337, 1336] by Super 268 with 106 at 1,2,2,1,2,1,1,1,2 Id : 3079, {_}: multiply (inverse (multiply ?21413 (inverse (multiply (inverse (inverse ?21416)) (multiply (inverse ?21414) (inverse (multiply (inverse ?21414) ?21414))))))) (multiply ?21413 ?21414) =>= ?21416 [21414, 21416, 21413] by Demod 2898 with 278 at 2 Id : 3614, {_}: multiply (inverse (multiply ?26517 (multiply ?26518 ?26519))) (multiply ?26517 (multiply ?26518 ?26519)) =?= multiply (inverse ?26520) ?26520 [26520, 26519, 26518, 26517] by Super 153 with 3079 at 2,3 Id : 3205, {_}: multiply (inverse (multiply ?23736 (multiply ?23737 ?23738))) (multiply ?23736 (multiply ?23737 ?23738)) =?= multiply (inverse ?23739) ?23739 [23739, 23738, 23737, 23736] by Super 153 with 3079 at 2,3 Id : 3719, {_}: multiply (inverse ?27298) ?27298 =?= multiply (inverse ?27299) ?27299 [27299, 27298] by Super 3614 with 3205 at 2 Id : 3853, {_}: inverse (multiply (inverse (multiply ?28108 ?28109)) (multiply ?28108 ?28110)) =?= inverse (multiply (inverse (multiply (inverse ?28111) ?28111)) (multiply (inverse ?28109) ?28110)) [28111, 28110, 28109, 28108] by Super 33 with 3719 at 1,1,1,3 Id : 59, {_}: inverse (multiply (inverse (multiply ?232 (inverse (multiply (inverse (multiply ?233 ?234)) (multiply ?233 (inverse (multiply (inverse ?235) ?235))))))) (multiply ?232 ?235)) =>= multiply (inverse ?235) ?234 [235, 234, 233, 232] by Super 2 with 33 at 2,1,1,1,2 Id : 3899, {_}: inverse (multiply (inverse (multiply ?28316 (inverse (multiply (inverse (multiply ?28317 ?28318)) (multiply ?28317 (inverse (multiply (inverse ?28319) ?28319))))))) (multiply ?28316 ?28320)) =>= multiply (inverse ?28320) ?28318 [28320, 28319, 28318, 28317, 28316] by Super 59 with 3719 at 1,2,2,1,2,1,1,1,2 Id : 3865, {_}: inverse (multiply (inverse (multiply ?28162 (inverse (multiply (inverse ?28163) (multiply (inverse ?28164) (inverse (multiply (inverse ?28165) ?28165))))))) (multiply ?28162 ?28164)) =>= ?28163 [28165, 28164, 28163, 28162] by Super 2 with 3719 at 1,2,2,1,2,1,1,1,2 Id : 188, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?943 ?944)) (multiply ?943 ?945)))) (multiply (inverse ?945) (inverse (multiply (inverse ?945) ?945)))) =>= ?944 [945, 944, 943] by Super 2 with 7 at 1,1,1,2 Id : 207, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply (inverse (multiply ?1057 ?1058)) (multiply ?1057 ?1059))) (multiply (inverse (multiply ?1060 ?1058)) ?1061)))) (multiply (inverse ?1061) (inverse (multiply (inverse ?1061) ?1061)))) =>= multiply ?1060 ?1059 [1061, 1060, 1059, 1058, 1057] by Super 188 with 106 at 1,1,1,1,1,1,2 Id : 16, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?62 ?63)) (multiply ?62 ?64)))) (multiply (inverse ?64) (inverse (multiply (inverse ?64) ?64)))) =>= ?63 [64, 63, 62] by Super 2 with 7 at 1,1,1,2 Id : 5158, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?36054) ?36054))) (multiply (inverse ?36055) (inverse (multiply (inverse ?36055) ?36055)))) =>= ?36055 [36055, 36054] by Super 16 with 3719 at 1,1,1,1,2 Id : 5184, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?36219) ?36219))) (multiply (inverse ?36220) (inverse (multiply (inverse ?36221) ?36221)))) =>= ?36220 [36221, 36220, 36219] by Super 5158 with 3719 at 1,2,2,1,2 Id : 5369, {_}: inverse (multiply (inverse (multiply ?36925 (inverse (multiply (inverse ?36926) ?36926)))) (multiply ?36925 ?36927)) =?= multiply (inverse ?36927) (inverse (multiply (inverse ?36927) ?36927)) [36927, 36926, 36925] by Super 7 with 5184 at 2,3 Id : 26400, {_}: multiply (inverse ?172741) (inverse (multiply (inverse ?172741) ?172741)) =?= multiply (inverse ?172741) (inverse (multiply (inverse ?172742) ?172742)) [172742, 172741] by Super 3865 with 5369 at 2 Id : 26943, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply (inverse (multiply (inverse ?175821) ?175822)) (multiply (inverse ?175821) (inverse (multiply (inverse ?175823) ?175823))))) (multiply (inverse (multiply ?175824 ?175822)) ?175825)))) (multiply (inverse ?175825) (inverse (multiply (inverse ?175825) ?175825)))) =>= multiply ?175824 (inverse (multiply (inverse ?175821) ?175821)) [175825, 175824, 175823, 175822, 175821] by Super 207 with 26400 at 2,1,1,1,1,1,1,2 Id : 27303, {_}: multiply ?175824 (inverse (multiply (inverse ?175823) ?175823)) =?= multiply ?175824 (inverse (multiply (inverse ?175821) ?175821)) [175821, 175823, 175824] by Demod 26943 with 207 at 2 Id : 27618, {_}: multiply (inverse ?179338) ?179338 =?= multiply (inverse (inverse (multiply (inverse ?179339) ?179339))) (inverse (multiply (inverse ?179340) ?179340)) [179340, 179339, 179338] by Super 3719 with 27303 at 3 Id : 28066, {_}: inverse (multiply (inverse (multiply ?181719 (inverse (multiply (inverse ?181720) (multiply (inverse ?181721) ?181721))))) (multiply ?181719 (inverse (multiply (inverse ?181722) ?181722)))) =>= ?181720 [181722, 181721, 181720, 181719] by Super 3865 with 27618 at 2,1,2,1,1,1,2 Id : 4270, {_}: inverse (multiply (inverse (multiply ?30679 ?30680)) (multiply ?30679 ?30680)) =?= inverse (multiply (inverse ?30681) ?30681) [30681, 30680, 30679] by Super 33 with 3719 at 1,3 Id : 4318, {_}: inverse (multiply (inverse (multiply (inverse ?30995) ?30995)) (multiply (inverse ?30996) ?30996)) =?= inverse (multiply (inverse ?30997) ?30997) [30997, 30996, 30995] by Super 4270 with 3719 at 2,1,2 Id : 30878, {_}: multiply (inverse ?197988) ?197988 =?= inverse (multiply (inverse ?197989) ?197989) [197989, 197988] by Super 4318 with 28066 at 2 Id : 32099, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?204409) ?204409))) (multiply (inverse (inverse (multiply (inverse ?204410) (multiply (inverse ?204411) ?204411)))) (inverse (multiply (inverse ?204412) ?204412)))) =>= ?204410 [204412, 204411, 204410, 204409] by Super 28066 with 30878 at 1,1,1,2 Id : 3209, {_}: multiply (inverse (multiply ?23761 (inverse (multiply (inverse (inverse ?23762)) (multiply (inverse ?23763) (inverse (multiply (inverse ?23763) ?23763))))))) (multiply ?23761 ?23763) =>= ?23762 [23763, 23762, 23761] by Demod 2898 with 278 at 2 Id : 11363, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?76010 (inverse ?76011))) (multiply ?76010 ?76012)))) (multiply (inverse ?76012) (inverse (multiply (inverse ?76012) ?76012))) =>= ?76011 [76012, 76011, 76010] by Super 3209 with 7 at 1,1,2 Id : 11703, {_}: multiply (inverse (inverse (multiply (inverse ?77738) ?77738))) (multiply (inverse (inverse ?77739)) (inverse (multiply (inverse (inverse ?77739)) (inverse ?77739)))) =>= ?77739 [77739, 77738] by Super 11363 with 3719 at 1,1,1,2 Id : 11752, {_}: multiply (inverse (inverse (multiply (inverse ?78043) ?78043))) (multiply (inverse (inverse ?78044)) (inverse (multiply (inverse ?78045) ?78045))) =>= ?78044 [78045, 78044, 78043] by Super 11703 with 3719 at 1,2,2,2 Id : 32300, {_}: inverse (multiply (inverse ?204410) (multiply (inverse ?204411) ?204411)) =>= ?204410 [204411, 204410] by Demod 32099 with 11752 at 1,2 Id : 32308, {_}: inverse (multiply (inverse (multiply ?181719 ?181720)) (multiply ?181719 (inverse (multiply (inverse ?181722) ?181722)))) =>= ?181720 [181722, 181720, 181719] by Demod 28066 with 32300 at 2,1,1,1,2 Id : 32309, {_}: inverse (multiply (inverse (multiply ?28316 ?28318)) (multiply ?28316 ?28320)) =>= multiply (inverse ?28320) ?28318 [28320, 28318, 28316] by Demod 3899 with 32308 at 2,1,1,1,2 Id : 32313, {_}: multiply (inverse ?28110) ?28109 =<= inverse (multiply (inverse (multiply (inverse ?28111) ?28111)) (multiply (inverse ?28109) ?28110)) [28111, 28109, 28110] by Demod 3853 with 32309 at 2 Id : 3843, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?28066 ?28067)) (multiply ?28066 ?28068)))) (multiply (inverse ?28068) (inverse (multiply (inverse ?28069) ?28069)))) =>= ?28067 [28069, 28068, 28067, 28066] by Super 16 with 3719 at 1,2,2,1,2 Id : 32314, {_}: inverse (multiply (inverse (multiply (inverse ?28068) ?28067)) (multiply (inverse ?28068) (inverse (multiply (inverse ?28069) ?28069)))) =>= ?28067 [28069, 28067, 28068] by Demod 3843 with 32309 at 1,1,1,2 Id : 32315, {_}: multiply (inverse (inverse (multiply (inverse ?28069) ?28069))) ?28067 =>= ?28067 [28067, 28069] by Demod 32314 with 32309 at 2 Id : 32356, {_}: multiply (inverse (multiply (inverse ?205417) ?205417)) ?205418 =>= ?205418 [205418, 205417] by Super 32315 with 32300 at 1,1,2 Id : 32694, {_}: multiply (inverse ?28110) ?28109 =<= inverse (multiply (inverse ?28109) ?28110) [28109, 28110] by Demod 32313 with 32356 at 1,3 Id : 32703, {_}: multiply (inverse (multiply ?744 (multiply ?745 ?746))) (multiply ?744 ?747) =?= multiply ?748 (multiply (inverse (multiply ?745 (inverse (multiply (inverse ?748) (multiply (inverse ?746) (multiply (inverse ?746) ?746)))))) ?747) [748, 747, 746, 745, 744] by Demod 153 with 32694 at 2,2,1,2,1,1,2,3 Id : 32704, {_}: multiply (inverse (multiply ?744 (multiply ?745 ?746))) (multiply ?744 ?747) =?= multiply ?748 (multiply (inverse (multiply ?745 (multiply (inverse (multiply (inverse ?746) (multiply (inverse ?746) ?746))) ?748))) ?747) [748, 747, 746, 745, 744] by Demod 32703 with 32694 at 2,1,1,2,3 Id : 32705, {_}: multiply (inverse (multiply ?744 (multiply ?745 ?746))) (multiply ?744 ?747) =?= multiply ?748 (multiply (inverse (multiply ?745 (multiply (multiply (inverse (multiply (inverse ?746) ?746)) ?746) ?748))) ?747) [748, 747, 746, 745, 744] by Demod 32704 with 32694 at 1,2,1,1,2,3 Id : 32706, {_}: multiply (inverse (multiply ?744 (multiply ?745 ?746))) (multiply ?744 ?747) =?= multiply ?748 (multiply (inverse (multiply ?745 (multiply (multiply (multiply (inverse ?746) ?746) ?746) ?748))) ?747) [748, 747, 746, 745, 744] by Demod 32705 with 32694 at 1,1,2,1,1,2,3 Id : 32714, {_}: multiply (inverse (multiply ?28316 ?28320)) (multiply ?28316 ?28318) =>= multiply (inverse ?28320) ?28318 [28318, 28320, 28316] by Demod 32309 with 32694 at 2 Id : 32747, {_}: multiply (inverse (multiply ?745 ?746)) ?747 =<= multiply ?748 (multiply (inverse (multiply ?745 (multiply (multiply (multiply (inverse ?746) ?746) ?746) ?748))) ?747) [748, 747, 746, 745] by Demod 32706 with 32714 at 2 Id : 32726, {_}: multiply (multiply (inverse ?205417) ?205417) ?205418 =>= ?205418 [205418, 205417] by Demod 32356 with 32694 at 1,2 Id : 32748, {_}: multiply (inverse (multiply ?745 ?746)) ?747 =<= multiply ?748 (multiply (inverse (multiply ?745 (multiply ?746 ?748))) ?747) [748, 747, 746, 745] by Demod 32747 with 32726 at 1,2,1,1,2,3 Id : 3295, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?24406 (inverse ?24407))) (multiply ?24406 ?24408)))) (multiply (inverse ?24408) (inverse (multiply (inverse ?24408) ?24408))) =>= ?24407 [24408, 24407, 24406] by Super 3209 with 7 at 1,1,2 Id : 27444, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?178168 (inverse ?178169))) (multiply ?178168 ?178170)))) (multiply (inverse ?178170) (inverse (multiply (inverse ?178171) ?178171))) =>= ?178169 [178171, 178170, 178169, 178168] by Super 3295 with 27303 at 2,2 Id : 32311, {_}: multiply (inverse (multiply (inverse ?178170) (inverse ?178169))) (multiply (inverse ?178170) (inverse (multiply (inverse ?178171) ?178171))) =>= ?178169 [178171, 178169, 178170] by Demod 27444 with 32309 at 1,1,2 Id : 32722, {_}: multiply (multiply (inverse (inverse ?178169)) ?178170) (multiply (inverse ?178170) (inverse (multiply (inverse ?178171) ?178171))) =>= ?178169 [178171, 178170, 178169] by Demod 32311 with 32694 at 1,2 Id : 32723, {_}: multiply (multiply (inverse (inverse ?178169)) ?178170) (multiply (inverse ?178170) (multiply (inverse ?178171) ?178171)) =>= ?178169 [178171, 178170, 178169] by Demod 32722 with 32694 at 2,2,2 Id : 32319, {_}: inverse (multiply (inverse (inverse (multiply (multiply (inverse ?1059) ?1058) (multiply (inverse (multiply ?1060 ?1058)) ?1061)))) (multiply (inverse ?1061) (inverse (multiply (inverse ?1061) ?1061)))) =>= multiply ?1060 ?1059 [1061, 1060, 1058, 1059] by Demod 207 with 32309 at 1,1,1,1,1,2 Id : 85, {_}: inverse (multiply (inverse (multiply ?386 ?387)) (multiply ?386 ?388)) =?= inverse (multiply (inverse (multiply ?389 ?387)) (multiply ?389 ?388)) [389, 388, 387, 386] by Super 18 with 7 at 3 Id : 90, {_}: inverse (multiply (inverse (multiply ?415 (multiply ?416 ?417))) (multiply ?415 ?418)) =?= inverse (multiply (inverse (multiply (inverse (multiply ?419 ?420)) (multiply ?419 ?417))) (multiply (inverse (multiply ?416 ?420)) ?418)) [420, 419, 418, 417, 416, 415] by Super 85 with 33 at 1,1,3 Id : 32324, {_}: multiply (inverse ?418) (multiply ?416 ?417) =<= inverse (multiply (inverse (multiply (inverse (multiply ?419 ?420)) (multiply ?419 ?417))) (multiply (inverse (multiply ?416 ?420)) ?418)) [420, 419, 417, 416, 418] by Demod 90 with 32309 at 2 Id : 32325, {_}: multiply (inverse ?418) (multiply ?416 ?417) =<= inverse (multiply (multiply (inverse ?417) ?420) (multiply (inverse (multiply ?416 ?420)) ?418)) [420, 417, 416, 418] by Demod 32324 with 32309 at 1,1,3 Id : 32331, {_}: inverse (multiply (inverse (multiply (inverse ?1061) (multiply ?1060 ?1059))) (multiply (inverse ?1061) (inverse (multiply (inverse ?1061) ?1061)))) =>= multiply ?1060 ?1059 [1059, 1060, 1061] by Demod 32319 with 32325 at 1,1,1,2 Id : 32332, {_}: multiply (inverse (inverse (multiply (inverse ?1061) ?1061))) (multiply ?1060 ?1059) =>= multiply ?1060 ?1059 [1059, 1060, 1061] by Demod 32331 with 32309 at 2 Id : 32335, {_}: multiply (inverse (inverse ?78044)) (inverse (multiply (inverse ?78045) ?78045)) =>= ?78044 [78045, 78044] by Demod 11752 with 32332 at 2 Id : 32719, {_}: multiply (inverse (inverse ?78044)) (multiply (inverse ?78045) ?78045) =>= ?78044 [78045, 78044] by Demod 32335 with 32694 at 2,2 Id : 32776, {_}: multiply (inverse (multiply (multiply (inverse ?206657) ?206657) ?206658)) ?206659 =?= multiply ?206660 (multiply (inverse (multiply ?206658 ?206660)) ?206659) [206660, 206659, 206658, 206657] by Super 32748 with 32726 at 1,1,2,3 Id : 32797, {_}: multiply (inverse ?206658) ?206659 =<= multiply ?206660 (multiply (inverse (multiply ?206658 ?206660)) ?206659) [206660, 206659, 206658] by Demod 32776 with 32726 at 1,1,2 Id : 32841, {_}: multiply (inverse ?206767) (multiply ?206767 (inverse (inverse ?206768))) =>= ?206768 [206768, 206767] by Super 32719 with 32797 at 2 Id : 32328, {_}: multiply (inverse ?28164) (inverse (multiply (inverse ?28163) (multiply (inverse ?28164) (inverse (multiply (inverse ?28165) ?28165))))) =>= ?28163 [28165, 28163, 28164] by Demod 3865 with 32309 at 2 Id : 32715, {_}: multiply (inverse ?28164) (inverse (multiply (inverse ?28163) (multiply (inverse ?28164) (multiply (inverse ?28165) ?28165)))) =>= ?28163 [28165, 28163, 28164] by Demod 32328 with 32694 at 2,2,1,2,2 Id : 32716, {_}: multiply (inverse ?28164) (multiply (inverse (multiply (inverse ?28164) (multiply (inverse ?28165) ?28165))) ?28163) =>= ?28163 [28163, 28165, 28164] by Demod 32715 with 32694 at 2,2 Id : 32717, {_}: multiply (inverse ?28164) (multiply (multiply (inverse (multiply (inverse ?28165) ?28165)) ?28164) ?28163) =>= ?28163 [28163, 28165, 28164] by Demod 32716 with 32694 at 1,2,2 Id : 32718, {_}: multiply (inverse ?28164) (multiply (multiply (multiply (inverse ?28165) ?28165) ?28164) ?28163) =>= ?28163 [28163, 28165, 28164] by Demod 32717 with 32694 at 1,1,2,2 Id : 32730, {_}: multiply (inverse ?28164) (multiply ?28164 ?28163) =>= ?28163 [28163, 28164] by Demod 32718 with 32726 at 1,2,2 Id : 32916, {_}: inverse (inverse ?206768) =>= ?206768 [206768] by Demod 32841 with 32730 at 2 Id : 32954, {_}: multiply (multiply ?178169 ?178170) (multiply (inverse ?178170) (multiply (inverse ?178171) ?178171)) =>= ?178169 [178171, 178170, 178169] by Demod 32723 with 32916 at 1,1,2 Id : 32953, {_}: multiply ?78044 (multiply (inverse ?78045) ?78045) =>= ?78044 [78045, 78044] by Demod 32719 with 32916 at 1,2 Id : 32955, {_}: multiply (multiply ?178169 ?178170) (inverse ?178170) =>= ?178169 [178170, 178169] by Demod 32954 with 32953 at 2,2 Id : 32965, {_}: multiply (inverse ?207051) (inverse ?207052) =>= inverse (multiply ?207052 ?207051) [207052, 207051] by Super 32694 with 32916 at 1,1,3 Id : 32999, {_}: multiply (inverse (multiply ?207162 ?207163)) (inverse (inverse ?207162)) =>= inverse ?207163 [207163, 207162] by Super 32955 with 32965 at 1,2 Id : 33009, {_}: multiply (inverse (multiply ?207162 ?207163)) ?207162 =>= inverse ?207163 [207163, 207162] by Demod 32999 with 32916 at 2,2 Id : 33341, {_}: multiply (inverse (multiply (inverse (multiply (multiply ?207791 ?207792) ?207793)) ?207791)) ?207794 =>= multiply ?207792 (multiply (inverse (inverse ?207793)) ?207794) [207794, 207793, 207792, 207791] by Super 32748 with 33009 at 1,1,2,3 Id : 33379, {_}: multiply (multiply (inverse ?207791) (multiply (multiply ?207791 ?207792) ?207793)) ?207794 =>= multiply ?207792 (multiply (inverse (inverse ?207793)) ?207794) [207794, 207793, 207792, 207791] by Demod 33341 with 32694 at 1,2 Id : 33380, {_}: multiply (multiply (inverse ?207791) (multiply (multiply ?207791 ?207792) ?207793)) ?207794 =>= multiply ?207792 (multiply ?207793 ?207794) [207794, 207793, 207792, 207791] by Demod 33379 with 32916 at 1,2,3 Id : 32997, {_}: multiply (inverse (inverse ?207154)) ?207155 =<= multiply (inverse ?207156) (multiply (inverse (inverse (multiply ?207156 ?207154))) ?207155) [207156, 207155, 207154] by Super 32797 with 32965 at 1,1,2,3 Id : 33010, {_}: multiply ?207154 ?207155 =<= multiply (inverse ?207156) (multiply (inverse (inverse (multiply ?207156 ?207154))) ?207155) [207156, 207155, 207154] by Demod 32997 with 32916 at 1,2 Id : 33011, {_}: multiply ?207154 ?207155 =<= multiply (inverse ?207156) (multiply (multiply ?207156 ?207154) ?207155) [207156, 207155, 207154] by Demod 33010 with 32916 at 1,2,3 Id : 43289, {_}: multiply (multiply ?207792 ?207793) ?207794 =?= multiply ?207792 (multiply ?207793 ?207794) [207794, 207793, 207792] by Demod 33380 with 33011 at 1,2 Id : 43758, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 1 with 43289 at 2 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 % SZS output end CNFRefutation for GRP423-1.p 19638: solved GRP423-1.p in 35.578223 using nrkbo WARNING: TreeLimitedRun lost 104.32s, total lost is 104.32s FINAL WATCH: 139.9 CPU 71.2 WC Killed 1 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP429-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19689 TreeLimitedRun: ---------------------------------------------------------- 19691: Facts: 19691: Id : 2, {_}: multiply ?2 (inverse (multiply (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5) (inverse (multiply ?3 ?5)))) =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 19691: Goal: 19691: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 Statistics : Max weight : 50 Found proof, 9.971150s % SZS status Unsatisfiable for GRP429-1.p % SZS output start CNFRefutation for GRP429-1.p Id : 2, {_}: multiply ?2 (inverse (multiply (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5) (inverse (multiply ?3 ?5)))) =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 Id : 3, {_}: multiply ?7 (inverse (multiply (multiply (inverse (multiply (inverse ?8) (multiply (inverse ?7) ?9))) ?10) (inverse (multiply ?8 ?10)))) =>= ?9 [10, 9, 8, 7] by single_axiom ?7 ?8 ?9 ?10 Id : 6, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (inverse (multiply (inverse ?29) (multiply (inverse (inverse (multiply (inverse ?28) (multiply (inverse ?26) ?30)))) ?27))) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 30, 29, 28, 27, 26] by Super 3 with 2 at 1,1,2,2 Id : 5, {_}: multiply ?19 (inverse (multiply (multiply (inverse (multiply (inverse ?20) ?21)) ?22) (inverse (multiply ?20 ?22)))) =?= inverse (multiply (multiply (inverse (multiply (inverse ?23) (multiply (inverse (inverse ?19)) ?21))) ?24) (inverse (multiply ?23 ?24))) [24, 23, 22, 21, 20, 19] by Super 3 with 2 at 2,1,1,1,1,2,2 Id : 63, {_}: multiply (inverse ?569) (multiply ?569 (inverse (multiply (multiply (inverse (multiply (inverse ?570) ?571)) ?572) (inverse (multiply ?570 ?572))))) =>= ?571 [572, 571, 570, 569] by Super 2 with 5 at 2,2 Id : 64, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?574) (multiply (inverse (inverse ?575)) (multiply (inverse ?575) ?576)))) ?577) (inverse (multiply ?574 ?577))) =>= ?576 [577, 576, 575, 574] by Super 2 with 5 at 2 Id : 282, {_}: multiply (inverse ?2263) (multiply ?2263 ?2264) =?= multiply (inverse (inverse ?2265)) (multiply (inverse ?2265) ?2264) [2265, 2264, 2263] by Super 63 with 64 at 2,2,2 Id : 186, {_}: multiply (inverse ?1640) (multiply ?1640 ?1641) =?= multiply (inverse (inverse ?1642)) (multiply (inverse ?1642) ?1641) [1642, 1641, 1640] by Super 63 with 64 at 2,2,2 Id : 296, {_}: multiply (inverse ?2354) (multiply ?2354 ?2355) =?= multiply (inverse ?2356) (multiply ?2356 ?2355) [2356, 2355, 2354] by Super 282 with 186 at 3 Id : 388, {_}: multiply (inverse ?2841) (multiply ?2841 (inverse (multiply (multiply (inverse (multiply (inverse ?2842) (multiply ?2842 ?2843))) ?2844) (inverse (multiply ?2845 ?2844))))) =>= multiply ?2845 ?2843 [2845, 2844, 2843, 2842, 2841] by Super 63 with 296 at 1,1,1,1,2,2,2 Id : 534, {_}: multiply ?3731 (inverse (multiply (multiply (inverse (multiply (inverse ?3732) (multiply ?3732 ?3733))) ?3734) (inverse (multiply (inverse ?3731) ?3734)))) =>= ?3733 [3734, 3733, 3732, 3731] by Super 2 with 296 at 1,1,1,1,2,2 Id : 2439, {_}: multiply ?16014 (inverse (multiply (multiply (inverse (multiply (inverse ?16015) (multiply ?16015 ?16016))) (multiply ?16014 ?16017)) (inverse (multiply (inverse ?16018) (multiply ?16018 ?16017))))) =>= ?16016 [16018, 16017, 16016, 16015, 16014] by Super 534 with 296 at 1,2,1,2,2 Id : 2524, {_}: multiply (multiply (inverse ?16722) (multiply ?16722 ?16723)) (inverse (multiply ?16724 (inverse (multiply (inverse ?16725) (multiply ?16725 (inverse (multiply (multiply (inverse (multiply (inverse ?16726) ?16724)) ?16727) (inverse (multiply ?16726 ?16727))))))))) =>= ?16723 [16727, 16726, 16725, 16724, 16723, 16722] by Super 2439 with 63 at 1,1,2,2 Id : 2563, {_}: multiply (multiply (inverse ?16722) (multiply ?16722 ?16723)) (inverse (multiply ?16724 (inverse ?16724))) =>= ?16723 [16724, 16723, 16722] by Demod 2524 with 63 at 1,2,1,2,2 Id : 2592, {_}: multiply (inverse (multiply (inverse ?16966) (multiply ?16966 ?16967))) ?16967 =?= multiply (inverse (multiply (inverse ?16968) (multiply ?16968 ?16969))) ?16969 [16969, 16968, 16967, 16966] by Super 388 with 2563 at 2,2 Id : 2821, {_}: multiply (inverse (inverse (multiply (inverse ?18345) (multiply ?18345 (inverse (multiply (multiply (inverse (multiply (inverse ?18346) ?18347)) ?18348) (inverse (multiply ?18346 ?18348)))))))) (multiply (inverse (multiply (inverse ?18349) (multiply ?18349 ?18350))) ?18350) =>= ?18347 [18350, 18349, 18348, 18347, 18346, 18345] by Super 63 with 2592 at 2,2 Id : 3012, {_}: multiply (inverse (inverse ?18347)) (multiply (inverse (multiply (inverse ?18349) (multiply ?18349 ?18350))) ?18350) =>= ?18347 [18350, 18349, 18347] by Demod 2821 with 63 at 1,1,1,2 Id : 135, {_}: multiply (inverse ?1251) (multiply ?1251 (inverse (multiply (multiply (inverse (multiply (inverse ?1252) ?1253)) ?1254) (inverse (multiply ?1252 ?1254))))) =>= ?1253 [1254, 1253, 1252, 1251] by Super 2 with 5 at 2,2 Id : 154, {_}: multiply (inverse ?1406) (multiply ?1406 (multiply ?1407 (inverse (multiply (multiply (inverse (multiply (inverse ?1408) ?1409)) ?1410) (inverse (multiply ?1408 ?1410)))))) =>= multiply (inverse (inverse ?1407)) ?1409 [1410, 1409, 1408, 1407, 1406] by Super 135 with 5 at 2,2,2 Id : 3082, {_}: multiply (inverse (inverse (inverse ?20094))) ?20094 =?= multiply (inverse (inverse (inverse (multiply (inverse ?20095) (multiply ?20095 (inverse (multiply (multiply (inverse (multiply (inverse ?20096) ?20097)) ?20098) (inverse (multiply ?20096 ?20098))))))))) ?20097 [20098, 20097, 20096, 20095, 20094] by Super 154 with 3012 at 2,2 Id : 3171, {_}: multiply (inverse (inverse (inverse ?20094))) ?20094 =?= multiply (inverse (inverse (inverse ?20097))) ?20097 [20097, 20094] by Demod 3082 with 63 at 1,1,1,1,3 Id : 3346, {_}: multiply (inverse (inverse ?21386)) (multiply (inverse (multiply (inverse (inverse (inverse (inverse ?21387)))) (multiply (inverse (inverse (inverse ?21388))) ?21388))) ?21387) =>= ?21386 [21388, 21387, 21386] by Super 3012 with 3171 at 2,1,1,2,2 Id : 372, {_}: multiply ?2725 (inverse (multiply (multiply (inverse ?2726) (multiply ?2726 ?2727)) (inverse (multiply ?2728 (multiply (multiply (inverse ?2728) (multiply (inverse ?2725) ?2729)) ?2727))))) =>= ?2729 [2729, 2728, 2727, 2726, 2725] by Super 2 with 296 at 1,1,2,2 Id : 188, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1652) (multiply (inverse (inverse ?1653)) (multiply (inverse ?1653) ?1654)))) ?1655) (inverse (multiply ?1652 ?1655))) =>= ?1654 [1655, 1654, 1653, 1652] by Super 2 with 5 at 2 Id : 196, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1714) (multiply (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?1715) (multiply (inverse (inverse ?1716)) (multiply (inverse ?1716) ?1717)))) ?1718) (inverse (multiply ?1715 ?1718))))) (multiply ?1717 ?1719)))) ?1720) (inverse (multiply ?1714 ?1720))) =>= ?1719 [1720, 1719, 1718, 1717, 1716, 1715, 1714] by Super 188 with 64 at 1,2,2,1,1,1,1,2 Id : 221, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1714) (multiply (inverse ?1717) (multiply ?1717 ?1719)))) ?1720) (inverse (multiply ?1714 ?1720))) =>= ?1719 [1720, 1719, 1717, 1714] by Demod 196 with 64 at 1,1,2,1,1,1,1,2 Id : 620, {_}: multiply (inverse ?4319) (multiply ?4319 (multiply ?4320 (inverse (multiply (multiply (inverse (multiply (inverse ?4321) ?4322)) ?4323) (inverse (multiply ?4321 ?4323)))))) =>= multiply (inverse (inverse ?4320)) ?4322 [4323, 4322, 4321, 4320, 4319] by Super 135 with 5 at 2,2,2 Id : 653, {_}: multiply (inverse ?4603) (multiply ?4603 (multiply ?4604 ?4605)) =?= multiply (inverse (inverse ?4604)) (multiply (inverse ?4606) (multiply ?4606 ?4605)) [4606, 4605, 4604, 4603] by Super 620 with 221 at 2,2,2,2 Id : 742, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?5193) (multiply ?5193 (multiply ?5194 ?5195)))) ?5196) (inverse (multiply (inverse ?5194) ?5196))) =>= ?5195 [5196, 5195, 5194, 5193] by Super 221 with 653 at 1,1,1,1,2 Id : 2795, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?18165) (multiply ?18165 ?18166))) ?18166) (inverse (multiply (inverse ?18167) (multiply ?18167 ?18168)))) =>= ?18168 [18168, 18167, 18166, 18165] by Super 742 with 2592 at 1,1,2 Id : 3210, {_}: multiply (multiply (inverse (inverse (inverse (inverse ?20600)))) (multiply (inverse (inverse (inverse ?20601))) ?20601)) (inverse (multiply ?20602 (inverse ?20602))) =>= ?20600 [20602, 20601, 20600] by Super 2563 with 3171 at 2,1,2 Id : 3081, {_}: multiply (inverse ?20087) (multiply ?20087 (multiply ?20088 (inverse (multiply (multiply (inverse ?20089) ?20090) (inverse (multiply (inverse ?20089) ?20090)))))) =?= multiply (inverse (inverse ?20088)) (multiply (inverse (multiply (inverse ?20091) (multiply ?20091 ?20092))) ?20092) [20092, 20091, 20090, 20089, 20088, 20087] by Super 154 with 3012 at 1,1,1,1,2,2,2,2 Id : 4777, {_}: multiply (inverse ?29667) (multiply ?29667 (multiply ?29668 (inverse (multiply (multiply (inverse ?29669) ?29670) (inverse (multiply (inverse ?29669) ?29670)))))) =>= ?29668 [29670, 29669, 29668, 29667] by Demod 3081 with 3012 at 3 Id : 4785, {_}: multiply (inverse ?29731) (multiply ?29731 (multiply ?29732 (inverse (multiply (multiply (inverse ?29733) (inverse (multiply (multiply (inverse (multiply (inverse ?29734) (multiply (inverse (inverse ?29733)) ?29735))) ?29736) (inverse (multiply ?29734 ?29736))))) (inverse ?29735))))) =>= ?29732 [29736, 29735, 29734, 29733, 29732, 29731] by Super 4777 with 2 at 1,2,1,2,2,2,2 Id : 4909, {_}: multiply (inverse ?29731) (multiply ?29731 (multiply ?29732 (inverse (multiply ?29735 (inverse ?29735))))) =>= ?29732 [29735, 29732, 29731] by Demod 4785 with 2 at 1,1,2,2,2,2 Id : 4962, {_}: multiply ?30464 (inverse (multiply ?30465 (inverse ?30465))) =?= multiply ?30464 (inverse (multiply ?30466 (inverse ?30466))) [30466, 30465, 30464] by Super 3210 with 4909 at 1,2 Id : 5592, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?33658) (multiply ?33658 ?33659))) ?33659) (inverse (multiply (inverse ?33660) (multiply ?33660 (inverse (multiply ?33661 (inverse ?33661))))))) =?= inverse (multiply ?33662 (inverse ?33662)) [33662, 33661, 33660, 33659, 33658] by Super 2795 with 4962 at 2,1,2,1,2 Id : 5653, {_}: inverse (multiply ?33661 (inverse ?33661)) =?= inverse (multiply ?33662 (inverse ?33662)) [33662, 33661] by Demod 5592 with 2795 at 2 Id : 5929, {_}: multiply (inverse (inverse (multiply ?35194 (inverse ?35194)))) (multiply (inverse (multiply (inverse (inverse (inverse (inverse ?35195)))) (multiply (inverse (inverse (inverse ?35196))) ?35196))) ?35195) =?= multiply ?35197 (inverse ?35197) [35197, 35196, 35195, 35194] by Super 3346 with 5653 at 1,1,2 Id : 5986, {_}: multiply ?35194 (inverse ?35194) =?= multiply ?35197 (inverse ?35197) [35197, 35194] by Demod 5929 with 3346 at 2 Id : 6042, {_}: multiply (multiply (inverse ?35573) (multiply ?35574 (inverse ?35574))) (inverse (multiply ?35575 (inverse ?35575))) =>= inverse ?35573 [35575, 35574, 35573] by Super 2563 with 5986 at 2,1,2 Id : 6543, {_}: multiply ?38358 (inverse (multiply (multiply (inverse ?38359) (multiply ?38359 (inverse (multiply ?38360 (inverse ?38360))))) (inverse (multiply ?38361 (inverse ?38361))))) =>= inverse (inverse ?38358) [38361, 38360, 38359, 38358] by Super 372 with 6042 at 2,1,2,1,2,2 Id : 6618, {_}: multiply ?38358 (inverse (inverse (multiply ?38360 (inverse ?38360)))) =>= inverse (inverse ?38358) [38360, 38358] by Demod 6543 with 2563 at 1,2,2 Id : 6657, {_}: multiply (inverse (inverse ?38833)) (multiply (inverse (multiply (inverse ?38834) (inverse (inverse ?38834)))) (inverse (inverse (multiply ?38835 (inverse ?38835))))) =>= ?38833 [38835, 38834, 38833] by Super 3012 with 6618 at 2,1,1,2,2 Id : 7408, {_}: multiply (inverse (inverse ?41918)) (inverse (inverse (inverse (multiply (inverse ?41919) (inverse (inverse ?41919)))))) =>= ?41918 [41919, 41918] by Demod 6657 with 6618 at 2,2 Id : 6739, {_}: multiply ?39280 (inverse ?39280) =?= inverse (inverse (inverse (multiply ?39281 (inverse ?39281)))) [39281, 39280] by Super 5986 with 6618 at 3 Id : 7438, {_}: multiply (inverse (inverse ?42063)) (multiply ?42064 (inverse ?42064)) =>= ?42063 [42064, 42063] by Super 7408 with 6739 at 2,2 Id : 7572, {_}: multiply ?42586 (inverse (multiply ?42587 (inverse ?42587))) =>= inverse (inverse ?42586) [42587, 42586] by Super 2563 with 7438 at 1,2 Id : 7757, {_}: multiply (inverse (inverse ?43376)) (inverse (inverse (inverse (multiply (inverse (inverse (inverse (inverse (inverse (multiply ?43377 (inverse ?43377))))))) (multiply (inverse (inverse (inverse ?43378))) ?43378))))) =>= ?43376 [43378, 43377, 43376] by Super 3346 with 7572 at 2,2 Id : 7643, {_}: inverse (inverse (multiply (inverse (inverse (inverse (inverse ?20600)))) (multiply (inverse (inverse (inverse ?20601))) ?20601))) =>= ?20600 [20601, 20600] by Demod 3210 with 7572 at 2 Id : 7812, {_}: multiply (inverse (inverse ?43376)) (inverse (inverse (multiply ?43377 (inverse ?43377)))) =>= ?43376 [43377, 43376] by Demod 7757 with 7643 at 1,2,2 Id : 7813, {_}: inverse (inverse (inverse (inverse ?43376))) =>= ?43376 [43376] by Demod 7812 with 6618 at 2 Id : 869, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?5935) (multiply ?5935 (multiply ?5936 ?5937)))) ?5938) (inverse (multiply (inverse ?5936) ?5938))) =>= ?5937 [5938, 5937, 5936, 5935] by Super 221 with 653 at 1,1,1,1,2 Id : 890, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?6097) (multiply ?6097 (multiply (inverse ?6098) (multiply ?6098 ?6099))))) ?6100) (inverse (multiply (inverse (inverse ?6101)) ?6100))) =>= multiply ?6101 ?6099 [6101, 6100, 6099, 6098, 6097] by Super 869 with 296 at 2,2,1,1,1,1,2 Id : 7644, {_}: multiply (inverse ?29731) (multiply ?29731 (inverse (inverse ?29732))) =>= ?29732 [29732, 29731] by Demod 4909 with 7572 at 2,2,2 Id : 8034, {_}: multiply (inverse ?44083) (multiply ?44083 ?44084) =>= inverse (inverse ?44084) [44084, 44083] by Super 7644 with 7813 at 2,2,2 Id : 8444, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?6097) (multiply ?6097 (inverse (inverse ?6099))))) ?6100) (inverse (multiply (inverse (inverse ?6101)) ?6100))) =>= multiply ?6101 ?6099 [6101, 6100, 6099, 6097] by Demod 890 with 8034 at 2,2,1,1,1,1,2 Id : 8445, {_}: inverse (multiply (multiply (inverse (inverse (inverse (inverse (inverse ?6099))))) ?6100) (inverse (multiply (inverse (inverse ?6101)) ?6100))) =>= multiply ?6101 ?6099 [6101, 6100, 6099] by Demod 8444 with 8034 at 1,1,1,1,2 Id : 8478, {_}: inverse (multiply (multiply (inverse ?6099) ?6100) (inverse (multiply (inverse (inverse ?6101)) ?6100))) =>= multiply ?6101 ?6099 [6101, 6100, 6099] by Demod 8445 with 7813 at 1,1,1,1,2 Id : 7937, {_}: multiply ?43614 (inverse (multiply (inverse (inverse (inverse ?43615))) ?43615)) =>= inverse (inverse ?43614) [43615, 43614] by Super 7572 with 7813 at 2,1,2,2 Id : 8626, {_}: inverse (inverse (inverse (multiply (inverse ?45427) ?45428))) =>= multiply (inverse ?45428) ?45427 [45428, 45427] by Super 8478 with 7937 at 1,2 Id : 8922, {_}: inverse (multiply (inverse ?46068) ?46069) =>= multiply (inverse ?46069) ?46068 [46069, 46068] by Super 7813 with 8626 at 1,2 Id : 9088, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (inverse (multiply (inverse ?29) (multiply (inverse (multiply (inverse (multiply (inverse ?26) ?30)) ?28)) ?27))) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 30, 29, 28, 27, 26] by Demod 6 with 8922 at 1,1,2,1,1,1,1,2,1,2,1,2,2 Id : 9089, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (inverse (multiply (inverse ?29) (multiply (inverse (multiply (multiply (inverse ?30) ?26) ?28)) ?27))) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 30, 29, 28, 27, 26] by Demod 9088 with 8922 at 1,1,1,2,1,1,1,1,2,1,2,1,2,2 Id : 9090, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (multiply (inverse (multiply (inverse (multiply (multiply (inverse ?30) ?26) ?28)) ?27)) ?29) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 29, 30, 28, 27, 26] by Demod 9089 with 8922 at 1,1,1,2,1,2,1,2,2 Id : 9091, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (multiply (multiply (inverse ?27) (multiply (multiply (inverse ?30) ?26) ?28)) ?29) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 29, 30, 28, 27, 26] by Demod 9090 with 8922 at 1,1,1,1,2,1,2,1,2,2 Id : 8456, {_}: multiply (inverse ?2841) (multiply ?2841 (inverse (multiply (multiply (inverse (inverse (inverse ?2843))) ?2844) (inverse (multiply ?2845 ?2844))))) =>= multiply ?2845 ?2843 [2845, 2844, 2843, 2841] by Demod 388 with 8034 at 1,1,1,1,2,2,2 Id : 8457, {_}: inverse (inverse (inverse (multiply (multiply (inverse (inverse (inverse ?2843))) ?2844) (inverse (multiply ?2845 ?2844))))) =>= multiply ?2845 ?2843 [2845, 2844, 2843] by Demod 8456 with 8034 at 2 Id : 8637, {_}: inverse (inverse (inverse (inverse (inverse (multiply (inverse (inverse (inverse ?45472))) ?45473))))) =>= multiply (inverse (inverse (inverse ?45473))) ?45472 [45473, 45472] by Super 8457 with 7937 at 1,1,1,2 Id : 8820, {_}: inverse (multiply (inverse (inverse (inverse ?45472))) ?45473) =>= multiply (inverse (inverse (inverse ?45473))) ?45472 [45473, 45472] by Demod 8637 with 7813 at 1,2 Id : 9270, {_}: multiply (inverse ?45473) (inverse (inverse ?45472)) =?= multiply (inverse (inverse (inverse ?45473))) ?45472 [45472, 45473] by Demod 8820 with 8922 at 2 Id : 9362, {_}: multiply (inverse ?47429) (inverse (inverse (multiply (inverse (inverse ?47429)) ?47430))) =>= inverse (inverse ?47430) [47430, 47429] by Super 8034 with 9270 at 2 Id : 9489, {_}: multiply (inverse ?47429) (inverse (multiply (inverse ?47430) (inverse ?47429))) =>= inverse (inverse ?47430) [47430, 47429] by Demod 9362 with 8922 at 1,2,2 Id : 9490, {_}: multiply (inverse ?47429) (multiply (inverse (inverse ?47429)) ?47430) =>= inverse (inverse ?47430) [47430, 47429] by Demod 9489 with 8922 at 2,2 Id : 8461, {_}: multiply ?2725 (inverse (multiply (inverse (inverse ?2727)) (inverse (multiply ?2728 (multiply (multiply (inverse ?2728) (multiply (inverse ?2725) ?2729)) ?2727))))) =>= ?2729 [2729, 2728, 2727, 2725] by Demod 372 with 8034 at 1,1,2,2 Id : 9078, {_}: multiply ?2725 (multiply (inverse (inverse (multiply ?2728 (multiply (multiply (inverse ?2728) (multiply (inverse ?2725) ?2729)) ?2727)))) (inverse ?2727)) =>= ?2729 [2727, 2729, 2728, 2725] by Demod 8461 with 8922 at 2,2 Id : 390, {_}: multiply (inverse ?2853) (multiply ?2853 (inverse (multiply (multiply (inverse ?2854) (multiply ?2854 ?2855)) (inverse (multiply ?2856 (multiply (multiply (inverse ?2856) ?2857) ?2855)))))) =>= ?2857 [2857, 2856, 2855, 2854, 2853] by Super 63 with 296 at 1,1,2,2,2 Id : 8442, {_}: multiply (inverse ?2853) (multiply ?2853 (inverse (multiply (inverse (inverse ?2855)) (inverse (multiply ?2856 (multiply (multiply (inverse ?2856) ?2857) ?2855)))))) =>= ?2857 [2857, 2856, 2855, 2853] by Demod 390 with 8034 at 1,1,2,2,2 Id : 8443, {_}: inverse (inverse (inverse (multiply (inverse (inverse ?2855)) (inverse (multiply ?2856 (multiply (multiply (inverse ?2856) ?2857) ?2855)))))) =>= ?2857 [2857, 2856, 2855] by Demod 8442 with 8034 at 2 Id : 8892, {_}: multiply (inverse (inverse (multiply ?2856 (multiply (multiply (inverse ?2856) ?2857) ?2855)))) (inverse ?2855) =>= ?2857 [2855, 2857, 2856] by Demod 8443 with 8626 at 2 Id : 9096, {_}: multiply ?2725 (multiply (inverse ?2725) ?2729) =>= ?2729 [2729, 2725] by Demod 9078 with 8892 at 2,2 Id : 9491, {_}: ?47430 =<= inverse (inverse ?47430) [47430] by Demod 9490 with 9096 at 2 Id : 9854, {_}: inverse (multiply ?48264 ?48265) =<= multiply (inverse ?48265) (inverse ?48264) [48265, 48264] by Super 8922 with 9491 at 1,1,2 Id : 9871, {_}: inverse (multiply ?48336 (inverse ?48337)) =>= multiply ?48337 (inverse ?48336) [48337, 48336] by Super 9854 with 9491 at 1,3 Id : 9980, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (multiply (multiply (inverse ?27) (multiply (multiply (inverse ?30) ?26) ?28)) ?29) ?31))))))) =>= ?30 [30, 31, 29, 28, 27, 26] by Demod 9091 with 9871 at 2,1,2,1,2,2 Id : 9981, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (multiply (multiply (inverse ?27) (multiply (multiply (inverse ?30) ?26) ?28)) ?29) ?31)))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 9980 with 9871 at 2,2 Id : 9745, {_}: inverse (multiply ?47897 ?47898) =<= multiply (inverse ?47898) (inverse ?47897) [47898, 47897] by Super 8922 with 9491 at 1,1,2 Id : 10105, {_}: multiply ?48773 (inverse (multiply ?48774 ?48773)) =>= inverse ?48774 [48774, 48773] by Super 9096 with 9745 at 2,2 Id : 9836, {_}: multiply ?48200 (inverse (multiply ?48201 ?48200)) =>= inverse ?48201 [48201, 48200] by Super 9096 with 9745 at 2,2 Id : 10114, {_}: multiply (inverse (multiply ?48803 ?48804)) (inverse (inverse ?48803)) =>= inverse ?48804 [48804, 48803] by Super 10105 with 9836 at 1,2,2 Id : 10433, {_}: multiply (inverse (multiply ?49357 ?49358)) ?49357 =>= inverse ?49358 [49358, 49357] by Demod 10114 with 9491 at 2,2 Id : 8450, {_}: inverse (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?570) ?571)) ?572) (inverse (multiply ?570 ?572))))) =>= ?571 [572, 571, 570] by Demod 63 with 8034 at 2 Id : 9077, {_}: inverse (inverse (inverse (multiply (multiply (multiply (inverse ?571) ?570) ?572) (inverse (multiply ?570 ?572))))) =>= ?571 [572, 570, 571] by Demod 8450 with 8922 at 1,1,1,1,1,2 Id : 9730, {_}: inverse (multiply (multiply (multiply (inverse ?571) ?570) ?572) (inverse (multiply ?570 ?572))) =>= ?571 [572, 570, 571] by Demod 9077 with 9491 at 1,2 Id : 9984, {_}: multiply (multiply ?570 ?572) (inverse (multiply (multiply (inverse ?571) ?570) ?572)) =>= ?571 [571, 572, 570] by Demod 9730 with 9871 at 2 Id : 10446, {_}: multiply (inverse ?49409) (multiply ?49410 ?49411) =<= inverse (inverse (multiply (multiply (inverse ?49409) ?49410) ?49411)) [49411, 49410, 49409] by Super 10433 with 9984 at 1,1,2 Id : 10511, {_}: multiply (inverse ?49409) (multiply ?49410 ?49411) =<= multiply (multiply (inverse ?49409) ?49410) ?49411 [49411, 49410, 49409] by Demod 10446 with 9491 at 3 Id : 10913, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (multiply (multiply (inverse ?27) (multiply (inverse ?30) (multiply ?26 ?28))) ?29) ?31)))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 9981 with 10511 at 2,1,1,1,2,2,1,2,2 Id : 10914, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (multiply (inverse ?27) (multiply (multiply (inverse ?30) (multiply ?26 ?28)) ?29)) ?31)))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 10913 with 10511 at 1,1,2,2,1,2,2 Id : 10915, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (multiply (inverse ?27) (multiply (inverse ?30) (multiply (multiply ?26 ?28) ?29))) ?31)))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 10914 with 10511 at 2,1,1,2,2,1,2,2 Id : 10916, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (inverse ?27) (multiply (multiply (inverse ?30) (multiply (multiply ?26 ?28) ?29)) ?31))))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 10915 with 10511 at 1,2,2,1,2,2 Id : 10917, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (inverse ?27) (multiply (inverse ?30) (multiply (multiply (multiply ?26 ?28) ?29) ?31)))))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 10916 with 10511 at 2,1,2,2,1,2,2 Id : 10933, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (multiply (inverse (multiply (inverse ?30) (multiply (multiply (multiply ?26 ?28) ?29) ?31))) ?27))) (inverse ?27)) =>= ?30 [27, 30, 31, 29, 28, 26] by Demod 10917 with 8922 at 2,2,1,2,2 Id : 10934, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (multiply (multiply (inverse (multiply (multiply (multiply ?26 ?28) ?29) ?31)) ?30) ?27))) (inverse ?27)) =>= ?30 [27, 30, 31, 29, 28, 26] by Demod 10933 with 8922 at 1,2,2,1,2,2 Id : 10935, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (multiply (inverse (multiply (multiply (multiply ?26 ?28) ?29) ?31)) (multiply ?30 ?27)))) (inverse ?27)) =>= ?30 [27, 30, 31, 29, 28, 26] by Demod 10934 with 10511 at 2,2,1,2,2 Id : 3348, {_}: multiply (inverse (inverse (inverse ?21394))) ?21394 =?= inverse (multiply (inverse (multiply (inverse ?21395) (multiply ?21395 ?21396))) ?21396) [21396, 21395, 21394] by Super 3012 with 3171 at 2 Id : 8465, {_}: multiply (inverse (inverse (inverse ?21394))) ?21394 =?= inverse (multiply (inverse (inverse (inverse ?21396))) ?21396) [21396, 21394] by Demod 3348 with 8034 at 1,1,1,3 Id : 9092, {_}: multiply (inverse (inverse (inverse ?21394))) ?21394 =?= multiply (inverse ?21396) (inverse (inverse ?21396)) [21396, 21394] by Demod 8465 with 8922 at 3 Id : 9728, {_}: multiply (inverse ?21394) ?21394 =?= multiply (inverse ?21396) (inverse (inverse ?21396)) [21396, 21394] by Demod 9092 with 9491 at 1,1,2 Id : 9729, {_}: multiply (inverse ?21394) ?21394 =?= multiply (inverse ?21396) ?21396 [21396, 21394] by Demod 9728 with 9491 at 2,3 Id : 9742, {_}: multiply (inverse ?47887) ?47887 =?= multiply ?47888 (inverse ?47888) [47888, 47887] by Super 9729 with 9491 at 1,3 Id : 12132, {_}: multiply ?52071 (multiply (multiply ?52072 (multiply (multiply ?52073 ?52074) (multiply ?52075 (inverse ?52075)))) (inverse ?52074)) =>= multiply (multiply ?52071 ?52072) ?52073 [52075, 52074, 52073, 52072, 52071] by Super 10935 with 9742 at 2,2,1,2,2 Id : 7945, {_}: multiply ?43641 (multiply ?43642 (inverse ?43642)) =>= inverse (inverse ?43641) [43642, 43641] by Super 7438 with 7813 at 1,2 Id : 9718, {_}: multiply ?43641 (multiply ?43642 (inverse ?43642)) =>= ?43641 [43642, 43641] by Demod 7945 with 9491 at 3 Id : 12361, {_}: multiply ?52071 (multiply (multiply ?52072 (multiply ?52073 ?52074)) (inverse ?52074)) =>= multiply (multiply ?52071 ?52072) ?52073 [52074, 52073, 52072, 52071] by Demod 12132 with 9718 at 2,1,2,2 Id : 9706, {_}: inverse (inverse (inverse (multiply (multiply (inverse ?2843) ?2844) (inverse (multiply ?2845 ?2844))))) =>= multiply ?2845 ?2843 [2845, 2844, 2843] by Demod 8457 with 9491 at 1,1,1,1,1,1,2 Id : 9707, {_}: inverse (multiply (multiply (inverse ?2843) ?2844) (inverse (multiply ?2845 ?2844))) =>= multiply ?2845 ?2843 [2845, 2844, 2843] by Demod 9706 with 9491 at 1,2 Id : 9986, {_}: multiply (multiply ?2845 ?2844) (inverse (multiply (inverse ?2843) ?2844)) =>= multiply ?2845 ?2843 [2843, 2844, 2845] by Demod 9707 with 9871 at 2 Id : 9987, {_}: multiply (multiply ?2845 ?2844) (multiply (inverse ?2844) ?2843) =>= multiply ?2845 ?2843 [2843, 2844, 2845] by Demod 9986 with 8922 at 2,2 Id : 10192, {_}: multiply (inverse (multiply ?48803 ?48804)) ?48803 =>= inverse ?48804 [48804, 48803] by Demod 10114 with 9491 at 2,2 Id : 10424, {_}: multiply (multiply ?49312 (multiply ?49313 ?49314)) (inverse ?49314) =>= multiply ?49312 ?49313 [49314, 49313, 49312] by Super 9987 with 10192 at 2,2 Id : 21560, {_}: multiply ?52071 (multiply ?52072 ?52073) =?= multiply (multiply ?52071 ?52072) ?52073 [52073, 52072, 52071] by Demod 12361 with 10424 at 2,2 Id : 21998, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 1 with 21560 at 2 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 % SZS output end CNFRefutation for GRP429-1.p 19694: solved GRP429-1.p in 4.996311 using nrkbo WARNING: TreeLimitedRun lost 14.92s, total lost is 14.92s FINAL WATCH: 19.9 CPU 10.1 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP444-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19707 TreeLimitedRun: ---------------------------------------------------------- 19709: Facts: 19709: Id : 2, {_}: inverse (multiply ?2 (multiply ?3 (multiply (multiply ?4 (inverse ?4)) (inverse (multiply ?5 (multiply ?2 ?3)))))) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 19709: Goal: 19709: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 Statistics : Max weight : 52 Found proof, 64.012532s % SZS status Unsatisfiable for GRP444-1.p % SZS output start CNFRefutation for GRP444-1.p Id : 3, {_}: inverse (multiply ?7 (multiply ?8 (multiply (multiply ?9 (inverse ?9)) (inverse (multiply ?10 (multiply ?7 ?8)))))) =>= ?10 [10, 9, 8, 7] by single_axiom ?7 ?8 ?9 ?10 Id : 2, {_}: inverse (multiply ?2 (multiply ?3 (multiply (multiply ?4 (inverse ?4)) (inverse (multiply ?5 (multiply ?2 ?3)))))) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 Id : 4, {_}: inverse (multiply ?12 (multiply (multiply (multiply ?13 (inverse ?13)) (inverse (multiply ?14 (multiply ?15 ?12)))) (multiply (multiply ?16 (inverse ?16)) ?14))) =>= ?15 [16, 15, 14, 13, 12] by Super 3 with 2 at 2,2,2,1,2 Id : 7, {_}: inverse (multiply (multiply (multiply ?28 (inverse ?28)) (inverse (multiply ?29 (multiply ?30 ?31)))) (multiply (multiply (multiply ?32 (inverse ?32)) ?29) (multiply (multiply ?33 (inverse ?33)) ?30))) =>= ?31 [33, 32, 31, 30, 29, 28] by Super 2 with 4 at 2,2,2,1,2 Id : 9, {_}: inverse (multiply ?44 (multiply (multiply (multiply ?45 (inverse ?45)) (inverse (multiply ?46 (multiply ?47 ?44)))) (multiply (multiply ?48 (inverse ?48)) ?46))) =>= ?47 [48, 47, 46, 45, 44] by Super 3 with 2 at 2,2,2,1,2 Id : 13, {_}: inverse (multiply (multiply (multiply ?76 (inverse ?76)) ?77) (multiply (multiply (multiply ?78 (inverse ?78)) ?79) (multiply (multiply ?80 (inverse ?80)) ?81))) =?= multiply (multiply ?82 (inverse ?82)) (inverse (multiply ?77 (multiply ?79 ?81))) [82, 81, 80, 79, 78, 77, 76] by Super 9 with 4 at 2,1,2,1,2 Id : 68, {_}: multiply (multiply ?630 (inverse ?630)) (inverse (multiply (inverse (multiply ?631 (multiply ?632 ?633))) (multiply ?631 ?632))) =>= ?633 [633, 632, 631, 630] by Super 7 with 13 at 2 Id : 5, {_}: inverse (multiply ?18 (multiply ?19 (multiply (multiply (multiply ?20 (multiply ?21 (multiply (multiply ?22 (inverse ?22)) (inverse (multiply ?23 (multiply ?20 ?21)))))) ?23) (inverse (multiply ?24 (multiply ?18 ?19)))))) =>= ?24 [24, 23, 22, 21, 20, 19, 18] by Super 3 with 2 at 2,1,2,2,1,2 Id : 139, {_}: multiply (multiply ?1356 (inverse ?1356)) (inverse (multiply (inverse (multiply ?1357 (multiply ?1358 ?1359))) (multiply ?1357 ?1358))) =>= ?1359 [1359, 1358, 1357, 1356] by Super 7 with 13 at 2 Id : 145, {_}: multiply (multiply ?1401 (inverse ?1401)) (inverse (multiply ?1402 (multiply ?1403 (multiply (multiply ?1404 (inverse ?1404)) (inverse (multiply ?1405 (multiply ?1402 ?1403))))))) =?= multiply (multiply ?1406 (inverse ?1406)) ?1405 [1406, 1405, 1404, 1403, 1402, 1401] by Super 139 with 4 at 1,1,2,2 Id : 161, {_}: multiply (multiply ?1401 (inverse ?1401)) ?1405 =?= multiply (multiply ?1406 (inverse ?1406)) ?1405 [1406, 1405, 1401] by Demod 145 with 2 at 2,2 Id : 235, {_}: inverse (multiply ?2014 (multiply ?2015 (multiply (multiply (multiply ?2016 (multiply ?2017 (multiply (multiply ?2018 (inverse ?2018)) (inverse (multiply ?2019 (multiply ?2016 ?2017)))))) ?2019) (inverse (multiply (multiply ?2020 (inverse ?2020)) (multiply ?2014 ?2015)))))) =?= multiply ?2021 (inverse ?2021) [2021, 2020, 2019, 2018, 2017, 2016, 2015, 2014] by Super 5 with 161 at 1,2,2,2,1,2 Id : 288, {_}: multiply ?2020 (inverse ?2020) =?= multiply ?2021 (inverse ?2021) [2021, 2020] by Demod 235 with 5 at 2 Id : 312, {_}: multiply (multiply ?2396 (inverse ?2396)) (inverse (multiply (inverse (multiply ?2397 (multiply ?2398 (inverse ?2398)))) (multiply ?2397 ?2399))) =>= inverse ?2399 [2399, 2398, 2397, 2396] by Super 68 with 288 at 2,1,1,1,2,2 Id : 531, {_}: inverse (multiply ?3657 (multiply ?3658 (inverse ?3658))) =?= inverse (multiply ?3657 (multiply ?3659 (inverse ?3659))) [3659, 3658, 3657] by Super 2 with 312 at 2,2,1,2 Id : 310, {_}: multiply (multiply ?2386 (inverse ?2386)) (inverse (multiply (inverse (multiply ?2387 (multiply (inverse ?2387) ?2388))) (multiply ?2389 (inverse ?2389)))) =>= ?2388 [2389, 2388, 2387, 2386] by Super 68 with 288 at 2,1,2,2 Id : 709, {_}: inverse (multiply ?4752 (multiply (inverse ?4752) ?4753)) =?= inverse (multiply ?4754 (multiply (inverse ?4754) ?4753)) [4754, 4753, 4752] by Super 2 with 310 at 2,2,1,2 Id : 787, {_}: inverse (multiply ?5199 (multiply ?5200 (inverse ?5200))) =?= inverse (multiply ?5201 (multiply (inverse ?5201) (inverse (inverse ?5199)))) [5201, 5200, 5199] by Super 531 with 709 at 3 Id : 2463, {_}: inverse (multiply (inverse ?14758) (multiply ?14759 (multiply (multiply ?14760 (inverse ?14760)) (inverse (multiply ?14761 (multiply (inverse ?14761) ?14759)))))) =>= ?14758 [14761, 14760, 14759, 14758] by Super 4 with 310 at 1,2,1,2 Id : 2536, {_}: inverse (multiply (inverse ?15246) (multiply (inverse (inverse (inverse (multiply ?15247 (multiply (inverse ?15247) ?15248))))) ?15248)) =>= ?15246 [15248, 15247, 15246] by Super 2463 with 310 at 2,2,1,2 Id : 3230, {_}: inverse (multiply (inverse (inverse (inverse (multiply ?18822 (multiply (inverse ?18822) ?18823))))) (multiply ?18823 (multiply (multiply ?18824 (inverse ?18824)) ?18825))) =>= inverse ?18825 [18825, 18824, 18823, 18822] by Super 2 with 2536 at 2,2,2,1,2 Id : 11928, {_}: inverse (inverse (multiply ?69674 (multiply (inverse (inverse (inverse (multiply ?69675 (multiply (inverse ?69675) ?69676))))) ?69676))) =>= ?69674 [69676, 69675, 69674] by Super 2 with 3230 at 2 Id : 3244, {_}: multiply (multiply ?18916 (inverse ?18916)) (multiply (inverse (inverse (inverse (multiply ?18917 (multiply (inverse ?18917) ?18918))))) (multiply ?18919 (inverse ?18919))) =>= inverse ?18918 [18919, 18918, 18917, 18916] by Super 312 with 2536 at 2,2 Id : 14647, {_}: inverse (inverse (inverse (multiply ?84797 (inverse ?84797)))) =?= multiply ?84798 (inverse ?84798) [84798, 84797] by Super 11928 with 3244 at 1,1,2 Id : 15097, {_}: inverse (multiply ?87155 (multiply ?87156 (inverse ?87156))) =?= inverse (multiply ?87155 (inverse (inverse (inverse (multiply ?87157 (inverse ?87157)))))) [87157, 87156, 87155] by Super 787 with 14647 at 2,1,3 Id : 3239, {_}: multiply (multiply ?18887 (inverse ?18887)) (multiply (inverse (inverse (inverse (multiply ?18888 (multiply (inverse ?18888) ?18889))))) (multiply ?18889 ?18890)) =>= ?18890 [18890, 18889, 18888, 18887] by Super 68 with 2536 at 2,2 Id : 2551, {_}: inverse (multiply (inverse (multiply ?15357 (multiply (inverse ?15357) (inverse (inverse ?15358))))) (multiply ?15359 (multiply (multiply ?15360 (inverse ?15360)) (inverse (multiply ?15361 (multiply (inverse ?15361) ?15359)))))) =?= multiply ?15358 (multiply ?15362 (inverse ?15362)) [15362, 15361, 15360, 15359, 15358, 15357] by Super 2463 with 787 at 1,1,2 Id : 707, {_}: inverse (multiply (inverse ?4740) (multiply ?4741 (multiply (multiply ?4742 (inverse ?4742)) (inverse (multiply ?4743 (multiply (inverse ?4743) ?4741)))))) =>= ?4740 [4743, 4742, 4741, 4740] by Super 4 with 310 at 1,2,1,2 Id : 2580, {_}: multiply ?15357 (multiply (inverse ?15357) (inverse (inverse ?15358))) =?= multiply ?15358 (multiply ?15362 (inverse ?15362)) [15362, 15358, 15357] by Demod 2551 with 707 at 2 Id : 15111, {_}: multiply ?87228 (inverse ?87228) =?= multiply (inverse (inverse (multiply ?87229 (inverse ?87229)))) (multiply ?87230 (inverse ?87230)) [87230, 87229, 87228] by Super 288 with 14647 at 2,3 Id : 18193, {_}: multiply ?102425 (multiply (inverse ?102425) (inverse (inverse (inverse (inverse (multiply ?102426 (inverse ?102426))))))) =?= multiply ?102427 (inverse ?102427) [102427, 102426, 102425] by Super 2580 with 15111 at 3 Id : 28468, {_}: multiply (multiply ?156207 (inverse ?156207)) (multiply (inverse (inverse (inverse (multiply ?156208 (multiply (inverse ?156208) ?156209))))) (multiply ?156210 (inverse ?156210))) =?= multiply (inverse ?156209) (inverse (inverse (inverse (inverse (multiply ?156211 (inverse ?156211)))))) [156211, 156210, 156209, 156208, 156207] by Super 3239 with 18193 at 2,2,2 Id : 29126, {_}: inverse ?159453 =<= multiply (inverse ?159453) (inverse (inverse (inverse (inverse (multiply ?159454 (inverse ?159454)))))) [159454, 159453] by Demod 28468 with 3244 at 2 Id : 29517, {_}: inverse ?160649 =<= multiply (inverse ?160649) (inverse (multiply ?160650 (inverse ?160650))) [160650, 160649] by Super 29126 with 14647 at 1,2,3 Id : 29635, {_}: inverse (multiply ?161163 (multiply ?161164 (multiply (multiply ?161165 (inverse ?161165)) (inverse (multiply ?161166 (multiply ?161163 ?161164)))))) =?= multiply ?161166 (inverse (multiply ?161167 (inverse ?161167))) [161167, 161166, 161165, 161164, 161163] by Super 29517 with 2 at 1,3 Id : 29764, {_}: ?161166 =<= multiply ?161166 (inverse (multiply ?161167 (inverse ?161167))) [161167, 161166] by Demod 29635 with 2 at 2 Id : 29963, {_}: inverse (multiply (inverse ?162092) (multiply (inverse (inverse (inverse (multiply ?162093 (inverse ?162093))))) (inverse (multiply ?162094 (inverse ?162094))))) =>= ?162092 [162094, 162093, 162092] by Super 2536 with 29764 at 2,1,1,1,1,2,1,2 Id : 30159, {_}: inverse (multiply (inverse ?162092) (inverse (inverse (inverse (multiply ?162093 (inverse ?162093)))))) =>= ?162092 [162093, 162092] by Demod 29963 with 29764 at 2,1,2 Id : 30875, {_}: inverse (multiply (inverse ?165197) (multiply ?165198 (inverse ?165198))) =>= ?165197 [165198, 165197] by Super 15097 with 30159 at 3 Id : 34890, {_}: multiply (multiply ?179296 (inverse ?179296)) (inverse (multiply ?179297 (multiply (inverse ?179297) ?179298))) =>= inverse ?179298 [179298, 179297, 179296] by Super 312 with 30875 at 1,1,2,2 Id : 35028, {_}: multiply (multiply ?180012 (inverse ?180012)) ?180013 =>= inverse (inverse (inverse (inverse ?180013))) [180013, 180012] by Super 34890 with 30875 at 2,2 Id : 35215, {_}: inverse (inverse (inverse (inverse (inverse (multiply (inverse (multiply ?631 (multiply ?632 ?633))) (multiply ?631 ?632)))))) =>= ?633 [633, 632, 631] by Demod 68 with 35028 at 2 Id : 543, {_}: multiply (multiply ?3746 (inverse ?3746)) (inverse (multiply (inverse (multiply ?3747 (multiply ?3748 (inverse ?3748)))) (multiply ?3747 ?3749))) =>= inverse ?3749 [3749, 3748, 3747, 3746] by Super 68 with 288 at 2,1,1,1,2,2 Id : 546, {_}: multiply (multiply ?3764 (inverse ?3764)) (inverse (multiply (inverse (multiply ?3765 (multiply ?3766 (inverse ?3766)))) (multiply ?3767 (inverse ?3767)))) =>= inverse (inverse ?3765) [3767, 3766, 3765, 3764] by Super 543 with 288 at 2,1,2,2 Id : 31183, {_}: multiply (multiply ?3764 (inverse ?3764)) (multiply ?3765 (multiply ?3766 (inverse ?3766))) =>= inverse (inverse ?3765) [3766, 3765, 3764] by Demod 546 with 30875 at 2,2 Id : 35004, {_}: multiply (multiply ?179900 (inverse ?179900)) (inverse (inverse (inverse (inverse (multiply ?179901 (inverse ?179901)))))) =?= inverse (multiply ?179902 (inverse ?179902)) [179902, 179901, 179900] by Super 34890 with 31183 at 1,2,2 Id : 29265, {_}: inverse (multiply ?160035 (multiply ?160036 (multiply (multiply ?160037 (inverse ?160037)) (inverse (multiply ?160038 (multiply ?160035 ?160036)))))) =?= multiply ?160038 (inverse (inverse (inverse (inverse (multiply ?160039 (inverse ?160039)))))) [160039, 160038, 160037, 160036, 160035] by Super 29126 with 2 at 1,3 Id : 29407, {_}: ?160038 =<= multiply ?160038 (inverse (inverse (inverse (inverse (multiply ?160039 (inverse ?160039)))))) [160039, 160038] by Demod 29265 with 2 at 2 Id : 35150, {_}: multiply ?179900 (inverse ?179900) =?= inverse (multiply ?179902 (inverse ?179902)) [179902, 179900] by Demod 35004 with 29407 at 2 Id : 35897, {_}: inverse (inverse (inverse (inverse (inverse (multiply (inverse (multiply ?182919 (multiply (inverse ?182919) ?182920))) (inverse (multiply ?182921 (inverse ?182921)))))))) =>= ?182920 [182921, 182920, 182919] by Super 35215 with 35150 at 2,1,1,1,1,1,2 Id : 36117, {_}: inverse (inverse (inverse (inverse (inverse (inverse (multiply ?182919 (multiply (inverse ?182919) ?182920))))))) =>= ?182920 [182920, 182919] by Demod 35897 with 29764 at 1,1,1,1,1,2 Id : 31375, {_}: inverse (multiply (inverse ?167005) (multiply ?167006 (inverse ?167006))) =>= ?167005 [167006, 167005] by Super 15097 with 30159 at 3 Id : 31185, {_}: inverse (inverse (inverse (inverse (inverse (multiply ?18917 (multiply (inverse ?18917) ?18918)))))) =>= inverse ?18918 [18918, 18917] by Demod 3244 with 31183 at 2 Id : 31501, {_}: inverse (multiply (inverse ?167583) (multiply ?167584 (inverse ?167584))) =?= inverse (inverse (inverse (inverse (multiply ?167585 (multiply (inverse ?167585) ?167583))))) [167585, 167584, 167583] by Super 31375 with 31185 at 1,1,2 Id : 31621, {_}: ?167583 =<= inverse (inverse (inverse (inverse (multiply ?167585 (multiply (inverse ?167585) ?167583))))) [167585, 167583] by Demod 31501 with 30875 at 2 Id : 36118, {_}: inverse (inverse ?182920) =>= ?182920 [182920] by Demod 36117 with 31621 at 1,1,2 Id : 35211, {_}: inverse (multiply ?2 (multiply ?3 (inverse (inverse (inverse (inverse (inverse (multiply ?5 (multiply ?2 ?3))))))))) =>= ?5 [5, 3, 2] by Demod 2 with 35028 at 2,2,1,2 Id : 36430, {_}: inverse (multiply ?2 (multiply ?3 (inverse (inverse (inverse (multiply ?5 (multiply ?2 ?3))))))) =>= ?5 [5, 3, 2] by Demod 35211 with 36118 at 1,1,1,2,2,1,2 Id : 36431, {_}: inverse (multiply ?2 (multiply ?3 (inverse (multiply ?5 (multiply ?2 ?3))))) =>= ?5 [5, 3, 2] by Demod 36430 with 36118 at 1,2,2,1,2 Id : 36540, {_}: multiply (multiply ?180012 (inverse ?180012)) ?180013 =>= inverse (inverse ?180013) [180013, 180012] by Demod 35028 with 36118 at 1,1,3 Id : 36541, {_}: multiply (multiply ?180012 (inverse ?180012)) ?180013 =>= ?180013 [180013, 180012] by Demod 36540 with 36118 at 3 Id : 36612, {_}: multiply (multiply (inverse ?183786) ?183786) ?183787 =>= ?183787 [183787, 183786] by Super 36541 with 36118 at 2,1,2 Id : 36672, {_}: inverse (multiply (multiply (inverse ?183981) ?183981) (multiply ?183982 (inverse (multiply ?183983 ?183982)))) =>= ?183983 [183983, 183982, 183981] by Super 36431 with 36612 at 2,1,2,2,1,2 Id : 36699, {_}: inverse (multiply ?183982 (inverse (multiply ?183983 ?183982))) =>= ?183983 [183983, 183982] by Demod 36672 with 36612 at 1,2 Id : 36962, {_}: inverse ?184547 =<= multiply ?184548 (inverse (multiply ?184547 ?184548)) [184548, 184547] by Super 36118 with 36699 at 1,2 Id : 36884, {_}: inverse ?184392 =<= multiply ?184393 (inverse (multiply ?184392 ?184393)) [184393, 184392] by Super 36118 with 36699 at 1,2 Id : 36976, {_}: inverse ?184589 =<= multiply (inverse (multiply ?184590 ?184589)) (inverse (inverse ?184590)) [184590, 184589] by Super 36962 with 36884 at 1,2,3 Id : 37007, {_}: inverse ?184589 =<= multiply (inverse (multiply ?184590 ?184589)) ?184590 [184590, 184589] by Demod 36976 with 36118 at 2,3 Id : 35217, {_}: inverse (inverse (inverse (inverse (multiply (inverse (inverse (inverse (multiply ?18888 (multiply (inverse ?18888) ?18889))))) (multiply ?18889 ?18890))))) =>= ?18890 [18890, 18889, 18888] by Demod 3239 with 35028 at 2 Id : 36525, {_}: inverse (inverse (inverse (inverse (multiply (inverse (multiply ?18888 (multiply (inverse ?18888) ?18889))) (multiply ?18889 ?18890))))) =>= ?18890 [18890, 18889, 18888] by Demod 35217 with 36118 at 1,1,1,1,1,1,2 Id : 36526, {_}: inverse (inverse (multiply (inverse (multiply ?18888 (multiply (inverse ?18888) ?18889))) (multiply ?18889 ?18890))) =>= ?18890 [18890, 18889, 18888] by Demod 36525 with 36118 at 1,1,2 Id : 36527, {_}: multiply (inverse (multiply ?18888 (multiply (inverse ?18888) ?18889))) (multiply ?18889 ?18890) =>= ?18890 [18890, 18889, 18888] by Demod 36526 with 36118 at 2 Id : 645, {_}: multiply ?4399 (inverse ?4399) =?= multiply (multiply ?4400 (multiply ?4401 (inverse ?4401))) (inverse (multiply ?4400 (multiply ?4402 (inverse ?4402)))) [4402, 4401, 4400, 4399] by Super 288 with 531 at 2,3 Id : 5220, {_}: multiply (multiply ?29978 (inverse ?29978)) (inverse (multiply (inverse (multiply (multiply ?29979 (multiply ?29980 (inverse ?29980))) (multiply ?29981 (inverse ?29981)))) (multiply ?29982 (inverse ?29982)))) =?= inverse (inverse (multiply ?29979 (multiply ?29983 (inverse ?29983)))) [29983, 29982, 29981, 29980, 29979, 29978] by Super 312 with 645 at 2,1,2,2 Id : 5704, {_}: inverse (inverse (multiply ?32960 (multiply ?32961 (inverse ?32961)))) =?= inverse (inverse (multiply ?32960 (multiply ?32962 (inverse ?32962)))) [32962, 32961, 32960] by Demod 5220 with 546 at 2 Id : 2550, {_}: inverse (multiply (inverse (multiply ?15350 (multiply (inverse ?15350) ?15351))) (multiply ?15352 (multiply (multiply ?15353 (inverse ?15353)) (inverse (multiply ?15354 (multiply (inverse ?15354) ?15352)))))) =?= multiply ?15355 (multiply (inverse ?15355) ?15351) [15355, 15354, 15353, 15352, 15351, 15350] by Super 2463 with 709 at 1,1,2 Id : 2579, {_}: multiply ?15350 (multiply (inverse ?15350) ?15351) =?= multiply ?15355 (multiply (inverse ?15355) ?15351) [15355, 15351, 15350] by Demod 2550 with 707 at 2 Id : 5753, {_}: inverse (inverse (multiply ?33240 (multiply ?33241 (inverse ?33241)))) =?= inverse (inverse (multiply ?33242 (multiply (inverse ?33242) (inverse (inverse ?33240))))) [33242, 33241, 33240] by Super 5704 with 2579 at 1,1,3 Id : 12405, {_}: inverse (inverse (multiply ?72552 (multiply (inverse (inverse (inverse (multiply ?72553 (multiply (inverse ?72553) ?72554))))) ?72554))) =>= ?72552 [72554, 72553, 72552] by Super 2 with 3230 at 2 Id : 12451, {_}: inverse (inverse (multiply ?72833 (multiply (inverse (inverse (inverse (multiply ?72834 (multiply ?72835 (inverse ?72835)))))) (inverse (inverse ?72834))))) =>= ?72833 [72835, 72834, 72833] by Super 12405 with 288 at 2,1,1,1,1,2,1,1,2 Id : 32356, {_}: inverse (inverse (multiply ?170423 (multiply (inverse (inverse (inverse (multiply (inverse (inverse (inverse (multiply ?170424 (multiply (inverse ?170424) ?170425))))) (multiply ?170426 (inverse ?170426)))))) (inverse ?170425)))) =>= ?170423 [170426, 170425, 170424, 170423] by Super 12451 with 31621 at 1,2,2,1,1,2 Id : 32540, {_}: inverse (inverse (multiply ?170423 (multiply (inverse (inverse (inverse (inverse (multiply ?170424 (multiply (inverse ?170424) ?170425)))))) (inverse ?170425)))) =>= ?170423 [170425, 170424, 170423] by Demod 32356 with 30875 at 1,1,1,2,1,1,2 Id : 32541, {_}: inverse (inverse (multiply ?170423 (multiply ?170425 (inverse ?170425)))) =>= ?170423 [170425, 170423] by Demod 32540 with 31621 at 1,2,1,1,2 Id : 32585, {_}: ?33240 =<= inverse (inverse (multiply ?33242 (multiply (inverse ?33242) (inverse (inverse ?33240))))) [33242, 33240] by Demod 5753 with 32541 at 2 Id : 36519, {_}: ?33240 =<= inverse (inverse (multiply ?33242 (multiply (inverse ?33242) ?33240))) [33242, 33240] by Demod 32585 with 36118 at 2,2,1,1,3 Id : 36520, {_}: ?33240 =<= multiply ?33242 (multiply (inverse ?33242) ?33240) [33242, 33240] by Demod 36519 with 36118 at 3 Id : 36559, {_}: multiply (inverse ?18889) (multiply ?18889 ?18890) =>= ?18890 [18890, 18889] by Demod 36527 with 36520 at 1,1,2 Id : 37095, {_}: multiply (inverse ?184837) (inverse ?184838) =>= inverse (multiply ?184838 ?184837) [184838, 184837] by Super 36559 with 36884 at 2,2 Id : 37178, {_}: multiply (inverse ?185012) ?185013 =<= inverse (multiply (inverse ?185013) ?185012) [185013, 185012] by Super 37095 with 36118 at 2,2 Id : 37193, {_}: multiply (inverse (inverse (multiply ?185069 (inverse ?185070)))) ?185070 =>= inverse (inverse ?185069) [185070, 185069] by Super 37178 with 36884 at 1,3 Id : 36949, {_}: inverse (multiply ?184497 (inverse ?184498)) =>= multiply ?184498 (inverse ?184497) [184498, 184497] by Super 36520 with 36884 at 2,3 Id : 37221, {_}: multiply (inverse (multiply ?185070 (inverse ?185069))) ?185070 =>= inverse (inverse ?185069) [185069, 185070] by Demod 37193 with 36949 at 1,1,2 Id : 37222, {_}: multiply (multiply ?185069 (inverse ?185070)) ?185070 =>= inverse (inverse ?185069) [185070, 185069] by Demod 37221 with 36949 at 1,2 Id : 37223, {_}: multiply (multiply ?185069 (inverse ?185070)) ?185070 =>= ?185069 [185070, 185069] by Demod 37222 with 36118 at 3 Id : 37405, {_}: inverse (multiply ?185420 (multiply ?185421 (inverse ?185422))) =>= multiply ?185422 (inverse (multiply ?185420 ?185421)) [185422, 185421, 185420] by Super 36431 with 37223 at 1,2,2,1,2 Id : 38043, {_}: inverse (multiply ?186659 (inverse ?186660)) =<= multiply (multiply ?186660 (inverse (multiply ?186661 ?186659))) ?186661 [186661, 186660, 186659] by Super 37007 with 37405 at 1,3 Id : 38571, {_}: multiply ?187558 (inverse ?187559) =<= multiply (multiply ?187558 (inverse (multiply ?187560 ?187559))) ?187560 [187560, 187559, 187558] by Demod 38043 with 36949 at 2 Id : 36967, {_}: inverse (inverse ?184562) =<= multiply (multiply ?184562 ?184563) (inverse ?184563) [184563, 184562] by Super 36962 with 36559 at 1,2,3 Id : 37000, {_}: ?184562 =<= multiply (multiply ?184562 ?184563) (inverse ?184563) [184563, 184562] by Demod 36967 with 36118 at 2 Id : 38591, {_}: multiply ?187642 (inverse (inverse ?187643)) =<= multiply (multiply ?187642 (inverse ?187644)) (multiply ?187644 ?187643) [187644, 187643, 187642] by Super 38571 with 37000 at 1,2,1,3 Id : 38883, {_}: multiply ?188175 ?188176 =<= multiply (multiply ?188175 (inverse ?188177)) (multiply ?188177 ?188176) [188177, 188176, 188175] by Demod 38591 with 36118 at 2,2 Id : 38928, {_}: multiply (inverse (multiply (inverse ?188374) ?188375)) ?188376 =>= multiply (inverse ?188375) (multiply ?188374 ?188376) [188376, 188375, 188374] by Super 38883 with 37007 at 1,3 Id : 37096, {_}: multiply (inverse ?184840) ?184841 =<= inverse (multiply (inverse ?184841) ?184840) [184841, 184840] by Super 37095 with 36118 at 2,2 Id : 39008, {_}: multiply (multiply (inverse ?188375) ?188374) ?188376 =>= multiply (inverse ?188375) (multiply ?188374 ?188376) [188376, 188374, 188375] by Demod 38928 with 37096 at 1,2 Id : 38926, {_}: multiply ?188366 ?188367 =<= multiply (inverse ?188368) (multiply (multiply ?188368 ?188366) ?188367) [188368, 188367, 188366] by Super 38883 with 36884 at 1,3 Id : 40729, {_}: multiply (multiply ?191276 ?191277) ?191278 =<= multiply (inverse ?191279) (multiply (multiply (multiply ?191279 ?191276) ?191277) ?191278) [191279, 191278, 191277, 191276] by Super 39008 with 38926 at 1,2 Id : 38611, {_}: multiply (multiply ?187729 (multiply ?187730 ?187731)) (inverse ?187731) =>= multiply ?187729 ?187730 [187731, 187730, 187729] by Super 38571 with 37000 at 1,3 Id : 40014, {_}: inverse (multiply ?190148 ?190149) =<= multiply ?190150 (inverse (multiply ?190148 (multiply ?190149 ?190150))) [190150, 190149, 190148] by Super 36949 with 38611 at 1,2 Id : 36957, {_}: multiply (inverse ?184522) (inverse ?184523) =>= inverse (multiply ?184523 ?184522) [184523, 184522] by Super 36559 with 36884 at 2,2 Id : 38604, {_}: multiply (inverse ?187701) (inverse ?187702) =<= multiply (inverse (multiply (multiply ?187703 ?187702) ?187701)) ?187703 [187703, 187702, 187701] by Super 38571 with 36957 at 1,3 Id : 38709, {_}: inverse (multiply ?187702 ?187701) =<= multiply (inverse (multiply (multiply ?187703 ?187702) ?187701)) ?187703 [187703, 187701, 187702] by Demod 38604 with 36957 at 2 Id : 40060, {_}: inverse (multiply (inverse (multiply (multiply (multiply ?190343 ?190344) ?190345) ?190346)) ?190343) =>= multiply ?190344 (inverse (inverse (multiply ?190345 ?190346))) [190346, 190345, 190344, 190343] by Super 40014 with 38709 at 1,2,3 Id : 40219, {_}: multiply (inverse ?190343) (multiply (multiply (multiply ?190343 ?190344) ?190345) ?190346) =>= multiply ?190344 (inverse (inverse (multiply ?190345 ?190346))) [190346, 190345, 190344, 190343] by Demod 40060 with 37096 at 2 Id : 40220, {_}: multiply (inverse ?190343) (multiply (multiply (multiply ?190343 ?190344) ?190345) ?190346) =>= multiply ?190344 (multiply ?190345 ?190346) [190346, 190345, 190344, 190343] by Demod 40219 with 36118 at 2,3 Id : 61417, {_}: multiply (multiply ?191276 ?191277) ?191278 =?= multiply ?191276 (multiply ?191277 ?191278) [191278, 191277, 191276] by Demod 40729 with 40220 at 3 Id : 62156, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 1 with 61417 at 2 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 % SZS output end CNFRefutation for GRP444-1.p 19712: solved GRP444-1.p in 32.066003 using nrkbo WARNING: TreeLimitedRun lost 87.85s, total lost is 87.85s FINAL WATCH: 119.9 CPU 64.2 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP452-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19753 TreeLimitedRun: ---------------------------------------------------------- 19755: Facts: 19755: Id : 2, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 19755: Id : 3, {_}: multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8 19755: Id : 4, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11 19755: Goal: 19755: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 Statistics : Max weight : 38 Found proof, 0.100414s % SZS status Unsatisfiable for GRP452-1.p % SZS output start CNFRefutation for GRP452-1.p Id : 5, {_}: divide (divide (divide ?13 ?13) (divide ?13 (divide ?14 (divide (divide (divide ?13 ?13) ?13) ?15)))) ?15 =>= ?14 [15, 14, 13] by single_axiom ?13 ?14 ?15 Id : 35, {_}: inverse ?90 =<= divide (divide ?91 ?91) ?90 [91, 90] by inverse ?90 ?91 Id : 2, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 Id : 4, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11 Id : 3, {_}: multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8 Id : 29, {_}: multiply ?6 ?7 =<= divide ?6 (inverse ?7) [7, 6] by Demod 3 with 4 at 2,3 Id : 41, {_}: multiply (divide ?104 ?104) ?105 =>= inverse (inverse ?105) [105, 104] by Super 29 with 4 at 3 Id : 43, {_}: multiply (multiply (inverse ?110) ?110) ?111 =>= inverse (inverse ?111) [111, 110] by Super 41 with 29 at 1,2 Id : 13, {_}: divide (multiply (divide (divide ?48 ?48) (divide ?48 ?48)) (divide ?49 (divide (divide (divide (divide ?48 ?48) (divide ?48 ?48)) (divide ?48 ?48)) ?50))) ?50 =>= ?49 [50, 49, 48] by Super 2 with 3 at 1,2 Id : 219, {_}: divide (multiply (inverse (divide ?48 ?48)) (divide ?49 (divide (divide (divide (divide ?48 ?48) (divide ?48 ?48)) (divide ?48 ?48)) ?50))) ?50 =>= ?49 [50, 49, 48] by Demod 13 with 4 at 1,1,2 Id : 220, {_}: divide (multiply (inverse (divide ?48 ?48)) (divide ?49 (divide (divide (inverse (divide ?48 ?48)) (divide ?48 ?48)) ?50))) ?50 =>= ?49 [50, 49, 48] by Demod 219 with 4 at 1,1,2,2,1,2 Id : 36, {_}: inverse ?93 =<= divide (inverse (divide ?94 ?94)) ?93 [94, 93] by Super 35 with 4 at 1,3 Id : 221, {_}: divide (multiply (inverse (divide ?48 ?48)) (divide ?49 (divide (inverse (divide ?48 ?48)) ?50))) ?50 =>= ?49 [50, 49, 48] by Demod 220 with 36 at 1,2,2,1,2 Id : 222, {_}: divide (multiply (inverse (divide ?48 ?48)) (divide ?49 (inverse ?50))) ?50 =>= ?49 [50, 49, 48] by Demod 221 with 36 at 2,2,1,2 Id : 223, {_}: divide (multiply (inverse (divide ?48 ?48)) (multiply ?49 ?50)) ?50 =>= ?49 [50, 49, 48] by Demod 222 with 29 at 2,1,2 Id : 42, {_}: multiply (inverse (divide ?107 ?107)) ?108 =>= inverse (inverse ?108) [108, 107] by Super 41 with 4 at 1,2 Id : 224, {_}: divide (inverse (inverse (multiply ?49 ?50))) ?50 =>= ?49 [50, 49] by Demod 223 with 42 at 1,2 Id : 6, {_}: divide (divide (divide ?17 ?17) (divide ?17 ?18)) ?19 =<= divide (divide ?20 ?20) (divide ?20 (divide ?18 (divide (divide (divide ?20 ?20) ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Super 5 with 2 at 2,2,1,2 Id : 61, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= divide (divide ?20 ?20) (divide ?20 (divide ?18 (divide (divide (divide ?20 ?20) ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Demod 6 with 4 at 1,2 Id : 62, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= divide (divide ?20 ?20) (divide ?20 (divide ?18 (divide (inverse ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Demod 61 with 4 at 1,2,2,2,3 Id : 63, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= divide (divide ?20 ?20) (divide ?20 (divide ?18 (divide (inverse ?20) (divide (inverse ?17) ?19)))) [20, 19, 18, 17] by Demod 62 with 4 at 1,2,2,2,2,3 Id : 64, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= inverse (divide ?20 (divide ?18 (divide (inverse ?20) (divide (inverse ?17) ?19)))) [20, 19, 18, 17] by Demod 63 with 4 at 3 Id : 11, {_}: divide (divide (divide ?39 ?39) (multiply ?39 (divide (divide (divide ?39 ?39) ?39) ?40))) ?40 =?= divide ?41 ?41 [41, 40, 39] by Super 2 with 3 at 2,1,2 Id : 115, {_}: divide (divide (divide ?39 ?39) (multiply ?39 (divide (inverse ?39) ?40))) ?40 =?= divide ?41 ?41 [41, 40, 39] by Demod 11 with 4 at 1,2,2,1,2 Id : 135, {_}: divide (inverse (multiply ?398 (divide (inverse ?398) ?399))) ?399 =?= divide ?400 ?400 [400, 399, 398] by Demod 115 with 4 at 1,2 Id : 116, {_}: divide (inverse (multiply ?39 (divide (inverse ?39) ?40))) ?40 =?= divide ?41 ?41 [41, 40, 39] by Demod 115 with 4 at 1,2 Id : 149, {_}: divide ?461 ?461 =?= divide ?462 ?462 [462, 461] by Super 135 with 116 at 2 Id : 308, {_}: divide (inverse (divide ?827 (divide (inverse ?828) (divide (inverse ?827) ?829)))) ?829 =?= inverse (divide ?828 (divide ?830 ?830)) [830, 829, 828, 827] by Super 64 with 149 at 2,1,3 Id : 30, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (inverse ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 2 with 4 at 1,2,2,2,1,2 Id : 31, {_}: divide (inverse (divide ?2 (divide ?3 (divide (inverse ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 30 with 4 at 1,2 Id : 385, {_}: inverse ?1021 =<= inverse (divide ?1021 (divide ?1022 ?1022)) [1022, 1021] by Demod 308 with 31 at 2 Id : 387, {_}: inverse ?1027 =<= inverse (divide ?1027 (inverse (divide ?1028 ?1028))) [1028, 1027] by Super 385 with 4 at 2,1,3 Id : 416, {_}: inverse ?1027 =<= inverse (multiply ?1027 (divide ?1028 ?1028)) [1028, 1027] by Demod 387 with 29 at 1,3 Id : 502, {_}: divide (inverse (inverse ?1247)) (divide ?1248 ?1248) =>= ?1247 [1248, 1247] by Super 224 with 416 at 1,1,2 Id : 361, {_}: inverse ?828 =<= inverse (divide ?828 (divide ?830 ?830)) [830, 828] by Demod 308 with 31 at 2 Id : 662, {_}: inverse (inverse (inverse ?1711)) =>= inverse ?1711 [1711] by Super 361 with 502 at 1,3 Id : 784, {_}: divide (inverse (inverse ?1935)) (divide ?1936 ?1936) =>= inverse (inverse ?1935) [1936, 1935] by Super 502 with 662 at 1,1,2 Id : 810, {_}: ?1935 =<= inverse (inverse ?1935) [1935] by Demod 784 with 502 at 2 Id : 828, {_}: multiply (multiply (inverse ?110) ?110) ?111 =>= ?111 [111, 110] by Demod 43 with 810 at 3 Id : 860, {_}: a2 === a2 [] by Demod 1 with 828 at 2 Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 % SZS output end CNFRefutation for GRP452-1.p 19755: solved GRP452-1.p in 0.108006 using nrkbo FINAL WATCH: 0.1 CPU 0.1 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP453-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19762 TreeLimitedRun: ---------------------------------------------------------- 19764: Facts: 19764: Id : 2, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 19764: Id : 3, {_}: multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8 19764: Id : 4, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11 19764: Goal: 19764: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 Statistics : Max weight : 38 Found proof, 0.420378s % SZS status Unsatisfiable for GRP453-1.p % SZS output start CNFRefutation for GRP453-1.p Id : 5, {_}: divide (divide (divide ?13 ?13) (divide ?13 (divide ?14 (divide (divide (divide ?13 ?13) ?13) ?15)))) ?15 =>= ?14 [15, 14, 13] by single_axiom ?13 ?14 ?15 Id : 35, {_}: inverse ?90 =<= divide (divide ?91 ?91) ?90 [91, 90] by inverse ?90 ?91 Id : 2, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 Id : 4, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11 Id : 3, {_}: multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8 Id : 29, {_}: multiply ?6 ?7 =<= divide ?6 (inverse ?7) [7, 6] by Demod 3 with 4 at 2,3 Id : 10, {_}: divide (divide (divide ?34 ?34) (divide ?34 (divide ?35 (multiply (divide (divide ?34 ?34) ?34) ?36)))) (divide (divide ?37 ?37) ?36) =>= ?35 [37, 36, 35, 34] by Super 2 with 3 at 2,2,2,1,2 Id : 24, {_}: multiply (divide (divide ?34 ?34) (divide ?34 (divide ?35 (multiply (divide (divide ?34 ?34) ?34) ?36)))) ?36 =>= ?35 [36, 35, 34] by Demod 10 with 3 at 2 Id : 434, {_}: multiply (divide (divide ?34 ?34) (divide ?34 (divide ?35 (multiply (inverse ?34) ?36)))) ?36 =>= ?35 [36, 35, 34] by Demod 24 with 4 at 1,2,2,2,1,2 Id : 435, {_}: multiply (inverse (divide ?34 (divide ?35 (multiply (inverse ?34) ?36)))) ?36 =>= ?35 [36, 35, 34] by Demod 434 with 4 at 1,2 Id : 13, {_}: divide (multiply (divide (divide ?48 ?48) (divide ?48 ?48)) (divide ?49 (divide (divide (divide (divide ?48 ?48) (divide ?48 ?48)) (divide ?48 ?48)) ?50))) ?50 =>= ?49 [50, 49, 48] by Super 2 with 3 at 1,2 Id : 216, {_}: divide (multiply (inverse (divide ?48 ?48)) (divide ?49 (divide (divide (divide (divide ?48 ?48) (divide ?48 ?48)) (divide ?48 ?48)) ?50))) ?50 =>= ?49 [50, 49, 48] by Demod 13 with 4 at 1,1,2 Id : 217, {_}: divide (multiply (inverse (divide ?48 ?48)) (divide ?49 (divide (divide (inverse (divide ?48 ?48)) (divide ?48 ?48)) ?50))) ?50 =>= ?49 [50, 49, 48] by Demod 216 with 4 at 1,1,2,2,1,2 Id : 36, {_}: inverse ?93 =<= divide (inverse (divide ?94 ?94)) ?93 [94, 93] by Super 35 with 4 at 1,3 Id : 218, {_}: divide (multiply (inverse (divide ?48 ?48)) (divide ?49 (divide (inverse (divide ?48 ?48)) ?50))) ?50 =>= ?49 [50, 49, 48] by Demod 217 with 36 at 1,2,2,1,2 Id : 219, {_}: divide (multiply (inverse (divide ?48 ?48)) (divide ?49 (inverse ?50))) ?50 =>= ?49 [50, 49, 48] by Demod 218 with 36 at 2,2,1,2 Id : 220, {_}: divide (multiply (inverse (divide ?48 ?48)) (multiply ?49 ?50)) ?50 =>= ?49 [50, 49, 48] by Demod 219 with 29 at 2,1,2 Id : 41, {_}: multiply (divide ?104 ?104) ?105 =>= inverse (inverse ?105) [105, 104] by Super 29 with 4 at 3 Id : 42, {_}: multiply (inverse (divide ?107 ?107)) ?108 =>= inverse (inverse ?108) [108, 107] by Super 41 with 4 at 1,2 Id : 221, {_}: divide (inverse (inverse (multiply ?49 ?50))) ?50 =>= ?49 [50, 49] by Demod 220 with 42 at 1,2 Id : 6, {_}: divide (divide (divide ?17 ?17) (divide ?17 ?18)) ?19 =<= divide (divide ?20 ?20) (divide ?20 (divide ?18 (divide (divide (divide ?20 ?20) ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Super 5 with 2 at 2,2,1,2 Id : 61, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= divide (divide ?20 ?20) (divide ?20 (divide ?18 (divide (divide (divide ?20 ?20) ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Demod 6 with 4 at 1,2 Id : 62, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= divide (divide ?20 ?20) (divide ?20 (divide ?18 (divide (inverse ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Demod 61 with 4 at 1,2,2,2,3 Id : 63, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= divide (divide ?20 ?20) (divide ?20 (divide ?18 (divide (inverse ?20) (divide (inverse ?17) ?19)))) [20, 19, 18, 17] by Demod 62 with 4 at 1,2,2,2,2,3 Id : 64, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= inverse (divide ?20 (divide ?18 (divide (inverse ?20) (divide (inverse ?17) ?19)))) [20, 19, 18, 17] by Demod 63 with 4 at 3 Id : 11, {_}: divide (divide (divide ?39 ?39) (multiply ?39 (divide (divide (divide ?39 ?39) ?39) ?40))) ?40 =?= divide ?41 ?41 [41, 40, 39] by Super 2 with 3 at 2,1,2 Id : 115, {_}: divide (divide (divide ?39 ?39) (multiply ?39 (divide (inverse ?39) ?40))) ?40 =?= divide ?41 ?41 [41, 40, 39] by Demod 11 with 4 at 1,2,2,1,2 Id : 135, {_}: divide (inverse (multiply ?398 (divide (inverse ?398) ?399))) ?399 =?= divide ?400 ?400 [400, 399, 398] by Demod 115 with 4 at 1,2 Id : 116, {_}: divide (inverse (multiply ?39 (divide (inverse ?39) ?40))) ?40 =?= divide ?41 ?41 [41, 40, 39] by Demod 115 with 4 at 1,2 Id : 149, {_}: divide ?461 ?461 =?= divide ?462 ?462 [462, 461] by Super 135 with 116 at 2 Id : 302, {_}: divide (inverse (divide ?827 (divide (inverse ?828) (divide (inverse ?827) ?829)))) ?829 =?= inverse (divide ?828 (divide ?830 ?830)) [830, 829, 828, 827] by Super 64 with 149 at 2,1,3 Id : 30, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (inverse ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 2 with 4 at 1,2,2,2,1,2 Id : 31, {_}: divide (inverse (divide ?2 (divide ?3 (divide (inverse ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 30 with 4 at 1,2 Id : 378, {_}: inverse ?1021 =<= inverse (divide ?1021 (divide ?1022 ?1022)) [1022, 1021] by Demod 302 with 31 at 2 Id : 380, {_}: inverse ?1027 =<= inverse (divide ?1027 (inverse (divide ?1028 ?1028))) [1028, 1027] by Super 378 with 4 at 2,1,3 Id : 409, {_}: inverse ?1027 =<= inverse (multiply ?1027 (divide ?1028 ?1028)) [1028, 1027] by Demod 380 with 29 at 1,3 Id : 493, {_}: divide (inverse (inverse ?1247)) (divide ?1248 ?1248) =>= ?1247 [1248, 1247] by Super 221 with 409 at 1,1,2 Id : 648, {_}: multiply ?1708 (divide ?1709 ?1709) =>= ?1708 [1709, 1708] by Super 221 with 493 at 2 Id : 910, {_}: multiply (inverse (divide ?2177 (divide ?2178 (inverse ?2177)))) (divide ?2179 ?2179) =>= ?2178 [2179, 2178, 2177] by Super 435 with 648 at 2,2,1,1,2 Id : 941, {_}: multiply (inverse (divide ?2177 (multiply ?2178 ?2177))) (divide ?2179 ?2179) =>= ?2178 [2179, 2178, 2177] by Demod 910 with 29 at 2,1,1,2 Id : 1016, {_}: inverse (divide ?2385 (multiply ?2386 ?2385)) =>= ?2386 [2386, 2385] by Demod 941 with 648 at 2 Id : 355, {_}: inverse ?828 =<= inverse (divide ?828 (divide ?830 ?830)) [830, 828] by Demod 302 with 31 at 2 Id : 649, {_}: inverse (inverse (inverse ?1711)) =>= inverse ?1711 [1711] by Super 355 with 493 at 1,3 Id : 769, {_}: divide (inverse (inverse ?1935)) (divide ?1936 ?1936) =>= inverse (inverse ?1935) [1936, 1935] by Super 493 with 649 at 1,1,2 Id : 795, {_}: ?1935 =<= inverse (inverse ?1935) [1935] by Demod 769 with 493 at 2 Id : 815, {_}: divide (multiply ?49 ?50) ?50 =>= ?49 [50, 49] by Demod 221 with 795 at 1,2 Id : 826, {_}: multiply ?2032 (inverse ?2033) =>= divide ?2032 ?2033 [2033, 2032] by Super 29 with 795 at 2,3 Id : 857, {_}: divide (divide ?2110 ?2111) (inverse ?2111) =>= ?2110 [2111, 2110] by Super 815 with 826 at 1,2 Id : 875, {_}: multiply (divide ?2110 ?2111) ?2111 =>= ?2110 [2111, 2110] by Demod 857 with 29 at 2 Id : 1024, {_}: inverse (divide ?2410 ?2411) =>= divide ?2411 ?2410 [2411, 2410] by Super 1016 with 875 at 2,1,2 Id : 1185, {_}: divide (divide ?18 ?17) ?19 =<= inverse (divide ?20 (divide ?18 (divide (inverse ?20) (divide (inverse ?17) ?19)))) [20, 19, 17, 18] by Demod 64 with 1024 at 1,2 Id : 1186, {_}: divide (divide ?18 ?17) ?19 =<= divide (divide ?18 (divide (inverse ?20) (divide (inverse ?17) ?19))) ?20 [20, 19, 17, 18] by Demod 1185 with 1024 at 3 Id : 1209, {_}: inverse (divide ?2791 ?2792) =>= divide ?2792 ?2791 [2792, 2791] by Super 1016 with 875 at 2,1,2 Id : 1216, {_}: inverse (multiply ?2814 ?2815) =<= divide (inverse ?2815) ?2814 [2815, 2814] by Super 1209 with 29 at 1,2 Id : 1237, {_}: divide (divide ?18 ?17) ?19 =<= divide (divide ?18 (divide (inverse ?20) (inverse (multiply ?19 ?17)))) ?20 [20, 19, 17, 18] by Demod 1186 with 1216 at 2,2,1,3 Id : 1238, {_}: divide (divide ?18 ?17) ?19 =<= divide (divide ?18 (inverse (multiply (inverse (multiply ?19 ?17)) ?20))) ?20 [20, 19, 17, 18] by Demod 1237 with 1216 at 2,1,3 Id : 1246, {_}: divide (divide ?18 ?17) ?19 =<= divide (multiply ?18 (multiply (inverse (multiply ?19 ?17)) ?20)) ?20 [20, 19, 17, 18] by Demod 1238 with 29 at 1,3 Id : 52, {_}: inverse ?136 =<= divide (inverse (divide ?137 ?137)) ?136 [137, 136] by Super 35 with 4 at 1,3 Id : 54, {_}: inverse ?142 =<= divide (inverse (multiply (inverse ?143) ?143)) ?142 [143, 142] by Super 52 with 29 at 1,1,3 Id : 1218, {_}: inverse (inverse ?2820) =<= divide ?2820 (inverse (multiply (inverse ?2821) ?2821)) [2821, 2820] by Super 1209 with 54 at 1,2 Id : 1231, {_}: ?2820 =<= divide ?2820 (inverse (multiply (inverse ?2821) ?2821)) [2821, 2820] by Demod 1218 with 795 at 2 Id : 1232, {_}: ?2820 =<= multiply ?2820 (multiply (inverse ?2821) ?2821) [2821, 2820] by Demod 1231 with 29 at 3 Id : 1526, {_}: divide (divide ?3368 ?3369) ?3370 =>= divide ?3368 (multiply ?3370 ?3369) [3370, 3369, 3368] by Super 1246 with 1232 at 1,3 Id : 1691, {_}: inverse (divide ?3730 (multiply ?3731 ?3732)) =>= divide ?3731 (divide ?3730 ?3732) [3732, 3731, 3730] by Super 1024 with 1526 at 1,2 Id : 1727, {_}: divide (multiply ?3731 ?3732) ?3730 =>= divide ?3731 (divide ?3730 ?3732) [3730, 3732, 3731] by Demod 1691 with 1024 at 2 Id : 1199, {_}: multiply ?2750 (divide ?2751 ?2752) =<= divide ?2750 (divide ?2752 ?2751) [2752, 2751, 2750] by Super 826 with 1024 at 2,2 Id : 1728, {_}: divide (multiply ?3731 ?3732) ?3730 =>= multiply ?3731 (divide ?3732 ?3730) [3730, 3732, 3731] by Demod 1727 with 1199 at 3 Id : 1764, {_}: multiply (multiply ?3867 ?3868) ?3869 =<= multiply ?3867 (divide ?3868 (inverse ?3869)) [3869, 3868, 3867] by Super 29 with 1728 at 3 Id : 1804, {_}: multiply (multiply ?3867 ?3868) ?3869 =>= multiply ?3867 (multiply ?3868 ?3869) [3869, 3868, 3867] by Demod 1764 with 29 at 2,3 Id : 1896, {_}: multiply a3 (multiply b3 c3) =?= multiply a3 (multiply b3 c3) [] by Demod 1 with 1804 at 2 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 % SZS output end CNFRefutation for GRP453-1.p 19765: solved GRP453-1.p in 0.224014 using kbo FINAL WATCH: 0.2 CPU 0.5 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP469-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19771 TreeLimitedRun: ---------------------------------------------------------- 19773: Facts: 19773: Id : 2, {_}: divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) (divide (divide ?5 ?4) ?2) =>= ?3 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 19773: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 19773: Goal: 19773: Id : 1, {_}: multiply (inverse a1) a1 =<= multiply (inverse b1) b1 [] by prove_these_axioms_1 % SZS status Timeout for GRP469-1.p FINAL WATCH: 199.4 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP470-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19823 TreeLimitedRun: ---------------------------------------------------------- 19825: Facts: 19825: Id : 2, {_}: divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) (divide (divide ?5 ?4) ?2) =>= ?3 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 19825: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 19825: Goal: 19825: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 % SZS status Timeout for GRP470-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP471-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19902 TreeLimitedRun: ---------------------------------------------------------- 19904: Facts: 19904: Id : 2, {_}: divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) (divide (divide ?5 ?4) ?2) =>= ?3 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 19904: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 19904: Goal: 19904: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 % SZS status Timeout for GRP471-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP475-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 19980 TreeLimitedRun: ---------------------------------------------------------- 19982: Facts: 19982: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 19982: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 19982: Goal: 19982: Id : 1, {_}: multiply (inverse a1) a1 =<= multiply (inverse b1) b1 [] by prove_these_axioms_1 % SZS status Timeout for GRP475-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP476-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 20049 TreeLimitedRun: ---------------------------------------------------------- 20051: Facts: 20051: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 20051: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 20051: Goal: 20051: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 Statistics : Max weight : 49 Found proof, 20.270596s % SZS status Unsatisfiable for GRP476-1.p % SZS output start CNFRefutation for GRP476-1.p Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 Id : 4, {_}: divide (inverse (divide (divide (divide ?10 ?11) ?12) (divide ?13 ?12))) (divide ?11 ?10) =>= ?13 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 Id : 5, {_}: divide (inverse (divide (divide (divide (divide ?15 ?16) (inverse (divide (divide (divide ?16 ?15) ?17) (divide ?18 ?17)))) ?19) (divide ?20 ?19))) ?18 =>= ?20 [20, 19, 18, 17, 16, 15] by Super 4 with 2 at 2,2 Id : 17, {_}: divide (inverse (divide (divide (multiply (divide ?15 ?16) (divide (divide (divide ?16 ?15) ?17) (divide ?18 ?17))) ?19) (divide ?20 ?19))) ?18 =>= ?20 [20, 19, 18, 17, 16, 15] by Demod 5 with 3 at 1,1,1,1,2 Id : 18, {_}: multiply (inverse (divide (divide (multiply (divide ?64 ?65) (divide (divide (divide ?65 ?64) ?66) (divide (inverse ?67) ?66))) ?68) (divide ?69 ?68))) ?67 =>= ?69 [69, 68, 67, 66, 65, 64] by Super 3 with 17 at 3 Id : 20, {_}: divide (inverse (divide (divide (divide ?80 ?81) ?82) ?83)) (divide ?81 ?80) =?= inverse (divide (divide (multiply (divide ?84 ?85) (divide (divide (divide ?85 ?84) ?86) (divide ?82 ?86))) ?87) (divide ?83 ?87)) [87, 86, 85, 84, 83, 82, 81, 80] by Super 2 with 17 at 2,1,1,2 Id : 886, {_}: multiply (divide (inverse (divide (divide (divide ?4983 ?4984) (inverse ?4985)) ?4986)) (divide ?4984 ?4983)) ?4985 =>= ?4986 [4986, 4985, 4984, 4983] by Super 18 with 20 at 1,2 Id : 983, {_}: multiply (divide (inverse (divide (multiply (divide ?4983 ?4984) ?4985) ?4986)) (divide ?4984 ?4983)) ?4985 =>= ?4986 [4986, 4985, 4984, 4983] by Demod 886 with 3 at 1,1,1,1,2 Id : 1147, {_}: divide (divide (inverse (divide (divide (divide ?6397 ?6398) ?6399) ?6400)) (divide ?6398 ?6397)) ?6399 =>= ?6400 [6400, 6399, 6398, 6397] by Super 17 with 20 at 1,2 Id : 1614, {_}: divide (divide (inverse (divide (divide (divide (inverse ?8515) ?8516) ?8517) ?8518)) (multiply ?8516 ?8515)) ?8517 =>= ?8518 [8518, 8517, 8516, 8515] by Super 1147 with 3 at 2,1,2 Id : 1636, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?8693) ?8694) ?8695) ?8696)) (multiply (inverse ?8694) ?8693)) ?8695 =>= ?8696 [8696, 8695, 8694, 8693] by Super 1614 with 3 at 1,1,1,1,1,2 Id : 7, {_}: divide (inverse (divide (divide ?29 ?30) (divide ?31 ?30))) (divide (divide ?32 ?33) (inverse (divide (divide (divide ?33 ?32) ?34) (divide ?29 ?34)))) =>= ?31 [34, 33, 32, 31, 30, 29] by Super 4 with 2 at 1,1,1,1,2 Id : 306, {_}: divide (inverse (divide (divide ?1495 ?1496) (divide ?1497 ?1496))) (multiply (divide ?1498 ?1499) (divide (divide (divide ?1499 ?1498) ?1500) (divide ?1495 ?1500))) =>= ?1497 [1500, 1499, 1498, 1497, 1496, 1495] by Demod 7 with 3 at 2,2 Id : 6, {_}: divide (inverse (divide (divide (divide ?22 ?23) (divide ?24 ?25)) ?26)) (divide ?23 ?22) =?= inverse (divide (divide (divide ?25 ?24) ?27) (divide ?26 ?27)) [27, 26, 25, 24, 23, 22] by Super 4 with 2 at 2,1,1,2 Id : 117, {_}: inverse (divide (divide (divide ?560 ?561) ?562) (divide (divide ?563 (divide ?561 ?560)) ?562)) =>= ?563 [563, 562, 561, 560] by Super 2 with 6 at 2 Id : 343, {_}: divide ?1844 (multiply (divide ?1845 ?1846) (divide (divide (divide ?1846 ?1845) ?1847) (divide (divide ?1848 ?1849) ?1847))) =>= divide ?1844 (divide ?1849 ?1848) [1849, 1848, 1847, 1846, 1845, 1844] by Super 306 with 117 at 1,2 Id : 13686, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?74033) ?74034) ?74035) (divide ?74036 ?74037))) (multiply (inverse ?74034) ?74033)) ?74035 =?= multiply (divide ?74038 ?74039) (divide (divide (divide ?74039 ?74038) ?74040) (divide (divide ?74037 ?74036) ?74040)) [74040, 74039, 74038, 74037, 74036, 74035, 74034, 74033] by Super 1636 with 343 at 1,1,1,2 Id : 13917, {_}: divide ?74036 ?74037 =<= multiply (divide ?74038 ?74039) (divide (divide (divide ?74039 ?74038) ?74040) (divide (divide ?74037 ?74036) ?74040)) [74040, 74039, 74038, 74037, 74036] by Demod 13686 with 1636 at 2 Id : 1174, {_}: divide (divide (inverse (multiply (divide (divide ?6597 ?6598) ?6599) ?6600)) (divide ?6598 ?6597)) ?6599 =>= inverse ?6600 [6600, 6599, 6598, 6597] by Super 1147 with 3 at 1,1,1,2 Id : 14269, {_}: divide (divide (inverse (divide ?76146 ?76147)) (divide ?76148 ?76149)) ?76150 =<= inverse (divide (divide (divide ?76150 (divide ?76149 ?76148)) ?76151) (divide (divide ?76147 ?76146) ?76151)) [76151, 76150, 76149, 76148, 76147, 76146] by Super 1174 with 13917 at 1,1,1,2 Id : 14575, {_}: divide (divide (divide (inverse (divide ?77568 ?77569)) (divide ?77570 ?77571)) ?77572) (divide (divide ?77571 ?77570) ?77572) =>= divide ?77569 ?77568 [77572, 77571, 77570, 77569, 77568] by Super 2 with 14269 at 1,2 Id : 21408, {_}: divide ?110283 ?110284 =<= multiply (divide (divide ?110283 ?110284) (inverse (divide ?110285 ?110286))) (divide ?110286 ?110285) [110286, 110285, 110284, 110283] by Super 13917 with 14575 at 2,3 Id : 22019, {_}: divide ?114166 ?114167 =<= multiply (multiply (divide ?114166 ?114167) (divide ?114168 ?114169)) (divide ?114169 ?114168) [114169, 114168, 114167, 114166] by Demod 21408 with 3 at 1,3 Id : 22076, {_}: divide (inverse (divide (divide (divide ?114625 ?114626) ?114627) (divide ?114628 ?114627))) (divide ?114626 ?114625) =?= multiply (multiply ?114628 (divide ?114629 ?114630)) (divide ?114630 ?114629) [114630, 114629, 114628, 114627, 114626, 114625] by Super 22019 with 2 at 1,1,3 Id : 22222, {_}: ?114628 =<= multiply (multiply ?114628 (divide ?114629 ?114630)) (divide ?114630 ?114629) [114630, 114629, 114628] by Demod 22076 with 2 at 2 Id : 214, {_}: inverse (divide (divide (divide ?1015 ?1016) ?1017) (divide (divide ?1018 (divide ?1016 ?1015)) ?1017)) =>= ?1018 [1018, 1017, 1016, 1015] by Super 2 with 6 at 2 Id : 225, {_}: inverse (divide (divide (divide ?1093 ?1094) (inverse ?1095)) (multiply (divide ?1096 (divide ?1094 ?1093)) ?1095)) =>= ?1096 [1096, 1095, 1094, 1093] by Super 214 with 3 at 2,1,2 Id : 244, {_}: inverse (divide (multiply (divide ?1093 ?1094) ?1095) (multiply (divide ?1096 (divide ?1094 ?1093)) ?1095)) =>= ?1096 [1096, 1095, 1094, 1093] by Demod 225 with 3 at 1,1,2 Id : 21571, {_}: divide (divide (inverse (divide ?111807 ?111808)) (divide ?111808 ?111807)) (inverse (divide ?111809 ?111810)) =>= inverse (divide ?111810 ?111809) [111810, 111809, 111808, 111807] by Super 14269 with 14575 at 1,3 Id : 21755, {_}: multiply (divide (inverse (divide ?111807 ?111808)) (divide ?111808 ?111807)) (divide ?111809 ?111810) =>= inverse (divide ?111810 ?111809) [111810, 111809, 111808, 111807] by Demod 21571 with 3 at 2 Id : 24896, {_}: inverse (divide (inverse (divide ?127751 ?127752)) (multiply (divide ?127753 (divide (divide ?127754 ?127755) (inverse (divide ?127755 ?127754)))) (divide ?127752 ?127751))) =>= ?127753 [127755, 127754, 127753, 127752, 127751] by Super 244 with 21755 at 1,1,2 Id : 25166, {_}: inverse (divide (inverse (divide ?127751 ?127752)) (multiply (divide ?127753 (multiply (divide ?127754 ?127755) (divide ?127755 ?127754))) (divide ?127752 ?127751))) =>= ?127753 [127755, 127754, 127753, 127752, 127751] by Demod 24896 with 3 at 2,1,2,1,2 Id : 9, {_}: divide (inverse (divide (divide (divide (inverse ?38) ?39) ?40) (divide ?41 ?40))) (multiply ?39 ?38) =>= ?41 [41, 40, 39, 38] by Super 2 with 3 at 2,2 Id : 21470, {_}: divide (inverse (divide ?110864 ?110865)) (multiply (divide ?110866 ?110867) (divide ?110865 ?110864)) =>= divide ?110867 ?110866 [110867, 110866, 110865, 110864] by Super 9 with 14575 at 1,1,2 Id : 25167, {_}: inverse (divide (multiply (divide ?127754 ?127755) (divide ?127755 ?127754)) ?127753) =>= ?127753 [127753, 127755, 127754] by Demod 25166 with 21470 at 1,2 Id : 25380, {_}: multiply (divide ?129669 (divide ?129670 ?129671)) (divide ?129670 ?129671) =>= ?129669 [129671, 129670, 129669] by Super 244 with 25167 at 2 Id : 25564, {_}: divide ?130549 (divide ?130550 ?130551) =>= multiply ?130549 (divide ?130551 ?130550) [130551, 130550, 130549] by Super 22222 with 25380 at 1,3 Id : 25930, {_}: multiply (multiply (inverse (divide (multiply (divide ?4983 ?4984) ?4985) ?4986)) (divide ?4983 ?4984)) ?4985 =>= ?4986 [4986, 4985, 4984, 4983] by Demod 983 with 25564 at 1,2 Id : 26261, {_}: multiply (multiply (inverse (multiply (multiply (divide ?133692 ?133693) ?133694) (divide ?133695 ?133696))) (divide ?133692 ?133693)) ?133694 =>= divide ?133696 ?133695 [133696, 133695, 133694, 133693, 133692] by Super 25930 with 25564 at 1,1,1,2 Id : 1240, {_}: multiply (divide (inverse (divide (multiply (divide ?6752 ?6753) ?6754) ?6755)) (divide ?6753 ?6752)) ?6754 =>= ?6755 [6755, 6754, 6753, 6752] by Demod 886 with 3 at 1,1,1,1,2 Id : 1266, {_}: multiply (divide (inverse (multiply (multiply (divide ?6947 ?6948) ?6949) ?6950)) (divide ?6948 ?6947)) ?6949 =>= inverse ?6950 [6950, 6949, 6948, 6947] by Super 1240 with 3 at 1,1,1,2 Id : 25929, {_}: multiply (multiply (inverse (multiply (multiply (divide ?6947 ?6948) ?6949) ?6950)) (divide ?6947 ?6948)) ?6949 =>= inverse ?6950 [6950, 6949, 6948, 6947] by Demod 1266 with 25564 at 1,2 Id : 26711, {_}: inverse (divide ?134520 ?134521) =>= divide ?134521 ?134520 [134521, 134520] by Demod 26261 with 25929 at 2 Id : 26754, {_}: inverse (multiply ?134783 ?134784) =<= divide (inverse ?134784) ?134783 [134784, 134783] by Super 26711 with 3 at 1,2 Id : 26939, {_}: multiply (inverse ?135400) ?135401 =<= inverse (multiply (inverse ?135401) ?135400) [135401, 135400] by Super 3 with 26754 at 3 Id : 26370, {_}: inverse (divide ?133695 ?133696) =>= divide ?133696 ?133695 [133696, 133695] by Demod 26261 with 25929 at 2 Id : 26623, {_}: divide ?127753 (multiply (divide ?127754 ?127755) (divide ?127755 ?127754)) =>= ?127753 [127755, 127754, 127753] by Demod 25167 with 26370 at 2 Id : 27000, {_}: inverse (inverse (multiply ?135788 ?135789)) =>= divide ?135788 (inverse ?135789) [135789, 135788] by Super 26370 with 26754 at 1,2 Id : 27495, {_}: inverse (inverse (multiply ?137003 ?137004)) =>= multiply ?137003 ?137004 [137004, 137003] by Demod 27000 with 3 at 3 Id : 25944, {_}: divide (inverse (multiply (divide (divide ?2 ?3) ?4) (divide ?4 ?5))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by Demod 2 with 25564 at 1,1,2 Id : 25945, {_}: multiply (inverse (multiply (divide (divide ?2 ?3) ?4) (divide ?4 ?5))) (divide ?2 ?3) =>= ?5 [5, 4, 3, 2] by Demod 25944 with 25564 at 2 Id : 27499, {_}: inverse (inverse ?137023) =<= multiply (inverse (multiply (divide (divide ?137024 ?137025) ?137026) (divide ?137026 ?137023))) (divide ?137024 ?137025) [137026, 137025, 137024, 137023] by Super 27495 with 25945 at 1,1,2 Id : 27572, {_}: inverse (inverse ?137023) =>= ?137023 [137023] by Demod 27499 with 25945 at 3 Id : 27666, {_}: multiply ?137494 (inverse ?137495) =>= divide ?137494 ?137495 [137495, 137494] by Super 3 with 27572 at 2,3 Id : 26714, {_}: inverse (multiply ?134533 (divide ?134534 ?134535)) =>= divide (divide ?134535 ?134534) ?134533 [134535, 134534, 134533] by Super 26711 with 25564 at 1,2 Id : 28602, {_}: multiply ?139137 (divide (divide ?139138 ?139139) ?139140) =<= divide ?139137 (multiply ?139140 (divide ?139139 ?139138)) [139140, 139139, 139138, 139137] by Super 27666 with 26714 at 2,2 Id : 31099, {_}: multiply ?127753 (divide (divide ?127754 ?127755) (divide ?127754 ?127755)) =>= ?127753 [127755, 127754, 127753] by Demod 26623 with 28602 at 2 Id : 31110, {_}: multiply ?127753 (multiply (divide ?127754 ?127755) (divide ?127755 ?127754)) =>= ?127753 [127755, 127754, 127753] by Demod 31099 with 25564 at 2,2 Id : 31343, {_}: multiply ?147233 (multiply (divide (multiply ?147234 (divide ?147235 ?147236)) ?147237) (multiply ?147237 (divide (divide ?147236 ?147235) ?147234))) =>= ?147233 [147237, 147236, 147235, 147234, 147233] by Super 31110 with 28602 at 2,2,2 Id : 14607, {_}: divide (divide (inverse (divide ?77867 ?77868)) (divide ?77869 ?77870)) ?77871 =<= inverse (divide (divide (divide ?77871 (divide ?77870 ?77869)) ?77872) (divide (divide ?77868 ?77867) ?77872)) [77872, 77871, 77870, 77869, 77868, 77867] by Super 1174 with 13917 at 1,1,1,2 Id : 14633, {_}: divide (divide (inverse (divide (inverse ?78127) ?78128)) (divide ?78129 ?78130)) ?78131 =<= inverse (divide (divide (divide ?78131 (divide ?78130 ?78129)) ?78132) (divide (multiply ?78128 ?78127) ?78132)) [78132, 78131, 78130, 78129, 78128, 78127] by Super 14607 with 3 at 1,2,1,3 Id : 26000, {_}: divide (multiply (inverse (divide (inverse ?78127) ?78128)) (divide ?78130 ?78129)) ?78131 =<= inverse (divide (divide (divide ?78131 (divide ?78130 ?78129)) ?78132) (divide (multiply ?78128 ?78127) ?78132)) [78132, 78131, 78129, 78130, 78128, 78127] by Demod 14633 with 25564 at 1,2 Id : 26001, {_}: divide (multiply (inverse (divide (inverse ?78127) ?78128)) (divide ?78130 ?78129)) ?78131 =<= inverse (divide (divide (multiply ?78131 (divide ?78129 ?78130)) ?78132) (divide (multiply ?78128 ?78127) ?78132)) [78132, 78131, 78129, 78130, 78128, 78127] by Demod 26000 with 25564 at 1,1,1,3 Id : 26002, {_}: divide (multiply (inverse (divide (inverse ?78127) ?78128)) (divide ?78130 ?78129)) ?78131 =<= inverse (multiply (divide (multiply ?78131 (divide ?78129 ?78130)) ?78132) (divide ?78132 (multiply ?78128 ?78127))) [78132, 78131, 78129, 78130, 78128, 78127] by Demod 26001 with 25564 at 1,3 Id : 26627, {_}: divide (multiply (divide ?78128 (inverse ?78127)) (divide ?78130 ?78129)) ?78131 =<= inverse (multiply (divide (multiply ?78131 (divide ?78129 ?78130)) ?78132) (divide ?78132 (multiply ?78128 ?78127))) [78132, 78131, 78129, 78130, 78127, 78128] by Demod 26002 with 26370 at 1,1,2 Id : 26660, {_}: divide (multiply (multiply ?78128 ?78127) (divide ?78130 ?78129)) ?78131 =<= inverse (multiply (divide (multiply ?78131 (divide ?78129 ?78130)) ?78132) (divide ?78132 (multiply ?78128 ?78127))) [78132, 78131, 78129, 78130, 78127, 78128] by Demod 26627 with 3 at 1,1,2 Id : 28545, {_}: divide (multiply (multiply ?78128 ?78127) (divide ?78130 ?78129)) ?78131 =<= divide (divide (multiply ?78128 ?78127) ?78132) (divide (multiply ?78131 (divide ?78129 ?78130)) ?78132) [78132, 78131, 78129, 78130, 78127, 78128] by Demod 26660 with 26714 at 3 Id : 28593, {_}: divide (multiply (multiply ?78128 ?78127) (divide ?78130 ?78129)) ?78131 =<= multiply (divide (multiply ?78128 ?78127) ?78132) (divide ?78132 (multiply ?78131 (divide ?78129 ?78130))) [78132, 78131, 78129, 78130, 78127, 78128] by Demod 28545 with 25564 at 3 Id : 31096, {_}: divide (multiply (multiply ?78128 ?78127) (divide ?78130 ?78129)) ?78131 =<= multiply (divide (multiply ?78128 ?78127) ?78132) (multiply ?78132 (divide (divide ?78130 ?78129) ?78131)) [78132, 78131, 78129, 78130, 78127, 78128] by Demod 28593 with 28602 at 2,3 Id : 31446, {_}: multiply ?147233 (divide (multiply (multiply ?147234 (divide ?147235 ?147236)) (divide ?147236 ?147235)) ?147234) =>= ?147233 [147236, 147235, 147234, 147233] by Demod 31343 with 31096 at 2,2 Id : 31447, {_}: multiply ?147233 (divide ?147234 ?147234) =>= ?147233 [147234, 147233] by Demod 31446 with 22222 at 1,2,2 Id : 32734, {_}: multiply (inverse (divide ?153936 ?153936)) ?153937 =>= inverse (inverse ?153937) [153937, 153936] by Super 26939 with 31447 at 1,3 Id : 32903, {_}: multiply (divide ?153936 ?153936) ?153937 =>= inverse (inverse ?153937) [153937, 153936] by Demod 32734 with 26370 at 1,2 Id : 35228, {_}: multiply (divide ?160696 ?160696) ?160697 =>= ?160697 [160697, 160696] by Demod 32903 with 27572 at 3 Id : 35243, {_}: multiply (multiply (inverse ?160773) ?160773) ?160774 =>= ?160774 [160774, 160773] by Super 35228 with 3 at 1,2 Id : 40069, {_}: a2 === a2 [] by Demod 1 with 35243 at 2 Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 % SZS output end CNFRefutation for GRP476-1.p 20051: solved GRP476-1.p in 10.152634 using nrkbo WARNING: TreeLimitedRun lost 29.75s, total lost is 29.75s FINAL WATCH: 39.9 CPU 20.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP477-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 20077 TreeLimitedRun: ---------------------------------------------------------- 20079: Facts: 20079: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 20079: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 20079: Goal: 20079: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 Statistics : Max weight : 50 Found proof, 22.575798s % SZS status Unsatisfiable for GRP477-1.p % SZS output start CNFRefutation for GRP477-1.p Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 Id : 4, {_}: divide (inverse (divide (divide (divide ?10 ?11) ?12) (divide ?13 ?12))) (divide ?11 ?10) =>= ?13 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 Id : 5, {_}: divide (inverse (divide (divide (divide (divide ?15 ?16) (inverse (divide (divide (divide ?16 ?15) ?17) (divide ?18 ?17)))) ?19) (divide ?20 ?19))) ?18 =>= ?20 [20, 19, 18, 17, 16, 15] by Super 4 with 2 at 2,2 Id : 17, {_}: divide (inverse (divide (divide (multiply (divide ?15 ?16) (divide (divide (divide ?16 ?15) ?17) (divide ?18 ?17))) ?19) (divide ?20 ?19))) ?18 =>= ?20 [20, 19, 18, 17, 16, 15] by Demod 5 with 3 at 1,1,1,1,2 Id : 18, {_}: multiply (inverse (divide (divide (multiply (divide ?64 ?65) (divide (divide (divide ?65 ?64) ?66) (divide (inverse ?67) ?66))) ?68) (divide ?69 ?68))) ?67 =>= ?69 [69, 68, 67, 66, 65, 64] by Super 3 with 17 at 3 Id : 20, {_}: divide (inverse (divide (divide (divide ?80 ?81) ?82) ?83)) (divide ?81 ?80) =?= inverse (divide (divide (multiply (divide ?84 ?85) (divide (divide (divide ?85 ?84) ?86) (divide ?82 ?86))) ?87) (divide ?83 ?87)) [87, 86, 85, 84, 83, 82, 81, 80] by Super 2 with 17 at 2,1,1,2 Id : 886, {_}: multiply (divide (inverse (divide (divide (divide ?4983 ?4984) (inverse ?4985)) ?4986)) (divide ?4984 ?4983)) ?4985 =>= ?4986 [4986, 4985, 4984, 4983] by Super 18 with 20 at 1,2 Id : 1240, {_}: multiply (divide (inverse (divide (multiply (divide ?6752 ?6753) ?6754) ?6755)) (divide ?6753 ?6752)) ?6754 =>= ?6755 [6755, 6754, 6753, 6752] by Demod 886 with 3 at 1,1,1,1,2 Id : 1264, {_}: multiply (divide (inverse (divide (multiply (multiply ?6936 ?6937) ?6938) ?6939)) (divide (inverse ?6937) ?6936)) ?6938 =>= ?6939 [6939, 6938, 6937, 6936] by Super 1240 with 3 at 1,1,1,1,1,2 Id : 1147, {_}: divide (divide (inverse (divide (divide (divide ?6397 ?6398) ?6399) ?6400)) (divide ?6398 ?6397)) ?6399 =>= ?6400 [6400, 6399, 6398, 6397] by Super 17 with 20 at 1,2 Id : 1614, {_}: divide (divide (inverse (divide (divide (divide (inverse ?8515) ?8516) ?8517) ?8518)) (multiply ?8516 ?8515)) ?8517 =>= ?8518 [8518, 8517, 8516, 8515] by Super 1147 with 3 at 2,1,2 Id : 1636, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?8693) ?8694) ?8695) ?8696)) (multiply (inverse ?8694) ?8693)) ?8695 =>= ?8696 [8696, 8695, 8694, 8693] by Super 1614 with 3 at 1,1,1,1,1,2 Id : 7, {_}: divide (inverse (divide (divide ?29 ?30) (divide ?31 ?30))) (divide (divide ?32 ?33) (inverse (divide (divide (divide ?33 ?32) ?34) (divide ?29 ?34)))) =>= ?31 [34, 33, 32, 31, 30, 29] by Super 4 with 2 at 1,1,1,1,2 Id : 306, {_}: divide (inverse (divide (divide ?1495 ?1496) (divide ?1497 ?1496))) (multiply (divide ?1498 ?1499) (divide (divide (divide ?1499 ?1498) ?1500) (divide ?1495 ?1500))) =>= ?1497 [1500, 1499, 1498, 1497, 1496, 1495] by Demod 7 with 3 at 2,2 Id : 6, {_}: divide (inverse (divide (divide (divide ?22 ?23) (divide ?24 ?25)) ?26)) (divide ?23 ?22) =?= inverse (divide (divide (divide ?25 ?24) ?27) (divide ?26 ?27)) [27, 26, 25, 24, 23, 22] by Super 4 with 2 at 2,1,1,2 Id : 117, {_}: inverse (divide (divide (divide ?560 ?561) ?562) (divide (divide ?563 (divide ?561 ?560)) ?562)) =>= ?563 [563, 562, 561, 560] by Super 2 with 6 at 2 Id : 343, {_}: divide ?1844 (multiply (divide ?1845 ?1846) (divide (divide (divide ?1846 ?1845) ?1847) (divide (divide ?1848 ?1849) ?1847))) =>= divide ?1844 (divide ?1849 ?1848) [1849, 1848, 1847, 1846, 1845, 1844] by Super 306 with 117 at 1,2 Id : 13686, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?74033) ?74034) ?74035) (divide ?74036 ?74037))) (multiply (inverse ?74034) ?74033)) ?74035 =?= multiply (divide ?74038 ?74039) (divide (divide (divide ?74039 ?74038) ?74040) (divide (divide ?74037 ?74036) ?74040)) [74040, 74039, 74038, 74037, 74036, 74035, 74034, 74033] by Super 1636 with 343 at 1,1,1,2 Id : 13917, {_}: divide ?74036 ?74037 =<= multiply (divide ?74038 ?74039) (divide (divide (divide ?74039 ?74038) ?74040) (divide (divide ?74037 ?74036) ?74040)) [74040, 74039, 74038, 74037, 74036] by Demod 13686 with 1636 at 2 Id : 1174, {_}: divide (divide (inverse (multiply (divide (divide ?6597 ?6598) ?6599) ?6600)) (divide ?6598 ?6597)) ?6599 =>= inverse ?6600 [6600, 6599, 6598, 6597] by Super 1147 with 3 at 1,1,1,2 Id : 14269, {_}: divide (divide (inverse (divide ?76146 ?76147)) (divide ?76148 ?76149)) ?76150 =<= inverse (divide (divide (divide ?76150 (divide ?76149 ?76148)) ?76151) (divide (divide ?76147 ?76146) ?76151)) [76151, 76150, 76149, 76148, 76147, 76146] by Super 1174 with 13917 at 1,1,1,2 Id : 14575, {_}: divide (divide (divide (inverse (divide ?77568 ?77569)) (divide ?77570 ?77571)) ?77572) (divide (divide ?77571 ?77570) ?77572) =>= divide ?77569 ?77568 [77572, 77571, 77570, 77569, 77568] by Super 2 with 14269 at 1,2 Id : 21408, {_}: divide ?110283 ?110284 =<= multiply (divide (divide ?110283 ?110284) (inverse (divide ?110285 ?110286))) (divide ?110286 ?110285) [110286, 110285, 110284, 110283] by Super 13917 with 14575 at 2,3 Id : 22019, {_}: divide ?114166 ?114167 =<= multiply (multiply (divide ?114166 ?114167) (divide ?114168 ?114169)) (divide ?114169 ?114168) [114169, 114168, 114167, 114166] by Demod 21408 with 3 at 1,3 Id : 22076, {_}: divide (inverse (divide (divide (divide ?114625 ?114626) ?114627) (divide ?114628 ?114627))) (divide ?114626 ?114625) =?= multiply (multiply ?114628 (divide ?114629 ?114630)) (divide ?114630 ?114629) [114630, 114629, 114628, 114627, 114626, 114625] by Super 22019 with 2 at 1,1,3 Id : 22222, {_}: ?114628 =<= multiply (multiply ?114628 (divide ?114629 ?114630)) (divide ?114630 ?114629) [114630, 114629, 114628] by Demod 22076 with 2 at 2 Id : 214, {_}: inverse (divide (divide (divide ?1015 ?1016) ?1017) (divide (divide ?1018 (divide ?1016 ?1015)) ?1017)) =>= ?1018 [1018, 1017, 1016, 1015] by Super 2 with 6 at 2 Id : 225, {_}: inverse (divide (divide (divide ?1093 ?1094) (inverse ?1095)) (multiply (divide ?1096 (divide ?1094 ?1093)) ?1095)) =>= ?1096 [1096, 1095, 1094, 1093] by Super 214 with 3 at 2,1,2 Id : 244, {_}: inverse (divide (multiply (divide ?1093 ?1094) ?1095) (multiply (divide ?1096 (divide ?1094 ?1093)) ?1095)) =>= ?1096 [1096, 1095, 1094, 1093] by Demod 225 with 3 at 1,1,2 Id : 21571, {_}: divide (divide (inverse (divide ?111807 ?111808)) (divide ?111808 ?111807)) (inverse (divide ?111809 ?111810)) =>= inverse (divide ?111810 ?111809) [111810, 111809, 111808, 111807] by Super 14269 with 14575 at 1,3 Id : 21755, {_}: multiply (divide (inverse (divide ?111807 ?111808)) (divide ?111808 ?111807)) (divide ?111809 ?111810) =>= inverse (divide ?111810 ?111809) [111810, 111809, 111808, 111807] by Demod 21571 with 3 at 2 Id : 24896, {_}: inverse (divide (inverse (divide ?127751 ?127752)) (multiply (divide ?127753 (divide (divide ?127754 ?127755) (inverse (divide ?127755 ?127754)))) (divide ?127752 ?127751))) =>= ?127753 [127755, 127754, 127753, 127752, 127751] by Super 244 with 21755 at 1,1,2 Id : 25166, {_}: inverse (divide (inverse (divide ?127751 ?127752)) (multiply (divide ?127753 (multiply (divide ?127754 ?127755) (divide ?127755 ?127754))) (divide ?127752 ?127751))) =>= ?127753 [127755, 127754, 127753, 127752, 127751] by Demod 24896 with 3 at 2,1,2,1,2 Id : 9, {_}: divide (inverse (divide (divide (divide (inverse ?38) ?39) ?40) (divide ?41 ?40))) (multiply ?39 ?38) =>= ?41 [41, 40, 39, 38] by Super 2 with 3 at 2,2 Id : 21470, {_}: divide (inverse (divide ?110864 ?110865)) (multiply (divide ?110866 ?110867) (divide ?110865 ?110864)) =>= divide ?110867 ?110866 [110867, 110866, 110865, 110864] by Super 9 with 14575 at 1,1,2 Id : 25167, {_}: inverse (divide (multiply (divide ?127754 ?127755) (divide ?127755 ?127754)) ?127753) =>= ?127753 [127753, 127755, 127754] by Demod 25166 with 21470 at 1,2 Id : 25380, {_}: multiply (divide ?129669 (divide ?129670 ?129671)) (divide ?129670 ?129671) =>= ?129669 [129671, 129670, 129669] by Super 244 with 25167 at 2 Id : 25564, {_}: divide ?130549 (divide ?130550 ?130551) =>= multiply ?130549 (divide ?130551 ?130550) [130551, 130550, 130549] by Super 22222 with 25380 at 1,3 Id : 25961, {_}: multiply (multiply (inverse (divide (multiply (multiply ?6936 ?6937) ?6938) ?6939)) (divide ?6936 (inverse ?6937))) ?6938 =>= ?6939 [6939, 6938, 6937, 6936] by Demod 1264 with 25564 at 1,2 Id : 26026, {_}: multiply (multiply (inverse (divide (multiply (multiply ?6936 ?6937) ?6938) ?6939)) (multiply ?6936 ?6937)) ?6938 =>= ?6939 [6939, 6938, 6937, 6936] by Demod 25961 with 3 at 2,1,2 Id : 983, {_}: multiply (divide (inverse (divide (multiply (divide ?4983 ?4984) ?4985) ?4986)) (divide ?4984 ?4983)) ?4985 =>= ?4986 [4986, 4985, 4984, 4983] by Demod 886 with 3 at 1,1,1,1,2 Id : 25930, {_}: multiply (multiply (inverse (divide (multiply (divide ?4983 ?4984) ?4985) ?4986)) (divide ?4983 ?4984)) ?4985 =>= ?4986 [4986, 4985, 4984, 4983] by Demod 983 with 25564 at 1,2 Id : 26261, {_}: multiply (multiply (inverse (multiply (multiply (divide ?133692 ?133693) ?133694) (divide ?133695 ?133696))) (divide ?133692 ?133693)) ?133694 =>= divide ?133696 ?133695 [133696, 133695, 133694, 133693, 133692] by Super 25930 with 25564 at 1,1,1,2 Id : 1266, {_}: multiply (divide (inverse (multiply (multiply (divide ?6947 ?6948) ?6949) ?6950)) (divide ?6948 ?6947)) ?6949 =>= inverse ?6950 [6950, 6949, 6948, 6947] by Super 1240 with 3 at 1,1,1,2 Id : 25929, {_}: multiply (multiply (inverse (multiply (multiply (divide ?6947 ?6948) ?6949) ?6950)) (divide ?6947 ?6948)) ?6949 =>= inverse ?6950 [6950, 6949, 6948, 6947] by Demod 1266 with 25564 at 1,2 Id : 26370, {_}: inverse (divide ?133695 ?133696) =>= divide ?133696 ?133695 [133696, 133695] by Demod 26261 with 25929 at 2 Id : 26600, {_}: multiply (multiply (divide ?6939 (multiply (multiply ?6936 ?6937) ?6938)) (multiply ?6936 ?6937)) ?6938 =>= ?6939 [6938, 6937, 6936, 6939] by Demod 26026 with 26370 at 1,1,2 Id : 22372, {_}: ?115839 =<= multiply (multiply ?115839 (divide ?115840 ?115841)) (divide ?115841 ?115840) [115841, 115840, 115839] by Demod 22076 with 2 at 2 Id : 22428, {_}: ?116237 =<= multiply (multiply ?116237 (multiply ?116238 ?116239)) (divide (inverse ?116239) ?116238) [116239, 116238, 116237] by Super 22372 with 3 at 2,1,3 Id : 26711, {_}: inverse (divide ?134520 ?134521) =>= divide ?134521 ?134520 [134521, 134520] by Demod 26261 with 25929 at 2 Id : 26754, {_}: inverse (multiply ?134783 ?134784) =<= divide (inverse ?134784) ?134783 [134784, 134783] by Super 26711 with 3 at 1,2 Id : 26828, {_}: ?116237 =<= multiply (multiply ?116237 (multiply ?116238 ?116239)) (inverse (multiply ?116238 ?116239)) [116239, 116238, 116237] by Demod 22428 with 26754 at 2,3 Id : 27000, {_}: inverse (inverse (multiply ?135788 ?135789)) =>= divide ?135788 (inverse ?135789) [135789, 135788] by Super 26370 with 26754 at 1,2 Id : 27495, {_}: inverse (inverse (multiply ?137003 ?137004)) =>= multiply ?137003 ?137004 [137004, 137003] by Demod 27000 with 3 at 3 Id : 25944, {_}: divide (inverse (multiply (divide (divide ?2 ?3) ?4) (divide ?4 ?5))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by Demod 2 with 25564 at 1,1,2 Id : 25945, {_}: multiply (inverse (multiply (divide (divide ?2 ?3) ?4) (divide ?4 ?5))) (divide ?2 ?3) =>= ?5 [5, 4, 3, 2] by Demod 25944 with 25564 at 2 Id : 27499, {_}: inverse (inverse ?137023) =<= multiply (inverse (multiply (divide (divide ?137024 ?137025) ?137026) (divide ?137026 ?137023))) (divide ?137024 ?137025) [137026, 137025, 137024, 137023] by Super 27495 with 25945 at 1,1,2 Id : 27572, {_}: inverse (inverse ?137023) =>= ?137023 [137023] by Demod 27499 with 25945 at 3 Id : 27666, {_}: multiply ?137494 (inverse ?137495) =>= divide ?137494 ?137495 [137495, 137494] by Super 3 with 27572 at 2,3 Id : 27746, {_}: ?116237 =<= divide (multiply ?116237 (multiply ?116238 ?116239)) (multiply ?116238 ?116239) [116239, 116238, 116237] by Demod 26828 with 27666 at 3 Id : 22, {_}: divide (inverse (divide (divide (multiply (divide ?98 ?99) (divide (divide (divide ?99 ?98) ?100) (divide ?101 ?100))) ?102) (divide ?103 ?102))) ?101 =>= ?103 [103, 102, 101, 100, 99, 98] by Demod 5 with 3 at 1,1,1,1,2 Id : 26, {_}: divide (inverse (divide (divide (multiply (divide ?132 ?133) (divide (divide (divide ?133 ?132) (divide ?134 ?135)) ?136)) ?137) (divide ?138 ?137))) (inverse (divide (divide (divide ?135 ?134) ?139) (divide ?136 ?139))) =>= ?138 [139, 138, 137, 136, 135, 134, 133, 132] by Super 22 with 2 at 2,2,1,1,1,1,2 Id : 42, {_}: multiply (inverse (divide (divide (multiply (divide ?132 ?133) (divide (divide (divide ?133 ?132) (divide ?134 ?135)) ?136)) ?137) (divide ?138 ?137))) (divide (divide (divide ?135 ?134) ?139) (divide ?136 ?139)) =>= ?138 [139, 138, 137, 136, 135, 134, 133, 132] by Demod 26 with 3 at 2 Id : 31739, {_}: multiply (inverse (divide (divide (multiply (divide ?132 ?133) (divide (multiply (divide ?133 ?132) (divide ?135 ?134)) ?136)) ?137) (divide ?138 ?137))) (divide (divide (divide ?135 ?134) ?139) (divide ?136 ?139)) =>= ?138 [139, 138, 137, 136, 134, 135, 133, 132] by Demod 42 with 25564 at 1,2,1,1,1,1,2 Id : 31740, {_}: multiply (inverse (multiply (divide (multiply (divide ?132 ?133) (divide (multiply (divide ?133 ?132) (divide ?135 ?134)) ?136)) ?137) (divide ?137 ?138))) (divide (divide (divide ?135 ?134) ?139) (divide ?136 ?139)) =>= ?138 [139, 138, 137, 136, 134, 135, 133, 132] by Demod 31739 with 25564 at 1,1,2 Id : 26714, {_}: inverse (multiply ?134533 (divide ?134534 ?134535)) =>= divide (divide ?134535 ?134534) ?134533 [134535, 134534, 134533] by Super 26711 with 25564 at 1,2 Id : 31741, {_}: multiply (divide (divide ?138 ?137) (divide (multiply (divide ?132 ?133) (divide (multiply (divide ?133 ?132) (divide ?135 ?134)) ?136)) ?137)) (divide (divide (divide ?135 ?134) ?139) (divide ?136 ?139)) =>= ?138 [139, 136, 134, 135, 133, 132, 137, 138] by Demod 31740 with 26714 at 1,2 Id : 31742, {_}: multiply (multiply (divide ?138 ?137) (divide ?137 (multiply (divide ?132 ?133) (divide (multiply (divide ?133 ?132) (divide ?135 ?134)) ?136)))) (divide (divide (divide ?135 ?134) ?139) (divide ?136 ?139)) =>= ?138 [139, 136, 134, 135, 133, 132, 137, 138] by Demod 31741 with 25564 at 1,2 Id : 28602, {_}: multiply ?139137 (divide (divide ?139138 ?139139) ?139140) =<= divide ?139137 (multiply ?139140 (divide ?139139 ?139138)) [139140, 139139, 139138, 139137] by Super 27666 with 26714 at 2,2 Id : 31743, {_}: multiply (multiply (divide ?138 ?137) (multiply ?137 (divide (divide ?136 (multiply (divide ?133 ?132) (divide ?135 ?134))) (divide ?132 ?133)))) (divide (divide (divide ?135 ?134) ?139) (divide ?136 ?139)) =>= ?138 [139, 134, 135, 132, 133, 136, 137, 138] by Demod 31742 with 28602 at 2,1,2 Id : 31744, {_}: multiply (multiply (divide ?138 ?137) (multiply ?137 (divide (multiply ?136 (divide (divide ?134 ?135) (divide ?133 ?132))) (divide ?132 ?133)))) (divide (divide (divide ?135 ?134) ?139) (divide ?136 ?139)) =>= ?138 [139, 132, 133, 135, 134, 136, 137, 138] by Demod 31743 with 28602 at 1,2,2,1,2 Id : 31745, {_}: multiply (multiply (divide ?138 ?137) (multiply ?137 (divide (multiply ?136 (multiply (divide ?134 ?135) (divide ?132 ?133))) (divide ?132 ?133)))) (divide (divide (divide ?135 ?134) ?139) (divide ?136 ?139)) =>= ?138 [139, 133, 132, 135, 134, 136, 137, 138] by Demod 31744 with 25564 at 2,1,2,2,1,2 Id : 31746, {_}: multiply (multiply (divide ?138 ?137) (multiply ?137 (multiply (multiply ?136 (multiply (divide ?134 ?135) (divide ?132 ?133))) (divide ?133 ?132)))) (divide (divide (divide ?135 ?134) ?139) (divide ?136 ?139)) =>= ?138 [139, 133, 132, 135, 134, 136, 137, 138] by Demod 31745 with 25564 at 2,2,1,2 Id : 31747, {_}: multiply (multiply (divide ?138 ?137) (multiply ?137 (multiply (multiply ?136 (multiply (divide ?134 ?135) (divide ?132 ?133))) (divide ?133 ?132)))) (multiply (divide (divide ?135 ?134) ?139) (divide ?139 ?136)) =>= ?138 [139, 133, 132, 135, 134, 136, 137, 138] by Demod 31746 with 25564 at 2,2 Id : 31770, {_}: ?148258 =<= divide (multiply ?148258 (multiply (multiply (divide ?148259 ?148260) (multiply ?148260 (multiply (multiply ?148261 (multiply (divide ?148262 ?148263) (divide ?148264 ?148265))) (divide ?148265 ?148264)))) (multiply (divide (divide ?148263 ?148262) ?148266) (divide ?148266 ?148261)))) ?148259 [148266, 148265, 148264, 148263, 148262, 148261, 148260, 148259, 148258] by Super 27746 with 31747 at 2,3 Id : 32239, {_}: ?148258 =<= divide (multiply ?148258 ?148259) ?148259 [148259, 148258] by Demod 31770 with 31747 at 2,1,3 Id : 43499, {_}: multiply (multiply ?176290 (multiply ?176291 ?176292)) ?176293 =>= multiply ?176290 (multiply (multiply ?176291 ?176292) ?176293) [176293, 176292, 176291, 176290] by Super 26600 with 32239 at 1,1,2 Id : 26638, {_}: multiply (multiply (divide ?4986 (multiply (divide ?4983 ?4984) ?4985)) (divide ?4983 ?4984)) ?4985 =>= ?4986 [4985, 4984, 4983, 4986] by Demod 25930 with 26370 at 1,1,2 Id : 43500, {_}: multiply (multiply ?176295 ?176296) ?176297 =<= multiply ?176295 (multiply (multiply (multiply (divide ?176296 (multiply (divide ?176298 ?176299) ?176300)) (divide ?176298 ?176299)) ?176300) ?176297) [176300, 176299, 176298, 176297, 176296, 176295] by Super 43499 with 26638 at 2,1,2 Id : 43677, {_}: multiply (multiply ?176295 ?176296) ?176297 =>= multiply ?176295 (multiply ?176296 ?176297) [176297, 176296, 176295] by Demod 43500 with 26638 at 1,2,3 Id : 44020, {_}: multiply a3 (multiply b3 c3) =?= multiply a3 (multiply b3 c3) [] by Demod 1 with 43677 at 2 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 % SZS output end CNFRefutation for GRP477-1.p 20080: solved GRP477-1.p in 11.344708 using kbo WARNING: TreeLimitedRun lost 28.60s, total lost is 28.60s FINAL WATCH: 40.0 CPU 22.7 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP478-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 20094 TreeLimitedRun: ---------------------------------------------------------- 20096: Facts: 20096: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5)))) ?5 =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 20096: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 20096: Goal: 20096: Id : 1, {_}: multiply (inverse a1) a1 =<= multiply (inverse b1) b1 [] by prove_these_axioms_1 % SZS status Timeout for GRP478-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP479-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 20173 TreeLimitedRun: ---------------------------------------------------------- 20175: Facts: 20175: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5)))) ?5 =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 20175: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 20175: Goal: 20175: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 Statistics : Max weight : 43 Found proof, 67.998150s % SZS status Unsatisfiable for GRP479-1.p % SZS output start CNFRefutation for GRP479-1.p Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5)))) ?5 =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 Id : 4, {_}: divide (inverse (divide (divide (divide ?10 ?10) ?11) (divide ?12 (divide ?11 ?13)))) ?13 =>= ?12 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 Id : 6, {_}: divide (inverse (divide (divide (divide ?22 ?22) ?23) ?24)) ?25 =?= inverse (divide (divide (divide ?26 ?26) ?27) (divide ?24 (divide ?27 (divide ?23 ?25)))) [27, 26, 25, 24, 23, 22] by Super 4 with 2 at 2,1,1,2 Id : 2430, {_}: divide (divide (inverse (divide (divide (divide ?15857 ?15857) ?15858) ?15859)) ?15860) (divide ?15858 ?15860) =>= ?15859 [15860, 15859, 15858, 15857] by Super 2 with 6 at 1,2 Id : 4488, {_}: divide (divide (divide (inverse (divide (divide (divide ?26122 ?26122) ?26123) ?26124)) ?26125) ?26126) (divide ?26127 ?26126) =>= divide ?26124 (divide ?26127 (divide ?26123 ?26125)) [26127, 26126, 26125, 26124, 26123, 26122] by Super 2430 with 6 at 1,1,2 Id : 5751, {_}: divide (divide (divide (inverse (divide (multiply (divide ?34120 ?34120) ?34121) ?34122)) ?34123) ?34124) (divide ?34125 ?34124) =>= divide ?34122 (divide ?34125 (divide (inverse ?34121) ?34123)) [34125, 34124, 34123, 34122, 34121, 34120] by Super 4488 with 3 at 1,1,1,1,1,2 Id : 9, {_}: divide (inverse (divide (divide (multiply (inverse ?36) ?36) ?37) (divide ?38 (divide ?37 ?39)))) ?39 =>= ?38 [39, 38, 37, 36] by Super 2 with 3 at 1,1,1,1,2 Id : 28, {_}: divide (inverse (divide (divide (divide ?98 ?98) (inverse (divide (divide (multiply (inverse ?99) ?99) ?100) (divide ?101 (divide ?100 ?102))))) (divide ?103 ?101))) ?102 =>= ?103 [103, 102, 101, 100, 99, 98] by Super 2 with 9 at 2,2,1,1,2 Id : 40, {_}: divide (inverse (divide (multiply (divide ?98 ?98) (divide (divide (multiply (inverse ?99) ?99) ?100) (divide ?101 (divide ?100 ?102)))) (divide ?103 ?101))) ?102 =>= ?103 [103, 102, 101, 100, 99, 98] by Demod 28 with 3 at 1,1,1,2 Id : 5798, {_}: divide (divide ?34563 ?34564) (divide ?34565 ?34564) =?= divide (divide ?34563 ?34566) (divide ?34565 (divide (inverse (divide (divide (multiply (inverse ?34567) ?34567) ?34568) (divide ?34566 (divide ?34568 ?34569)))) ?34569)) [34569, 34568, 34567, 34566, 34565, 34564, 34563] by Super 5751 with 40 at 1,1,2 Id : 5931, {_}: divide (divide ?34563 ?34564) (divide ?34565 ?34564) =?= divide (divide ?34563 ?34566) (divide ?34565 ?34566) [34566, 34565, 34564, 34563] by Demod 5798 with 9 at 2,2,3 Id : 5995, {_}: divide (inverse (divide (divide (divide ?34971 ?34971) ?34972) (divide ?34973 (divide ?34972 ?34974)))) ?34974 =?= inverse (divide (divide (divide ?34975 ?34975) ?34976) (divide (divide ?34973 ?34977) (divide ?34976 ?34977))) [34977, 34976, 34975, 34974, 34973, 34972, 34971] by Super 6 with 5931 at 2,1,3 Id : 6622, {_}: ?38567 =<= inverse (divide (divide (divide ?38568 ?38568) ?38569) (divide (divide ?38567 ?38570) (divide ?38569 ?38570))) [38570, 38569, 38568, 38567] by Demod 5995 with 2 at 2 Id : 7592, {_}: ?43971 =<= inverse (divide (divide (multiply (inverse ?43972) ?43972) ?43973) (divide (divide ?43971 ?43974) (divide ?43973 ?43974))) [43974, 43973, 43972, 43971] by Super 6622 with 3 at 1,1,1,3 Id : 7706, {_}: ?44807 =<= inverse (divide (multiply (multiply (inverse ?44808) ?44808) ?44809) (divide (divide ?44807 ?44810) (divide (inverse ?44809) ?44810))) [44810, 44809, 44808, 44807] by Super 7592 with 3 at 1,1,3 Id : 2450, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?16019) ?16019) ?16020) ?16021)) ?16022) (divide ?16020 ?16022) =>= ?16021 [16022, 16021, 16020, 16019] by Super 2430 with 3 at 1,1,1,1,1,2 Id : 6177, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?36391) ?36391) ?36392) (divide ?36393 ?36392))) ?36394) (divide ?36395 ?36394) =>= divide ?36393 ?36395 [36395, 36394, 36393, 36392, 36391] by Super 2450 with 5931 at 1,1,1,2 Id : 2448, {_}: divide (divide (inverse (divide (divide (divide ?16005 ?16005) ?16006) ?16007)) (inverse ?16008)) (multiply ?16006 ?16008) =>= ?16007 [16008, 16007, 16006, 16005] by Super 2430 with 3 at 2,2 Id : 2702, {_}: divide (multiply (inverse (divide (divide (divide ?17041 ?17041) ?17042) ?17043)) ?17044) (multiply ?17042 ?17044) =>= ?17043 [17044, 17043, 17042, 17041] by Demod 2448 with 3 at 1,2 Id : 2719, {_}: divide (multiply (inverse (divide (divide (multiply (inverse ?17182) ?17182) ?17183) ?17184)) ?17185) (multiply ?17183 ?17185) =>= ?17184 [17185, 17184, 17183, 17182] by Super 2702 with 3 at 1,1,1,1,1,2 Id : 6185, {_}: divide (multiply (inverse (divide (divide (multiply (inverse ?36437) ?36437) ?36438) (divide ?36439 ?36438))) ?36440) (multiply ?36441 ?36440) =>= divide ?36439 ?36441 [36441, 36440, 36439, 36438, 36437] by Super 2719 with 5931 at 1,1,1,2 Id : 2494, {_}: divide (multiply (inverse (divide (divide (divide ?16005 ?16005) ?16006) ?16007)) ?16008) (multiply ?16006 ?16008) =>= ?16007 [16008, 16007, 16006, 16005] by Demod 2448 with 3 at 1,2 Id : 6659, {_}: ?38854 =<= inverse (divide (divide (divide ?38855 ?38855) ?38856) (divide (divide ?38854 (inverse ?38857)) (multiply ?38856 ?38857))) [38857, 38856, 38855, 38854] by Super 6622 with 3 at 2,2,1,3 Id : 6763, {_}: ?38854 =<= inverse (divide (divide (divide ?38855 ?38855) ?38856) (divide (multiply ?38854 ?38857) (multiply ?38856 ?38857))) [38857, 38856, 38855, 38854] by Demod 6659 with 3 at 1,2,1,3 Id : 6851, {_}: divide (multiply ?39858 ?39859) (multiply ?39860 ?39859) =?= divide (multiply ?39858 ?39861) (multiply ?39860 ?39861) [39861, 39860, 39859, 39858] by Super 2494 with 6763 at 1,1,2 Id : 8, {_}: divide (inverse (divide (divide (divide ?31 ?31) ?32) (divide ?33 (multiply ?32 ?34)))) (inverse ?34) =>= ?33 [34, 33, 32, 31] by Super 2 with 3 at 2,2,1,1,2 Id : 18, {_}: multiply (inverse (divide (divide (divide ?62 ?62) ?63) (divide ?64 (multiply ?63 ?65)))) ?65 =>= ?64 [65, 64, 63, 62] by Demod 8 with 3 at 2 Id : 22, {_}: multiply (inverse (divide (multiply (divide ?86 ?86) ?87) (divide ?88 (multiply (inverse ?87) ?89)))) ?89 =>= ?88 [89, 88, 87, 86] by Super 18 with 3 at 1,1,1,2 Id : 69, {_}: multiply (inverse (divide (divide (multiply (inverse ?280) ?280) ?281) (divide ?282 (multiply ?281 ?283)))) ?283 =>= ?282 [283, 282, 281, 280] by Super 18 with 3 at 1,1,1,1,2 Id : 75, {_}: multiply (inverse (divide (multiply (multiply (inverse ?320) ?320) ?321) (divide ?322 (multiply (inverse ?321) ?323)))) ?323 =>= ?322 [323, 322, 321, 320] by Super 69 with 3 at 1,1,1,2 Id : 127, {_}: multiply (inverse (divide (multiply (divide ?536 ?536) (divide (multiply (multiply (inverse ?537) ?537) ?538) (divide ?539 (multiply (inverse ?538) ?540)))) (divide ?541 ?539))) ?540 =>= ?541 [541, 540, 539, 538, 537, 536] by Super 22 with 75 at 2,2,1,1,2 Id : 2081, {_}: divide (divide (inverse (divide (divide (divide ?14113 ?14113) ?14114) ?14115)) ?14116) (divide ?14114 ?14116) =>= ?14115 [14116, 14115, 14114, 14113] by Super 2 with 6 at 1,2 Id : 2403, {_}: divide (inverse (divide ?15637 (divide ?15638 (divide (divide ?15639 (inverse (divide (divide (divide ?15640 ?15640) ?15639) ?15637))) ?15641)))) ?15641 =>= ?15638 [15641, 15640, 15639, 15638, 15637] by Super 2 with 2081 at 1,1,1,2 Id : 2469, {_}: divide (inverse (divide ?15637 (divide ?15638 (divide (multiply ?15639 (divide (divide (divide ?15640 ?15640) ?15639) ?15637)) ?15641)))) ?15641 =>= ?15638 [15641, 15640, 15639, 15638, 15637] by Demod 2403 with 3 at 1,2,2,1,1,2 Id : 94225, {_}: divide ?492920 (divide ?492921 ?492922) =<= divide ?492920 (divide (multiply ?492923 (divide (divide (divide ?492924 ?492924) ?492923) (divide (divide ?492925 ?492925) ?492921))) ?492922) [492925, 492924, 492923, 492922, 492921, 492920] by Super 2081 with 2469 at 1,2 Id : 6221, {_}: divide (divide ?36691 ?36692) (divide ?36693 ?36692) =?= divide (divide ?36691 ?36694) (divide ?36693 ?36694) [36694, 36693, 36692, 36691] by Demod 5798 with 9 at 2,2,3 Id : 6238, {_}: divide (divide ?36832 ?36833) (divide (divide (inverse (divide (divide (divide ?36834 ?36834) ?36835) ?36836)) ?36837) ?36833) =>= divide (divide ?36832 (divide ?36835 ?36837)) ?36836 [36837, 36836, 36835, 36834, 36833, 36832] by Super 6221 with 2081 at 2,3 Id : 94494, {_}: divide ?495491 (divide ?495492 ?495493) =<= divide ?495491 (divide (multiply ?495492 (divide (divide (divide ?495494 ?495494) (divide ?495495 (inverse (divide (divide (divide ?495496 ?495496) ?495495) ?495497)))) ?495497)) ?495493) [495497, 495496, 495495, 495494, 495493, 495492, 495491] by Super 94225 with 6238 at 2,1,2,3 Id : 95522, {_}: divide ?495491 (divide ?495492 ?495493) =<= divide ?495491 (divide (multiply ?495492 (divide (divide (divide ?495494 ?495494) (multiply ?495495 (divide (divide (divide ?495496 ?495496) ?495495) ?495497))) ?495497)) ?495493) [495497, 495496, 495495, 495494, 495493, 495492, 495491] by Demod 94494 with 3 at 2,1,2,1,2,3 Id : 2427, {_}: divide (inverse (divide (divide (divide ?15833 ?15833) ?15834) (divide (inverse (divide (divide (divide ?15835 ?15835) ?15836) ?15837)) (divide ?15834 ?15838)))) ?15838 =?= inverse (divide (divide (divide ?15839 ?15839) ?15836) ?15837) [15839, 15838, 15837, 15836, 15835, 15834, 15833] by Super 6 with 2081 at 2,1,3 Id : 4783, {_}: inverse (divide (divide (divide ?27749 ?27749) ?27750) ?27751) =?= inverse (divide (divide (divide ?27752 ?27752) ?27750) ?27751) [27752, 27751, 27750, 27749] by Demod 2427 with 2 at 2 Id : 4787, {_}: inverse (divide (divide (divide ?27776 ?27776) (divide ?27777 (inverse (divide (divide (divide ?27778 ?27778) ?27777) ?27779)))) ?27780) =>= inverse (divide ?27779 ?27780) [27780, 27779, 27778, 27777, 27776] by Super 4783 with 2081 at 1,1,3 Id : 4834, {_}: inverse (divide (divide (divide ?27776 ?27776) (multiply ?27777 (divide (divide (divide ?27778 ?27778) ?27777) ?27779))) ?27780) =>= inverse (divide ?27779 ?27780) [27780, 27779, 27778, 27777, 27776] by Demod 4787 with 3 at 2,1,1,2 Id : 11308, {_}: multiply ?62725 (divide (divide (divide ?62726 ?62726) (multiply ?62727 (divide (divide (divide ?62728 ?62728) ?62727) ?62729))) ?62730) =>= divide ?62725 (inverse (divide ?62729 ?62730)) [62730, 62729, 62728, 62727, 62726, 62725] by Super 3 with 4834 at 2,3 Id : 11415, {_}: multiply ?62725 (divide (divide (divide ?62726 ?62726) (multiply ?62727 (divide (divide (divide ?62728 ?62728) ?62727) ?62729))) ?62730) =>= multiply ?62725 (divide ?62729 ?62730) [62730, 62729, 62728, 62727, 62726, 62725] by Demod 11308 with 3 at 3 Id : 95523, {_}: divide ?495491 (divide ?495492 ?495493) =<= divide ?495491 (divide (multiply ?495492 (divide ?495497 ?495497)) ?495493) [495497, 495493, 495492, 495491] by Demod 95522 with 11415 at 1,2,3 Id : 96030, {_}: multiply (inverse (divide (multiply (divide ?499745 ?499745) (divide (multiply (multiply (inverse ?499746) ?499746) ?499747) (divide ?499748 (multiply (inverse ?499747) ?499749)))) (divide ?499750 ?499748))) ?499749 =?= multiply ?499750 (divide ?499751 ?499751) [499751, 499750, 499749, 499748, 499747, 499746, 499745] by Super 127 with 95523 at 1,1,2 Id : 96731, {_}: ?499750 =<= multiply ?499750 (divide ?499751 ?499751) [499751, 499750] by Demod 96030 with 127 at 2 Id : 97589, {_}: divide (multiply ?505240 ?505241) (multiply ?505242 ?505241) =?= divide (multiply ?505240 (divide ?505243 ?505243)) ?505242 [505243, 505242, 505241, 505240] by Super 6851 with 96731 at 2,3 Id : 97956, {_}: divide (multiply ?505240 ?505241) (multiply ?505242 ?505241) =>= divide ?505240 ?505242 [505242, 505241, 505240] by Demod 97589 with 96731 at 1,3 Id : 98349, {_}: divide (inverse (divide (divide (multiply (inverse ?36437) ?36437) ?36438) (divide ?36439 ?36438))) ?36441 =>= divide ?36439 ?36441 [36441, 36439, 36438, 36437] by Demod 6185 with 97956 at 2 Id : 98367, {_}: divide (divide ?36393 ?36394) (divide ?36395 ?36394) =>= divide ?36393 ?36395 [36395, 36394, 36393] by Demod 6177 with 98349 at 1,2 Id : 98405, {_}: ?44807 =<= inverse (divide (multiply (multiply (inverse ?44808) ?44808) ?44809) (divide ?44807 (inverse ?44809))) [44809, 44808, 44807] by Demod 7706 with 98367 at 2,1,3 Id : 98424, {_}: ?44807 =<= inverse (divide (multiply (multiply (inverse ?44808) ?44808) ?44809) (multiply ?44807 ?44809)) [44809, 44808, 44807] by Demod 98405 with 3 at 2,1,3 Id : 98425, {_}: ?44807 =<= inverse (divide (multiply (inverse ?44808) ?44808) ?44807) [44808, 44807] by Demod 98424 with 97956 at 1,3 Id : 99240, {_}: multiply ?509657 ?509658 =<= inverse (divide (inverse ?509658) ?509657) [509658, 509657] by Super 98425 with 97956 at 1,3 Id : 99294, {_}: multiply ?510008 (divide (multiply (inverse ?510009) ?510009) ?510010) =>= inverse (divide ?510010 ?510008) [510010, 510009, 510008] by Super 99240 with 98425 at 1,1,3 Id : 6716, {_}: ?39263 =<= inverse (divide (divide (multiply (inverse ?39264) ?39264) ?39265) (divide (divide ?39263 ?39266) (divide ?39265 ?39266))) [39266, 39265, 39264, 39263] by Super 6622 with 3 at 1,1,1,3 Id : 7561, {_}: multiply ?43699 (divide (divide (multiply (inverse ?43700) ?43700) ?43701) (divide (divide ?43702 ?43703) (divide ?43701 ?43703))) =>= divide ?43699 ?43702 [43703, 43702, 43701, 43700, 43699] by Super 3 with 6716 at 2,3 Id : 98376, {_}: multiply ?43699 (divide (divide (multiply (inverse ?43700) ?43700) ?43701) (divide ?43702 ?43701)) =>= divide ?43699 ?43702 [43702, 43701, 43700, 43699] by Demod 7561 with 98367 at 2,2,2 Id : 98377, {_}: multiply ?43699 (divide (multiply (inverse ?43700) ?43700) ?43702) =>= divide ?43699 ?43702 [43702, 43700, 43699] by Demod 98376 with 98367 at 2,2 Id : 99391, {_}: divide ?510008 ?510010 =<= inverse (divide ?510010 ?510008) [510010, 510008] by Demod 99294 with 98377 at 2 Id : 99540, {_}: multiply ?510643 (divide ?510644 ?510645) =<= divide ?510643 (divide ?510645 ?510644) [510645, 510644, 510643] by Super 3 with 99391 at 2,3 Id : 102804, {_}: divide (divide ?516858 ?516859) ?516860 =<= inverse (multiply ?516860 (divide ?516859 ?516858)) [516860, 516859, 516858] by Super 99391 with 99540 at 1,3 Id : 102857, {_}: divide (divide ?517158 ?517158) ?517159 =>= inverse ?517159 [517159, 517158] by Super 102804 with 96731 at 1,3 Id : 103487, {_}: multiply (divide ?517531 ?517531) ?517532 =>= inverse (inverse ?517532) [517532, 517531] by Super 3 with 102857 at 3 Id : 103501, {_}: divide ?517599 (divide ?517600 ?517600) =>= inverse (inverse ?517599) [517600, 517599] by Super 99391 with 102857 at 1,3 Id : 103696, {_}: multiply ?517599 (divide ?517600 ?517600) =>= inverse (inverse ?517599) [517600, 517599] by Demod 103501 with 99540 at 2 Id : 103697, {_}: ?517599 =<= inverse (inverse ?517599) [517599] by Demod 103696 with 96731 at 2 Id : 104224, {_}: multiply (divide ?518595 ?518595) ?518596 =>= ?518596 [518596, 518595] by Demod 103487 with 103697 at 3 Id : 2935, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?18191) ?18191) ?18192) ?18193)) ?18194) (divide ?18192 ?18194) =>= ?18193 [18194, 18193, 18192, 18191] by Super 2430 with 3 at 1,1,1,1,1,2 Id : 2961, {_}: divide (divide (inverse (divide (multiply (multiply (inverse ?18394) ?18394) ?18395) ?18396)) ?18397) (divide (inverse ?18395) ?18397) =>= ?18396 [18397, 18396, 18395, 18394] by Super 2935 with 3 at 1,1,1,1,2 Id : 52, {_}: divide (inverse (divide (multiply (divide ?209 ?209) ?210) (divide ?211 (divide (inverse ?210) ?212)))) ?212 =>= ?211 [212, 211, 210, 209] by Super 2 with 3 at 1,1,1,2 Id : 195, {_}: divide (inverse (divide (multiply (divide ?949 ?949) (divide (divide (divide ?950 ?950) ?951) (divide ?952 (divide ?951 ?953)))) (divide ?954 ?952))) ?953 =>= ?954 [954, 953, 952, 951, 950, 949] by Super 52 with 2 at 2,2,1,1,2 Id : 201, {_}: divide (inverse (divide (multiply (divide ?1003 ?1003) (divide (divide (divide ?1004 ?1004) ?1005) (divide (inverse ?1006) (divide ?1005 ?1007)))) (multiply ?1008 ?1006))) ?1007 =>= ?1008 [1008, 1007, 1006, 1005, 1004, 1003] by Super 195 with 3 at 2,1,1,2 Id : 5802, {_}: divide (divide ?34595 ?34596) (divide ?34597 ?34596) =?= divide (multiply ?34595 ?34598) (divide ?34597 (divide (inverse (divide (divide (divide ?34599 ?34599) ?34600) (divide (inverse ?34598) (divide ?34600 ?34601)))) ?34601)) [34601, 34600, 34599, 34598, 34597, 34596, 34595] by Super 5751 with 201 at 1,1,2 Id : 5935, {_}: divide (divide ?34595 ?34596) (divide ?34597 ?34596) =?= divide (multiply ?34595 ?34598) (divide ?34597 (inverse ?34598)) [34598, 34597, 34596, 34595] by Demod 5802 with 2 at 2,2,3 Id : 7252, {_}: divide (divide ?42444 ?42445) (divide ?42446 ?42445) =?= divide (multiply ?42444 ?42447) (multiply ?42446 ?42447) [42447, 42446, 42445, 42444] by Demod 5935 with 3 at 2,3 Id : 7363, {_}: divide ?43301 (divide ?43302 (divide (inverse ?43303) ?43304)) =<= divide (multiply (divide (inverse (divide (multiply (multiply (inverse ?43305) ?43305) ?43303) ?43301)) ?43304) ?43306) (multiply ?43302 ?43306) [43306, 43305, 43304, 43303, 43302, 43301] by Super 7252 with 2961 at 1,2 Id : 98354, {_}: divide ?43301 (divide ?43302 (divide (inverse ?43303) ?43304)) =<= divide (divide (inverse (divide (multiply (multiply (inverse ?43305) ?43305) ?43303) ?43301)) ?43304) ?43302 [43305, 43304, 43303, 43302, 43301] by Demod 7363 with 97956 at 3 Id : 98361, {_}: divide ?18396 (divide (divide (inverse ?18395) ?18397) (divide (inverse ?18395) ?18397)) =>= ?18396 [18397, 18395, 18396] by Demod 2961 with 98354 at 2 Id : 98369, {_}: divide ?18396 (divide (inverse ?18395) (inverse ?18395)) =>= ?18396 [18395, 18396] by Demod 98361 with 98367 at 2,2 Id : 98439, {_}: divide ?18396 (multiply (inverse ?18395) ?18395) =>= ?18396 [18395, 18396] by Demod 98369 with 3 at 2,2 Id : 104225, {_}: multiply (multiply (inverse ?518598) ?518598) ?518599 =>= ?518599 [518599, 518598] by Super 104224 with 98439 at 1,2 Id : 106260, {_}: a2 === a2 [] by Demod 1 with 104225 at 2 Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 % SZS output end CNFRefutation for GRP479-1.p 20178: solved GRP479-1.p in 33.894117 using nrkbo WARNING: TreeLimitedRun lost 86.02s, total lost is 86.02s FINAL WATCH: 119.9 CPU 68.1 WC Killed 1 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP480-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 20219 TreeLimitedRun: ---------------------------------------------------------- 20221: Facts: 20221: Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5)))) ?5 =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 20221: Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 20221: Goal: 20221: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 Statistics : Max weight : 78 Found proof, 72.447272s % SZS status Unsatisfiable for GRP480-1.p % SZS output start CNFRefutation for GRP480-1.p Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5)))) ?5 =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 Id : 4, {_}: divide (inverse (divide (divide (divide ?10 ?10) ?11) (divide ?12 (divide ?11 ?13)))) ?13 =>= ?12 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 Id : 5, {_}: divide (inverse (divide (divide (divide ?15 ?15) (inverse (divide (divide (divide ?16 ?16) ?17) (divide ?18 (divide ?17 ?19))))) (divide ?20 ?18))) ?19 =>= ?20 [20, 19, 18, 17, 16, 15] by Super 4 with 2 at 2,2,1,1,2 Id : 22, {_}: divide (inverse (divide (multiply (divide ?87 ?87) (divide (divide (divide ?88 ?88) ?89) (divide ?90 (divide ?89 ?91)))) (divide ?92 ?90))) ?91 =>= ?92 [92, 91, 90, 89, 88, 87] by Demod 5 with 3 at 1,1,1,2 Id : 25, {_}: divide (inverse (divide (multiply (divide ?114 ?114) (divide (divide (divide ?115 ?115) ?116) (divide (inverse ?117) (divide ?116 ?118)))) (multiply ?119 ?117))) ?118 =>= ?119 [119, 118, 117, 116, 115, 114] by Super 22 with 3 at 2,1,1,2 Id : 18, {_}: divide (inverse (divide (multiply (divide ?15 ?15) (divide (divide (divide ?16 ?16) ?17) (divide ?18 (divide ?17 ?19)))) (divide ?20 ?18))) ?19 =>= ?20 [20, 19, 18, 17, 16, 15] by Demod 5 with 3 at 1,1,1,2 Id : 23, {_}: divide (inverse (divide (multiply (divide ?94 ?94) (divide (divide (divide ?95 ?95) ?96) (divide ?97 (divide ?96 ?98)))) ?99)) ?98 =?= inverse (divide (divide (divide ?100 ?100) ?101) (divide ?99 (divide ?101 ?97))) [101, 100, 99, 98, 97, 96, 95, 94] by Super 22 with 2 at 2,1,1,2 Id : 1129, {_}: inverse (divide (divide (divide ?5651 ?5651) ?5652) (divide (divide ?5653 ?5654) (divide ?5652 ?5654))) =>= ?5653 [5654, 5653, 5652, 5651] by Super 18 with 23 at 2 Id : 2650, {_}: inverse (divide (divide (multiply (inverse ?14391) ?14391) ?14392) (divide (divide ?14393 ?14394) (divide ?14392 ?14394))) =>= ?14393 [14394, 14393, 14392, 14391] by Super 1129 with 3 at 1,1,1,2 Id : 2724, {_}: inverse (divide (multiply (multiply (inverse ?14937) ?14937) ?14938) (divide (divide ?14939 ?14940) (divide (inverse ?14938) ?14940))) =>= ?14939 [14940, 14939, 14938, 14937] by Super 2650 with 3 at 1,1,2 Id : 1144, {_}: inverse (divide (divide (divide ?5766 ?5766) ?5767) (divide (divide ?5768 (inverse ?5769)) (multiply ?5767 ?5769))) =>= ?5768 [5769, 5768, 5767, 5766] by Super 1129 with 3 at 2,2,1,2 Id : 1192, {_}: inverse (divide (divide (divide ?5766 ?5766) ?5767) (divide (multiply ?5768 ?5769) (multiply ?5767 ?5769))) =>= ?5768 [5769, 5768, 5767, 5766] by Demod 1144 with 3 at 1,2,1,2 Id : 1216, {_}: multiply ?6024 (divide (divide (divide ?6025 ?6025) ?6026) (divide (multiply ?6027 ?6028) (multiply ?6026 ?6028))) =>= divide ?6024 ?6027 [6028, 6027, 6026, 6025, 6024] by Super 3 with 1192 at 2,3 Id : 8, {_}: divide (inverse (divide (divide (divide ?31 ?31) ?32) (divide ?33 (multiply ?32 ?34)))) (inverse ?34) =>= ?33 [34, 33, 32, 31] by Super 2 with 3 at 2,2,1,1,2 Id : 15, {_}: multiply (inverse (divide (divide (divide ?31 ?31) ?32) (divide ?33 (multiply ?32 ?34)))) ?34 =>= ?33 [34, 33, 32, 31] by Demod 8 with 3 at 2 Id : 6, {_}: divide (inverse (divide (divide (divide ?22 ?22) ?23) ?24)) ?25 =?= inverse (divide (divide (divide ?26 ?26) ?27) (divide ?24 (divide ?27 (divide ?23 ?25)))) [27, 26, 25, 24, 23, 22] by Super 4 with 2 at 2,1,1,2 Id : 86, {_}: divide (divide (inverse (divide (divide (divide ?404 ?404) ?405) ?406)) ?407) (divide ?405 ?407) =>= ?406 [407, 406, 405, 404] by Super 2 with 6 at 1,2 Id : 169, {_}: multiply (inverse (divide ?806 (divide ?807 (multiply (divide ?808 (inverse (divide (divide (divide ?809 ?809) ?808) ?806))) ?810)))) ?810 =>= ?807 [810, 809, 808, 807, 806] by Super 15 with 86 at 1,1,1,2 Id : 195, {_}: multiply (inverse (divide ?806 (divide ?807 (multiply (multiply ?808 (divide (divide (divide ?809 ?809) ?808) ?806)) ?810)))) ?810 =>= ?807 [810, 809, 808, 807, 806] by Demod 169 with 3 at 1,2,2,1,1,2 Id : 30, {_}: divide (inverse (divide (multiply (divide ?157 ?157) (divide (divide (divide ?158 ?158) ?159) ?160)) (divide ?161 (inverse (divide (multiply (divide ?162 ?162) (divide (divide (divide ?163 ?163) ?164) (divide ?165 (divide ?164 (divide ?159 ?166))))) (divide ?160 ?165)))))) ?166 =>= ?161 [166, 165, 164, 163, 162, 161, 160, 159, 158, 157] by Super 22 with 18 at 2,2,1,1,1,2 Id : 42, {_}: divide (inverse (divide (multiply (divide ?157 ?157) (divide (divide (divide ?158 ?158) ?159) ?160)) (multiply ?161 (divide (multiply (divide ?162 ?162) (divide (divide (divide ?163 ?163) ?164) (divide ?165 (divide ?164 (divide ?159 ?166))))) (divide ?160 ?165))))) ?166 =>= ?161 [166, 165, 164, 163, 162, 161, 160, 159, 158, 157] by Demod 30 with 3 at 2,1,1,2 Id : 175, {_}: divide (divide (inverse (divide (divide (divide ?853 ?853) ?854) ?855)) ?856) (divide ?854 ?856) =>= ?855 [856, 855, 854, 853] by Super 2 with 6 at 1,2 Id : 181, {_}: divide (divide (inverse (divide (divide (divide ?897 ?897) ?898) ?899)) (inverse ?900)) (multiply ?898 ?900) =>= ?899 [900, 899, 898, 897] by Super 175 with 3 at 2,2 Id : 330, {_}: divide (multiply (inverse (divide (divide (divide ?1482 ?1482) ?1483) ?1484)) ?1485) (multiply ?1483 ?1485) =>= ?1484 [1485, 1484, 1483, 1482] by Demod 181 with 3 at 1,2 Id : 336, {_}: divide (multiply (inverse (divide (multiply (divide ?1520 ?1520) ?1521) ?1522)) ?1523) (multiply (inverse ?1521) ?1523) =>= ?1522 [1523, 1522, 1521, 1520] by Super 330 with 3 at 1,1,1,1,2 Id : 87991, {_}: divide ?476464 (multiply (inverse ?476465) ?476466) =<= divide ?476464 (multiply (multiply ?476467 (divide (divide (divide ?476468 ?476468) ?476467) (multiply (divide ?476469 ?476469) ?476465))) ?476466) [476469, 476468, 476467, 476466, 476465, 476464] by Super 336 with 195 at 1,2 Id : 89144, {_}: divide (inverse (divide (multiply (divide ?485565 ?485565) (divide (divide (divide ?485566 ?485566) ?485567) ?485568)) (multiply (inverse ?485569) (divide (multiply (divide ?485570 ?485570) (divide (divide (divide ?485571 ?485571) ?485572) (divide ?485573 (divide ?485572 (divide ?485567 ?485574))))) (divide ?485568 ?485573))))) ?485574 =?= multiply ?485575 (divide (divide (divide ?485576 ?485576) ?485575) (multiply (divide ?485577 ?485577) ?485569)) [485577, 485576, 485575, 485574, 485573, 485572, 485571, 485570, 485569, 485568, 485567, 485566, 485565] by Super 42 with 87991 at 1,1,2 Id : 89464, {_}: inverse ?485569 =<= multiply ?485575 (divide (divide (divide ?485576 ?485576) ?485575) (multiply (divide ?485577 ?485577) ?485569)) [485577, 485576, 485575, 485569] by Demod 89144 with 42 at 2 Id : 90424, {_}: multiply (inverse (divide ?488614 (divide ?488615 (inverse ?488616)))) (divide (divide (divide ?488617 ?488617) (multiply ?488618 (divide (divide (divide ?488619 ?488619) ?488618) ?488614))) (multiply (divide ?488620 ?488620) ?488616)) =>= ?488615 [488620, 488619, 488618, 488617, 488616, 488615, 488614] by Super 195 with 89464 at 2,2,1,1,2 Id : 91105, {_}: multiply (inverse (divide ?488614 (multiply ?488615 ?488616))) (divide (divide (divide ?488617 ?488617) (multiply ?488618 (divide (divide (divide ?488619 ?488619) ?488618) ?488614))) (multiply (divide ?488620 ?488620) ?488616)) =>= ?488615 [488620, 488619, 488618, 488617, 488616, 488615, 488614] by Demod 90424 with 3 at 2,1,1,2 Id : 172, {_}: divide (inverse (divide (divide (divide ?829 ?829) ?830) (divide (inverse (divide (divide (divide ?831 ?831) ?832) ?833)) (divide ?830 ?834)))) ?834 =?= inverse (divide (divide (divide ?835 ?835) ?832) ?833) [835, 834, 833, 832, 831, 830, 829] by Super 6 with 86 at 2,1,3 Id : 5953, {_}: inverse (divide (divide (divide ?31573 ?31573) ?31574) ?31575) =?= inverse (divide (divide (divide ?31576 ?31576) ?31574) ?31575) [31576, 31575, 31574, 31573] by Demod 172 with 2 at 2 Id : 5964, {_}: inverse (divide (divide (divide ?31647 ?31647) (divide ?31648 (inverse (divide (divide (divide ?31649 ?31649) ?31648) ?31650)))) ?31651) =>= inverse (divide ?31650 ?31651) [31651, 31650, 31649, 31648, 31647] by Super 5953 with 86 at 1,1,3 Id : 6041, {_}: inverse (divide (divide (divide ?31647 ?31647) (multiply ?31648 (divide (divide (divide ?31649 ?31649) ?31648) ?31650))) ?31651) =>= inverse (divide ?31650 ?31651) [31651, 31650, 31649, 31648, 31647] by Demod 5964 with 3 at 2,1,1,2 Id : 27722, {_}: multiply ?147538 (divide (divide (divide ?147539 ?147539) (multiply ?147540 (divide (divide (divide ?147541 ?147541) ?147540) ?147542))) ?147543) =>= divide ?147538 (inverse (divide ?147542 ?147543)) [147543, 147542, 147541, 147540, 147539, 147538] by Super 3 with 6041 at 2,3 Id : 27920, {_}: multiply ?147538 (divide (divide (divide ?147539 ?147539) (multiply ?147540 (divide (divide (divide ?147541 ?147541) ?147540) ?147542))) ?147543) =>= multiply ?147538 (divide ?147542 ?147543) [147543, 147542, 147541, 147540, 147539, 147538] by Demod 27722 with 3 at 3 Id : 91586, {_}: multiply (inverse (divide ?494410 (multiply ?494411 ?494412))) (divide ?494410 (multiply (divide ?494413 ?494413) ?494412)) =>= ?494411 [494413, 494412, 494411, 494410] by Demod 91105 with 27920 at 2 Id : 203, {_}: divide (multiply (inverse (divide (divide (divide ?897 ?897) ?898) ?899)) ?900) (multiply ?898 ?900) =>= ?899 [900, 899, 898, 897] by Demod 181 with 3 at 1,2 Id : 891, {_}: inverse (divide (divide (divide ?4396 ?4396) ?4397) (divide (divide ?4398 ?4399) (divide ?4397 ?4399))) =>= ?4398 [4399, 4398, 4397, 4396] by Super 18 with 23 at 2 Id : 1118, {_}: divide (divide ?5581 ?5582) (divide ?5583 ?5582) =?= divide (divide ?5581 ?5584) (divide ?5583 ?5584) [5584, 5583, 5582, 5581] by Super 86 with 891 at 1,1,2 Id : 2064, {_}: divide (multiply (inverse (divide (divide (divide ?11138 ?11138) ?11139) (divide ?11140 ?11139))) ?11141) (multiply ?11142 ?11141) =>= divide ?11140 ?11142 [11142, 11141, 11140, 11139, 11138] by Super 203 with 1118 at 1,1,1,2 Id : 91705, {_}: multiply (inverse (divide (multiply (inverse (divide (divide (divide ?495360 ?495360) ?495361) (divide ?495362 ?495361))) ?495363) (multiply ?495364 ?495363))) (divide ?495362 (divide ?495365 ?495365)) =>= ?495364 [495365, 495364, 495363, 495362, 495361, 495360] by Super 91586 with 2064 at 2,2 Id : 92107, {_}: multiply (inverse (divide ?495362 ?495364)) (divide ?495362 (divide ?495365 ?495365)) =>= ?495364 [495365, 495364, 495362] by Demod 91705 with 2064 at 1,1,2 Id : 92269, {_}: ?497055 =<= divide (inverse (divide (divide (divide ?497056 ?497056) ?497057) ?497055)) ?497057 [497057, 497056, 497055] by Super 1216 with 92107 at 2 Id : 93033, {_}: divide ?500552 (divide ?500553 ?500553) =>= ?500552 [500553, 500552] by Super 2 with 92269 at 2 Id : 100290, {_}: inverse (multiply (multiply (inverse ?526488) ?526488) ?526489) =>= inverse ?526489 [526489, 526488] by Super 2724 with 93033 at 1,2 Id : 100389, {_}: inverse (inverse ?527104) =<= inverse (divide (divide (divide ?527105 ?527105) (multiply (inverse ?527106) ?527106)) (multiply (divide ?527107 ?527107) ?527104)) [527107, 527106, 527105, 527104] by Super 100290 with 89464 at 1,2 Id : 94182, {_}: divide ?506707 (divide ?506708 ?506708) =>= ?506707 [506708, 506707] by Super 2 with 92269 at 2 Id : 94261, {_}: divide ?507165 (multiply (inverse ?507166) ?507166) =>= ?507165 [507166, 507165] by Super 94182 with 3 at 2,2 Id : 100457, {_}: inverse (inverse ?527104) =<= inverse (divide (divide ?527105 ?527105) (multiply (divide ?527107 ?527107) ?527104)) [527107, 527105, 527104] by Demod 100389 with 94261 at 1,1,3 Id : 93792, {_}: inverse (divide (divide ?504227 ?504227) ?504228) =>= ?504228 [504228, 504227] by Super 1192 with 93033 at 1,2 Id : 100458, {_}: inverse (inverse ?527104) =<= multiply (divide ?527107 ?527107) ?527104 [527107, 527104] by Demod 100457 with 93792 at 3 Id : 100483, {_}: divide (inverse (divide (inverse (inverse (divide (divide (divide ?115 ?115) ?116) (divide (inverse ?117) (divide ?116 ?118))))) (multiply ?119 ?117))) ?118 =>= ?119 [119, 118, 117, 116, 115] by Demod 25 with 100458 at 1,1,1,2 Id : 1173, {_}: inverse (divide (multiply (divide ?5966 ?5966) ?5967) (divide (divide ?5968 ?5969) (divide (inverse ?5967) ?5969))) =>= ?5968 [5969, 5968, 5967, 5966] by Super 1129 with 3 at 1,1,2 Id : 2761, {_}: multiply ?15009 (divide (multiply (divide ?15010 ?15010) ?15011) (divide (divide ?15012 ?15013) (divide (inverse ?15011) ?15013))) =>= divide ?15009 ?15012 [15013, 15012, 15011, 15010, 15009] by Super 3 with 1173 at 2,3 Id : 100510, {_}: multiply ?15009 (divide (inverse (inverse ?15011)) (divide (divide ?15012 ?15013) (divide (inverse ?15011) ?15013))) =>= divide ?15009 ?15012 [15013, 15012, 15011, 15009] by Demod 2761 with 100458 at 1,2,2 Id : 100718, {_}: inverse (inverse (divide (inverse (inverse ?527891)) (divide (divide ?527892 ?527893) (divide (inverse ?527891) ?527893)))) =?= divide (divide ?527894 ?527894) ?527892 [527894, 527893, 527892, 527891] by Super 100510 with 100458 at 2 Id : 100495, {_}: inverse (divide (inverse (inverse ?5967)) (divide (divide ?5968 ?5969) (divide (inverse ?5967) ?5969))) =>= ?5968 [5969, 5968, 5967] by Demod 1173 with 100458 at 1,1,2 Id : 100820, {_}: inverse ?527892 =<= divide (divide ?527894 ?527894) ?527892 [527894, 527892] by Demod 100718 with 100495 at 1,2 Id : 101304, {_}: divide (inverse (divide (inverse (inverse (divide (inverse ?116) (divide (inverse ?117) (divide ?116 ?118))))) (multiply ?119 ?117))) ?118 =>= ?119 [119, 118, 117, 116] by Demod 100483 with 100820 at 1,1,1,1,1,1,2 Id : 101295, {_}: inverse (inverse ?504228) =>= ?504228 [504228] by Demod 93792 with 100820 at 1,2 Id : 101355, {_}: divide (inverse (divide (divide (inverse ?116) (divide (inverse ?117) (divide ?116 ?118))) (multiply ?119 ?117))) ?118 =>= ?119 [119, 118, 117, 116] by Demod 101304 with 101295 at 1,1,1,2 Id : 100461, {_}: divide (inverse (divide (inverse (inverse (divide (divide (divide ?158 ?158) ?159) ?160))) (multiply ?161 (divide (multiply (divide ?162 ?162) (divide (divide (divide ?163 ?163) ?164) (divide ?165 (divide ?164 (divide ?159 ?166))))) (divide ?160 ?165))))) ?166 =>= ?161 [166, 165, 164, 163, 162, 161, 160, 159, 158] by Demod 42 with 100458 at 1,1,1,2 Id : 100462, {_}: divide (inverse (divide (inverse (inverse (divide (divide (divide ?158 ?158) ?159) ?160))) (multiply ?161 (divide (inverse (inverse (divide (divide (divide ?163 ?163) ?164) (divide ?165 (divide ?164 (divide ?159 ?166)))))) (divide ?160 ?165))))) ?166 =>= ?161 [166, 165, 164, 163, 161, 160, 159, 158] by Demod 100461 with 100458 at 1,2,2,1,1,2 Id : 101222, {_}: divide (inverse (divide (inverse (inverse (divide (inverse ?159) ?160))) (multiply ?161 (divide (inverse (inverse (divide (divide (divide ?163 ?163) ?164) (divide ?165 (divide ?164 (divide ?159 ?166)))))) (divide ?160 ?165))))) ?166 =>= ?161 [166, 165, 164, 163, 161, 160, 159] by Demod 100462 with 100820 at 1,1,1,1,1,1,2 Id : 101223, {_}: divide (inverse (divide (inverse (inverse (divide (inverse ?159) ?160))) (multiply ?161 (divide (inverse (inverse (divide (inverse ?164) (divide ?165 (divide ?164 (divide ?159 ?166)))))) (divide ?160 ?165))))) ?166 =>= ?161 [166, 165, 164, 161, 160, 159] by Demod 101222 with 100820 at 1,1,1,1,2,2,1,1,2 Id : 101470, {_}: divide (inverse (divide (divide (inverse ?159) ?160) (multiply ?161 (divide (inverse (inverse (divide (inverse ?164) (divide ?165 (divide ?164 (divide ?159 ?166)))))) (divide ?160 ?165))))) ?166 =>= ?161 [166, 165, 164, 161, 160, 159] by Demod 101223 with 101295 at 1,1,1,2 Id : 101258, {_}: divide (inverse (divide (inverse ?23) ?24)) ?25 =<= inverse (divide (divide (divide ?26 ?26) ?27) (divide ?24 (divide ?27 (divide ?23 ?25)))) [27, 26, 25, 24, 23] by Demod 6 with 100820 at 1,1,1,2 Id : 101259, {_}: divide (inverse (divide (inverse ?23) ?24)) ?25 =<= inverse (divide (inverse ?27) (divide ?24 (divide ?27 (divide ?23 ?25)))) [27, 25, 24, 23] by Demod 101258 with 100820 at 1,1,3 Id : 101471, {_}: divide (inverse (divide (divide (inverse ?159) ?160) (multiply ?161 (divide (inverse (divide (inverse (divide (inverse ?159) ?165)) ?166)) (divide ?160 ?165))))) ?166 =>= ?161 [166, 165, 161, 160, 159] by Demod 101470 with 101259 at 1,1,2,2,1,1,2 Id : 101473, {_}: divide (inverse (inverse (multiply ?528376 (divide (inverse (divide (inverse (divide (inverse ?528377) ?528378)) ?528379)) (divide (inverse ?528377) ?528378))))) ?528379 =>= ?528376 [528379, 528378, 528377, 528376] by Super 101471 with 100820 at 1,1,2 Id : 101294, {_}: ?497055 =<= divide (inverse (divide (inverse ?497057) ?497055)) ?497057 [497057, 497055] by Demod 92269 with 100820 at 1,1,1,3 Id : 101860, {_}: divide (inverse (inverse (multiply ?528376 ?528379))) ?528379 =>= ?528376 [528379, 528376] by Demod 101473 with 101294 at 2,1,1,1,2 Id : 102039, {_}: divide (multiply ?530013 ?530014) ?530014 =>= ?530013 [530014, 530013] by Demod 101860 with 101295 at 1,2 Id : 93498, {_}: multiply (inverse (divide ?495362 ?495364)) ?495362 =>= ?495364 [495364, 495362] by Demod 92107 with 93033 at 2,2 Id : 102044, {_}: divide ?530040 ?530041 =<= inverse (divide ?530041 ?530040) [530041, 530040] by Super 102039 with 93498 at 1,2 Id : 102131, {_}: divide (divide (multiply ?119 ?117) (divide (inverse ?116) (divide (inverse ?117) (divide ?116 ?118)))) ?118 =>= ?119 [118, 116, 117, 119] by Demod 101355 with 102044 at 1,2 Id : 2485, {_}: divide (multiply ?13767 ?13768) (multiply ?13769 ?13768) =?= divide (divide ?13767 ?13770) (divide ?13769 ?13770) [13770, 13769, 13768, 13767] by Super 203 with 891 at 1,1,2 Id : 185, {_}: divide (divide (inverse (divide (multiply (divide ?922 ?922) ?923) ?924)) ?925) (divide (inverse ?923) ?925) =>= ?924 [925, 924, 923, 922] by Super 175 with 3 at 1,1,1,1,2 Id : 2521, {_}: divide (multiply (divide (inverse (divide (multiply (divide ?14051 ?14051) ?14052) ?14053)) ?14054) ?14055) (multiply ?14056 ?14055) =>= divide ?14053 (divide ?14056 (divide (inverse ?14052) ?14054)) [14056, 14055, 14054, 14053, 14052, 14051] by Super 2485 with 185 at 1,3 Id : 100506, {_}: divide (multiply (divide (inverse (divide (inverse (inverse ?14052)) ?14053)) ?14054) ?14055) (multiply ?14056 ?14055) =>= divide ?14053 (divide ?14056 (divide (inverse ?14052) ?14054)) [14056, 14055, 14054, 14053, 14052] by Demod 2521 with 100458 at 1,1,1,1,1,2 Id : 101340, {_}: divide (multiply (divide (inverse (divide ?14052 ?14053)) ?14054) ?14055) (multiply ?14056 ?14055) =>= divide ?14053 (divide ?14056 (divide (inverse ?14052) ?14054)) [14056, 14055, 14054, 14053, 14052] by Demod 100506 with 101295 at 1,1,1,1,1,2 Id : 102145, {_}: divide (multiply (divide (divide ?14053 ?14052) ?14054) ?14055) (multiply ?14056 ?14055) =>= divide ?14053 (divide ?14056 (divide (inverse ?14052) ?14054)) [14056, 14055, 14054, 14052, 14053] by Demod 101340 with 102044 at 1,1,1,2 Id : 1124, {_}: divide (multiply ?5615 ?5616) (multiply ?5617 ?5616) =?= divide (divide ?5615 ?5618) (divide ?5617 ?5618) [5618, 5617, 5616, 5615] by Super 203 with 891 at 1,1,2 Id : 2377, {_}: divide (multiply (inverse (divide (multiply (divide ?12995 ?12995) ?12996) (multiply ?12997 ?12996))) ?12998) (multiply ?12999 ?12998) =>= divide ?12997 ?12999 [12999, 12998, 12997, 12996, 12995] by Super 203 with 1124 at 1,1,1,2 Id : 100474, {_}: divide (multiply (inverse (divide (inverse (inverse ?12996)) (multiply ?12997 ?12996))) ?12998) (multiply ?12999 ?12998) =>= divide ?12997 ?12999 [12999, 12998, 12997, 12996] by Demod 2377 with 100458 at 1,1,1,1,2 Id : 101349, {_}: divide (multiply (inverse (divide ?12996 (multiply ?12997 ?12996))) ?12998) (multiply ?12999 ?12998) =>= divide ?12997 ?12999 [12999, 12998, 12997, 12996] by Demod 100474 with 101295 at 1,1,1,1,2 Id : 102129, {_}: divide (multiply (divide (multiply ?12997 ?12996) ?12996) ?12998) (multiply ?12999 ?12998) =>= divide ?12997 ?12999 [12999, 12998, 12996, 12997] by Demod 101349 with 102044 at 1,1,2 Id : 101861, {_}: divide (multiply ?528376 ?528379) ?528379 =>= ?528376 [528379, 528376] by Demod 101860 with 101295 at 1,2 Id : 102195, {_}: divide (multiply ?12997 ?12998) (multiply ?12999 ?12998) =>= divide ?12997 ?12999 [12999, 12998, 12997] by Demod 102129 with 101861 at 1,1,2 Id : 102214, {_}: divide (divide (divide ?14053 ?14052) ?14054) ?14056 =<= divide ?14053 (divide ?14056 (divide (inverse ?14052) ?14054)) [14056, 14054, 14052, 14053] by Demod 102145 with 102195 at 2 Id : 102215, {_}: divide (divide (divide (divide (multiply ?119 ?117) ?117) (divide ?116 ?118)) (inverse ?116)) ?118 =>= ?119 [118, 116, 117, 119] by Demod 102131 with 102214 at 1,2 Id : 102222, {_}: divide (divide (divide ?119 (divide ?116 ?118)) (inverse ?116)) ?118 =>= ?119 [118, 116, 119] by Demod 102215 with 101861 at 1,1,1,2 Id : 102223, {_}: divide (multiply (divide ?119 (divide ?116 ?118)) ?116) ?118 =>= ?119 [118, 116, 119] by Demod 102222 with 3 at 1,2 Id : 102347, {_}: multiply ?530310 (divide ?530311 ?530312) =<= divide ?530310 (divide ?530312 ?530311) [530312, 530311, 530310] by Super 3 with 102044 at 2,3 Id : 102464, {_}: divide (multiply (multiply ?119 (divide ?118 ?116)) ?116) ?118 =>= ?119 [116, 118, 119] by Demod 102223 with 102347 at 1,1,2 Id : 101982, {_}: multiply (multiply ?529717 (inverse ?529718)) ?529718 =>= ?529717 [529718, 529717] by Super 3 with 101861 at 3 Id : 102758, {_}: divide (multiply ?531347 ?531348) ?531349 =<= multiply ?531347 (inverse (divide ?531349 ?531348)) [531349, 531348, 531347] by Super 102464 with 101982 at 1,1,2 Id : 102831, {_}: divide (multiply ?531347 ?531348) ?531349 =>= multiply ?531347 (divide ?531348 ?531349) [531349, 531348, 531347] by Demod 102758 with 102044 at 2,3 Id : 103505, {_}: multiply (multiply ?532403 ?532404) ?532405 =<= multiply ?532403 (divide ?532404 (inverse ?532405)) [532405, 532404, 532403] by Super 3 with 102831 at 3 Id : 103582, {_}: multiply (multiply ?532403 ?532404) ?532405 =>= multiply ?532403 (multiply ?532404 ?532405) [532405, 532404, 532403] by Demod 103505 with 3 at 2,3 Id : 103846, {_}: multiply a3 (multiply b3 c3) =?= multiply a3 (multiply b3 c3) [] by Demod 1 with 103582 at 2 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 % SZS output end CNFRefutation for GRP480-1.p 20222: solved GRP480-1.p in 36.222263 using kbo WARNING: TreeLimitedRun lost 103.65s, total lost is 103.65s FINAL WATCH: 139.9 CPU 72.7 WC Killed 1 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP505-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 20264 TreeLimitedRun: ---------------------------------------------------------- 20266: Facts: 20266: Id : 2, {_}: multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) (multiply (inverse (multiply ?4 ?5)) (multiply ?4 (inverse (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) ?7 =>= ?6 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 20266: Goal: 20266: Id : 1, {_}: multiply (inverse a1) a1 =<= multiply (inverse b1) b1 [] by prove_these_axioms_1 % SZS status Timeout for GRP505-1.p FINAL WATCH: 199.6 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP506-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 20373 TreeLimitedRun: ---------------------------------------------------------- 20375: Facts: 20375: Id : 2, {_}: multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) (multiply (inverse (multiply ?4 ?5)) (multiply ?4 (inverse (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) ?7 =>= ?6 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 20375: Goal: 20375: Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 % SZS status Timeout for GRP506-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP507-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 20444 TreeLimitedRun: ---------------------------------------------------------- 20446: Facts: 20446: Id : 2, {_}: multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) (multiply (inverse (multiply ?4 ?5)) (multiply ?4 (inverse (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) ?7 =>= ?6 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 20446: Goal: 20446: Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 % SZS status Timeout for GRP507-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ GRP508-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 20515 TreeLimitedRun: ---------------------------------------------------------- 20517: Facts: 20517: Id : 2, {_}: multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) (multiply (inverse (multiply ?4 ?5)) (multiply ?4 (inverse (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) ?7 =>= ?6 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 20517: Goal: 20517: Id : 1, {_}: multiply a b =<= multiply b a [] by prove_these_axioms_4 % SZS status Timeout for GRP508-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ HWC004-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 20588 TreeLimitedRun: ---------------------------------------------------------- Fatal error: exception Assert_failure("matitaprover.ml", 280, 46) FINAL WATCH: 0.0 CPU 0.0 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT007-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 20593 TreeLimitedRun: ---------------------------------------------------------- 20595: Facts: 20595: Id : 2, {_}: meet ?2 (join ?2 ?3) =>= ?2 [3, 2] by absorption ?2 ?3 20595: Id : 3, {_}: meet ?5 (join ?6 ?7) =<= join (meet ?7 ?5) (meet ?6 ?5) [7, 6, 5] by distribution ?5 ?6 ?7 20595: Goal: 20595: Id : 1, {_}: join (join a b) c =>= join a (join b c) [] by prove_associativity_of_join Statistics : Max weight : 23 Found proof, 17.182728s % SZS status Unsatisfiable for LAT007-1.p % SZS output start CNFRefutation for LAT007-1.p Id : 3, {_}: meet ?5 (join ?6 ?7) =<= join (meet ?7 ?5) (meet ?6 ?5) [7, 6, 5] by distribution ?5 ?6 ?7 Id : 2, {_}: meet ?2 (join ?2 ?3) =>= ?2 [3, 2] by absorption ?2 ?3 Id : 7, {_}: meet ?18 (join ?19 ?20) =<= join (meet ?20 ?18) (meet ?19 ?18) [20, 19, 18] by distribution ?18 ?19 ?20 Id : 8, {_}: meet (join ?22 ?23) (join ?22 ?24) =<= join (meet ?24 (join ?22 ?23)) ?22 [24, 23, 22] by Super 7 with 2 at 2,3 Id : 13, {_}: meet (meet ?44 ?45) (meet ?45 (join ?46 ?44)) =>= meet ?44 ?45 [46, 45, 44] by Super 2 with 3 at 2,2 Id : 15, {_}: meet (meet ?53 ?54) ?54 =>= meet ?53 ?54 [54, 53] by Super 13 with 2 at 2,2 Id : 21, {_}: meet ?68 (join (meet ?69 ?68) ?70) =<= join (meet ?70 ?68) (meet ?69 ?68) [70, 69, 68] by Super 3 with 15 at 2,3 Id : 69, {_}: meet ?209 (join (meet ?210 ?209) ?211) =>= meet ?209 (join ?210 ?211) [211, 210, 209] by Demod 21 with 3 at 3 Id : 74, {_}: meet ?231 (meet ?231 (join ?232 ?233)) =<= meet ?231 (join ?233 (meet ?232 ?231)) [233, 232, 231] by Super 69 with 3 at 2,2 Id : 22, {_}: meet ?72 (join ?73 (meet ?74 ?72)) =<= join (meet ?74 ?72) (meet ?73 ?72) [74, 73, 72] by Super 3 with 15 at 1,3 Id : 33, {_}: meet ?72 (join ?73 (meet ?74 ?72)) =>= meet ?72 (join ?73 ?74) [74, 73, 72] by Demod 22 with 3 at 3 Id : 219, {_}: meet ?572 (meet ?572 (join ?573 ?574)) =>= meet ?572 (join ?574 ?573) [574, 573, 572] by Demod 74 with 33 at 3 Id : 224, {_}: meet ?597 ?597 =<= meet ?597 (join ?598 ?597) [598, 597] by Super 219 with 2 at 2,2 Id : 244, {_}: meet (join ?635 ?636) (join ?635 ?636) =>= join (meet ?636 ?636) ?635 [636, 635] by Super 8 with 224 at 1,3 Id : 247, {_}: meet ?644 ?644 =>= ?644 [644] by Super 2 with 224 at 2 Id : 1681, {_}: join ?635 ?636 =<= join (meet ?636 ?636) ?635 [636, 635] by Demod 244 with 247 at 2 Id : 1682, {_}: join ?635 ?636 =?= join ?636 ?635 [636, 635] by Demod 1681 with 247 at 1,3 Id : 360, {_}: meet ?904 (join ?905 ?904) =<= join ?904 (meet ?905 ?904) [905, 904] by Super 3 with 247 at 1,3 Id : 350, {_}: ?597 =<= meet ?597 (join ?598 ?597) [598, 597] by Demod 224 with 247 at 2 Id : 387, {_}: ?904 =<= join ?904 (meet ?905 ?904) [905, 904] by Demod 360 with 350 at 2 Id : 32, {_}: meet ?68 (join (meet ?69 ?68) ?70) =>= meet ?68 (join ?69 ?70) [70, 69, 68] by Demod 21 with 3 at 3 Id : 36, {_}: meet (join ?109 ?110) (join ?109 ?111) =<= join (meet ?111 (join ?109 ?110)) ?109 [111, 110, 109] by Super 7 with 2 at 2,3 Id : 39, {_}: meet (join ?123 ?124) (join ?123 ?123) =>= join ?123 ?123 [124, 123] by Super 36 with 2 at 1,3 Id : 6, {_}: meet (meet ?14 ?15) (meet ?15 (join ?16 ?14)) =>= meet ?14 ?15 [16, 15, 14] by Super 2 with 3 at 2,2 Id : 11, {_}: meet (meet ?34 (join ?35 ?36)) (join (meet ?36 ?34) ?37) =<= join (meet ?37 (meet ?34 (join ?35 ?36))) (meet ?36 ?34) [37, 36, 35, 34] by Super 3 with 6 at 2,3 Id : 365, {_}: meet (meet ?919 (join ?920 ?919)) (join (meet ?919 ?919) ?921) =>= join (meet ?921 (meet ?919 (join ?920 ?919))) ?919 [921, 920, 919] by Super 11 with 247 at 2,3 Id : 371, {_}: meet ?919 (join (meet ?919 ?919) ?921) =<= join (meet ?921 (meet ?919 (join ?920 ?919))) ?919 [920, 921, 919] by Demod 365 with 350 at 1,2 Id : 372, {_}: meet ?919 (join ?919 ?921) =<= join (meet ?921 (meet ?919 (join ?920 ?919))) ?919 [920, 921, 919] by Demod 371 with 247 at 1,2,2 Id : 373, {_}: ?919 =<= join (meet ?921 (meet ?919 (join ?920 ?919))) ?919 [920, 921, 919] by Demod 372 with 2 at 2 Id : 412, {_}: ?977 =<= join (meet ?978 ?977) ?977 [978, 977] by Demod 373 with 350 at 2,1,3 Id : 420, {_}: ?1004 =<= join ?1004 ?1004 [1004] by Super 412 with 247 at 1,3 Id : 439, {_}: meet (join ?123 ?124) ?123 =>= join ?123 ?123 [124, 123] by Demod 39 with 420 at 2,2 Id : 440, {_}: meet (join ?123 ?124) ?123 =>= ?123 [124, 123] by Demod 439 with 420 at 3 Id : 421, {_}: join ?1006 ?1007 =<= join ?1007 (join ?1006 ?1007) [1007, 1006] by Super 412 with 350 at 1,3 Id : 710, {_}: meet (join ?1606 ?1607) ?1607 =>= ?1607 [1607, 1606] by Super 440 with 421 at 1,2 Id : 1049, {_}: meet ?2275 (join ?2275 ?2276) =<= meet ?2275 (join (join ?2277 ?2275) ?2276) [2277, 2276, 2275] by Super 32 with 710 at 1,2,2 Id : 1082, {_}: ?2275 =<= meet ?2275 (join (join ?2277 ?2275) ?2276) [2276, 2277, 2275] by Demod 1049 with 2 at 2 Id : 3006, {_}: join (join ?5651 ?5652) ?5653 =<= join (join (join ?5651 ?5652) ?5653) ?5652 [5653, 5652, 5651] by Super 387 with 1082 at 2,3 Id : 7457, {_}: join (join ?13817 ?13818) ?13819 =<= join ?13818 (join (join ?13817 ?13818) ?13819) [13819, 13818, 13817] by Demod 3006 with 1682 at 3 Id : 7458, {_}: join (join ?13821 ?13822) ?13823 =<= join ?13822 (join (join ?13822 ?13821) ?13823) [13823, 13822, 13821] by Super 7457 with 1682 at 1,2,3 Id : 3016, {_}: ?5692 =<= meet ?5692 (join (join ?5693 ?5692) ?5694) [5694, 5693, 5692] by Demod 1049 with 2 at 2 Id : 3017, {_}: ?5696 =<= meet ?5696 (join (join ?5696 ?5697) ?5698) [5698, 5697, 5696] by Super 3016 with 1682 at 1,2,3 Id : 7236, {_}: join (join ?13320 ?13321) ?13322 =<= join (join (join ?13320 ?13321) ?13322) ?13320 [13322, 13321, 13320] by Super 387 with 3017 at 2,3 Id : 7343, {_}: join (join ?13320 ?13321) ?13322 =<= join ?13320 (join (join ?13320 ?13321) ?13322) [13322, 13321, 13320] by Demod 7236 with 1682 at 3 Id : 13223, {_}: join (join ?13821 ?13822) ?13823 =?= join (join ?13822 ?13821) ?13823 [13823, 13822, 13821] by Demod 7458 with 7343 at 3 Id : 366, {_}: meet (meet (join ?923 ?924) (join ?923 ?924)) (join (meet ?924 (join ?923 ?924)) ?925) =>= join (meet ?925 (join ?923 ?924)) (meet ?924 (join ?923 ?924)) [925, 924, 923] by Super 11 with 247 at 2,1,3 Id : 375, {_}: meet (join ?923 ?924) (join (meet ?924 (join ?923 ?924)) ?925) =<= join (meet ?925 (join ?923 ?924)) (meet ?924 (join ?923 ?924)) [925, 924, 923] by Demod 366 with 247 at 1,2 Id : 376, {_}: meet (join ?923 ?924) (join ?924 ?925) =<= join (meet ?925 (join ?923 ?924)) (meet ?924 (join ?923 ?924)) [925, 924, 923] by Demod 375 with 350 at 1,2,2 Id : 377, {_}: meet (join ?923 ?924) (join ?924 ?925) =<= join (meet ?925 (join ?923 ?924)) ?924 [925, 924, 923] by Demod 376 with 350 at 2,3 Id : 1938, {_}: meet (join ?3982 ?3983) (join ?3983 ?3984) =<= join ?3983 (meet ?3984 (join ?3982 ?3983)) [3984, 3983, 3982] by Demod 377 with 1682 at 3 Id : 447, {_}: meet ?1028 (join ?1029 ?1029) =>= meet ?1029 ?1028 [1029, 1028] by Super 3 with 420 at 3 Id : 463, {_}: meet ?1028 ?1029 =?= meet ?1029 ?1028 [1029, 1028] by Demod 447 with 420 at 2,2 Id : 1954, {_}: meet (join ?4048 ?4049) (join ?4049 ?4050) =<= join ?4049 (meet (join ?4048 ?4049) ?4050) [4050, 4049, 4048] by Super 1938 with 463 at 2,3 Id : 1951, {_}: meet (join (meet ?4037 ?4038) ?4039) (join ?4039 ?4038) =>= join ?4039 (meet ?4038 (join ?4037 ?4039)) [4039, 4038, 4037] by Super 1938 with 32 at 2,3 Id : 2009, {_}: meet (join ?4039 ?4038) (join (meet ?4037 ?4038) ?4039) =>= join ?4039 (meet ?4038 (join ?4037 ?4039)) [4037, 4038, 4039] by Demod 1951 with 463 at 2 Id : 1919, {_}: meet (join ?923 ?924) (join ?924 ?925) =<= join ?924 (meet ?925 (join ?923 ?924)) [925, 924, 923] by Demod 377 with 1682 at 3 Id : 2010, {_}: meet (join ?4039 ?4038) (join (meet ?4037 ?4038) ?4039) =>= meet (join ?4037 ?4039) (join ?4039 ?4038) [4037, 4038, 4039] by Demod 2009 with 1919 at 3 Id : 210, {_}: meet ?231 (meet ?231 (join ?232 ?233)) =>= meet ?231 (join ?233 ?232) [233, 232, 231] by Demod 74 with 33 at 3 Id : 450, {_}: meet ?1037 (meet ?1037 ?1038) =?= meet ?1037 (join ?1038 ?1038) [1038, 1037] by Super 210 with 420 at 2,2,2 Id : 458, {_}: meet ?1037 (meet ?1037 ?1038) =>= meet ?1037 ?1038 [1038, 1037] by Demod 450 with 420 at 2,3 Id : 764, {_}: meet (meet ?1697 ?1698) (join (meet ?1697 ?1698) ?1699) =>= meet (meet ?1697 ?1698) (join ?1697 ?1699) [1699, 1698, 1697] by Super 32 with 458 at 1,2,2 Id : 794, {_}: meet ?1697 ?1698 =<= meet (meet ?1697 ?1698) (join ?1697 ?1699) [1699, 1698, 1697] by Demod 764 with 2 at 2 Id : 24399, {_}: meet (join ?44445 ?44446) (join ?44446 (meet ?44445 ?44447)) =>= join ?44446 (meet ?44445 ?44447) [44447, 44446, 44445] by Super 1919 with 794 at 2,3 Id : 24408, {_}: meet (join ?44486 ?44487) (join ?44487 (meet ?44488 ?44486)) =>= join ?44487 (meet ?44486 ?44488) [44488, 44487, 44486] by Super 24399 with 463 at 2,2,2 Id : 9, {_}: meet (join ?26 ?27) (join ?28 ?26) =<= join ?26 (meet ?28 (join ?26 ?27)) [28, 27, 26] by Super 7 with 2 at 1,3 Id : 81, {_}: meet (join ?248 (meet ?249 ?250)) (join ?250 ?248) =>= join ?248 (meet ?250 (join ?248 ?249)) [250, 249, 248] by Super 9 with 33 at 2,3 Id : 112, {_}: meet (join ?248 (meet ?249 ?250)) (join ?250 ?248) =>= meet (join ?248 ?249) (join ?250 ?248) [250, 249, 248] by Demod 81 with 9 at 3 Id : 16884, {_}: meet (join ?250 ?248) (join ?248 (meet ?249 ?250)) =>= meet (join ?248 ?249) (join ?250 ?248) [249, 248, 250] by Demod 112 with 463 at 2 Id : 24627, {_}: meet (join ?44487 ?44488) (join ?44486 ?44487) =>= join ?44487 (meet ?44486 ?44488) [44486, 44488, 44487] by Demod 24408 with 16884 at 2 Id : 24866, {_}: join ?4039 (meet (meet ?4037 ?4038) ?4038) =?= meet (join ?4037 ?4039) (join ?4039 ?4038) [4038, 4037, 4039] by Demod 2010 with 24627 at 2 Id : 24867, {_}: join ?4039 (meet ?4038 (meet ?4037 ?4038)) =?= meet (join ?4037 ?4039) (join ?4039 ?4038) [4037, 4038, 4039] by Demod 24866 with 463 at 2,2 Id : 449, {_}: meet ?1034 (meet ?1035 ?1034) =<= meet ?1034 (join (meet ?1035 ?1034) ?1035) [1035, 1034] by Super 33 with 420 at 2,2 Id : 459, {_}: meet ?1034 (meet ?1035 ?1034) =?= meet ?1034 (join ?1035 ?1035) [1035, 1034] by Demod 449 with 32 at 3 Id : 460, {_}: meet ?1034 (meet ?1035 ?1034) =>= meet ?1034 ?1035 [1035, 1034] by Demod 459 with 420 at 2,3 Id : 24868, {_}: join ?4039 (meet ?4038 ?4037) =<= meet (join ?4037 ?4039) (join ?4039 ?4038) [4037, 4038, 4039] by Demod 24867 with 460 at 2,2 Id : 24870, {_}: join ?4049 (meet ?4050 ?4048) =<= join ?4049 (meet (join ?4048 ?4049) ?4050) [4048, 4050, 4049] by Demod 1954 with 24868 at 2 Id : 24957, {_}: join ?45325 (meet (join ?45326 ?45327) ?45327) =?= join ?45325 (join ?45327 (meet ?45326 ?45325)) [45327, 45326, 45325] by Super 24870 with 24627 at 2,3 Id : 25059, {_}: join ?45325 (meet ?45327 (join ?45326 ?45327)) =?= join ?45325 (join ?45327 (meet ?45326 ?45325)) [45326, 45327, 45325] by Demod 24957 with 463 at 2,2 Id : 25758, {_}: join ?46976 ?46977 =<= join ?46976 (join ?46977 (meet ?46978 ?46976)) [46978, 46977, 46976] by Demod 25059 with 350 at 2,2 Id : 25759, {_}: join (join ?46980 ?46981) ?46982 =<= join (join ?46980 ?46981) (join ?46982 ?46980) [46982, 46981, 46980] by Super 25758 with 2 at 2,2,3 Id : 26804, {_}: join (join ?48963 ?48964) (join ?48964 ?48965) =>= join (join ?48964 ?48965) ?48963 [48965, 48964, 48963] by Super 1682 with 25759 at 3 Id : 1047, {_}: meet ?2267 (meet ?2267 (join ?2268 (join ?2269 ?2267))) =>= meet (join ?2269 ?2267) ?2267 [2269, 2268, 2267] by Super 6 with 710 at 1,2 Id : 1084, {_}: meet ?2267 (join ?2268 (join ?2269 ?2267)) =>= meet (join ?2269 ?2267) ?2267 [2269, 2268, 2267] by Demod 1047 with 458 at 2 Id : 1085, {_}: meet ?2267 (join ?2268 (join ?2269 ?2267)) =>= ?2267 [2269, 2268, 2267] by Demod 1084 with 710 at 3 Id : 3120, {_}: join ?5837 (join ?5838 ?5839) =<= join (join ?5837 (join ?5838 ?5839)) ?5839 [5839, 5838, 5837] by Super 387 with 1085 at 2,3 Id : 8262, {_}: join ?15528 (join ?15529 ?15530) =<= join ?15530 (join ?15528 (join ?15529 ?15530)) [15530, 15529, 15528] by Demod 3120 with 1682 at 3 Id : 8263, {_}: join ?15532 (join ?15533 ?15534) =<= join ?15534 (join ?15532 (join ?15534 ?15533)) [15534, 15533, 15532] by Super 8262 with 1682 at 2,2,3 Id : 3146, {_}: meet ?5950 (join ?5951 (join ?5952 ?5950)) =>= ?5950 [5952, 5951, 5950] by Demod 1084 with 710 at 3 Id : 3147, {_}: meet ?5954 (join ?5955 (join ?5954 ?5956)) =>= ?5954 [5956, 5955, 5954] by Super 3146 with 1682 at 2,2,2 Id : 8025, {_}: join ?15008 (join ?15009 ?15010) =<= join (join ?15008 (join ?15009 ?15010)) ?15009 [15010, 15009, 15008] by Super 387 with 3147 at 2,3 Id : 8135, {_}: join ?15008 (join ?15009 ?15010) =<= join ?15009 (join ?15008 (join ?15009 ?15010)) [15010, 15009, 15008] by Demod 8025 with 1682 at 3 Id : 14144, {_}: join ?15532 (join ?15533 ?15534) =?= join ?15532 (join ?15534 ?15533) [15534, 15533, 15532] by Demod 8263 with 8135 at 3 Id : 25060, {_}: join ?45325 ?45327 =<= join ?45325 (join ?45327 (meet ?45326 ?45325)) [45326, 45327, 45325] by Demod 25059 with 350 at 2,2 Id : 26484, {_}: join ?48435 (join (meet ?48436 ?48435) ?48437) =>= join ?48435 ?48437 [48437, 48436, 48435] by Super 14144 with 25060 at 3 Id : 26512, {_}: join (join ?48571 ?48572) (join ?48572 ?48573) =>= join (join ?48571 ?48572) ?48573 [48573, 48572, 48571] by Super 26484 with 350 at 1,2,2 Id : 29973, {_}: join (join ?48963 ?48964) ?48965 =?= join (join ?48964 ?48965) ?48963 [48965, 48964, 48963] by Demod 26804 with 26512 at 2 Id : 30036, {_}: join ?55063 (join ?55064 ?55065) =<= join (join ?55065 ?55063) ?55064 [55065, 55064, 55063] by Super 1682 with 29973 at 3 Id : 30398, {_}: join ?13822 (join ?13823 ?13821) =<= join (join ?13822 ?13821) ?13823 [13821, 13823, 13822] by Demod 13223 with 30036 at 2 Id : 30399, {_}: join ?13822 (join ?13823 ?13821) =?= join ?13821 (join ?13823 ?13822) [13821, 13823, 13822] by Demod 30398 with 30036 at 3 Id : 30382, {_}: join ?48572 (join (join ?48572 ?48573) ?48571) =>= join (join ?48571 ?48572) ?48573 [48571, 48573, 48572] by Demod 26512 with 30036 at 2 Id : 30383, {_}: join ?48572 (join ?48573 (join ?48571 ?48572)) =>= join (join ?48571 ?48572) ?48573 [48571, 48573, 48572] by Demod 30382 with 30036 at 2,2 Id : 30384, {_}: join ?48572 (join ?48573 (join ?48571 ?48572)) =>= join ?48572 (join ?48573 ?48571) [48571, 48573, 48572] by Demod 30383 with 30036 at 3 Id : 3221, {_}: join ?5837 (join ?5838 ?5839) =<= join ?5839 (join ?5837 (join ?5838 ?5839)) [5839, 5838, 5837] by Demod 3120 with 1682 at 3 Id : 30431, {_}: join ?48573 (join ?48571 ?48572) =?= join ?48572 (join ?48573 ?48571) [48572, 48571, 48573] by Demod 30384 with 3221 at 2 Id : 30826, {_}: join a (join b c) =?= join a (join b c) [] by Demod 30825 with 1682 at 2,2 Id : 30825, {_}: join a (join c b) =?= join a (join b c) [] by Demod 30824 with 30431 at 2 Id : 30824, {_}: join b (join a c) =>= join a (join b c) [] by Demod 30823 with 30399 at 2 Id : 30823, {_}: join c (join a b) =>= join a (join b c) [] by Demod 1 with 1682 at 2 Id : 1, {_}: join (join a b) c =>= join a (join b c) [] by prove_associativity_of_join % SZS output end CNFRefutation for LAT007-1.p 20596: solved LAT007-1.p in 8.564535 using kbo WARNING: TreeLimitedRun lost 11.37s, total lost is 11.37s FINAL WATCH: 19.9 CPU 17.2 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT016-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 20610 TreeLimitedRun: ---------------------------------------------------------- 20612: Facts: 20612: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2 20612: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4 20612: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7 20612: Id : 5, {_}: meet ?9 ?10 =<->= meet ?10 ?9 [10, 9] by commutativity_of_meet ?9 ?10 20612: Id : 6, {_}: join ?12 ?13 =<->= join ?13 ?12 [13, 12] by commutativity_of_join ?12 ?13 20612: Id : 7, {_}: meet (meet ?15 ?16) ?17 =?= meet ?15 (meet ?16 ?17) [17, 16, 15] by associativity_of_meet ?15 ?16 ?17 20612: Id : 8, {_}: join (join ?19 ?20) ?21 =?= join ?19 (join ?20 ?21) [21, 20, 19] by associativity_of_join ?19 ?20 ?21 20612: Id : 9, {_}: complement (complement ?23) =>= ?23 [23] by complement_involution ?23 20612: Id : 10, {_}: join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26) [26, 25] by join_complement ?25 ?26 20612: Id : 11, {_}: meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29)) [29, 28] by meet_complement ?28 ?29 20612: Goal: 20612: Id : 1, {_}: join (complement (join (meet a (complement b)) (complement a))) (join (meet a (complement b)) (join (meet (complement a) (meet (join a (complement b)) (join a b))) (meet (complement a) (complement (meet (join a (complement b)) (join a b)))))) =>= n1 [] by prove_e1 % SZS status Timeout for LAT016-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT017-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 20680 TreeLimitedRun: ---------------------------------------------------------- 20682: Facts: 20682: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2 20682: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4 20682: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7 20682: Id : 5, {_}: meet ?9 ?10 =<->= meet ?10 ?9 [10, 9] by commutativity_of_meet ?9 ?10 20682: Id : 6, {_}: join ?12 ?13 =<->= join ?13 ?12 [13, 12] by commutativity_of_join ?12 ?13 20682: Id : 7, {_}: meet (meet ?15 ?16) ?17 =?= meet ?15 (meet ?16 ?17) [17, 16, 15] by associativity_of_meet ?15 ?16 ?17 20682: Id : 8, {_}: join (join ?19 ?20) ?21 =?= join ?19 (join ?20 ?21) [21, 20, 19] by associativity_of_join ?19 ?20 ?21 20682: Id : 9, {_}: complement (complement ?23) =>= ?23 [23] by complement_involution ?23 20682: Id : 10, {_}: join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26) [26, 25] by join_complement ?25 ?26 20682: Id : 11, {_}: meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29)) [29, 28] by meet_complement ?28 ?29 20682: Goal: 20682: Id : 1, {_}: join a (join (meet (complement a) (meet (join a (complement b)) (join a b))) (meet (complement a) (join (meet (complement a) b) (meet (complement a) (complement b))))) =>= n1 [] by prove_e2 % SZS status Timeout for LAT017-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT018-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 20742 TreeLimitedRun: ---------------------------------------------------------- 20744: Facts: 20744: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2 20744: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4 20744: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7 20744: Id : 5, {_}: meet ?9 ?10 =<->= meet ?10 ?9 [10, 9] by commutativity_of_meet ?9 ?10 20744: Id : 6, {_}: join ?12 ?13 =<->= join ?13 ?12 [13, 12] by commutativity_of_join ?12 ?13 20744: Id : 7, {_}: meet (meet ?15 ?16) ?17 =?= meet ?15 (meet ?16 ?17) [17, 16, 15] by associativity_of_meet ?15 ?16 ?17 20744: Id : 8, {_}: join (join ?19 ?20) ?21 =?= join ?19 (join ?20 ?21) [21, 20, 19] by associativity_of_join ?19 ?20 ?21 20744: Id : 9, {_}: complement (complement ?23) =>= ?23 [23] by complement_involution ?23 20744: Id : 10, {_}: join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26) [26, 25] by join_complement ?25 ?26 20744: Id : 11, {_}: meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29)) [29, 28] by meet_complement ?28 ?29 20744: Goal: 20744: Id : 1, {_}: join (complement (join (join (meet (complement a) b) (meet (complement a) (complement b))) (meet a (join (complement a) b)))) (join (complement a) b) =>= n1 [] by prove_e3 % SZS status Timeout for LAT018-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT020-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 20807 TreeLimitedRun: ---------------------------------------------------------- 20809: Facts: 20809: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20809: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20809: Id : 4, {_}: meet ?6 ?7 =<->= meet ?7 ?6 [7, 6] by commutativity_of_meet ?6 ?7 20809: Id : 5, {_}: join ?9 ?10 =<->= join ?10 ?9 [10, 9] by commutativity_of_join ?9 ?10 20809: Id : 6, {_}: meet (meet ?12 ?13) ?14 =?= meet ?12 (meet ?13 ?14) [14, 13, 12] by associativity_of_meet ?12 ?13 ?14 20809: Id : 7, {_}: join (join ?16 ?17) ?18 =?= join ?16 (join ?17 ?18) [18, 17, 16] by associativity_of_join ?16 ?17 ?18 20809: Id : 8, {_}: join (meet ?20 (join ?21 ?22)) (meet ?20 ?21) =>= meet ?20 (join ?21 ?22) [22, 21, 20] by quasi_lattice1 ?20 ?21 ?22 20809: Id : 9, {_}: meet (join ?24 (meet ?25 ?26)) (join ?24 ?25) =>= join ?24 (meet ?25 ?26) [26, 25, 24] by quasi_lattice2 ?24 ?25 ?26 20809: Id : 10, {_}: join (meet (join (meet ?28 ?29) ?30) ?29) (meet ?30 ?28) =<= meet (join (meet (join ?28 ?29) ?30) ?29) (join ?30 ?28) [30, 29, 28] by self_dual_distributivity ?28 ?29 ?30 20809: Goal: 20809: Id : 1, {_}: meet a (join b c) =<= join (meet a b) (meet a c) [] by prove_distributivity % SZS status Timeout for LAT020-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT024-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 20878 TreeLimitedRun: ---------------------------------------------------------- 20880: Facts: 20880: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20880: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20880: Id : 4, {_}: meet ?6 ?7 =<->= meet ?7 ?6 [7, 6] by commutativity_of_meet ?6 ?7 20880: Id : 5, {_}: join ?9 ?10 =<->= join ?10 ?9 [10, 9] by commutativity_of_join ?9 ?10 20880: Id : 6, {_}: meet (meet ?12 ?13) ?14 =?= meet ?12 (meet ?13 ?14) [14, 13, 12] by associativity_of_meet ?12 ?13 ?14 20880: Id : 7, {_}: join (join ?16 ?17) ?18 =?= join ?16 (join ?17 ?18) [18, 17, 16] by associativity_of_join ?16 ?17 ?18 20880: Id : 8, {_}: join (meet ?20 (join ?21 ?22)) (meet ?20 ?21) =>= meet ?20 (join ?21 ?22) [22, 21, 20] by quasi_lattice1 ?20 ?21 ?22 20880: Id : 9, {_}: meet (join ?24 (meet ?25 ?26)) (join ?24 ?25) =>= join ?24 (meet ?25 ?26) [26, 25, 24] by quasi_lattice2 ?24 ?25 ?26 20880: Id : 10, {_}: meet2 ?28 ?28 =>= ?28 [28] by idempotence_of_meet2 ?28 20880: Id : 11, {_}: meet2 ?30 ?31 =<->= meet2 ?31 ?30 [31, 30] by commutativity_of_meet2 ?30 ?31 20880: Id : 12, {_}: meet2 (meet2 ?33 ?34) ?35 =?= meet2 ?33 (meet2 ?34 ?35) [35, 34, 33] by associativity_of_meet2 ?33 ?34 ?35 20880: Id : 13, {_}: join (meet2 ?37 (join ?38 ?39)) (meet2 ?37 ?38) =>= meet2 ?37 (join ?38 ?39) [39, 38, 37] by quasi_lattice1_2 ?37 ?38 ?39 20880: Id : 14, {_}: meet2 (join ?41 (meet2 ?42 ?43)) (join ?41 ?42) =>= join ?41 (meet2 ?42 ?43) [43, 42, 41] by quasi_lattice2_2 ?41 ?42 ?43 20880: Goal: 20880: Id : 1, {_}: meet a b =<= meet2 a b [] by prove_meets_equal % SZS status Timeout for LAT024-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT025-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 20948 TreeLimitedRun: ---------------------------------------------------------- 20950: Facts: 20950: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 20950: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 20950: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 20950: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 20950: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 20950: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 20950: Id : 8, {_}: join ?18 (meet ?19 (meet ?18 ?20)) =>= ?18 [20, 19, 18] by tnl_1 ?18 ?19 ?20 20950: Id : 9, {_}: meet ?22 (join ?23 (join ?22 ?24)) =>= ?22 [24, 23, 22] by tnl_2 ?22 ?23 ?24 20950: Id : 10, {_}: meet2 ?26 ?26 =>= ?26 [26] by idempotence_of_meet2 ?26 20950: Id : 11, {_}: meet2 ?28 (join ?28 ?29) =>= ?28 [29, 28] by absorption1_2 ?28 ?29 20950: Id : 12, {_}: join ?31 (meet2 ?31 ?32) =>= ?31 [32, 31] by absorption2_2 ?31 ?32 20950: Id : 13, {_}: meet2 ?34 ?35 =<->= meet2 ?35 ?34 [35, 34] by commutativity_of_meet2 ?34 ?35 20950: Id : 14, {_}: join ?37 (meet2 ?38 (meet2 ?37 ?39)) =>= ?37 [39, 38, 37] by tnl_1_2 ?37 ?38 ?39 20950: Id : 15, {_}: meet2 ?41 (join ?42 (join ?41 ?43)) =>= ?41 [43, 42, 41] by tnl_2_2 ?41 ?42 ?43 20950: Goal: 20950: Id : 1, {_}: meet a b =<= meet2 a b [] by prove_meets_equal % SZS status Timeout for LAT025-1.p FINAL WATCH: 199.7 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT046-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 21027 TreeLimitedRun: ---------------------------------------------------------- 21029: Facts: 21029: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 21029: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 21029: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 21029: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 21029: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 21029: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 21029: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 21029: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 21029: Id : 10, {_}: complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 21029: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 21029: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 21029: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 21029: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 21029: Id : 15, {_}: join ?38 (meet ?39 (join ?38 ?40)) =>= meet (join ?38 ?39) (join ?38 ?40) [40, 39, 38] by modular_law ?38 ?39 ?40 21029: Goal: 21029: Id : 1, {_}: meet a (join b c) =<= join (meet a b) (meet a c) [] by prove_distributivity % SZS status Timeout for LAT046-1.p FINAL WATCH: 199.6 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT047-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 21122 TreeLimitedRun: ---------------------------------------------------------- 21124: Facts: 21124: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 21124: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 21124: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 21124: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 21124: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 21124: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 21124: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 21124: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 21124: Goal: 21124: Id : 1, {_}: join a (meet b (join a c)) =>= meet (join a b) (join a c) [] by prove_modularity % SZS status Timeout for LAT047-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT048-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 21189 TreeLimitedRun: ---------------------------------------------------------- 21193: Facts: 21193: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 21193: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 21193: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 21193: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 21193: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 21193: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 21193: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 21193: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 21193: Id : 10, {_}: complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 21193: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 21193: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 21193: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 21193: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 21193: Id : 15, {_}: join (meet (complement ?38) (join ?38 ?39)) (join (complement ?39) (meet ?38 ?39)) =>= n1 [39, 38] by weak_orthomodular_law ?38 ?39 21193: Goal: 21193: Id : 1, {_}: join a (meet (complement a) (join a b)) =>= join a b [] by prove_orthomodular_law % SZS status Timeout for LAT048-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT049-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 21254 TreeLimitedRun: ---------------------------------------------------------- 21256: Facts: 21256: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 21256: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 21256: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 21256: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 21256: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 21256: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 21256: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 21256: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 21256: Id : 10, {_}: complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 21256: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 21256: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 21256: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 21256: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 21256: Goal: 21256: Id : 1, {_}: join (meet (complement a) (join a b)) (join (complement b) (meet a b)) =>= n1 [] by prove_weak_orthomodular_law % SZS status Timeout for LAT049-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT050-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 21327 TreeLimitedRun: ---------------------------------------------------------- 21329: Facts: 21329: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 21329: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 21329: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 21329: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 21329: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 21329: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 21329: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 21329: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 21329: Id : 10, {_}: complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 21329: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 21329: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 21329: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 21329: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 21329: Id : 15, {_}: join ?38 (meet (complement ?38) (join ?38 ?39)) =>= join ?38 ?39 [39, 38] by orthomodular_law ?38 ?39 21329: Goal: 21329: Id : 1, {_}: join a (meet b (join a c)) =>= meet (join a b) (join a c) [] by prove_modular_law % SZS status Timeout for LAT050-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT051-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 21399 TreeLimitedRun: ---------------------------------------------------------- 21401: Facts: 21401: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 21401: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 21401: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 21401: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 21401: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 21401: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 21401: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 21401: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 21401: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by invertability1 ?26 21401: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by invertability2 ?28 21401: Id : 12, {_}: complement (complement ?30) =>= ?30 [30] by invertability3 ?30 21401: Goal: 21401: Id : 1, {_}: complement (join a b) =<= meet (complement a) (complement b) [] by prove_compatibility_law % SZS status Timeout for LAT051-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT052-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 21460 TreeLimitedRun: ---------------------------------------------------------- 21462: Facts: 21462: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 21462: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 21462: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 21462: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 21462: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 21462: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 21462: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 21462: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 21462: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by invertability1 ?26 21462: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by invertability2 ?28 21462: Id : 12, {_}: complement (complement ?30) =>= ?30 [30] by invertability3 ?30 21462: Id : 13, {_}: join ?32 (meet ?33 (join ?32 ?34)) =>= meet (join ?32 ?33) (join ?32 ?34) [34, 33, 32] by modular_law ?32 ?33 ?34 21462: Goal: 21462: Id : 1, {_}: complement (join a b) =<= meet (complement a) (complement b) [] by prove_compatibility_law % SZS status Timeout for LAT052-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT053-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 21522 TreeLimitedRun: ---------------------------------------------------------- 21524: Facts: 21524: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 21524: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 21524: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 21524: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 21524: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 21524: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 21524: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 21524: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 21524: Id : 10, {_}: complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 21524: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 21524: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 21524: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 21524: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 21524: Id : 15, {_}: join (meet (complement ?38) (join ?38 ?39)) (join (complement ?39) (meet ?38 ?39)) =>= n1 [39, 38] by megill ?38 ?39 21524: Goal: 21524: Id : 1, {_}: meet a (join b (meet a (join (complement a) (meet a b)))) =>= meet a (join (complement a) (meet a b)) [] by prove_this % SZS status Timeout for LAT053-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT054-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 21597 TreeLimitedRun: ---------------------------------------------------------- 21599: Facts: 21599: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 21599: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 21599: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 21599: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 21599: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 21599: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 21599: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 21599: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 21599: Id : 10, {_}: complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27) [27, 26] by compatibility1 ?26 ?27 21599: Id : 11, {_}: complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30) [30, 29] by compatibility2 ?29 ?30 21599: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32 21599: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34 21599: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36 21599: Goal: 21599: Id : 1, {_}: join a (meet (complement b) (join (complement a) (meet (complement b) (join a (meet (complement b) (complement a)))))) =<= join a (meet (complement b) (join (complement a) (meet (complement b) (join a (meet (complement b) (join (complement a) (meet (complement b) a))))))) [] by prove_this % SZS status Timeout for LAT054-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT062-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 21684 TreeLimitedRun: ---------------------------------------------------------- 21686: Facts: 21686: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 21686: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 21686: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 21686: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 21686: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 21686: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 21686: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 21686: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 21686: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by top ?26 21686: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by bottom ?28 21686: Id : 12, {_}: meet ?30 ?31 =<= complement (join (complement ?30) (complement ?31)) [31, 30] by compatibility ?30 ?31 21686: Goal: 21686: Id : 1, {_}: meet (join a (complement b)) (join (join (meet a b) (meet (complement a) b)) (meet (complement a) (complement b))) =>= join (meet a b) (meet (complement a) (complement b)) [] by prove_e51 % SZS status Timeout for LAT062-1.p FINAL WATCH: 199.4 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT063-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 21757 TreeLimitedRun: ---------------------------------------------------------- 21759: Facts: 21759: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 21759: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 21759: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 21759: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 21759: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 21759: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 21759: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 21759: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 21759: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by top ?26 21759: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by bottom ?28 21759: Id : 12, {_}: meet ?30 ?31 =<= complement (join (complement ?30) (complement ?31)) [31, 30] by compatibility ?30 ?31 21759: Goal: 21759: Id : 1, {_}: meet a (join b (meet a (join (complement a) (meet a b)))) =>= meet a (join (complement a) (meet a b)) [] by prove_e62 % SZS status Timeout for LAT063-1.p FINAL WATCH: 192.7 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT070-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 22804 TreeLimitedRun: ---------------------------------------------------------- 22806: Facts: 22806: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?3 ?4)) ?5) (f ?3 (f (f ?3 (f (f ?2 ?2) ?2)) ?4)) =>= ?3 [5, 4, 3, 2] by ol_23A ?2 ?3 ?4 ?5 22806: Goal: 22806: Id : 1, {_}: f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a)) [] by associativity % SZS status Timeout for LAT070-1.p FINAL WATCH: 199.4 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT071-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 22954 TreeLimitedRun: ---------------------------------------------------------- 22956: Facts: 22956: Id : 2, {_}: f (f ?2 ?3) (f (f (f (f ?2 ?3) ?3) (f ?4 ?3)) (f (f ?3 ?3) ?5)) =>= ?3 [5, 4, 3, 2] by oml_21C ?2 ?3 ?4 ?5 22956: Goal: 22956: Id : 1, {_}: f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a)) [] by associativity % SZS status Timeout for LAT071-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT072-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 23022 TreeLimitedRun: ---------------------------------------------------------- 23024: Facts: 23024: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?3 ?4)) ?5) (f ?3 (f (f ?4 (f (f ?3 ?3) ?4)) ?4)) =>= ?3 [5, 4, 3, 2] by oml_23A ?2 ?3 ?4 ?5 23024: Goal: 23024: Id : 1, {_}: f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a)) [] by associativity % SZS status Timeout for LAT072-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT073-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 23098 TreeLimitedRun: ---------------------------------------------------------- 23100: Facts: 23100: Id : 2, {_}: f (f (f ?2 (f ?3 ?2)) ?2) (f ?3 (f ?4 (f (f ?3 ?2) (f (f ?4 ?4) ?5)))) =>= ?3 [5, 4, 3, 2] by mol_23C ?2 ?3 ?4 ?5 23100: Goal: 23100: Id : 1, {_}: f a (f b (f a (f c c))) =<= f a (f c (f a (f b b))) [] by modularity % SZS status Timeout for LAT073-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT074-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 23158 TreeLimitedRun: ---------------------------------------------------------- 23160: Facts: 23160: Id : 2, {_}: f (f ?2 ?3) (f (f (f ?3 ?3) ?4) (f (f (f (f (f ?3 ?2) ?4) ?4) ?3) (f ?3 ?5))) =>= ?3 [5, 4, 3, 2] by mol_25A ?2 ?3 ?4 ?5 23160: Goal: 23160: Id : 1, {_}: f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a)) [] by associativity % SZS status Timeout for LAT074-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT075-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 23230 TreeLimitedRun: ---------------------------------------------------------- 23232: Facts: 23232: Id : 2, {_}: f (f ?2 ?3) (f (f (f ?3 ?3) ?4) (f (f (f (f (f ?3 ?2) ?4) ?4) ?3) (f ?3 ?5))) =>= ?3 [5, 4, 3, 2] by mol_25A ?2 ?3 ?4 ?5 23232: Goal: 23232: Id : 1, {_}: f a (f b (f a (f c c))) =<= f a (f c (f a (f b b))) [] by modularity % SZS status Timeout for LAT075-1.p FINAL WATCH: 199.7 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT076-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 23314 TreeLimitedRun: ---------------------------------------------------------- 23316: Facts: 23316: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?4 ?3)) ?5) (f ?3 (f (f (f (f (f (f ?2 ?2) ?3) ?4) ?4) ?3) ?2)) =>= ?3 [5, 4, 3, 2] by mol_27B1 ?2 ?3 ?4 ?5 23316: Goal: 23316: Id : 1, {_}: f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a)) [] by associativity % SZS status Timeout for LAT076-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT077-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 23364 TreeLimitedRun: ---------------------------------------------------------- 23366: Facts: 23366: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?4 ?3)) ?5) (f ?3 (f (f (f (f (f (f ?2 ?2) ?3) ?4) ?4) ?3) ?2)) =>= ?3 [5, 4, 3, 2] by mol_27B1 ?2 ?3 ?4 ?5 23366: Goal: 23366: Id : 1, {_}: f a (f b (f a (f c c))) =<= f a (f c (f a (f b b))) [] by modularity % SZS status Timeout for LAT077-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT078-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 23435 TreeLimitedRun: ---------------------------------------------------------- 23437: Facts: 23437: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?3 ?4)) ?5) (f ?3 (f (f (f ?2 (f ?2 (f (f ?4 ?4) ?3))) ?3) ?4)) =>= ?3 [5, 4, 3, 2] by mol_27B2 ?2 ?3 ?4 ?5 23437: Goal: 23437: Id : 1, {_}: f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a)) [] by associativity % SZS status Timeout for LAT078-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT079-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 23506 TreeLimitedRun: ---------------------------------------------------------- 23508: Facts: 23508: Id : 2, {_}: f (f (f (f ?2 ?3) (f ?3 ?4)) ?5) (f ?3 (f (f (f ?2 (f ?2 (f (f ?4 ?4) ?3))) ?3) ?4)) =>= ?3 [5, 4, 3, 2] by mol_27B2 ?2 ?3 ?4 ?5 23508: Goal: 23508: Id : 1, {_}: f a (f b (f a (f c c))) =<= f a (f c (f a (f b b))) [] by modularity % SZS status Timeout for LAT079-1.p FINAL WATCH: 199.4 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT080-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 23589 TreeLimitedRun: ---------------------------------------------------------- 23591: Facts: 23591: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23591: Goal: 23591: Id : 1, {_}: meet a a =>= a [] by prove_normal_axioms_1 Statistics : Max weight : 3122 Found proof, 36.952587s % SZS status Unsatisfiable for LAT080-1.p % SZS output start CNFRefutation for LAT080-1.p Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 Id : 3, {_}: join (meet (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12) (meet (join (meet ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)) (meet (join (meet ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)) (meet ?16 (join ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)))) (join ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)))) (join (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12)) =>= ?11 [16, 15, 14, 13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 ?14 ?15 ?16 Id : 37, {_}: join (meet (join (meet ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) (join ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))))) ?276) (meet (join (meet ?273 (join (join (meet ?277 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) ?278)) (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))))) (meet ?275 (join ?273 (join (join (meet ?277 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) ?278)) (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))))))) (join (join (meet ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) (join ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))))) ?276)) =>= join (meet ?274 ?275) (meet ?275 (join ?274 ?275)) [278, 277, 276, 275, 274, 273] by Super 3 with 2 at 1,2,1,2,2 Id : 40, {_}: join (meet (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 311, 310, 309, 308, 307, 306, 305, 304, 303] by Super 37 with 2 at 2,2,2,1,2,2,2 Id : 124, {_}: join (meet (join (meet ?303 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 311, 310, 309, 308, 307, 306, 304, 305, 303] by Demod 40 with 2 at 2,1,1,1,2 Id : 125, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 311, 310, 309, 308, 307, 306, 304, 305, 303] by Demod 124 with 2 at 1,2,1,1,2 Id : 126, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 309, 308, 307, 306, 304, 311, 310, 305, 303] by Demod 125 with 2 at 2,2,2,1,1,2 Id : 127, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 309, 308, 307, 306, 304, 311, 310, 305, 303] by Demod 126 with 2 at 2,1,1,2,1,1,2,2 Id : 128, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 127 with 2 at 1,2,1,2,1,1,2,2 Id : 129, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 128 with 2 at 2,2,1,1,2,2 Id : 130, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 129 with 2 at 2,1,1,2,2,2,1,2,2 Id : 131, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 130 with 2 at 1,2,1,2,2,2,1,2,2 Id : 132, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 131 with 2 at 2,2,2,2,1,2,2 Id : 133, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)))) (join (join (meet ?303 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 132 with 2 at 2,1,1,2,2,2 Id : 134, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)))) (join (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310)) =?= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 133 with 2 at 1,2,1,2,2,2 Id : 712, {_}: join (meet (join (meet ?1349 ?1350) (meet ?1350 (join ?1349 ?1350))) ?1351) (meet (join (meet ?1349 (join (join (meet ?1352 ?1350) (meet ?1350 ?1353)) ?1350)) (meet (join (meet ?1354 (join (join (meet ?1355 ?1350) (meet ?1350 ?1356)) ?1350)) (meet (join (meet ?1350 (meet (meet (join ?1355 (join ?1350 ?1356)) (join ?1357 ?1350)) ?1350)) (meet ?1358 (join ?1350 (meet (meet (join ?1355 (join ?1350 ?1356)) (join ?1357 ?1350)) ?1350)))) (join ?1354 (join (join (meet ?1355 ?1350) (meet ?1350 ?1356)) ?1350)))) (join ?1349 (join (join (meet ?1352 ?1350) (meet ?1350 ?1353)) ?1350)))) (join (join (meet ?1349 ?1350) (meet ?1350 (join ?1349 ?1350))) ?1351)) =>= ?1350 [1358, 1357, 1356, 1355, 1354, 1353, 1352, 1351, 1350, 1349] by Demod 134 with 2 at 3 Id : 1145, {_}: join (meet (join (meet (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441) (meet ?2441 (join (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441))) ?2442) (meet ?2441 (join (join (meet (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441) (meet ?2441 (join (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441))) ?2442)) =>= ?2441 [2442, 2441, 2440] by Super 712 with 2 at 1,2,2 Id : 746, {_}: join (meet (join (meet (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865) (meet ?1865 (join (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865))) ?1866) (meet ?1865 (join (join (meet (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865) (meet ?1865 (join (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865))) ?1866)) =>= ?1865 [1866, 1865, 1864] by Super 712 with 2 at 1,2,2 Id : 1162, {_}: join (meet (join (meet (join (meet (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573) (meet ?2573 (join (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573))) ?2573) (meet ?2573 (join (join (meet (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573) (meet ?2573 (join (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573))) ?2573))) ?2574) (meet ?2573 (join ?2573 ?2574)) =>= ?2573 [2574, 2573, 2572] by Super 1145 with 746 at 1,2,2,2 Id : 1544, {_}: join (meet ?2573 ?2574) (meet ?2573 (join ?2573 ?2574)) =>= ?2573 [2574, 2573] by Demod 1162 with 746 at 1,1,2 Id : 11, {_}: join (meet (join (meet ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) (join ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))))) ?109) (meet (join (meet ?106 (join (join (meet ?110 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) ?111)) (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))))) (meet ?108 (join ?106 (join (join (meet ?110 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) ?111)) (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))))))) (join (join (meet ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) (join ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))))) ?109)) =>= join (meet ?107 ?108) (meet ?108 (join ?107 ?108)) [111, 110, 109, 108, 107, 106] by Super 3 with 2 at 1,2,1,2,2 Id : 1090, {_}: join (meet (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1979, 1978, 1977, 1976, 1975] by Super 11 with 746 at 2,2,2,1,2,2,2 Id : 1216, {_}: join (meet (join (meet ?1975 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1979, 1978, 1976, 1977, 1975] by Demod 1090 with 746 at 2,1,1,1,2 Id : 1217, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1979, 1978, 1976, 1977, 1975] by Demod 1216 with 746 at 1,2,1,1,2 Id : 1218, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1976, 1979, 1978, 1977, 1975] by Demod 1217 with 746 at 2,2,2,1,1,2 Id : 1219, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1976, 1979, 1978, 1977, 1975] by Demod 1218 with 746 at 2,1,1,2,1,1,2,2 Id : 1220, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1219 with 746 at 1,2,1,2,1,1,2,2 Id : 1221, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1220 with 746 at 2,2,1,1,2,2 Id : 1222, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1221 with 746 at 2,1,1,2,2,2,1,2,2 Id : 1223, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1222 with 746 at 1,2,1,2,2,2,1,2,2 Id : 1224, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1223 with 746 at 2,2,2,2,1,2,2 Id : 1225, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1224 with 746 at 2,1,1,2,2,2 Id : 1226, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978)) =?= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1225 with 746 at 1,2,1,2,2,2 Id : 2537, {_}: join (meet (join (meet ?4347 ?4348) (meet ?4348 (join ?4347 ?4348))) ?4349) (meet (join (meet ?4347 (join (join (meet ?4350 ?4348) (meet ?4348 ?4351)) ?4348)) (meet ?4348 (join ?4347 (join (join (meet ?4350 ?4348) (meet ?4348 ?4351)) ?4348)))) (join (join (meet ?4347 ?4348) (meet ?4348 (join ?4347 ?4348))) ?4349)) =>= ?4348 [4351, 4350, 4349, 4348, 4347] by Demod 1226 with 746 at 3 Id : 2546, {_}: join (meet (join (meet (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) (join (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))))) ?4428) (meet (join (meet (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) (join (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))))) (join ?4423 ?4428)) =>= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4430, 4429, 4428, 4427, 4426, 4425, 4424, 4423, 4422] by Super 2537 with 2 at 1,2,2,2 Id : 2932, {_}: join (meet ?4423 ?4428) (meet (join (meet (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) (join (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))))) (join ?4423 ?4428)) =>= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4430, 4427, 4426, 4425, 4424, 4429, 4422, 4428, 4423] by Demod 2546 with 2 at 1,1,2 Id : 2933, {_}: join (meet ?4423 ?4428) (meet ?4423 (join ?4423 ?4428)) =?= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4427, 4426, 4425, 4424, 4422, 4428, 4423] by Demod 2932 with 2 at 1,2,2 Id : 2934, {_}: ?4423 =<= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4427, 4426, 4425, 4424, 4422, 4423] by Demod 2933 with 1544 at 2 Id : 4162, {_}: ?6278 =<= join (meet ?6278 (meet (meet (join ?6279 (join ?6278 ?6280)) (join ?6281 ?6278)) ?6278)) (meet ?6282 (join ?6278 (meet (meet (join ?6279 (join ?6278 ?6280)) (join ?6281 ?6278)) ?6278))) [6282, 6281, 6280, 6279, 6278] by Super 1544 with 2934 at 2 Id : 1227, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978)) =>= ?1977 [1980, 1979, 1978, 1977, 1975] by Demod 1226 with 746 at 3 Id : 2550, {_}: join (meet (join (meet (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) (join (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))))) ?4464) (meet (join (meet (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) (join (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))))) (join ?4461 ?4464)) =>= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4466, 4465, 4464, 4463, 4462, 4461, 4460] by Super 2537 with 1227 at 1,2,2,2 Id : 2944, {_}: join (meet ?4461 ?4464) (meet (join (meet (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) (join (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))))) (join ?4461 ?4464)) =>= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4466, 4463, 4462, 4465, 4460, 4464, 4461] by Demod 2550 with 1227 at 1,1,2 Id : 2945, {_}: join (meet ?4461 ?4464) (meet ?4461 (join ?4461 ?4464)) =?= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4463, 4462, 4460, 4464, 4461] by Demod 2944 with 1227 at 1,2,2 Id : 2946, {_}: ?4461 =<= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4463, 4462, 4460, 4461] by Demod 2945 with 1544 at 2 Id : 3006, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet ?1977 (join (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978)) =>= ?1977 [1978, 1977, 1975] by Demod 1227 with 2946 at 1,2,2 Id : 4445, {_}: join (meet ?6922 ?6923) (meet ?6923 (join ?6922 ?6923)) =>= ?6923 [6923, 6922] by Super 3006 with 4162 at 2 Id : 4987, {_}: ?7824 =<= meet (meet (join ?7825 (join ?7824 ?7826)) (join ?7827 ?7824)) ?7824 [7827, 7826, 7825, 7824] by Super 4162 with 4445 at 3 Id : 7455, {_}: meet ?10422 ?10423 =<= meet (meet (join ?10424 ?10422) (join ?10425 (meet ?10422 ?10423))) (meet ?10422 ?10423) [10425, 10424, 10423, 10422] by Super 4987 with 1544 at 2,1,1,3 Id : 3045, {_}: ?5029 =<= join (meet ?5030 (join (join (meet ?5031 ?5029) (meet ?5029 ?5032)) ?5029)) (meet ?5029 (join ?5030 (join (join (meet ?5031 ?5029) (meet ?5029 ?5032)) ?5029))) [5032, 5031, 5030, 5029] by Demod 2945 with 1544 at 2 Id : 3049, {_}: ?5060 =<= join (meet ?5061 (join (join (meet ?5060 ?5060) (meet ?5060 (join ?5060 ?5060))) ?5060)) (meet ?5060 (join ?5061 (join ?5060 ?5060))) [5061, 5060] by Super 3045 with 1544 at 1,2,2,2,3 Id : 3227, {_}: ?5060 =<= join (meet ?5061 (join ?5060 ?5060)) (meet ?5060 (join ?5061 (join ?5060 ?5060))) [5061, 5060] by Demod 3049 with 1544 at 1,2,1,3 Id : 4913, {_}: ?7588 =<= meet (meet (join ?7589 (join ?7588 ?7590)) (join ?7591 ?7588)) ?7588 [7591, 7590, 7589, 7588] by Super 4162 with 4445 at 3 Id : 4953, {_}: ?6278 =<= join (meet ?6278 ?6278) (meet ?6282 (join ?6278 (meet (meet (join ?6279 (join ?6278 ?6280)) (join ?6281 ?6278)) ?6278))) [6281, 6280, 6279, 6282, 6278] by Demod 4162 with 4913 at 2,1,3 Id : 4954, {_}: ?6278 =<= join (meet ?6278 ?6278) (meet ?6282 (join ?6278 ?6278)) [6282, 6278] by Demod 4953 with 4913 at 2,2,2,3 Id : 4955, {_}: ?7642 =<= join (meet ?7642 ?7642) (join ?7642 ?7642) [7642] by Super 4954 with 4913 at 2,3 Id : 5082, {_}: ?7952 =<= join (meet (meet ?7952 ?7952) (join ?7952 ?7952)) (meet ?7952 ?7952) [7952] by Super 3227 with 4955 at 2,2,3 Id : 5086, {_}: ?7964 =<= meet (meet ?7964 (join ?7965 ?7964)) ?7964 [7965, 7964] by Super 4913 with 4955 at 1,1,3 Id : 5098, {_}: join ?7973 (meet ?7973 (join (meet ?7973 (join ?7974 ?7973)) ?7973)) =>= ?7973 [7974, 7973] by Super 4445 with 5086 at 1,2 Id : 5719, {_}: ?8771 =<= meet (meet (join ?8772 ?8771) (join ?8773 ?8771)) ?8771 [8773, 8772, 8771] by Super 4913 with 5098 at 2,1,1,3 Id : 5971, {_}: join ?9107 ?9107 =<= meet (meet (join ?9108 (join ?9107 ?9107)) ?9107) (join ?9107 ?9107) [9108, 9107] by Super 5719 with 4955 at 2,1,3 Id : 5973, {_}: join ?9113 ?9113 =<= meet (meet ?9113 ?9113) (join ?9113 ?9113) [9113] by Super 5971 with 4955 at 1,1,3 Id : 6038, {_}: ?7952 =<= join (join ?7952 ?7952) (meet ?7952 ?7952) [7952] by Demod 5082 with 5973 at 1,3 Id : 7665, {_}: meet ?10842 ?10842 =<= meet (meet (join ?10843 ?10842) ?10842) (meet ?10842 ?10842) [10843, 10842] by Super 7455 with 6038 at 2,1,3 Id : 6040, {_}: join (join ?9119 ?9119) (meet (join ?9119 ?9119) (join (meet ?9119 ?9119) (join ?9119 ?9119))) =>= join ?9119 ?9119 [9119] by Super 4445 with 5973 at 1,2 Id : 6160, {_}: join (join ?9119 ?9119) (meet (join ?9119 ?9119) ?9119) =>= join ?9119 ?9119 [9119] by Demod 6040 with 4955 at 2,2,2 Id : 6203, {_}: join (meet (join ?9257 ?9257) ?9257) (meet (meet (join ?9257 ?9257) ?9257) (join (meet (meet (join ?9257 ?9257) ?9257) (join ?9257 ?9257)) (meet (join ?9257 ?9257) ?9257))) =>= meet (join ?9257 ?9257) ?9257 [9257] by Super 5098 with 6160 at 2,1,2,2,2 Id : 5131, {_}: ?8097 =<= meet (meet ?8097 (join ?8098 ?8097)) ?8097 [8098, 8097] by Super 4913 with 4955 at 1,1,3 Id : 5142, {_}: join ?8134 ?8134 =<= meet (meet (join ?8134 ?8134) ?8134) (join ?8134 ?8134) [8134] by Super 5131 with 4955 at 2,1,3 Id : 6215, {_}: join (meet (join ?9257 ?9257) ?9257) (meet (meet (join ?9257 ?9257) ?9257) (join (join ?9257 ?9257) (meet (join ?9257 ?9257) ?9257))) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6203 with 5142 at 1,2,2,2 Id : 6216, {_}: join (meet (join ?9257 ?9257) ?9257) (meet (meet (join ?9257 ?9257) ?9257) (join ?9257 ?9257)) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6215 with 6160 at 2,2,2 Id : 6217, {_}: join (meet (join ?9257 ?9257) ?9257) (join ?9257 ?9257) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6216 with 5142 at 2,2 Id : 6736, {_}: ?9826 =<= meet (meet (meet (join ?9826 ?9826) ?9826) (join ?9827 ?9826)) ?9826 [9827, 9826] by Super 4913 with 6217 at 1,1,3 Id : 6754, {_}: ?9879 =<= meet (join ?9879 ?9879) ?9879 [9879] by Super 6736 with 5142 at 1,3 Id : 7687, {_}: meet ?10905 ?10905 =<= meet ?10905 (meet ?10905 ?10905) [10905] by Super 7665 with 6754 at 1,3 Id : 7769, {_}: join (meet ?10951 ?10951) (meet ?10951 (join ?10951 (meet ?10951 ?10951))) =>= ?10951 [10951] by Super 1544 with 7687 at 1,2 Id : 6859, {_}: join ?9931 (meet (join ?9931 ?9931) (join (join ?9931 ?9931) ?9931)) =>= join ?9931 ?9931 [9931] by Super 1544 with 6754 at 1,2 Id : 6835, {_}: join (join ?9119 ?9119) ?9119 =>= join ?9119 ?9119 [9119] by Demod 6160 with 6754 at 2,2 Id : 6928, {_}: join ?9931 (meet (join ?9931 ?9931) (join ?9931 ?9931)) =>= join ?9931 ?9931 [9931] by Demod 6859 with 6835 at 2,2,2 Id : 1658, {_}: join (meet ?3156 ?3157) (meet ?3156 (join ?3156 ?3157)) =>= ?3156 [3157, 3156] by Demod 1162 with 746 at 1,1,2 Id : 1663, {_}: join (meet (meet ?3189 ?3190) (meet ?3189 (join ?3189 ?3190))) (meet (meet ?3189 ?3190) ?3189) =>= meet ?3189 ?3190 [3190, 3189] by Super 1658 with 1544 at 2,2,2 Id : 9042, {_}: meet ?12453 (join ?12454 ?12454) =<= meet (meet (join ?12455 ?12453) ?12454) (meet ?12453 (join ?12454 ?12454)) [12455, 12454, 12453] by Super 7455 with 4954 at 2,1,3 Id : 6840, {_}: join ?9257 (join ?9257 ?9257) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6217 with 6754 at 1,2 Id : 6841, {_}: join ?9257 (join ?9257 ?9257) =>= ?9257 [9257] by Demod 6840 with 6754 at 3 Id : 9703, {_}: meet (join ?13328 ?13328) (join ?13329 ?13329) =<= meet (meet ?13328 ?13329) (meet (join ?13328 ?13328) (join ?13329 ?13329)) [13329, 13328] by Super 9042 with 6841 at 1,1,3 Id : 9727, {_}: meet (join ?13401 ?13401) (join (meet ?13401 ?13401) (meet ?13401 ?13401)) =<= meet (meet ?13401 ?13401) (meet (join ?13401 ?13401) (join (meet ?13401 ?13401) (meet ?13401 ?13401))) [13401] by Super 9703 with 7687 at 1,3 Id : 6349, {_}: meet ?9388 ?9388 =<= meet (meet (join ?9389 (meet ?9388 ?9388)) ?9388) (meet ?9388 ?9388) [9389, 9388] by Super 5719 with 5082 at 2,1,3 Id : 6352, {_}: meet ?9396 ?9396 =<= meet (meet ?9396 ?9396) (meet ?9396 ?9396) [9396] by Super 6349 with 6038 at 1,1,3 Id : 6421, {_}: meet ?9471 ?9471 =<= join (join (meet ?9471 ?9471) (meet ?9471 ?9471)) (meet ?9471 ?9471) [9471] by Super 6038 with 6352 at 2,3 Id : 7035, {_}: meet ?9471 ?9471 =<= join (meet ?9471 ?9471) (meet ?9471 ?9471) [9471] by Demod 6421 with 6835 at 3 Id : 9826, {_}: meet (join ?13401 ?13401) (meet ?13401 ?13401) =<= meet (meet ?13401 ?13401) (meet (join ?13401 ?13401) (join (meet ?13401 ?13401) (meet ?13401 ?13401))) [13401] by Demod 9727 with 7035 at 2,2 Id : 9827, {_}: meet (join ?13401 ?13401) (meet ?13401 ?13401) =<= meet (meet ?13401 ?13401) (meet (join ?13401 ?13401) (meet ?13401 ?13401)) [13401] by Demod 9826 with 7035 at 2,2,3 Id : 10353, {_}: join (meet (meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018))) (meet (meet ?14018 ?14018) (join (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018))))) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Super 1663 with 9827 at 1,2,2 Id : 10483, {_}: join (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet (meet ?14018 ?14018) (join (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018))))) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10353 with 9827 at 1,1,2 Id : 7066, {_}: meet ?10089 ?10089 =<= join (meet (meet ?10089 ?10089) (meet ?10089 ?10089)) (meet ?10090 (meet ?10089 ?10089)) [10090, 10089] by Super 4954 with 7035 at 2,2,3 Id : 7108, {_}: meet ?10089 ?10089 =<= join (meet ?10089 ?10089) (meet ?10090 (meet ?10089 ?10089)) [10090, 10089] by Demod 7066 with 6352 at 1,3 Id : 10484, {_}: join (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet (meet ?14018 ?14018) (meet ?14018 ?14018))) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10483 with 7108 at 2,2,1,2 Id : 10485, {_}: join (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10484 with 6352 at 2,1,2 Id : 7504, {_}: meet ?10649 ?10649 =<= meet (meet (join ?10650 ?10649) (meet ?10649 ?10649)) (meet ?10649 ?10649) [10650, 10649] by Super 7455 with 7035 at 2,1,3 Id : 10486, {_}: join (meet ?14018 ?14018) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10485 with 7504 at 1,2 Id : 10487, {_}: join (meet ?14018 ?14018) (meet ?14018 ?14018) =<= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10486 with 7504 at 2,2 Id : 10488, {_}: meet ?14018 ?14018 =<= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10487 with 7035 at 2 Id : 10489, {_}: meet ?14018 ?14018 =<= meet (join ?14018 ?14018) (meet ?14018 ?14018) [14018] by Demod 10488 with 9827 at 3 Id : 10554, {_}: join (meet (meet (join ?14134 ?14134) (meet ?14134 ?14134)) (meet (join ?14134 ?14134) (join (join ?14134 ?14134) (meet ?14134 ?14134)))) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Super 1663 with 10489 at 1,2,2 Id : 10591, {_}: join (meet (meet ?14134 ?14134) (meet (join ?14134 ?14134) (join (join ?14134 ?14134) (meet ?14134 ?14134)))) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10554 with 10489 at 1,1,2 Id : 10592, {_}: join (meet (meet ?14134 ?14134) (meet (join ?14134 ?14134) ?14134)) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10591 with 6038 at 2,2,1,2 Id : 10593, {_}: join (meet (meet ?14134 ?14134) ?14134) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10592 with 6754 at 2,1,2 Id : 10594, {_}: join (meet (meet ?14134 ?14134) ?14134) (join ?14134 ?14134) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10593 with 5973 at 2,2 Id : 10595, {_}: join (meet (meet ?14134 ?14134) ?14134) (join ?14134 ?14134) =>= meet ?14134 ?14134 [14134] by Demod 10594 with 10489 at 3 Id : 11369, {_}: join (meet (meet (meet ?14314 ?14314) ?14314) (join ?14314 ?14314)) (meet (join ?14314 ?14314) (meet ?14314 ?14314)) =>= join ?14314 ?14314 [14314] by Super 4445 with 10595 at 2,2,2 Id : 9049, {_}: meet (meet ?12484 ?12484) (join ?12484 ?12484) =<= meet (meet (join ?12485 (meet ?12484 ?12484)) ?12484) (join ?12484 ?12484) [12485, 12484] by Super 9042 with 5973 at 2,3 Id : 10101, {_}: join ?13865 ?13865 =<= meet (meet (join ?13866 (meet ?13865 ?13865)) ?13865) (join ?13865 ?13865) [13866, 13865] by Demod 9049 with 5973 at 2 Id : 10110, {_}: join ?13887 ?13887 =<= meet (meet (meet ?13887 ?13887) ?13887) (join ?13887 ?13887) [13887] by Super 10101 with 7035 at 1,1,3 Id : 11497, {_}: join (join ?14314 ?14314) (meet (join ?14314 ?14314) (meet ?14314 ?14314)) =>= join ?14314 ?14314 [14314] by Demod 11369 with 10110 at 1,2 Id : 11498, {_}: join (join ?14314 ?14314) (meet ?14314 ?14314) =>= join ?14314 ?14314 [14314] by Demod 11497 with 10489 at 2,2 Id : 11499, {_}: ?14314 =<= join ?14314 ?14314 [14314] by Demod 11498 with 6038 at 2 Id : 11572, {_}: join ?9931 (meet ?9931 (join ?9931 ?9931)) =>= join ?9931 ?9931 [9931] by Demod 6928 with 11499 at 1,2,2 Id : 11573, {_}: join ?9931 (meet ?9931 ?9931) =>= join ?9931 ?9931 [9931] by Demod 11572 with 11499 at 2,2,2 Id : 11574, {_}: join ?9931 (meet ?9931 ?9931) =>= ?9931 [9931] by Demod 11573 with 11499 at 3 Id : 11586, {_}: join (meet ?10951 ?10951) (meet ?10951 ?10951) =>= ?10951 [10951] by Demod 7769 with 11574 at 2,2,2 Id : 11587, {_}: meet ?10951 ?10951 =>= ?10951 [10951] by Demod 11586 with 11499 at 2 Id : 11889, {_}: a === a [] by Demod 1 with 11587 at 2 Id : 1, {_}: meet a a =>= a [] by prove_normal_axioms_1 % SZS output end CNFRefutation for LAT080-1.p 23594: solved LAT080-1.p in 18.765172 using nrkbo WARNING: TreeLimitedRun lost 41.05s, total lost is 41.05s FINAL WATCH: 59.8 CPU 37.7 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT081-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 23632 TreeLimitedRun: ---------------------------------------------------------- 23634: Facts: 23634: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23634: Goal: 23634: Id : 1, {_}: meet a b =<= meet b a [] by prove_normal_axioms_2 Statistics : Max weight : 3122 Found proof, 77.961629s % SZS status Unsatisfiable for LAT081-1.p % SZS output start CNFRefutation for LAT081-1.p Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 Id : 3, {_}: join (meet (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12) (meet (join (meet ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)) (meet (join (meet ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)) (meet ?16 (join ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)))) (join ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)))) (join (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12)) =>= ?11 [16, 15, 14, 13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 ?14 ?15 ?16 Id : 37, {_}: join (meet (join (meet ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) (join ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))))) ?276) (meet (join (meet ?273 (join (join (meet ?277 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) ?278)) (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))))) (meet ?275 (join ?273 (join (join (meet ?277 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) ?278)) (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))))))) (join (join (meet ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) (join ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))))) ?276)) =>= join (meet ?274 ?275) (meet ?275 (join ?274 ?275)) [278, 277, 276, 275, 274, 273] by Super 3 with 2 at 1,2,1,2,2 Id : 40, {_}: join (meet (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 311, 310, 309, 308, 307, 306, 305, 304, 303] by Super 37 with 2 at 2,2,2,1,2,2,2 Id : 124, {_}: join (meet (join (meet ?303 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 311, 310, 309, 308, 307, 306, 304, 305, 303] by Demod 40 with 2 at 2,1,1,1,2 Id : 125, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 311, 310, 309, 308, 307, 306, 304, 305, 303] by Demod 124 with 2 at 1,2,1,1,2 Id : 126, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 309, 308, 307, 306, 304, 311, 310, 305, 303] by Demod 125 with 2 at 2,2,2,1,1,2 Id : 127, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 309, 308, 307, 306, 304, 311, 310, 305, 303] by Demod 126 with 2 at 2,1,1,2,1,1,2,2 Id : 128, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 127 with 2 at 1,2,1,2,1,1,2,2 Id : 129, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 128 with 2 at 2,2,1,1,2,2 Id : 130, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 129 with 2 at 2,1,1,2,2,2,1,2,2 Id : 131, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 130 with 2 at 1,2,1,2,2,2,1,2,2 Id : 132, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 131 with 2 at 2,2,2,2,1,2,2 Id : 133, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)))) (join (join (meet ?303 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 132 with 2 at 2,1,1,2,2,2 Id : 134, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)))) (join (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310)) =?= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 133 with 2 at 1,2,1,2,2,2 Id : 712, {_}: join (meet (join (meet ?1349 ?1350) (meet ?1350 (join ?1349 ?1350))) ?1351) (meet (join (meet ?1349 (join (join (meet ?1352 ?1350) (meet ?1350 ?1353)) ?1350)) (meet (join (meet ?1354 (join (join (meet ?1355 ?1350) (meet ?1350 ?1356)) ?1350)) (meet (join (meet ?1350 (meet (meet (join ?1355 (join ?1350 ?1356)) (join ?1357 ?1350)) ?1350)) (meet ?1358 (join ?1350 (meet (meet (join ?1355 (join ?1350 ?1356)) (join ?1357 ?1350)) ?1350)))) (join ?1354 (join (join (meet ?1355 ?1350) (meet ?1350 ?1356)) ?1350)))) (join ?1349 (join (join (meet ?1352 ?1350) (meet ?1350 ?1353)) ?1350)))) (join (join (meet ?1349 ?1350) (meet ?1350 (join ?1349 ?1350))) ?1351)) =>= ?1350 [1358, 1357, 1356, 1355, 1354, 1353, 1352, 1351, 1350, 1349] by Demod 134 with 2 at 3 Id : 1145, {_}: join (meet (join (meet (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441) (meet ?2441 (join (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441))) ?2442) (meet ?2441 (join (join (meet (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441) (meet ?2441 (join (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441))) ?2442)) =>= ?2441 [2442, 2441, 2440] by Super 712 with 2 at 1,2,2 Id : 746, {_}: join (meet (join (meet (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865) (meet ?1865 (join (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865))) ?1866) (meet ?1865 (join (join (meet (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865) (meet ?1865 (join (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865))) ?1866)) =>= ?1865 [1866, 1865, 1864] by Super 712 with 2 at 1,2,2 Id : 1162, {_}: join (meet (join (meet (join (meet (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573) (meet ?2573 (join (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573))) ?2573) (meet ?2573 (join (join (meet (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573) (meet ?2573 (join (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573))) ?2573))) ?2574) (meet ?2573 (join ?2573 ?2574)) =>= ?2573 [2574, 2573, 2572] by Super 1145 with 746 at 1,2,2,2 Id : 1658, {_}: join (meet ?3156 ?3157) (meet ?3156 (join ?3156 ?3157)) =>= ?3156 [3157, 3156] by Demod 1162 with 746 at 1,1,2 Id : 1544, {_}: join (meet ?2573 ?2574) (meet ?2573 (join ?2573 ?2574)) =>= ?2573 [2574, 2573] by Demod 1162 with 746 at 1,1,2 Id : 1663, {_}: join (meet (meet ?3189 ?3190) (meet ?3189 (join ?3189 ?3190))) (meet (meet ?3189 ?3190) ?3189) =>= meet ?3189 ?3190 [3190, 3189] by Super 1658 with 1544 at 2,2,2 Id : 11, {_}: join (meet (join (meet ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) (join ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))))) ?109) (meet (join (meet ?106 (join (join (meet ?110 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) ?111)) (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))))) (meet ?108 (join ?106 (join (join (meet ?110 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) ?111)) (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))))))) (join (join (meet ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) (join ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))))) ?109)) =>= join (meet ?107 ?108) (meet ?108 (join ?107 ?108)) [111, 110, 109, 108, 107, 106] by Super 3 with 2 at 1,2,1,2,2 Id : 1090, {_}: join (meet (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1979, 1978, 1977, 1976, 1975] by Super 11 with 746 at 2,2,2,1,2,2,2 Id : 1216, {_}: join (meet (join (meet ?1975 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1979, 1978, 1976, 1977, 1975] by Demod 1090 with 746 at 2,1,1,1,2 Id : 1217, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1979, 1978, 1976, 1977, 1975] by Demod 1216 with 746 at 1,2,1,1,2 Id : 1218, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1976, 1979, 1978, 1977, 1975] by Demod 1217 with 746 at 2,2,2,1,1,2 Id : 1219, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1976, 1979, 1978, 1977, 1975] by Demod 1218 with 746 at 2,1,1,2,1,1,2,2 Id : 1220, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1219 with 746 at 1,2,1,2,1,1,2,2 Id : 1221, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1220 with 746 at 2,2,1,1,2,2 Id : 1222, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1221 with 746 at 2,1,1,2,2,2,1,2,2 Id : 1223, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1222 with 746 at 1,2,1,2,2,2,1,2,2 Id : 1224, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1223 with 746 at 2,2,2,2,1,2,2 Id : 1225, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1224 with 746 at 2,1,1,2,2,2 Id : 1226, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978)) =?= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1225 with 746 at 1,2,1,2,2,2 Id : 2537, {_}: join (meet (join (meet ?4347 ?4348) (meet ?4348 (join ?4347 ?4348))) ?4349) (meet (join (meet ?4347 (join (join (meet ?4350 ?4348) (meet ?4348 ?4351)) ?4348)) (meet ?4348 (join ?4347 (join (join (meet ?4350 ?4348) (meet ?4348 ?4351)) ?4348)))) (join (join (meet ?4347 ?4348) (meet ?4348 (join ?4347 ?4348))) ?4349)) =>= ?4348 [4351, 4350, 4349, 4348, 4347] by Demod 1226 with 746 at 3 Id : 2546, {_}: join (meet (join (meet (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) (join (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))))) ?4428) (meet (join (meet (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) (join (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))))) (join ?4423 ?4428)) =>= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4430, 4429, 4428, 4427, 4426, 4425, 4424, 4423, 4422] by Super 2537 with 2 at 1,2,2,2 Id : 2932, {_}: join (meet ?4423 ?4428) (meet (join (meet (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) (join (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))))) (join ?4423 ?4428)) =>= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4430, 4427, 4426, 4425, 4424, 4429, 4422, 4428, 4423] by Demod 2546 with 2 at 1,1,2 Id : 2933, {_}: join (meet ?4423 ?4428) (meet ?4423 (join ?4423 ?4428)) =?= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4427, 4426, 4425, 4424, 4422, 4428, 4423] by Demod 2932 with 2 at 1,2,2 Id : 2934, {_}: ?4423 =<= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4427, 4426, 4425, 4424, 4422, 4423] by Demod 2933 with 1544 at 2 Id : 4162, {_}: ?6278 =<= join (meet ?6278 (meet (meet (join ?6279 (join ?6278 ?6280)) (join ?6281 ?6278)) ?6278)) (meet ?6282 (join ?6278 (meet (meet (join ?6279 (join ?6278 ?6280)) (join ?6281 ?6278)) ?6278))) [6282, 6281, 6280, 6279, 6278] by Super 1544 with 2934 at 2 Id : 1227, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978)) =>= ?1977 [1980, 1979, 1978, 1977, 1975] by Demod 1226 with 746 at 3 Id : 2550, {_}: join (meet (join (meet (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) (join (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))))) ?4464) (meet (join (meet (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) (join (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))))) (join ?4461 ?4464)) =>= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4466, 4465, 4464, 4463, 4462, 4461, 4460] by Super 2537 with 1227 at 1,2,2,2 Id : 2944, {_}: join (meet ?4461 ?4464) (meet (join (meet (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) (join (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))))) (join ?4461 ?4464)) =>= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4466, 4463, 4462, 4465, 4460, 4464, 4461] by Demod 2550 with 1227 at 1,1,2 Id : 2945, {_}: join (meet ?4461 ?4464) (meet ?4461 (join ?4461 ?4464)) =?= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4463, 4462, 4460, 4464, 4461] by Demod 2944 with 1227 at 1,2,2 Id : 2946, {_}: ?4461 =<= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4463, 4462, 4460, 4461] by Demod 2945 with 1544 at 2 Id : 3006, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet ?1977 (join (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978)) =>= ?1977 [1978, 1977, 1975] by Demod 1227 with 2946 at 1,2,2 Id : 4445, {_}: join (meet ?6922 ?6923) (meet ?6923 (join ?6922 ?6923)) =>= ?6923 [6923, 6922] by Super 3006 with 4162 at 2 Id : 4987, {_}: ?7824 =<= meet (meet (join ?7825 (join ?7824 ?7826)) (join ?7827 ?7824)) ?7824 [7827, 7826, 7825, 7824] by Super 4162 with 4445 at 3 Id : 7455, {_}: meet ?10422 ?10423 =<= meet (meet (join ?10424 ?10422) (join ?10425 (meet ?10422 ?10423))) (meet ?10422 ?10423) [10425, 10424, 10423, 10422] by Super 4987 with 1544 at 2,1,1,3 Id : 7856, {_}: meet ?11085 (join ?11085 ?11086) =<= meet (meet (join ?11087 ?11085) ?11085) (meet ?11085 (join ?11085 ?11086)) [11087, 11086, 11085] by Super 7455 with 1544 at 2,1,3 Id : 4913, {_}: ?7588 =<= meet (meet (join ?7589 (join ?7588 ?7590)) (join ?7591 ?7588)) ?7588 [7591, 7590, 7589, 7588] by Super 4162 with 4445 at 3 Id : 4953, {_}: ?6278 =<= join (meet ?6278 ?6278) (meet ?6282 (join ?6278 (meet (meet (join ?6279 (join ?6278 ?6280)) (join ?6281 ?6278)) ?6278))) [6281, 6280, 6279, 6282, 6278] by Demod 4162 with 4913 at 2,1,3 Id : 4954, {_}: ?6278 =<= join (meet ?6278 ?6278) (meet ?6282 (join ?6278 ?6278)) [6282, 6278] by Demod 4953 with 4913 at 2,2,2,3 Id : 4955, {_}: ?7642 =<= join (meet ?7642 ?7642) (join ?7642 ?7642) [7642] by Super 4954 with 4913 at 2,3 Id : 5086, {_}: ?7964 =<= meet (meet ?7964 (join ?7965 ?7964)) ?7964 [7965, 7964] by Super 4913 with 4955 at 1,1,3 Id : 5098, {_}: join ?7973 (meet ?7973 (join (meet ?7973 (join ?7974 ?7973)) ?7973)) =>= ?7973 [7974, 7973] by Super 4445 with 5086 at 1,2 Id : 5719, {_}: ?8771 =<= meet (meet (join ?8772 ?8771) (join ?8773 ?8771)) ?8771 [8773, 8772, 8771] by Super 4913 with 5098 at 2,1,1,3 Id : 5971, {_}: join ?9107 ?9107 =<= meet (meet (join ?9108 (join ?9107 ?9107)) ?9107) (join ?9107 ?9107) [9108, 9107] by Super 5719 with 4955 at 2,1,3 Id : 5973, {_}: join ?9113 ?9113 =<= meet (meet ?9113 ?9113) (join ?9113 ?9113) [9113] by Super 5971 with 4955 at 1,1,3 Id : 6040, {_}: join (join ?9119 ?9119) (meet (join ?9119 ?9119) (join (meet ?9119 ?9119) (join ?9119 ?9119))) =>= join ?9119 ?9119 [9119] by Super 4445 with 5973 at 1,2 Id : 6160, {_}: join (join ?9119 ?9119) (meet (join ?9119 ?9119) ?9119) =>= join ?9119 ?9119 [9119] by Demod 6040 with 4955 at 2,2,2 Id : 6203, {_}: join (meet (join ?9257 ?9257) ?9257) (meet (meet (join ?9257 ?9257) ?9257) (join (meet (meet (join ?9257 ?9257) ?9257) (join ?9257 ?9257)) (meet (join ?9257 ?9257) ?9257))) =>= meet (join ?9257 ?9257) ?9257 [9257] by Super 5098 with 6160 at 2,1,2,2,2 Id : 5131, {_}: ?8097 =<= meet (meet ?8097 (join ?8098 ?8097)) ?8097 [8098, 8097] by Super 4913 with 4955 at 1,1,3 Id : 5142, {_}: join ?8134 ?8134 =<= meet (meet (join ?8134 ?8134) ?8134) (join ?8134 ?8134) [8134] by Super 5131 with 4955 at 2,1,3 Id : 6215, {_}: join (meet (join ?9257 ?9257) ?9257) (meet (meet (join ?9257 ?9257) ?9257) (join (join ?9257 ?9257) (meet (join ?9257 ?9257) ?9257))) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6203 with 5142 at 1,2,2,2 Id : 6216, {_}: join (meet (join ?9257 ?9257) ?9257) (meet (meet (join ?9257 ?9257) ?9257) (join ?9257 ?9257)) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6215 with 6160 at 2,2,2 Id : 6217, {_}: join (meet (join ?9257 ?9257) ?9257) (join ?9257 ?9257) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6216 with 5142 at 2,2 Id : 6736, {_}: ?9826 =<= meet (meet (meet (join ?9826 ?9826) ?9826) (join ?9827 ?9826)) ?9826 [9827, 9826] by Super 4913 with 6217 at 1,1,3 Id : 6754, {_}: ?9879 =<= meet (join ?9879 ?9879) ?9879 [9879] by Super 6736 with 5142 at 1,3 Id : 6859, {_}: join ?9931 (meet (join ?9931 ?9931) (join (join ?9931 ?9931) ?9931)) =>= join ?9931 ?9931 [9931] by Super 1544 with 6754 at 1,2 Id : 6835, {_}: join (join ?9119 ?9119) ?9119 =>= join ?9119 ?9119 [9119] by Demod 6160 with 6754 at 2,2 Id : 6928, {_}: join ?9931 (meet (join ?9931 ?9931) (join ?9931 ?9931)) =>= join ?9931 ?9931 [9931] by Demod 6859 with 6835 at 2,2,2 Id : 7869, {_}: meet ?11136 (join ?11136 (meet (join ?11136 ?11136) (join ?11136 ?11136))) =?= meet (meet (join ?11137 ?11136) ?11136) (meet ?11136 (join ?11136 ?11136)) [11137, 11136] by Super 7856 with 6928 at 2,2,3 Id : 7962, {_}: meet ?11136 (join ?11136 ?11136) =<= meet (meet (join ?11137 ?11136) ?11136) (meet ?11136 (join ?11136 ?11136)) [11137, 11136] by Demod 7869 with 6928 at 2,2 Id : 6836, {_}: join ?8134 ?8134 =<= meet ?8134 (join ?8134 ?8134) [8134] by Demod 5142 with 6754 at 1,3 Id : 7963, {_}: join ?11136 ?11136 =<= meet (meet (join ?11137 ?11136) ?11136) (meet ?11136 (join ?11136 ?11136)) [11137, 11136] by Demod 7962 with 6836 at 2 Id : 7964, {_}: join ?11136 ?11136 =<= meet (meet (join ?11137 ?11136) ?11136) (join ?11136 ?11136) [11137, 11136] by Demod 7963 with 6836 at 2,3 Id : 9042, {_}: meet ?12453 (join ?12454 ?12454) =<= meet (meet (join ?12455 ?12453) ?12454) (meet ?12453 (join ?12454 ?12454)) [12455, 12454, 12453] by Super 7455 with 4954 at 2,1,3 Id : 6840, {_}: join ?9257 (join ?9257 ?9257) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6217 with 6754 at 1,2 Id : 6841, {_}: join ?9257 (join ?9257 ?9257) =>= ?9257 [9257] by Demod 6840 with 6754 at 3 Id : 9703, {_}: meet (join ?13328 ?13328) (join ?13329 ?13329) =<= meet (meet ?13328 ?13329) (meet (join ?13328 ?13328) (join ?13329 ?13329)) [13329, 13328] by Super 9042 with 6841 at 1,1,3 Id : 3045, {_}: ?5029 =<= join (meet ?5030 (join (join (meet ?5031 ?5029) (meet ?5029 ?5032)) ?5029)) (meet ?5029 (join ?5030 (join (join (meet ?5031 ?5029) (meet ?5029 ?5032)) ?5029))) [5032, 5031, 5030, 5029] by Demod 2945 with 1544 at 2 Id : 3049, {_}: ?5060 =<= join (meet ?5061 (join (join (meet ?5060 ?5060) (meet ?5060 (join ?5060 ?5060))) ?5060)) (meet ?5060 (join ?5061 (join ?5060 ?5060))) [5061, 5060] by Super 3045 with 1544 at 1,2,2,2,3 Id : 3227, {_}: ?5060 =<= join (meet ?5061 (join ?5060 ?5060)) (meet ?5060 (join ?5061 (join ?5060 ?5060))) [5061, 5060] by Demod 3049 with 1544 at 1,2,1,3 Id : 5082, {_}: ?7952 =<= join (meet (meet ?7952 ?7952) (join ?7952 ?7952)) (meet ?7952 ?7952) [7952] by Super 3227 with 4955 at 2,2,3 Id : 6038, {_}: ?7952 =<= join (join ?7952 ?7952) (meet ?7952 ?7952) [7952] by Demod 5082 with 5973 at 1,3 Id : 7665, {_}: meet ?10842 ?10842 =<= meet (meet (join ?10843 ?10842) ?10842) (meet ?10842 ?10842) [10843, 10842] by Super 7455 with 6038 at 2,1,3 Id : 7687, {_}: meet ?10905 ?10905 =<= meet ?10905 (meet ?10905 ?10905) [10905] by Super 7665 with 6754 at 1,3 Id : 9727, {_}: meet (join ?13401 ?13401) (join (meet ?13401 ?13401) (meet ?13401 ?13401)) =<= meet (meet ?13401 ?13401) (meet (join ?13401 ?13401) (join (meet ?13401 ?13401) (meet ?13401 ?13401))) [13401] by Super 9703 with 7687 at 1,3 Id : 6349, {_}: meet ?9388 ?9388 =<= meet (meet (join ?9389 (meet ?9388 ?9388)) ?9388) (meet ?9388 ?9388) [9389, 9388] by Super 5719 with 5082 at 2,1,3 Id : 6352, {_}: meet ?9396 ?9396 =<= meet (meet ?9396 ?9396) (meet ?9396 ?9396) [9396] by Super 6349 with 6038 at 1,1,3 Id : 6421, {_}: meet ?9471 ?9471 =<= join (join (meet ?9471 ?9471) (meet ?9471 ?9471)) (meet ?9471 ?9471) [9471] by Super 6038 with 6352 at 2,3 Id : 7035, {_}: meet ?9471 ?9471 =<= join (meet ?9471 ?9471) (meet ?9471 ?9471) [9471] by Demod 6421 with 6835 at 3 Id : 9826, {_}: meet (join ?13401 ?13401) (meet ?13401 ?13401) =<= meet (meet ?13401 ?13401) (meet (join ?13401 ?13401) (join (meet ?13401 ?13401) (meet ?13401 ?13401))) [13401] by Demod 9727 with 7035 at 2,2 Id : 9827, {_}: meet (join ?13401 ?13401) (meet ?13401 ?13401) =<= meet (meet ?13401 ?13401) (meet (join ?13401 ?13401) (meet ?13401 ?13401)) [13401] by Demod 9826 with 7035 at 2,2,3 Id : 10353, {_}: join (meet (meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018))) (meet (meet ?14018 ?14018) (join (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018))))) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Super 1663 with 9827 at 1,2,2 Id : 10483, {_}: join (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet (meet ?14018 ?14018) (join (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018))))) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10353 with 9827 at 1,1,2 Id : 7066, {_}: meet ?10089 ?10089 =<= join (meet (meet ?10089 ?10089) (meet ?10089 ?10089)) (meet ?10090 (meet ?10089 ?10089)) [10090, 10089] by Super 4954 with 7035 at 2,2,3 Id : 7108, {_}: meet ?10089 ?10089 =<= join (meet ?10089 ?10089) (meet ?10090 (meet ?10089 ?10089)) [10090, 10089] by Demod 7066 with 6352 at 1,3 Id : 10484, {_}: join (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet (meet ?14018 ?14018) (meet ?14018 ?14018))) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10483 with 7108 at 2,2,1,2 Id : 10485, {_}: join (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10484 with 6352 at 2,1,2 Id : 7504, {_}: meet ?10649 ?10649 =<= meet (meet (join ?10650 ?10649) (meet ?10649 ?10649)) (meet ?10649 ?10649) [10650, 10649] by Super 7455 with 7035 at 2,1,3 Id : 10486, {_}: join (meet ?14018 ?14018) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10485 with 7504 at 1,2 Id : 10487, {_}: join (meet ?14018 ?14018) (meet ?14018 ?14018) =<= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10486 with 7504 at 2,2 Id : 10488, {_}: meet ?14018 ?14018 =<= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10487 with 7035 at 2 Id : 10489, {_}: meet ?14018 ?14018 =<= meet (join ?14018 ?14018) (meet ?14018 ?14018) [14018] by Demod 10488 with 9827 at 3 Id : 10554, {_}: join (meet (meet (join ?14134 ?14134) (meet ?14134 ?14134)) (meet (join ?14134 ?14134) (join (join ?14134 ?14134) (meet ?14134 ?14134)))) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Super 1663 with 10489 at 1,2,2 Id : 10591, {_}: join (meet (meet ?14134 ?14134) (meet (join ?14134 ?14134) (join (join ?14134 ?14134) (meet ?14134 ?14134)))) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10554 with 10489 at 1,1,2 Id : 10592, {_}: join (meet (meet ?14134 ?14134) (meet (join ?14134 ?14134) ?14134)) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10591 with 6038 at 2,2,1,2 Id : 10593, {_}: join (meet (meet ?14134 ?14134) ?14134) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10592 with 6754 at 2,1,2 Id : 10594, {_}: join (meet (meet ?14134 ?14134) ?14134) (join ?14134 ?14134) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10593 with 5973 at 2,2 Id : 10595, {_}: join (meet (meet ?14134 ?14134) ?14134) (join ?14134 ?14134) =>= meet ?14134 ?14134 [14134] by Demod 10594 with 10489 at 3 Id : 11369, {_}: join (meet (meet (meet ?14314 ?14314) ?14314) (join ?14314 ?14314)) (meet (join ?14314 ?14314) (meet ?14314 ?14314)) =>= join ?14314 ?14314 [14314] by Super 4445 with 10595 at 2,2,2 Id : 9049, {_}: meet (meet ?12484 ?12484) (join ?12484 ?12484) =<= meet (meet (join ?12485 (meet ?12484 ?12484)) ?12484) (join ?12484 ?12484) [12485, 12484] by Super 9042 with 5973 at 2,3 Id : 10101, {_}: join ?13865 ?13865 =<= meet (meet (join ?13866 (meet ?13865 ?13865)) ?13865) (join ?13865 ?13865) [13866, 13865] by Demod 9049 with 5973 at 2 Id : 10110, {_}: join ?13887 ?13887 =<= meet (meet (meet ?13887 ?13887) ?13887) (join ?13887 ?13887) [13887] by Super 10101 with 7035 at 1,1,3 Id : 11497, {_}: join (join ?14314 ?14314) (meet (join ?14314 ?14314) (meet ?14314 ?14314)) =>= join ?14314 ?14314 [14314] by Demod 11369 with 10110 at 1,2 Id : 11498, {_}: join (join ?14314 ?14314) (meet ?14314 ?14314) =>= join ?14314 ?14314 [14314] by Demod 11497 with 10489 at 2,2 Id : 11499, {_}: ?14314 =<= join ?14314 ?14314 [14314] by Demod 11498 with 6038 at 2 Id : 11576, {_}: ?11136 =<= meet (meet (join ?11137 ?11136) ?11136) (join ?11136 ?11136) [11137, 11136] by Demod 7964 with 11499 at 2 Id : 11577, {_}: ?11136 =<= meet (meet (join ?11137 ?11136) ?11136) ?11136 [11137, 11136] by Demod 11576 with 11499 at 2,3 Id : 11665, {_}: ?14391 =<= join (meet (join (join (meet ?14392 ?14391) (meet ?14391 ?14393)) ?14391) (join (join (meet ?14392 ?14391) (meet ?14391 ?14393)) ?14391)) (meet ?14391 (join (join (meet ?14392 ?14391) (meet ?14391 ?14393)) ?14391)) [14393, 14392, 14391] by Super 2946 with 11499 at 2,2,3 Id : 7769, {_}: join (meet ?10951 ?10951) (meet ?10951 (join ?10951 (meet ?10951 ?10951))) =>= ?10951 [10951] by Super 1544 with 7687 at 1,2 Id : 11572, {_}: join ?9931 (meet ?9931 (join ?9931 ?9931)) =>= join ?9931 ?9931 [9931] by Demod 6928 with 11499 at 1,2,2 Id : 11573, {_}: join ?9931 (meet ?9931 ?9931) =>= join ?9931 ?9931 [9931] by Demod 11572 with 11499 at 2,2,2 Id : 11574, {_}: join ?9931 (meet ?9931 ?9931) =>= ?9931 [9931] by Demod 11573 with 11499 at 3 Id : 11586, {_}: join (meet ?10951 ?10951) (meet ?10951 ?10951) =>= ?10951 [10951] by Demod 7769 with 11574 at 2,2,2 Id : 11587, {_}: meet ?10951 ?10951 =>= ?10951 [10951] by Demod 11586 with 11499 at 2 Id : 11845, {_}: ?14391 =<= join (join (join (meet ?14392 ?14391) (meet ?14391 ?14393)) ?14391) (meet ?14391 (join (join (meet ?14392 ?14391) (meet ?14391 ?14393)) ?14391)) [14393, 14392, 14391] by Demod 11665 with 11587 at 1,3 Id : 11590, {_}: ?10089 =<= join (meet ?10089 ?10089) (meet ?10090 (meet ?10089 ?10089)) [10090, 10089] by Demod 7108 with 11587 at 2 Id : 11591, {_}: ?10089 =<= join ?10089 (meet ?10090 (meet ?10089 ?10089)) [10090, 10089] by Demod 11590 with 11587 at 1,3 Id : 11592, {_}: ?10089 =<= join ?10089 (meet ?10090 ?10089) [10090, 10089] by Demod 11591 with 11587 at 2,2,3 Id : 12482, {_}: ?15327 =<= join (join (meet ?15328 ?15327) (meet ?15327 ?15329)) ?15327 [15329, 15328, 15327] by Demod 11845 with 11592 at 3 Id : 12520, {_}: ?15476 =<= join (meet ?15477 ?15476) ?15476 [15477, 15476] by Super 12482 with 11592 at 1,3 Id : 12625, {_}: join (meet (meet ?15551 ?15552) ?15552) (meet (meet ?15551 ?15552) ?15552) =>= meet ?15551 ?15552 [15552, 15551] by Super 1544 with 12520 at 2,2,2 Id : 12684, {_}: meet (meet ?15551 ?15552) ?15552 =>= meet ?15551 ?15552 [15552, 15551] by Demod 12625 with 11499 at 2 Id : 12750, {_}: ?11136 =<= meet (join ?11137 ?11136) ?11136 [11137, 11136] by Demod 11577 with 12684 at 3 Id : 12500, {_}: ?15409 =<= join (join ?15409 (meet ?15409 ?15410)) ?15409 [15410, 15409] by Super 12482 with 11587 at 1,1,3 Id : 13009, {_}: join (meet (join ?15804 (meet ?15804 ?15805)) ?15804) (meet (join ?15804 (meet ?15804 ?15805)) ?15804) =>= join ?15804 (meet ?15804 ?15805) [15805, 15804] by Super 1544 with 12500 at 2,2,2 Id : 11927, {_}: ?14648 =<= meet (meet (join ?14649 (join ?14648 ?14650)) ?14648) ?14648 [14650, 14649, 14648] by Super 4913 with 11499 at 2,1,3 Id : 11941, {_}: ?14705 =<= meet (meet (join ?14705 ?14706) ?14705) ?14705 [14706, 14705] by Super 11927 with 11499 at 1,1,3 Id : 12754, {_}: ?14705 =<= meet (join ?14705 ?14706) ?14705 [14706, 14705] by Demod 11941 with 12684 at 3 Id : 13098, {_}: join ?15804 (meet (join ?15804 (meet ?15804 ?15805)) ?15804) =>= join ?15804 (meet ?15804 ?15805) [15805, 15804] by Demod 13009 with 12754 at 1,2 Id : 13099, {_}: join ?15804 ?15804 =<= join ?15804 (meet ?15804 ?15805) [15805, 15804] by Demod 13098 with 12754 at 2,2 Id : 13100, {_}: ?15804 =<= join ?15804 (meet ?15804 ?15805) [15805, 15804] by Demod 13099 with 11499 at 2 Id : 13164, {_}: meet ?15935 ?15936 =<= meet ?15935 (meet ?15935 ?15936) [15936, 15935] by Super 12750 with 13100 at 1,3 Id : 13260, {_}: join (meet (meet ?16114 (meet ?16114 ?16115)) (meet ?16114 (join ?16114 (meet ?16114 ?16115)))) (meet (meet ?16114 ?16115) ?16114) =>= meet ?16114 (meet ?16114 ?16115) [16115, 16114] by Super 1663 with 13164 at 1,2,2 Id : 13350, {_}: join (meet (meet ?16114 ?16115) (meet ?16114 (join ?16114 (meet ?16114 ?16115)))) (meet (meet ?16114 ?16115) ?16114) =>= meet ?16114 (meet ?16114 ?16115) [16115, 16114] by Demod 13260 with 13164 at 1,1,2 Id : 13351, {_}: join (meet (meet ?16114 ?16115) (meet ?16114 ?16114)) (meet (meet ?16114 ?16115) ?16114) =>= meet ?16114 (meet ?16114 ?16115) [16115, 16114] by Demod 13350 with 13100 at 2,2,1,2 Id : 13352, {_}: join (meet (meet ?16114 ?16115) ?16114) (meet (meet ?16114 ?16115) ?16114) =>= meet ?16114 (meet ?16114 ?16115) [16115, 16114] by Demod 13351 with 11587 at 2,1,2 Id : 13353, {_}: meet (meet ?16114 ?16115) ?16114 =?= meet ?16114 (meet ?16114 ?16115) [16115, 16114] by Demod 13352 with 11499 at 2 Id : 13354, {_}: meet (meet ?16114 ?16115) ?16114 =>= meet ?16114 ?16115 [16115, 16114] by Demod 13353 with 13164 at 3 Id : 7502, {_}: meet ?10642 (join ?10643 ?10643) =<= meet (meet (join ?10644 ?10642) ?10643) (meet ?10642 (join ?10643 ?10643)) [10644, 10643, 10642] by Super 7455 with 4954 at 2,1,3 Id : 11578, {_}: meet ?10642 ?10643 =<= meet (meet (join ?10644 ?10642) ?10643) (meet ?10642 (join ?10643 ?10643)) [10644, 10643, 10642] by Demod 7502 with 11499 at 2,2 Id : 11579, {_}: meet ?10642 ?10643 =<= meet (meet (join ?10644 ?10642) ?10643) (meet ?10642 ?10643) [10644, 10643, 10642] by Demod 11578 with 11499 at 2,2,3 Id : 23487, {_}: meet (meet ?36439 ?36440) ?36441 =<= meet (meet ?36439 ?36441) (meet (meet ?36439 ?36440) ?36441) [36441, 36440, 36439] by Super 11579 with 13100 at 1,1,3 Id : 11676, {_}: ?14421 =<= meet (meet (join ?14422 (join ?14421 ?14423)) ?14421) ?14421 [14423, 14422, 14421] by Super 4913 with 11499 at 2,1,3 Id : 12748, {_}: ?14421 =<= meet (join ?14422 (join ?14421 ?14423)) ?14421 [14423, 14422, 14421] by Demod 11676 with 12684 at 3 Id : 13189, {_}: ?16020 =<= join ?16020 (meet ?16020 ?16021) [16021, 16020] by Demod 13099 with 11499 at 2 Id : 13205, {_}: join ?16076 ?16077 =<= join (join ?16076 ?16077) ?16076 [16077, 16076] by Super 13189 with 12754 at 2,3 Id : 13524, {_}: ?16419 =<= meet (join (join ?16419 ?16420) ?16421) ?16419 [16421, 16420, 16419] by Super 12748 with 13205 at 1,3 Id : 14225, {_}: meet ?17437 ?17438 =<= meet ?17438 (meet ?17437 ?17438) [17438, 17437] by Super 11579 with 13524 at 1,3 Id : 23522, {_}: meet (meet ?36606 (meet ?36607 ?36606)) ?36608 =<= meet (meet ?36606 ?36608) (meet (meet ?36607 ?36606) ?36608) [36608, 36607, 36606] by Super 23487 with 14225 at 1,2,3 Id : 138273, {_}: meet (meet ?339993 ?339994) ?339995 =<= meet (meet ?339994 ?339995) (meet (meet ?339993 ?339994) ?339995) [339995, 339994, 339993] by Demod 23522 with 14225 at 1,2 Id : 138391, {_}: meet (meet ?340634 ?340635) ?340634 =<= meet (meet ?340635 ?340634) (meet ?340634 ?340635) [340635, 340634] by Super 138273 with 13354 at 2,3 Id : 139136, {_}: meet ?340634 ?340635 =<= meet (meet ?340635 ?340634) (meet ?340634 ?340635) [340635, 340634] by Demod 138391 with 13354 at 2 Id : 139575, {_}: meet (meet ?342244 ?342245) (meet ?342245 ?342244) =<->= meet (meet ?342245 ?342244) (meet ?342244 ?342245) [342245, 342244] by Super 13354 with 139136 at 1,2 Id : 140149, {_}: meet ?342245 ?342244 =<= meet (meet ?342245 ?342244) (meet ?342244 ?342245) [342244, 342245] by Demod 139575 with 139136 at 2 Id : 140150, {_}: meet ?342245 ?342244 =<->= meet ?342244 ?342245 [342244, 342245] by Demod 140149 with 139136 at 3 Id : 141906, {_}: meet a b === meet a b [] by Demod 1 with 140150 at 3 Id : 1, {_}: meet a b =<= meet b a [] by prove_normal_axioms_2 % SZS output end CNFRefutation for LAT081-1.p 23637: solved LAT081-1.p in 39.566472 using nrkbo WARNING: TreeLimitedRun lost 100.34s, total lost is 100.34s FINAL WATCH: 139.9 CPU 79.4 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT082-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 23685 TreeLimitedRun: ---------------------------------------------------------- 23687: Facts: 23687: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23687: Goal: 23687: Id : 1, {_}: meet (meet a b) c =>= meet a (meet b c) [] by prove_normal_axioms_3 % SZS status Timeout for LAT082-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT083-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 23759 TreeLimitedRun: ---------------------------------------------------------- 23761: Facts: 23761: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23761: Goal: 23761: Id : 1, {_}: join a a =>= a [] by prove_normal_axioms_4 Statistics : Max weight : 3122 Found proof, 36.438044s % SZS status Unsatisfiable for LAT083-1.p % SZS output start CNFRefutation for LAT083-1.p Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 Id : 3, {_}: join (meet (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12) (meet (join (meet ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)) (meet (join (meet ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)) (meet ?16 (join ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)))) (join ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)))) (join (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12)) =>= ?11 [16, 15, 14, 13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 ?14 ?15 ?16 Id : 11, {_}: join (meet (join (meet ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) (join ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))))) ?109) (meet (join (meet ?106 (join (join (meet ?110 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) ?111)) (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))))) (meet ?108 (join ?106 (join (join (meet ?110 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) ?111)) (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))))))) (join (join (meet ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) (join ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))))) ?109)) =>= join (meet ?107 ?108) (meet ?108 (join ?107 ?108)) [111, 110, 109, 108, 107, 106] by Super 3 with 2 at 1,2,1,2,2 Id : 37, {_}: join (meet (join (meet ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) (join ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))))) ?276) (meet (join (meet ?273 (join (join (meet ?277 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) ?278)) (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))))) (meet ?275 (join ?273 (join (join (meet ?277 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) ?278)) (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))))))) (join (join (meet ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) (join ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))))) ?276)) =>= join (meet ?274 ?275) (meet ?275 (join ?274 ?275)) [278, 277, 276, 275, 274, 273] by Super 3 with 2 at 1,2,1,2,2 Id : 40, {_}: join (meet (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 311, 310, 309, 308, 307, 306, 305, 304, 303] by Super 37 with 2 at 2,2,2,1,2,2,2 Id : 124, {_}: join (meet (join (meet ?303 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 311, 310, 309, 308, 307, 306, 304, 305, 303] by Demod 40 with 2 at 2,1,1,1,2 Id : 125, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 311, 310, 309, 308, 307, 306, 304, 305, 303] by Demod 124 with 2 at 1,2,1,1,2 Id : 126, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 309, 308, 307, 306, 304, 311, 310, 305, 303] by Demod 125 with 2 at 2,2,2,1,1,2 Id : 127, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 309, 308, 307, 306, 304, 311, 310, 305, 303] by Demod 126 with 2 at 2,1,1,2,1,1,2,2 Id : 128, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 127 with 2 at 1,2,1,2,1,1,2,2 Id : 129, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 128 with 2 at 2,2,1,1,2,2 Id : 130, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 129 with 2 at 2,1,1,2,2,2,1,2,2 Id : 131, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 130 with 2 at 1,2,1,2,2,2,1,2,2 Id : 132, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 131 with 2 at 2,2,2,2,1,2,2 Id : 133, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)))) (join (join (meet ?303 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 132 with 2 at 2,1,1,2,2,2 Id : 134, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)))) (join (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310)) =?= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 133 with 2 at 1,2,1,2,2,2 Id : 712, {_}: join (meet (join (meet ?1349 ?1350) (meet ?1350 (join ?1349 ?1350))) ?1351) (meet (join (meet ?1349 (join (join (meet ?1352 ?1350) (meet ?1350 ?1353)) ?1350)) (meet (join (meet ?1354 (join (join (meet ?1355 ?1350) (meet ?1350 ?1356)) ?1350)) (meet (join (meet ?1350 (meet (meet (join ?1355 (join ?1350 ?1356)) (join ?1357 ?1350)) ?1350)) (meet ?1358 (join ?1350 (meet (meet (join ?1355 (join ?1350 ?1356)) (join ?1357 ?1350)) ?1350)))) (join ?1354 (join (join (meet ?1355 ?1350) (meet ?1350 ?1356)) ?1350)))) (join ?1349 (join (join (meet ?1352 ?1350) (meet ?1350 ?1353)) ?1350)))) (join (join (meet ?1349 ?1350) (meet ?1350 (join ?1349 ?1350))) ?1351)) =>= ?1350 [1358, 1357, 1356, 1355, 1354, 1353, 1352, 1351, 1350, 1349] by Demod 134 with 2 at 3 Id : 746, {_}: join (meet (join (meet (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865) (meet ?1865 (join (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865))) ?1866) (meet ?1865 (join (join (meet (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865) (meet ?1865 (join (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865))) ?1866)) =>= ?1865 [1866, 1865, 1864] by Super 712 with 2 at 1,2,2 Id : 1090, {_}: join (meet (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1979, 1978, 1977, 1976, 1975] by Super 11 with 746 at 2,2,2,1,2,2,2 Id : 1216, {_}: join (meet (join (meet ?1975 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1979, 1978, 1976, 1977, 1975] by Demod 1090 with 746 at 2,1,1,1,2 Id : 1217, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1979, 1978, 1976, 1977, 1975] by Demod 1216 with 746 at 1,2,1,1,2 Id : 1218, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1976, 1979, 1978, 1977, 1975] by Demod 1217 with 746 at 2,2,2,1,1,2 Id : 1219, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1976, 1979, 1978, 1977, 1975] by Demod 1218 with 746 at 2,1,1,2,1,1,2,2 Id : 1220, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1219 with 746 at 1,2,1,2,1,1,2,2 Id : 1221, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1220 with 746 at 2,2,1,1,2,2 Id : 1222, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1221 with 746 at 2,1,1,2,2,2,1,2,2 Id : 1223, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1222 with 746 at 1,2,1,2,2,2,1,2,2 Id : 1224, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1223 with 746 at 2,2,2,2,1,2,2 Id : 1225, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1224 with 746 at 2,1,1,2,2,2 Id : 1226, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978)) =?= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1225 with 746 at 1,2,1,2,2,2 Id : 1227, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978)) =>= ?1977 [1980, 1979, 1978, 1977, 1975] by Demod 1226 with 746 at 3 Id : 2537, {_}: join (meet (join (meet ?4347 ?4348) (meet ?4348 (join ?4347 ?4348))) ?4349) (meet (join (meet ?4347 (join (join (meet ?4350 ?4348) (meet ?4348 ?4351)) ?4348)) (meet ?4348 (join ?4347 (join (join (meet ?4350 ?4348) (meet ?4348 ?4351)) ?4348)))) (join (join (meet ?4347 ?4348) (meet ?4348 (join ?4347 ?4348))) ?4349)) =>= ?4348 [4351, 4350, 4349, 4348, 4347] by Demod 1226 with 746 at 3 Id : 2550, {_}: join (meet (join (meet (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) (join (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))))) ?4464) (meet (join (meet (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) (join (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))))) (join ?4461 ?4464)) =>= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4466, 4465, 4464, 4463, 4462, 4461, 4460] by Super 2537 with 1227 at 1,2,2,2 Id : 2944, {_}: join (meet ?4461 ?4464) (meet (join (meet (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) (join (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))))) (join ?4461 ?4464)) =>= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4466, 4463, 4462, 4465, 4460, 4464, 4461] by Demod 2550 with 1227 at 1,1,2 Id : 2945, {_}: join (meet ?4461 ?4464) (meet ?4461 (join ?4461 ?4464)) =?= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4463, 4462, 4460, 4464, 4461] by Demod 2944 with 1227 at 1,2,2 Id : 1145, {_}: join (meet (join (meet (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441) (meet ?2441 (join (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441))) ?2442) (meet ?2441 (join (join (meet (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441) (meet ?2441 (join (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441))) ?2442)) =>= ?2441 [2442, 2441, 2440] by Super 712 with 2 at 1,2,2 Id : 1162, {_}: join (meet (join (meet (join (meet (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573) (meet ?2573 (join (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573))) ?2573) (meet ?2573 (join (join (meet (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573) (meet ?2573 (join (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573))) ?2573))) ?2574) (meet ?2573 (join ?2573 ?2574)) =>= ?2573 [2574, 2573, 2572] by Super 1145 with 746 at 1,2,2,2 Id : 1544, {_}: join (meet ?2573 ?2574) (meet ?2573 (join ?2573 ?2574)) =>= ?2573 [2574, 2573] by Demod 1162 with 746 at 1,1,2 Id : 2946, {_}: ?4461 =<= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4463, 4462, 4460, 4461] by Demod 2945 with 1544 at 2 Id : 3006, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet ?1977 (join (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978)) =>= ?1977 [1978, 1977, 1975] by Demod 1227 with 2946 at 1,2,2 Id : 2546, {_}: join (meet (join (meet (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) (join (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))))) ?4428) (meet (join (meet (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) (join (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))))) (join ?4423 ?4428)) =>= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4430, 4429, 4428, 4427, 4426, 4425, 4424, 4423, 4422] by Super 2537 with 2 at 1,2,2,2 Id : 2932, {_}: join (meet ?4423 ?4428) (meet (join (meet (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) (join (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))))) (join ?4423 ?4428)) =>= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4430, 4427, 4426, 4425, 4424, 4429, 4422, 4428, 4423] by Demod 2546 with 2 at 1,1,2 Id : 2933, {_}: join (meet ?4423 ?4428) (meet ?4423 (join ?4423 ?4428)) =?= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4427, 4426, 4425, 4424, 4422, 4428, 4423] by Demod 2932 with 2 at 1,2,2 Id : 2934, {_}: ?4423 =<= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4427, 4426, 4425, 4424, 4422, 4423] by Demod 2933 with 1544 at 2 Id : 4162, {_}: ?6278 =<= join (meet ?6278 (meet (meet (join ?6279 (join ?6278 ?6280)) (join ?6281 ?6278)) ?6278)) (meet ?6282 (join ?6278 (meet (meet (join ?6279 (join ?6278 ?6280)) (join ?6281 ?6278)) ?6278))) [6282, 6281, 6280, 6279, 6278] by Super 1544 with 2934 at 2 Id : 4445, {_}: join (meet ?6922 ?6923) (meet ?6923 (join ?6922 ?6923)) =>= ?6923 [6923, 6922] by Super 3006 with 4162 at 2 Id : 1658, {_}: join (meet ?3156 ?3157) (meet ?3156 (join ?3156 ?3157)) =>= ?3156 [3157, 3156] by Demod 1162 with 746 at 1,1,2 Id : 1663, {_}: join (meet (meet ?3189 ?3190) (meet ?3189 (join ?3189 ?3190))) (meet (meet ?3189 ?3190) ?3189) =>= meet ?3189 ?3190 [3190, 3189] by Super 1658 with 1544 at 2,2,2 Id : 4987, {_}: ?7824 =<= meet (meet (join ?7825 (join ?7824 ?7826)) (join ?7827 ?7824)) ?7824 [7827, 7826, 7825, 7824] by Super 4162 with 4445 at 3 Id : 7455, {_}: meet ?10422 ?10423 =<= meet (meet (join ?10424 ?10422) (join ?10425 (meet ?10422 ?10423))) (meet ?10422 ?10423) [10425, 10424, 10423, 10422] by Super 4987 with 1544 at 2,1,1,3 Id : 4913, {_}: ?7588 =<= meet (meet (join ?7589 (join ?7588 ?7590)) (join ?7591 ?7588)) ?7588 [7591, 7590, 7589, 7588] by Super 4162 with 4445 at 3 Id : 4953, {_}: ?6278 =<= join (meet ?6278 ?6278) (meet ?6282 (join ?6278 (meet (meet (join ?6279 (join ?6278 ?6280)) (join ?6281 ?6278)) ?6278))) [6281, 6280, 6279, 6282, 6278] by Demod 4162 with 4913 at 2,1,3 Id : 4954, {_}: ?6278 =<= join (meet ?6278 ?6278) (meet ?6282 (join ?6278 ?6278)) [6282, 6278] by Demod 4953 with 4913 at 2,2,2,3 Id : 9042, {_}: meet ?12453 (join ?12454 ?12454) =<= meet (meet (join ?12455 ?12453) ?12454) (meet ?12453 (join ?12454 ?12454)) [12455, 12454, 12453] by Super 7455 with 4954 at 2,1,3 Id : 4955, {_}: ?7642 =<= join (meet ?7642 ?7642) (join ?7642 ?7642) [7642] by Super 4954 with 4913 at 2,3 Id : 5086, {_}: ?7964 =<= meet (meet ?7964 (join ?7965 ?7964)) ?7964 [7965, 7964] by Super 4913 with 4955 at 1,1,3 Id : 5098, {_}: join ?7973 (meet ?7973 (join (meet ?7973 (join ?7974 ?7973)) ?7973)) =>= ?7973 [7974, 7973] by Super 4445 with 5086 at 1,2 Id : 5719, {_}: ?8771 =<= meet (meet (join ?8772 ?8771) (join ?8773 ?8771)) ?8771 [8773, 8772, 8771] by Super 4913 with 5098 at 2,1,1,3 Id : 5971, {_}: join ?9107 ?9107 =<= meet (meet (join ?9108 (join ?9107 ?9107)) ?9107) (join ?9107 ?9107) [9108, 9107] by Super 5719 with 4955 at 2,1,3 Id : 5973, {_}: join ?9113 ?9113 =<= meet (meet ?9113 ?9113) (join ?9113 ?9113) [9113] by Super 5971 with 4955 at 1,1,3 Id : 6040, {_}: join (join ?9119 ?9119) (meet (join ?9119 ?9119) (join (meet ?9119 ?9119) (join ?9119 ?9119))) =>= join ?9119 ?9119 [9119] by Super 4445 with 5973 at 1,2 Id : 6160, {_}: join (join ?9119 ?9119) (meet (join ?9119 ?9119) ?9119) =>= join ?9119 ?9119 [9119] by Demod 6040 with 4955 at 2,2,2 Id : 6203, {_}: join (meet (join ?9257 ?9257) ?9257) (meet (meet (join ?9257 ?9257) ?9257) (join (meet (meet (join ?9257 ?9257) ?9257) (join ?9257 ?9257)) (meet (join ?9257 ?9257) ?9257))) =>= meet (join ?9257 ?9257) ?9257 [9257] by Super 5098 with 6160 at 2,1,2,2,2 Id : 5131, {_}: ?8097 =<= meet (meet ?8097 (join ?8098 ?8097)) ?8097 [8098, 8097] by Super 4913 with 4955 at 1,1,3 Id : 5142, {_}: join ?8134 ?8134 =<= meet (meet (join ?8134 ?8134) ?8134) (join ?8134 ?8134) [8134] by Super 5131 with 4955 at 2,1,3 Id : 6215, {_}: join (meet (join ?9257 ?9257) ?9257) (meet (meet (join ?9257 ?9257) ?9257) (join (join ?9257 ?9257) (meet (join ?9257 ?9257) ?9257))) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6203 with 5142 at 1,2,2,2 Id : 6216, {_}: join (meet (join ?9257 ?9257) ?9257) (meet (meet (join ?9257 ?9257) ?9257) (join ?9257 ?9257)) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6215 with 6160 at 2,2,2 Id : 6217, {_}: join (meet (join ?9257 ?9257) ?9257) (join ?9257 ?9257) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6216 with 5142 at 2,2 Id : 6736, {_}: ?9826 =<= meet (meet (meet (join ?9826 ?9826) ?9826) (join ?9827 ?9826)) ?9826 [9827, 9826] by Super 4913 with 6217 at 1,1,3 Id : 6754, {_}: ?9879 =<= meet (join ?9879 ?9879) ?9879 [9879] by Super 6736 with 5142 at 1,3 Id : 6840, {_}: join ?9257 (join ?9257 ?9257) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6217 with 6754 at 1,2 Id : 6841, {_}: join ?9257 (join ?9257 ?9257) =>= ?9257 [9257] by Demod 6840 with 6754 at 3 Id : 9703, {_}: meet (join ?13328 ?13328) (join ?13329 ?13329) =<= meet (meet ?13328 ?13329) (meet (join ?13328 ?13328) (join ?13329 ?13329)) [13329, 13328] by Super 9042 with 6841 at 1,1,3 Id : 3045, {_}: ?5029 =<= join (meet ?5030 (join (join (meet ?5031 ?5029) (meet ?5029 ?5032)) ?5029)) (meet ?5029 (join ?5030 (join (join (meet ?5031 ?5029) (meet ?5029 ?5032)) ?5029))) [5032, 5031, 5030, 5029] by Demod 2945 with 1544 at 2 Id : 3049, {_}: ?5060 =<= join (meet ?5061 (join (join (meet ?5060 ?5060) (meet ?5060 (join ?5060 ?5060))) ?5060)) (meet ?5060 (join ?5061 (join ?5060 ?5060))) [5061, 5060] by Super 3045 with 1544 at 1,2,2,2,3 Id : 3227, {_}: ?5060 =<= join (meet ?5061 (join ?5060 ?5060)) (meet ?5060 (join ?5061 (join ?5060 ?5060))) [5061, 5060] by Demod 3049 with 1544 at 1,2,1,3 Id : 5082, {_}: ?7952 =<= join (meet (meet ?7952 ?7952) (join ?7952 ?7952)) (meet ?7952 ?7952) [7952] by Super 3227 with 4955 at 2,2,3 Id : 6038, {_}: ?7952 =<= join (join ?7952 ?7952) (meet ?7952 ?7952) [7952] by Demod 5082 with 5973 at 1,3 Id : 7665, {_}: meet ?10842 ?10842 =<= meet (meet (join ?10843 ?10842) ?10842) (meet ?10842 ?10842) [10843, 10842] by Super 7455 with 6038 at 2,1,3 Id : 7687, {_}: meet ?10905 ?10905 =<= meet ?10905 (meet ?10905 ?10905) [10905] by Super 7665 with 6754 at 1,3 Id : 9727, {_}: meet (join ?13401 ?13401) (join (meet ?13401 ?13401) (meet ?13401 ?13401)) =<= meet (meet ?13401 ?13401) (meet (join ?13401 ?13401) (join (meet ?13401 ?13401) (meet ?13401 ?13401))) [13401] by Super 9703 with 7687 at 1,3 Id : 6349, {_}: meet ?9388 ?9388 =<= meet (meet (join ?9389 (meet ?9388 ?9388)) ?9388) (meet ?9388 ?9388) [9389, 9388] by Super 5719 with 5082 at 2,1,3 Id : 6352, {_}: meet ?9396 ?9396 =<= meet (meet ?9396 ?9396) (meet ?9396 ?9396) [9396] by Super 6349 with 6038 at 1,1,3 Id : 6421, {_}: meet ?9471 ?9471 =<= join (join (meet ?9471 ?9471) (meet ?9471 ?9471)) (meet ?9471 ?9471) [9471] by Super 6038 with 6352 at 2,3 Id : 6835, {_}: join (join ?9119 ?9119) ?9119 =>= join ?9119 ?9119 [9119] by Demod 6160 with 6754 at 2,2 Id : 7035, {_}: meet ?9471 ?9471 =<= join (meet ?9471 ?9471) (meet ?9471 ?9471) [9471] by Demod 6421 with 6835 at 3 Id : 9826, {_}: meet (join ?13401 ?13401) (meet ?13401 ?13401) =<= meet (meet ?13401 ?13401) (meet (join ?13401 ?13401) (join (meet ?13401 ?13401) (meet ?13401 ?13401))) [13401] by Demod 9727 with 7035 at 2,2 Id : 9827, {_}: meet (join ?13401 ?13401) (meet ?13401 ?13401) =<= meet (meet ?13401 ?13401) (meet (join ?13401 ?13401) (meet ?13401 ?13401)) [13401] by Demod 9826 with 7035 at 2,2,3 Id : 10353, {_}: join (meet (meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018))) (meet (meet ?14018 ?14018) (join (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018))))) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Super 1663 with 9827 at 1,2,2 Id : 10483, {_}: join (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet (meet ?14018 ?14018) (join (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018))))) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10353 with 9827 at 1,1,2 Id : 7066, {_}: meet ?10089 ?10089 =<= join (meet (meet ?10089 ?10089) (meet ?10089 ?10089)) (meet ?10090 (meet ?10089 ?10089)) [10090, 10089] by Super 4954 with 7035 at 2,2,3 Id : 7108, {_}: meet ?10089 ?10089 =<= join (meet ?10089 ?10089) (meet ?10090 (meet ?10089 ?10089)) [10090, 10089] by Demod 7066 with 6352 at 1,3 Id : 10484, {_}: join (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet (meet ?14018 ?14018) (meet ?14018 ?14018))) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10483 with 7108 at 2,2,1,2 Id : 10485, {_}: join (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10484 with 6352 at 2,1,2 Id : 7504, {_}: meet ?10649 ?10649 =<= meet (meet (join ?10650 ?10649) (meet ?10649 ?10649)) (meet ?10649 ?10649) [10650, 10649] by Super 7455 with 7035 at 2,1,3 Id : 10486, {_}: join (meet ?14018 ?14018) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10485 with 7504 at 1,2 Id : 10487, {_}: join (meet ?14018 ?14018) (meet ?14018 ?14018) =<= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10486 with 7504 at 2,2 Id : 10488, {_}: meet ?14018 ?14018 =<= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10487 with 7035 at 2 Id : 10489, {_}: meet ?14018 ?14018 =<= meet (join ?14018 ?14018) (meet ?14018 ?14018) [14018] by Demod 10488 with 9827 at 3 Id : 10554, {_}: join (meet (meet (join ?14134 ?14134) (meet ?14134 ?14134)) (meet (join ?14134 ?14134) (join (join ?14134 ?14134) (meet ?14134 ?14134)))) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Super 1663 with 10489 at 1,2,2 Id : 10591, {_}: join (meet (meet ?14134 ?14134) (meet (join ?14134 ?14134) (join (join ?14134 ?14134) (meet ?14134 ?14134)))) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10554 with 10489 at 1,1,2 Id : 10592, {_}: join (meet (meet ?14134 ?14134) (meet (join ?14134 ?14134) ?14134)) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10591 with 6038 at 2,2,1,2 Id : 10593, {_}: join (meet (meet ?14134 ?14134) ?14134) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10592 with 6754 at 2,1,2 Id : 10594, {_}: join (meet (meet ?14134 ?14134) ?14134) (join ?14134 ?14134) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10593 with 5973 at 2,2 Id : 10595, {_}: join (meet (meet ?14134 ?14134) ?14134) (join ?14134 ?14134) =>= meet ?14134 ?14134 [14134] by Demod 10594 with 10489 at 3 Id : 11369, {_}: join (meet (meet (meet ?14314 ?14314) ?14314) (join ?14314 ?14314)) (meet (join ?14314 ?14314) (meet ?14314 ?14314)) =>= join ?14314 ?14314 [14314] by Super 4445 with 10595 at 2,2,2 Id : 9049, {_}: meet (meet ?12484 ?12484) (join ?12484 ?12484) =<= meet (meet (join ?12485 (meet ?12484 ?12484)) ?12484) (join ?12484 ?12484) [12485, 12484] by Super 9042 with 5973 at 2,3 Id : 10101, {_}: join ?13865 ?13865 =<= meet (meet (join ?13866 (meet ?13865 ?13865)) ?13865) (join ?13865 ?13865) [13866, 13865] by Demod 9049 with 5973 at 2 Id : 10110, {_}: join ?13887 ?13887 =<= meet (meet (meet ?13887 ?13887) ?13887) (join ?13887 ?13887) [13887] by Super 10101 with 7035 at 1,1,3 Id : 11497, {_}: join (join ?14314 ?14314) (meet (join ?14314 ?14314) (meet ?14314 ?14314)) =>= join ?14314 ?14314 [14314] by Demod 11369 with 10110 at 1,2 Id : 11498, {_}: join (join ?14314 ?14314) (meet ?14314 ?14314) =>= join ?14314 ?14314 [14314] by Demod 11497 with 10489 at 2,2 Id : 11499, {_}: ?14314 =<= join ?14314 ?14314 [14314] by Demod 11498 with 6038 at 2 Id : 11889, {_}: a === a [] by Demod 1 with 11499 at 2 Id : 1, {_}: join a a =>= a [] by prove_normal_axioms_4 % SZS output end CNFRefutation for LAT083-1.p 23764: solved LAT083-1.p in 18.481154 using nrkbo WARNING: TreeLimitedRun lost 41.49s, total lost is 41.49s FINAL WATCH: 60.0 CPU 37.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT084-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 23781 TreeLimitedRun: ---------------------------------------------------------- 23783: Facts: 23783: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23783: Goal: 23783: Id : 1, {_}: join a b =<= join b a [] by prove_normal_axioms_5 % SZS status Timeout for LAT084-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT085-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 23854 TreeLimitedRun: ---------------------------------------------------------- 23856: Facts: 23856: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23856: Goal: 23856: Id : 1, {_}: join (join a b) c =>= join a (join b c) [] by prove_normal_axioms_6 % SZS status Timeout for LAT085-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT086-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 23925 TreeLimitedRun: ---------------------------------------------------------- 23927: Facts: 23927: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23927: Goal: 23927: Id : 1, {_}: meet a (join a b) =>= a [] by prove_normal_axioms_7 Statistics : Max weight : 3122 Found proof, 37.273368s % SZS status Unsatisfiable for LAT086-1.p % SZS output start CNFRefutation for LAT086-1.p Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 Id : 3, {_}: join (meet (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12) (meet (join (meet ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)) (meet (join (meet ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)) (meet ?16 (join ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)))) (join ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)))) (join (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12)) =>= ?11 [16, 15, 14, 13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 ?14 ?15 ?16 Id : 37, {_}: join (meet (join (meet ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) (join ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))))) ?276) (meet (join (meet ?273 (join (join (meet ?277 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) ?278)) (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))))) (meet ?275 (join ?273 (join (join (meet ?277 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) ?278)) (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))))))) (join (join (meet ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) (join ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))))) ?276)) =>= join (meet ?274 ?275) (meet ?275 (join ?274 ?275)) [278, 277, 276, 275, 274, 273] by Super 3 with 2 at 1,2,1,2,2 Id : 40, {_}: join (meet (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 311, 310, 309, 308, 307, 306, 305, 304, 303] by Super 37 with 2 at 2,2,2,1,2,2,2 Id : 124, {_}: join (meet (join (meet ?303 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 311, 310, 309, 308, 307, 306, 304, 305, 303] by Demod 40 with 2 at 2,1,1,1,2 Id : 125, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 311, 310, 309, 308, 307, 306, 304, 305, 303] by Demod 124 with 2 at 1,2,1,1,2 Id : 126, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 309, 308, 307, 306, 304, 311, 310, 305, 303] by Demod 125 with 2 at 2,2,2,1,1,2 Id : 127, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 309, 308, 307, 306, 304, 311, 310, 305, 303] by Demod 126 with 2 at 2,1,1,2,1,1,2,2 Id : 128, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 127 with 2 at 1,2,1,2,1,1,2,2 Id : 129, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 128 with 2 at 2,2,1,1,2,2 Id : 130, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 129 with 2 at 2,1,1,2,2,2,1,2,2 Id : 131, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 130 with 2 at 1,2,1,2,2,2,1,2,2 Id : 132, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 131 with 2 at 2,2,2,2,1,2,2 Id : 133, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)))) (join (join (meet ?303 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 132 with 2 at 2,1,1,2,2,2 Id : 134, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)))) (join (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310)) =?= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 133 with 2 at 1,2,1,2,2,2 Id : 712, {_}: join (meet (join (meet ?1349 ?1350) (meet ?1350 (join ?1349 ?1350))) ?1351) (meet (join (meet ?1349 (join (join (meet ?1352 ?1350) (meet ?1350 ?1353)) ?1350)) (meet (join (meet ?1354 (join (join (meet ?1355 ?1350) (meet ?1350 ?1356)) ?1350)) (meet (join (meet ?1350 (meet (meet (join ?1355 (join ?1350 ?1356)) (join ?1357 ?1350)) ?1350)) (meet ?1358 (join ?1350 (meet (meet (join ?1355 (join ?1350 ?1356)) (join ?1357 ?1350)) ?1350)))) (join ?1354 (join (join (meet ?1355 ?1350) (meet ?1350 ?1356)) ?1350)))) (join ?1349 (join (join (meet ?1352 ?1350) (meet ?1350 ?1353)) ?1350)))) (join (join (meet ?1349 ?1350) (meet ?1350 (join ?1349 ?1350))) ?1351)) =>= ?1350 [1358, 1357, 1356, 1355, 1354, 1353, 1352, 1351, 1350, 1349] by Demod 134 with 2 at 3 Id : 1145, {_}: join (meet (join (meet (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441) (meet ?2441 (join (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441))) ?2442) (meet ?2441 (join (join (meet (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441) (meet ?2441 (join (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441))) ?2442)) =>= ?2441 [2442, 2441, 2440] by Super 712 with 2 at 1,2,2 Id : 746, {_}: join (meet (join (meet (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865) (meet ?1865 (join (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865))) ?1866) (meet ?1865 (join (join (meet (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865) (meet ?1865 (join (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865))) ?1866)) =>= ?1865 [1866, 1865, 1864] by Super 712 with 2 at 1,2,2 Id : 1162, {_}: join (meet (join (meet (join (meet (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573) (meet ?2573 (join (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573))) ?2573) (meet ?2573 (join (join (meet (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573) (meet ?2573 (join (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573))) ?2573))) ?2574) (meet ?2573 (join ?2573 ?2574)) =>= ?2573 [2574, 2573, 2572] by Super 1145 with 746 at 1,2,2,2 Id : 1658, {_}: join (meet ?3156 ?3157) (meet ?3156 (join ?3156 ?3157)) =>= ?3156 [3157, 3156] by Demod 1162 with 746 at 1,1,2 Id : 1544, {_}: join (meet ?2573 ?2574) (meet ?2573 (join ?2573 ?2574)) =>= ?2573 [2574, 2573] by Demod 1162 with 746 at 1,1,2 Id : 1663, {_}: join (meet (meet ?3189 ?3190) (meet ?3189 (join ?3189 ?3190))) (meet (meet ?3189 ?3190) ?3189) =>= meet ?3189 ?3190 [3190, 3189] by Super 1658 with 1544 at 2,2,2 Id : 11, {_}: join (meet (join (meet ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) (join ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))))) ?109) (meet (join (meet ?106 (join (join (meet ?110 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) ?111)) (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))))) (meet ?108 (join ?106 (join (join (meet ?110 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) ?111)) (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))))))) (join (join (meet ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) (join ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))))) ?109)) =>= join (meet ?107 ?108) (meet ?108 (join ?107 ?108)) [111, 110, 109, 108, 107, 106] by Super 3 with 2 at 1,2,1,2,2 Id : 1090, {_}: join (meet (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1979, 1978, 1977, 1976, 1975] by Super 11 with 746 at 2,2,2,1,2,2,2 Id : 1216, {_}: join (meet (join (meet ?1975 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1979, 1978, 1976, 1977, 1975] by Demod 1090 with 746 at 2,1,1,1,2 Id : 1217, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1979, 1978, 1976, 1977, 1975] by Demod 1216 with 746 at 1,2,1,1,2 Id : 1218, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1976, 1979, 1978, 1977, 1975] by Demod 1217 with 746 at 2,2,2,1,1,2 Id : 1219, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1976, 1979, 1978, 1977, 1975] by Demod 1218 with 746 at 2,1,1,2,1,1,2,2 Id : 1220, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1219 with 746 at 1,2,1,2,1,1,2,2 Id : 1221, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1220 with 746 at 2,2,1,1,2,2 Id : 1222, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1221 with 746 at 2,1,1,2,2,2,1,2,2 Id : 1223, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1222 with 746 at 1,2,1,2,2,2,1,2,2 Id : 1224, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1223 with 746 at 2,2,2,2,1,2,2 Id : 1225, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1224 with 746 at 2,1,1,2,2,2 Id : 1226, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978)) =?= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1225 with 746 at 1,2,1,2,2,2 Id : 2537, {_}: join (meet (join (meet ?4347 ?4348) (meet ?4348 (join ?4347 ?4348))) ?4349) (meet (join (meet ?4347 (join (join (meet ?4350 ?4348) (meet ?4348 ?4351)) ?4348)) (meet ?4348 (join ?4347 (join (join (meet ?4350 ?4348) (meet ?4348 ?4351)) ?4348)))) (join (join (meet ?4347 ?4348) (meet ?4348 (join ?4347 ?4348))) ?4349)) =>= ?4348 [4351, 4350, 4349, 4348, 4347] by Demod 1226 with 746 at 3 Id : 1227, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978)) =>= ?1977 [1980, 1979, 1978, 1977, 1975] by Demod 1226 with 746 at 3 Id : 2550, {_}: join (meet (join (meet (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) (join (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))))) ?4464) (meet (join (meet (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) (join (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))))) (join ?4461 ?4464)) =>= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4466, 4465, 4464, 4463, 4462, 4461, 4460] by Super 2537 with 1227 at 1,2,2,2 Id : 2944, {_}: join (meet ?4461 ?4464) (meet (join (meet (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) (join (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))))) (join ?4461 ?4464)) =>= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4466, 4463, 4462, 4465, 4460, 4464, 4461] by Demod 2550 with 1227 at 1,1,2 Id : 2945, {_}: join (meet ?4461 ?4464) (meet ?4461 (join ?4461 ?4464)) =?= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4463, 4462, 4460, 4464, 4461] by Demod 2944 with 1227 at 1,2,2 Id : 2946, {_}: ?4461 =<= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4463, 4462, 4460, 4461] by Demod 2945 with 1544 at 2 Id : 3006, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet ?1977 (join (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978)) =>= ?1977 [1978, 1977, 1975] by Demod 1227 with 2946 at 1,2,2 Id : 2546, {_}: join (meet (join (meet (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) (join (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))))) ?4428) (meet (join (meet (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) (join (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))))) (join ?4423 ?4428)) =>= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4430, 4429, 4428, 4427, 4426, 4425, 4424, 4423, 4422] by Super 2537 with 2 at 1,2,2,2 Id : 2932, {_}: join (meet ?4423 ?4428) (meet (join (meet (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) (join (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))))) (join ?4423 ?4428)) =>= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4430, 4427, 4426, 4425, 4424, 4429, 4422, 4428, 4423] by Demod 2546 with 2 at 1,1,2 Id : 2933, {_}: join (meet ?4423 ?4428) (meet ?4423 (join ?4423 ?4428)) =?= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4427, 4426, 4425, 4424, 4422, 4428, 4423] by Demod 2932 with 2 at 1,2,2 Id : 2934, {_}: ?4423 =<= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4427, 4426, 4425, 4424, 4422, 4423] by Demod 2933 with 1544 at 2 Id : 4162, {_}: ?6278 =<= join (meet ?6278 (meet (meet (join ?6279 (join ?6278 ?6280)) (join ?6281 ?6278)) ?6278)) (meet ?6282 (join ?6278 (meet (meet (join ?6279 (join ?6278 ?6280)) (join ?6281 ?6278)) ?6278))) [6282, 6281, 6280, 6279, 6278] by Super 1544 with 2934 at 2 Id : 4445, {_}: join (meet ?6922 ?6923) (meet ?6923 (join ?6922 ?6923)) =>= ?6923 [6923, 6922] by Super 3006 with 4162 at 2 Id : 4987, {_}: ?7824 =<= meet (meet (join ?7825 (join ?7824 ?7826)) (join ?7827 ?7824)) ?7824 [7827, 7826, 7825, 7824] by Super 4162 with 4445 at 3 Id : 7455, {_}: meet ?10422 ?10423 =<= meet (meet (join ?10424 ?10422) (join ?10425 (meet ?10422 ?10423))) (meet ?10422 ?10423) [10425, 10424, 10423, 10422] by Super 4987 with 1544 at 2,1,1,3 Id : 4913, {_}: ?7588 =<= meet (meet (join ?7589 (join ?7588 ?7590)) (join ?7591 ?7588)) ?7588 [7591, 7590, 7589, 7588] by Super 4162 with 4445 at 3 Id : 4953, {_}: ?6278 =<= join (meet ?6278 ?6278) (meet ?6282 (join ?6278 (meet (meet (join ?6279 (join ?6278 ?6280)) (join ?6281 ?6278)) ?6278))) [6281, 6280, 6279, 6282, 6278] by Demod 4162 with 4913 at 2,1,3 Id : 4954, {_}: ?6278 =<= join (meet ?6278 ?6278) (meet ?6282 (join ?6278 ?6278)) [6282, 6278] by Demod 4953 with 4913 at 2,2,2,3 Id : 9042, {_}: meet ?12453 (join ?12454 ?12454) =<= meet (meet (join ?12455 ?12453) ?12454) (meet ?12453 (join ?12454 ?12454)) [12455, 12454, 12453] by Super 7455 with 4954 at 2,1,3 Id : 4955, {_}: ?7642 =<= join (meet ?7642 ?7642) (join ?7642 ?7642) [7642] by Super 4954 with 4913 at 2,3 Id : 5086, {_}: ?7964 =<= meet (meet ?7964 (join ?7965 ?7964)) ?7964 [7965, 7964] by Super 4913 with 4955 at 1,1,3 Id : 5098, {_}: join ?7973 (meet ?7973 (join (meet ?7973 (join ?7974 ?7973)) ?7973)) =>= ?7973 [7974, 7973] by Super 4445 with 5086 at 1,2 Id : 5719, {_}: ?8771 =<= meet (meet (join ?8772 ?8771) (join ?8773 ?8771)) ?8771 [8773, 8772, 8771] by Super 4913 with 5098 at 2,1,1,3 Id : 5971, {_}: join ?9107 ?9107 =<= meet (meet (join ?9108 (join ?9107 ?9107)) ?9107) (join ?9107 ?9107) [9108, 9107] by Super 5719 with 4955 at 2,1,3 Id : 5973, {_}: join ?9113 ?9113 =<= meet (meet ?9113 ?9113) (join ?9113 ?9113) [9113] by Super 5971 with 4955 at 1,1,3 Id : 6040, {_}: join (join ?9119 ?9119) (meet (join ?9119 ?9119) (join (meet ?9119 ?9119) (join ?9119 ?9119))) =>= join ?9119 ?9119 [9119] by Super 4445 with 5973 at 1,2 Id : 6160, {_}: join (join ?9119 ?9119) (meet (join ?9119 ?9119) ?9119) =>= join ?9119 ?9119 [9119] by Demod 6040 with 4955 at 2,2,2 Id : 6203, {_}: join (meet (join ?9257 ?9257) ?9257) (meet (meet (join ?9257 ?9257) ?9257) (join (meet (meet (join ?9257 ?9257) ?9257) (join ?9257 ?9257)) (meet (join ?9257 ?9257) ?9257))) =>= meet (join ?9257 ?9257) ?9257 [9257] by Super 5098 with 6160 at 2,1,2,2,2 Id : 5131, {_}: ?8097 =<= meet (meet ?8097 (join ?8098 ?8097)) ?8097 [8098, 8097] by Super 4913 with 4955 at 1,1,3 Id : 5142, {_}: join ?8134 ?8134 =<= meet (meet (join ?8134 ?8134) ?8134) (join ?8134 ?8134) [8134] by Super 5131 with 4955 at 2,1,3 Id : 6215, {_}: join (meet (join ?9257 ?9257) ?9257) (meet (meet (join ?9257 ?9257) ?9257) (join (join ?9257 ?9257) (meet (join ?9257 ?9257) ?9257))) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6203 with 5142 at 1,2,2,2 Id : 6216, {_}: join (meet (join ?9257 ?9257) ?9257) (meet (meet (join ?9257 ?9257) ?9257) (join ?9257 ?9257)) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6215 with 6160 at 2,2,2 Id : 6217, {_}: join (meet (join ?9257 ?9257) ?9257) (join ?9257 ?9257) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6216 with 5142 at 2,2 Id : 6736, {_}: ?9826 =<= meet (meet (meet (join ?9826 ?9826) ?9826) (join ?9827 ?9826)) ?9826 [9827, 9826] by Super 4913 with 6217 at 1,1,3 Id : 6754, {_}: ?9879 =<= meet (join ?9879 ?9879) ?9879 [9879] by Super 6736 with 5142 at 1,3 Id : 6840, {_}: join ?9257 (join ?9257 ?9257) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6217 with 6754 at 1,2 Id : 6841, {_}: join ?9257 (join ?9257 ?9257) =>= ?9257 [9257] by Demod 6840 with 6754 at 3 Id : 9703, {_}: meet (join ?13328 ?13328) (join ?13329 ?13329) =<= meet (meet ?13328 ?13329) (meet (join ?13328 ?13328) (join ?13329 ?13329)) [13329, 13328] by Super 9042 with 6841 at 1,1,3 Id : 3045, {_}: ?5029 =<= join (meet ?5030 (join (join (meet ?5031 ?5029) (meet ?5029 ?5032)) ?5029)) (meet ?5029 (join ?5030 (join (join (meet ?5031 ?5029) (meet ?5029 ?5032)) ?5029))) [5032, 5031, 5030, 5029] by Demod 2945 with 1544 at 2 Id : 3049, {_}: ?5060 =<= join (meet ?5061 (join (join (meet ?5060 ?5060) (meet ?5060 (join ?5060 ?5060))) ?5060)) (meet ?5060 (join ?5061 (join ?5060 ?5060))) [5061, 5060] by Super 3045 with 1544 at 1,2,2,2,3 Id : 3227, {_}: ?5060 =<= join (meet ?5061 (join ?5060 ?5060)) (meet ?5060 (join ?5061 (join ?5060 ?5060))) [5061, 5060] by Demod 3049 with 1544 at 1,2,1,3 Id : 5082, {_}: ?7952 =<= join (meet (meet ?7952 ?7952) (join ?7952 ?7952)) (meet ?7952 ?7952) [7952] by Super 3227 with 4955 at 2,2,3 Id : 6038, {_}: ?7952 =<= join (join ?7952 ?7952) (meet ?7952 ?7952) [7952] by Demod 5082 with 5973 at 1,3 Id : 7665, {_}: meet ?10842 ?10842 =<= meet (meet (join ?10843 ?10842) ?10842) (meet ?10842 ?10842) [10843, 10842] by Super 7455 with 6038 at 2,1,3 Id : 7687, {_}: meet ?10905 ?10905 =<= meet ?10905 (meet ?10905 ?10905) [10905] by Super 7665 with 6754 at 1,3 Id : 9727, {_}: meet (join ?13401 ?13401) (join (meet ?13401 ?13401) (meet ?13401 ?13401)) =<= meet (meet ?13401 ?13401) (meet (join ?13401 ?13401) (join (meet ?13401 ?13401) (meet ?13401 ?13401))) [13401] by Super 9703 with 7687 at 1,3 Id : 6349, {_}: meet ?9388 ?9388 =<= meet (meet (join ?9389 (meet ?9388 ?9388)) ?9388) (meet ?9388 ?9388) [9389, 9388] by Super 5719 with 5082 at 2,1,3 Id : 6352, {_}: meet ?9396 ?9396 =<= meet (meet ?9396 ?9396) (meet ?9396 ?9396) [9396] by Super 6349 with 6038 at 1,1,3 Id : 6421, {_}: meet ?9471 ?9471 =<= join (join (meet ?9471 ?9471) (meet ?9471 ?9471)) (meet ?9471 ?9471) [9471] by Super 6038 with 6352 at 2,3 Id : 6835, {_}: join (join ?9119 ?9119) ?9119 =>= join ?9119 ?9119 [9119] by Demod 6160 with 6754 at 2,2 Id : 7035, {_}: meet ?9471 ?9471 =<= join (meet ?9471 ?9471) (meet ?9471 ?9471) [9471] by Demod 6421 with 6835 at 3 Id : 9826, {_}: meet (join ?13401 ?13401) (meet ?13401 ?13401) =<= meet (meet ?13401 ?13401) (meet (join ?13401 ?13401) (join (meet ?13401 ?13401) (meet ?13401 ?13401))) [13401] by Demod 9727 with 7035 at 2,2 Id : 9827, {_}: meet (join ?13401 ?13401) (meet ?13401 ?13401) =<= meet (meet ?13401 ?13401) (meet (join ?13401 ?13401) (meet ?13401 ?13401)) [13401] by Demod 9826 with 7035 at 2,2,3 Id : 10353, {_}: join (meet (meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018))) (meet (meet ?14018 ?14018) (join (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018))))) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Super 1663 with 9827 at 1,2,2 Id : 10483, {_}: join (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet (meet ?14018 ?14018) (join (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018))))) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10353 with 9827 at 1,1,2 Id : 7066, {_}: meet ?10089 ?10089 =<= join (meet (meet ?10089 ?10089) (meet ?10089 ?10089)) (meet ?10090 (meet ?10089 ?10089)) [10090, 10089] by Super 4954 with 7035 at 2,2,3 Id : 7108, {_}: meet ?10089 ?10089 =<= join (meet ?10089 ?10089) (meet ?10090 (meet ?10089 ?10089)) [10090, 10089] by Demod 7066 with 6352 at 1,3 Id : 10484, {_}: join (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet (meet ?14018 ?14018) (meet ?14018 ?14018))) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10483 with 7108 at 2,2,1,2 Id : 10485, {_}: join (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10484 with 6352 at 2,1,2 Id : 7504, {_}: meet ?10649 ?10649 =<= meet (meet (join ?10650 ?10649) (meet ?10649 ?10649)) (meet ?10649 ?10649) [10650, 10649] by Super 7455 with 7035 at 2,1,3 Id : 10486, {_}: join (meet ?14018 ?14018) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10485 with 7504 at 1,2 Id : 10487, {_}: join (meet ?14018 ?14018) (meet ?14018 ?14018) =<= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10486 with 7504 at 2,2 Id : 10488, {_}: meet ?14018 ?14018 =<= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10487 with 7035 at 2 Id : 10489, {_}: meet ?14018 ?14018 =<= meet (join ?14018 ?14018) (meet ?14018 ?14018) [14018] by Demod 10488 with 9827 at 3 Id : 10554, {_}: join (meet (meet (join ?14134 ?14134) (meet ?14134 ?14134)) (meet (join ?14134 ?14134) (join (join ?14134 ?14134) (meet ?14134 ?14134)))) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Super 1663 with 10489 at 1,2,2 Id : 10591, {_}: join (meet (meet ?14134 ?14134) (meet (join ?14134 ?14134) (join (join ?14134 ?14134) (meet ?14134 ?14134)))) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10554 with 10489 at 1,1,2 Id : 10592, {_}: join (meet (meet ?14134 ?14134) (meet (join ?14134 ?14134) ?14134)) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10591 with 6038 at 2,2,1,2 Id : 10593, {_}: join (meet (meet ?14134 ?14134) ?14134) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10592 with 6754 at 2,1,2 Id : 10594, {_}: join (meet (meet ?14134 ?14134) ?14134) (join ?14134 ?14134) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10593 with 5973 at 2,2 Id : 10595, {_}: join (meet (meet ?14134 ?14134) ?14134) (join ?14134 ?14134) =>= meet ?14134 ?14134 [14134] by Demod 10594 with 10489 at 3 Id : 11369, {_}: join (meet (meet (meet ?14314 ?14314) ?14314) (join ?14314 ?14314)) (meet (join ?14314 ?14314) (meet ?14314 ?14314)) =>= join ?14314 ?14314 [14314] by Super 4445 with 10595 at 2,2,2 Id : 9049, {_}: meet (meet ?12484 ?12484) (join ?12484 ?12484) =<= meet (meet (join ?12485 (meet ?12484 ?12484)) ?12484) (join ?12484 ?12484) [12485, 12484] by Super 9042 with 5973 at 2,3 Id : 10101, {_}: join ?13865 ?13865 =<= meet (meet (join ?13866 (meet ?13865 ?13865)) ?13865) (join ?13865 ?13865) [13866, 13865] by Demod 9049 with 5973 at 2 Id : 10110, {_}: join ?13887 ?13887 =<= meet (meet (meet ?13887 ?13887) ?13887) (join ?13887 ?13887) [13887] by Super 10101 with 7035 at 1,1,3 Id : 11497, {_}: join (join ?14314 ?14314) (meet (join ?14314 ?14314) (meet ?14314 ?14314)) =>= join ?14314 ?14314 [14314] by Demod 11369 with 10110 at 1,2 Id : 11498, {_}: join (join ?14314 ?14314) (meet ?14314 ?14314) =>= join ?14314 ?14314 [14314] by Demod 11497 with 10489 at 2,2 Id : 11499, {_}: ?14314 =<= join ?14314 ?14314 [14314] by Demod 11498 with 6038 at 2 Id : 11665, {_}: ?14391 =<= join (meet (join (join (meet ?14392 ?14391) (meet ?14391 ?14393)) ?14391) (join (join (meet ?14392 ?14391) (meet ?14391 ?14393)) ?14391)) (meet ?14391 (join (join (meet ?14392 ?14391) (meet ?14391 ?14393)) ?14391)) [14393, 14392, 14391] by Super 2946 with 11499 at 2,2,3 Id : 7769, {_}: join (meet ?10951 ?10951) (meet ?10951 (join ?10951 (meet ?10951 ?10951))) =>= ?10951 [10951] by Super 1544 with 7687 at 1,2 Id : 6859, {_}: join ?9931 (meet (join ?9931 ?9931) (join (join ?9931 ?9931) ?9931)) =>= join ?9931 ?9931 [9931] by Super 1544 with 6754 at 1,2 Id : 6928, {_}: join ?9931 (meet (join ?9931 ?9931) (join ?9931 ?9931)) =>= join ?9931 ?9931 [9931] by Demod 6859 with 6835 at 2,2,2 Id : 11572, {_}: join ?9931 (meet ?9931 (join ?9931 ?9931)) =>= join ?9931 ?9931 [9931] by Demod 6928 with 11499 at 1,2,2 Id : 11573, {_}: join ?9931 (meet ?9931 ?9931) =>= join ?9931 ?9931 [9931] by Demod 11572 with 11499 at 2,2,2 Id : 11574, {_}: join ?9931 (meet ?9931 ?9931) =>= ?9931 [9931] by Demod 11573 with 11499 at 3 Id : 11586, {_}: join (meet ?10951 ?10951) (meet ?10951 ?10951) =>= ?10951 [10951] by Demod 7769 with 11574 at 2,2,2 Id : 11587, {_}: meet ?10951 ?10951 =>= ?10951 [10951] by Demod 11586 with 11499 at 2 Id : 11845, {_}: ?14391 =<= join (join (join (meet ?14392 ?14391) (meet ?14391 ?14393)) ?14391) (meet ?14391 (join (join (meet ?14392 ?14391) (meet ?14391 ?14393)) ?14391)) [14393, 14392, 14391] by Demod 11665 with 11587 at 1,3 Id : 11590, {_}: ?10089 =<= join (meet ?10089 ?10089) (meet ?10090 (meet ?10089 ?10089)) [10090, 10089] by Demod 7108 with 11587 at 2 Id : 11591, {_}: ?10089 =<= join ?10089 (meet ?10090 (meet ?10089 ?10089)) [10090, 10089] by Demod 11590 with 11587 at 1,3 Id : 11592, {_}: ?10089 =<= join ?10089 (meet ?10090 ?10089) [10090, 10089] by Demod 11591 with 11587 at 2,2,3 Id : 12482, {_}: ?15327 =<= join (join (meet ?15328 ?15327) (meet ?15327 ?15329)) ?15327 [15329, 15328, 15327] by Demod 11845 with 11592 at 3 Id : 12500, {_}: ?15409 =<= join (join ?15409 (meet ?15409 ?15410)) ?15409 [15410, 15409] by Super 12482 with 11587 at 1,1,3 Id : 13009, {_}: join (meet (join ?15804 (meet ?15804 ?15805)) ?15804) (meet (join ?15804 (meet ?15804 ?15805)) ?15804) =>= join ?15804 (meet ?15804 ?15805) [15805, 15804] by Super 1544 with 12500 at 2,2,2 Id : 11927, {_}: ?14648 =<= meet (meet (join ?14649 (join ?14648 ?14650)) ?14648) ?14648 [14650, 14649, 14648] by Super 4913 with 11499 at 2,1,3 Id : 11941, {_}: ?14705 =<= meet (meet (join ?14705 ?14706) ?14705) ?14705 [14706, 14705] by Super 11927 with 11499 at 1,1,3 Id : 12520, {_}: ?15476 =<= join (meet ?15477 ?15476) ?15476 [15477, 15476] by Super 12482 with 11592 at 1,3 Id : 12625, {_}: join (meet (meet ?15551 ?15552) ?15552) (meet (meet ?15551 ?15552) ?15552) =>= meet ?15551 ?15552 [15552, 15551] by Super 1544 with 12520 at 2,2,2 Id : 12684, {_}: meet (meet ?15551 ?15552) ?15552 =>= meet ?15551 ?15552 [15552, 15551] by Demod 12625 with 11499 at 2 Id : 12754, {_}: ?14705 =<= meet (join ?14705 ?14706) ?14705 [14706, 14705] by Demod 11941 with 12684 at 3 Id : 13098, {_}: join ?15804 (meet (join ?15804 (meet ?15804 ?15805)) ?15804) =>= join ?15804 (meet ?15804 ?15805) [15805, 15804] by Demod 13009 with 12754 at 1,2 Id : 13099, {_}: join ?15804 ?15804 =<= join ?15804 (meet ?15804 ?15805) [15805, 15804] by Demod 13098 with 12754 at 2,2 Id : 13189, {_}: ?16020 =<= join ?16020 (meet ?16020 ?16021) [16021, 16020] by Demod 13099 with 11499 at 2 Id : 13205, {_}: join ?16076 ?16077 =<= join (join ?16076 ?16077) ?16076 [16077, 16076] by Super 13189 with 12754 at 2,3 Id : 13506, {_}: join (meet (meet (join ?16350 ?16351) ?16350) (meet (join ?16350 ?16351) (join ?16350 ?16351))) (meet (meet (join ?16350 ?16351) ?16350) (join ?16350 ?16351)) =>= meet (join ?16350 ?16351) ?16350 [16351, 16350] by Super 1663 with 13205 at 2,2,1,2 Id : 13577, {_}: join (meet ?16350 (meet (join ?16350 ?16351) (join ?16350 ?16351))) (meet (meet (join ?16350 ?16351) ?16350) (join ?16350 ?16351)) =>= meet (join ?16350 ?16351) ?16350 [16351, 16350] by Demod 13506 with 12754 at 1,1,2 Id : 13578, {_}: join (meet ?16350 (join ?16350 ?16351)) (meet (meet (join ?16350 ?16351) ?16350) (join ?16350 ?16351)) =>= meet (join ?16350 ?16351) ?16350 [16351, 16350] by Demod 13577 with 11587 at 2,1,2 Id : 13579, {_}: join (meet ?16350 (join ?16350 ?16351)) (meet ?16350 (join ?16350 ?16351)) =>= meet (join ?16350 ?16351) ?16350 [16351, 16350] by Demod 13578 with 12754 at 1,2,2 Id : 13580, {_}: meet ?16350 (join ?16350 ?16351) =?= meet (join ?16350 ?16351) ?16350 [16351, 16350] by Demod 13579 with 11499 at 2 Id : 13581, {_}: meet ?16350 (join ?16350 ?16351) =>= ?16350 [16351, 16350] by Demod 13580 with 12754 at 3 Id : 13989, {_}: a === a [] by Demod 1 with 13581 at 2 Id : 1, {_}: meet a (join a b) =>= a [] by prove_normal_axioms_7 % SZS output end CNFRefutation for LAT086-1.p 23930: solved LAT086-1.p in 18.89318 using nrkbo WARNING: TreeLimitedRun lost 41.02s, total lost is 41.02s FINAL WATCH: 59.9 CPU 38.1 WC Killed 1 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT087-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 23961 TreeLimitedRun: ---------------------------------------------------------- 23963: Facts: 23963: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 23963: Goal: 23963: Id : 1, {_}: join a (meet a b) =>= a [] by prove_normal_axioms_8 Statistics : Max weight : 3122 Found proof, 37.338476s % SZS status Unsatisfiable for LAT087-1.p % SZS output start CNFRefutation for LAT087-1.p Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 Id : 3, {_}: join (meet (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12) (meet (join (meet ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)) (meet (join (meet ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)) (meet ?16 (join ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)))) (join ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)))) (join (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12)) =>= ?11 [16, 15, 14, 13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 ?14 ?15 ?16 Id : 37, {_}: join (meet (join (meet ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) (join ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))))) ?276) (meet (join (meet ?273 (join (join (meet ?277 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) ?278)) (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))))) (meet ?275 (join ?273 (join (join (meet ?277 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) ?278)) (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))))))) (join (join (meet ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))) (meet (join (meet ?274 ?275) (meet ?275 (join ?274 ?275))) (join ?273 (join (meet ?274 ?275) (meet ?275 (join ?274 ?275)))))) ?276)) =>= join (meet ?274 ?275) (meet ?275 (join ?274 ?275)) [278, 277, 276, 275, 274, 273] by Super 3 with 2 at 1,2,1,2,2 Id : 40, {_}: join (meet (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 311, 310, 309, 308, 307, 306, 305, 304, 303] by Super 37 with 2 at 2,2,2,1,2,2,2 Id : 124, {_}: join (meet (join (meet ?303 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 311, 310, 309, 308, 307, 306, 304, 305, 303] by Demod 40 with 2 at 2,1,1,1,2 Id : 125, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 311, 310, 309, 308, 307, 306, 304, 305, 303] by Demod 124 with 2 at 1,2,1,1,2 Id : 126, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 309, 308, 307, 306, 304, 311, 310, 305, 303] by Demod 125 with 2 at 2,2,2,1,1,2 Id : 127, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [312, 309, 308, 307, 306, 304, 311, 310, 305, 303] by Demod 126 with 2 at 2,1,1,2,1,1,2,2 Id : 128, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 127 with 2 at 1,2,1,2,1,1,2,2 Id : 129, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 128 with 2 at 2,2,1,1,2,2 Id : 130, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 129 with 2 at 2,1,1,2,2,2,1,2,2 Id : 131, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))))))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 130 with 2 at 1,2,1,2,2,2,1,2,2 Id : 132, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)))) (join (join (meet ?303 (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))))) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 131 with 2 at 2,2,2,2,1,2,2 Id : 133, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)))) (join (join (meet ?303 ?305) (meet (join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))))) (join ?303 ?305))) ?310)) =>= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 132 with 2 at 2,1,1,2,2,2 Id : 134, {_}: join (meet (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310) (meet (join (meet ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join ?303 (join (join (meet ?311 ?305) (meet ?305 ?312)) ?305)))) (join (join (meet ?303 ?305) (meet ?305 (join ?303 ?305))) ?310)) =?= join (meet (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305))))) (meet (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))) (join (join (meet ?304 ?305) (meet ?305 (join ?304 ?305))) (join (meet ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)) (meet (join (meet ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)) (meet ?309 (join ?305 (meet (meet (join ?306 (join ?305 ?307)) (join ?308 ?305)) ?305)))) (join ?304 (join (join (meet ?306 ?305) (meet ?305 ?307)) ?305)))))) [309, 308, 307, 306, 304, 312, 311, 310, 305, 303] by Demod 133 with 2 at 1,2,1,2,2,2 Id : 712, {_}: join (meet (join (meet ?1349 ?1350) (meet ?1350 (join ?1349 ?1350))) ?1351) (meet (join (meet ?1349 (join (join (meet ?1352 ?1350) (meet ?1350 ?1353)) ?1350)) (meet (join (meet ?1354 (join (join (meet ?1355 ?1350) (meet ?1350 ?1356)) ?1350)) (meet (join (meet ?1350 (meet (meet (join ?1355 (join ?1350 ?1356)) (join ?1357 ?1350)) ?1350)) (meet ?1358 (join ?1350 (meet (meet (join ?1355 (join ?1350 ?1356)) (join ?1357 ?1350)) ?1350)))) (join ?1354 (join (join (meet ?1355 ?1350) (meet ?1350 ?1356)) ?1350)))) (join ?1349 (join (join (meet ?1352 ?1350) (meet ?1350 ?1353)) ?1350)))) (join (join (meet ?1349 ?1350) (meet ?1350 (join ?1349 ?1350))) ?1351)) =>= ?1350 [1358, 1357, 1356, 1355, 1354, 1353, 1352, 1351, 1350, 1349] by Demod 134 with 2 at 3 Id : 1145, {_}: join (meet (join (meet (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441) (meet ?2441 (join (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441))) ?2442) (meet ?2441 (join (join (meet (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441) (meet ?2441 (join (join (meet ?2440 ?2441) (meet ?2441 (join ?2440 ?2441))) ?2441))) ?2442)) =>= ?2441 [2442, 2441, 2440] by Super 712 with 2 at 1,2,2 Id : 746, {_}: join (meet (join (meet (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865) (meet ?1865 (join (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865))) ?1866) (meet ?1865 (join (join (meet (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865) (meet ?1865 (join (join (meet ?1864 ?1865) (meet ?1865 (join ?1864 ?1865))) ?1865))) ?1866)) =>= ?1865 [1866, 1865, 1864] by Super 712 with 2 at 1,2,2 Id : 1162, {_}: join (meet (join (meet (join (meet (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573) (meet ?2573 (join (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573))) ?2573) (meet ?2573 (join (join (meet (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573) (meet ?2573 (join (join (meet ?2572 ?2573) (meet ?2573 (join ?2572 ?2573))) ?2573))) ?2573))) ?2574) (meet ?2573 (join ?2573 ?2574)) =>= ?2573 [2574, 2573, 2572] by Super 1145 with 746 at 1,2,2,2 Id : 1544, {_}: join (meet ?2573 ?2574) (meet ?2573 (join ?2573 ?2574)) =>= ?2573 [2574, 2573] by Demod 1162 with 746 at 1,1,2 Id : 11, {_}: join (meet (join (meet ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) (join ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))))) ?109) (meet (join (meet ?106 (join (join (meet ?110 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) ?111)) (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))))) (meet ?108 (join ?106 (join (join (meet ?110 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) ?111)) (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))))))) (join (join (meet ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))) (meet (join (meet ?107 ?108) (meet ?108 (join ?107 ?108))) (join ?106 (join (meet ?107 ?108) (meet ?108 (join ?107 ?108)))))) ?109)) =>= join (meet ?107 ?108) (meet ?108 (join ?107 ?108)) [111, 110, 109, 108, 107, 106] by Super 3 with 2 at 1,2,1,2,2 Id : 1090, {_}: join (meet (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1979, 1978, 1977, 1976, 1975] by Super 11 with 746 at 2,2,2,1,2,2,2 Id : 1216, {_}: join (meet (join (meet ?1975 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1979, 1978, 1976, 1977, 1975] by Demod 1090 with 746 at 2,1,1,1,2 Id : 1217, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1979, 1978, 1976, 1977, 1975] by Demod 1216 with 746 at 1,2,1,1,2 Id : 1218, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1976, 1979, 1978, 1977, 1975] by Demod 1217 with 746 at 2,2,2,1,1,2 Id : 1219, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1980, 1976, 1979, 1978, 1977, 1975] by Demod 1218 with 746 at 2,1,1,2,1,1,2,2 Id : 1220, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1219 with 746 at 1,2,1,2,1,1,2,2 Id : 1221, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1220 with 746 at 2,2,1,1,2,2 Id : 1222, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1221 with 746 at 2,1,1,2,2,2,1,2,2 Id : 1223, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))))))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1222 with 746 at 1,2,1,2,2,2,1,2,2 Id : 1224, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)))) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1223 with 746 at 2,2,2,2,1,2,2 Id : 1225, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 ?1977) (meet (join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977))) (join ?1975 ?1977))) ?1978)) =>= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1224 with 746 at 2,1,1,2,2,2 Id : 1226, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978)) =?= join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1977)) [1976, 1980, 1979, 1978, 1977, 1975] by Demod 1225 with 746 at 1,2,1,2,2,2 Id : 2537, {_}: join (meet (join (meet ?4347 ?4348) (meet ?4348 (join ?4347 ?4348))) ?4349) (meet (join (meet ?4347 (join (join (meet ?4350 ?4348) (meet ?4348 ?4351)) ?4348)) (meet ?4348 (join ?4347 (join (join (meet ?4350 ?4348) (meet ?4348 ?4351)) ?4348)))) (join (join (meet ?4347 ?4348) (meet ?4348 (join ?4347 ?4348))) ?4349)) =>= ?4348 [4351, 4350, 4349, 4348, 4347] by Demod 1226 with 746 at 3 Id : 1227, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet (join (meet ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)) (meet ?1977 (join ?1975 (join (join (meet ?1979 ?1977) (meet ?1977 ?1980)) ?1977)))) (join (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978)) =>= ?1977 [1980, 1979, 1978, 1977, 1975] by Demod 1226 with 746 at 3 Id : 2550, {_}: join (meet (join (meet (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) (join (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))))) ?4464) (meet (join (meet (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) (join (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))))) (join ?4461 ?4464)) =>= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4466, 4465, 4464, 4463, 4462, 4461, 4460] by Super 2537 with 1227 at 1,2,2,2 Id : 2944, {_}: join (meet ?4461 ?4464) (meet (join (meet (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) (join (join (meet ?4460 ?4461) (meet ?4461 (join ?4460 ?4461))) (join (join (meet ?4465 (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))))) (meet (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))) ?4466)) (join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)))))))) (join ?4461 ?4464)) =>= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4466, 4463, 4462, 4465, 4460, 4464, 4461] by Demod 2550 with 1227 at 1,1,2 Id : 2945, {_}: join (meet ?4461 ?4464) (meet ?4461 (join ?4461 ?4464)) =?= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4463, 4462, 4460, 4464, 4461] by Demod 2944 with 1227 at 1,2,2 Id : 2946, {_}: ?4461 =<= join (meet ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461)) (meet ?4461 (join ?4460 (join (join (meet ?4462 ?4461) (meet ?4461 ?4463)) ?4461))) [4463, 4462, 4460, 4461] by Demod 2945 with 1544 at 2 Id : 3006, {_}: join (meet (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978) (meet ?1977 (join (join (meet ?1975 ?1977) (meet ?1977 (join ?1975 ?1977))) ?1978)) =>= ?1977 [1978, 1977, 1975] by Demod 1227 with 2946 at 1,2,2 Id : 2546, {_}: join (meet (join (meet (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) (join (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))))) ?4428) (meet (join (meet (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) (join (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))))) (join ?4423 ?4428)) =>= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4430, 4429, 4428, 4427, 4426, 4425, 4424, 4423, 4422] by Super 2537 with 2 at 1,2,2,2 Id : 2932, {_}: join (meet ?4423 ?4428) (meet (join (meet (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) (join (join (meet ?4422 ?4423) (meet ?4423 (join ?4422 ?4423))) (join (join (meet ?4429 (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))))) (meet (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))) ?4430)) (join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)))))))) (join ?4423 ?4428)) =>= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4430, 4427, 4426, 4425, 4424, 4429, 4422, 4428, 4423] by Demod 2546 with 2 at 1,1,2 Id : 2933, {_}: join (meet ?4423 ?4428) (meet ?4423 (join ?4423 ?4428)) =?= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4427, 4426, 4425, 4424, 4422, 4428, 4423] by Demod 2932 with 2 at 1,2,2 Id : 2934, {_}: ?4423 =<= join (meet ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423)) (meet (join (meet ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)) (meet ?4427 (join ?4423 (meet (meet (join ?4424 (join ?4423 ?4425)) (join ?4426 ?4423)) ?4423)))) (join ?4422 (join (join (meet ?4424 ?4423) (meet ?4423 ?4425)) ?4423))) [4427, 4426, 4425, 4424, 4422, 4423] by Demod 2933 with 1544 at 2 Id : 4162, {_}: ?6278 =<= join (meet ?6278 (meet (meet (join ?6279 (join ?6278 ?6280)) (join ?6281 ?6278)) ?6278)) (meet ?6282 (join ?6278 (meet (meet (join ?6279 (join ?6278 ?6280)) (join ?6281 ?6278)) ?6278))) [6282, 6281, 6280, 6279, 6278] by Super 1544 with 2934 at 2 Id : 4445, {_}: join (meet ?6922 ?6923) (meet ?6923 (join ?6922 ?6923)) =>= ?6923 [6923, 6922] by Super 3006 with 4162 at 2 Id : 1658, {_}: join (meet ?3156 ?3157) (meet ?3156 (join ?3156 ?3157)) =>= ?3156 [3157, 3156] by Demod 1162 with 746 at 1,1,2 Id : 1663, {_}: join (meet (meet ?3189 ?3190) (meet ?3189 (join ?3189 ?3190))) (meet (meet ?3189 ?3190) ?3189) =>= meet ?3189 ?3190 [3190, 3189] by Super 1658 with 1544 at 2,2,2 Id : 4987, {_}: ?7824 =<= meet (meet (join ?7825 (join ?7824 ?7826)) (join ?7827 ?7824)) ?7824 [7827, 7826, 7825, 7824] by Super 4162 with 4445 at 3 Id : 7455, {_}: meet ?10422 ?10423 =<= meet (meet (join ?10424 ?10422) (join ?10425 (meet ?10422 ?10423))) (meet ?10422 ?10423) [10425, 10424, 10423, 10422] by Super 4987 with 1544 at 2,1,1,3 Id : 4913, {_}: ?7588 =<= meet (meet (join ?7589 (join ?7588 ?7590)) (join ?7591 ?7588)) ?7588 [7591, 7590, 7589, 7588] by Super 4162 with 4445 at 3 Id : 4953, {_}: ?6278 =<= join (meet ?6278 ?6278) (meet ?6282 (join ?6278 (meet (meet (join ?6279 (join ?6278 ?6280)) (join ?6281 ?6278)) ?6278))) [6281, 6280, 6279, 6282, 6278] by Demod 4162 with 4913 at 2,1,3 Id : 4954, {_}: ?6278 =<= join (meet ?6278 ?6278) (meet ?6282 (join ?6278 ?6278)) [6282, 6278] by Demod 4953 with 4913 at 2,2,2,3 Id : 9042, {_}: meet ?12453 (join ?12454 ?12454) =<= meet (meet (join ?12455 ?12453) ?12454) (meet ?12453 (join ?12454 ?12454)) [12455, 12454, 12453] by Super 7455 with 4954 at 2,1,3 Id : 4955, {_}: ?7642 =<= join (meet ?7642 ?7642) (join ?7642 ?7642) [7642] by Super 4954 with 4913 at 2,3 Id : 5086, {_}: ?7964 =<= meet (meet ?7964 (join ?7965 ?7964)) ?7964 [7965, 7964] by Super 4913 with 4955 at 1,1,3 Id : 5098, {_}: join ?7973 (meet ?7973 (join (meet ?7973 (join ?7974 ?7973)) ?7973)) =>= ?7973 [7974, 7973] by Super 4445 with 5086 at 1,2 Id : 5719, {_}: ?8771 =<= meet (meet (join ?8772 ?8771) (join ?8773 ?8771)) ?8771 [8773, 8772, 8771] by Super 4913 with 5098 at 2,1,1,3 Id : 5971, {_}: join ?9107 ?9107 =<= meet (meet (join ?9108 (join ?9107 ?9107)) ?9107) (join ?9107 ?9107) [9108, 9107] by Super 5719 with 4955 at 2,1,3 Id : 5973, {_}: join ?9113 ?9113 =<= meet (meet ?9113 ?9113) (join ?9113 ?9113) [9113] by Super 5971 with 4955 at 1,1,3 Id : 6040, {_}: join (join ?9119 ?9119) (meet (join ?9119 ?9119) (join (meet ?9119 ?9119) (join ?9119 ?9119))) =>= join ?9119 ?9119 [9119] by Super 4445 with 5973 at 1,2 Id : 6160, {_}: join (join ?9119 ?9119) (meet (join ?9119 ?9119) ?9119) =>= join ?9119 ?9119 [9119] by Demod 6040 with 4955 at 2,2,2 Id : 6203, {_}: join (meet (join ?9257 ?9257) ?9257) (meet (meet (join ?9257 ?9257) ?9257) (join (meet (meet (join ?9257 ?9257) ?9257) (join ?9257 ?9257)) (meet (join ?9257 ?9257) ?9257))) =>= meet (join ?9257 ?9257) ?9257 [9257] by Super 5098 with 6160 at 2,1,2,2,2 Id : 5131, {_}: ?8097 =<= meet (meet ?8097 (join ?8098 ?8097)) ?8097 [8098, 8097] by Super 4913 with 4955 at 1,1,3 Id : 5142, {_}: join ?8134 ?8134 =<= meet (meet (join ?8134 ?8134) ?8134) (join ?8134 ?8134) [8134] by Super 5131 with 4955 at 2,1,3 Id : 6215, {_}: join (meet (join ?9257 ?9257) ?9257) (meet (meet (join ?9257 ?9257) ?9257) (join (join ?9257 ?9257) (meet (join ?9257 ?9257) ?9257))) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6203 with 5142 at 1,2,2,2 Id : 6216, {_}: join (meet (join ?9257 ?9257) ?9257) (meet (meet (join ?9257 ?9257) ?9257) (join ?9257 ?9257)) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6215 with 6160 at 2,2,2 Id : 6217, {_}: join (meet (join ?9257 ?9257) ?9257) (join ?9257 ?9257) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6216 with 5142 at 2,2 Id : 6736, {_}: ?9826 =<= meet (meet (meet (join ?9826 ?9826) ?9826) (join ?9827 ?9826)) ?9826 [9827, 9826] by Super 4913 with 6217 at 1,1,3 Id : 6754, {_}: ?9879 =<= meet (join ?9879 ?9879) ?9879 [9879] by Super 6736 with 5142 at 1,3 Id : 6840, {_}: join ?9257 (join ?9257 ?9257) =>= meet (join ?9257 ?9257) ?9257 [9257] by Demod 6217 with 6754 at 1,2 Id : 6841, {_}: join ?9257 (join ?9257 ?9257) =>= ?9257 [9257] by Demod 6840 with 6754 at 3 Id : 9703, {_}: meet (join ?13328 ?13328) (join ?13329 ?13329) =<= meet (meet ?13328 ?13329) (meet (join ?13328 ?13328) (join ?13329 ?13329)) [13329, 13328] by Super 9042 with 6841 at 1,1,3 Id : 3045, {_}: ?5029 =<= join (meet ?5030 (join (join (meet ?5031 ?5029) (meet ?5029 ?5032)) ?5029)) (meet ?5029 (join ?5030 (join (join (meet ?5031 ?5029) (meet ?5029 ?5032)) ?5029))) [5032, 5031, 5030, 5029] by Demod 2945 with 1544 at 2 Id : 3049, {_}: ?5060 =<= join (meet ?5061 (join (join (meet ?5060 ?5060) (meet ?5060 (join ?5060 ?5060))) ?5060)) (meet ?5060 (join ?5061 (join ?5060 ?5060))) [5061, 5060] by Super 3045 with 1544 at 1,2,2,2,3 Id : 3227, {_}: ?5060 =<= join (meet ?5061 (join ?5060 ?5060)) (meet ?5060 (join ?5061 (join ?5060 ?5060))) [5061, 5060] by Demod 3049 with 1544 at 1,2,1,3 Id : 5082, {_}: ?7952 =<= join (meet (meet ?7952 ?7952) (join ?7952 ?7952)) (meet ?7952 ?7952) [7952] by Super 3227 with 4955 at 2,2,3 Id : 6038, {_}: ?7952 =<= join (join ?7952 ?7952) (meet ?7952 ?7952) [7952] by Demod 5082 with 5973 at 1,3 Id : 7665, {_}: meet ?10842 ?10842 =<= meet (meet (join ?10843 ?10842) ?10842) (meet ?10842 ?10842) [10843, 10842] by Super 7455 with 6038 at 2,1,3 Id : 7687, {_}: meet ?10905 ?10905 =<= meet ?10905 (meet ?10905 ?10905) [10905] by Super 7665 with 6754 at 1,3 Id : 9727, {_}: meet (join ?13401 ?13401) (join (meet ?13401 ?13401) (meet ?13401 ?13401)) =<= meet (meet ?13401 ?13401) (meet (join ?13401 ?13401) (join (meet ?13401 ?13401) (meet ?13401 ?13401))) [13401] by Super 9703 with 7687 at 1,3 Id : 6349, {_}: meet ?9388 ?9388 =<= meet (meet (join ?9389 (meet ?9388 ?9388)) ?9388) (meet ?9388 ?9388) [9389, 9388] by Super 5719 with 5082 at 2,1,3 Id : 6352, {_}: meet ?9396 ?9396 =<= meet (meet ?9396 ?9396) (meet ?9396 ?9396) [9396] by Super 6349 with 6038 at 1,1,3 Id : 6421, {_}: meet ?9471 ?9471 =<= join (join (meet ?9471 ?9471) (meet ?9471 ?9471)) (meet ?9471 ?9471) [9471] by Super 6038 with 6352 at 2,3 Id : 6835, {_}: join (join ?9119 ?9119) ?9119 =>= join ?9119 ?9119 [9119] by Demod 6160 with 6754 at 2,2 Id : 7035, {_}: meet ?9471 ?9471 =<= join (meet ?9471 ?9471) (meet ?9471 ?9471) [9471] by Demod 6421 with 6835 at 3 Id : 9826, {_}: meet (join ?13401 ?13401) (meet ?13401 ?13401) =<= meet (meet ?13401 ?13401) (meet (join ?13401 ?13401) (join (meet ?13401 ?13401) (meet ?13401 ?13401))) [13401] by Demod 9727 with 7035 at 2,2 Id : 9827, {_}: meet (join ?13401 ?13401) (meet ?13401 ?13401) =<= meet (meet ?13401 ?13401) (meet (join ?13401 ?13401) (meet ?13401 ?13401)) [13401] by Demod 9826 with 7035 at 2,2,3 Id : 10353, {_}: join (meet (meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018))) (meet (meet ?14018 ?14018) (join (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018))))) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Super 1663 with 9827 at 1,2,2 Id : 10483, {_}: join (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet (meet ?14018 ?14018) (join (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018))))) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10353 with 9827 at 1,1,2 Id : 7066, {_}: meet ?10089 ?10089 =<= join (meet (meet ?10089 ?10089) (meet ?10089 ?10089)) (meet ?10090 (meet ?10089 ?10089)) [10090, 10089] by Super 4954 with 7035 at 2,2,3 Id : 7108, {_}: meet ?10089 ?10089 =<= join (meet ?10089 ?10089) (meet ?10090 (meet ?10089 ?10089)) [10090, 10089] by Demod 7066 with 6352 at 1,3 Id : 10484, {_}: join (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet (meet ?14018 ?14018) (meet ?14018 ?14018))) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10483 with 7108 at 2,2,1,2 Id : 10485, {_}: join (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10484 with 6352 at 2,1,2 Id : 7504, {_}: meet ?10649 ?10649 =<= meet (meet (join ?10650 ?10649) (meet ?10649 ?10649)) (meet ?10649 ?10649) [10650, 10649] by Super 7455 with 7035 at 2,1,3 Id : 10486, {_}: join (meet ?14018 ?14018) (meet (meet (join ?14018 ?14018) (meet ?14018 ?14018)) (meet ?14018 ?14018)) =>= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10485 with 7504 at 1,2 Id : 10487, {_}: join (meet ?14018 ?14018) (meet ?14018 ?14018) =<= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10486 with 7504 at 2,2 Id : 10488, {_}: meet ?14018 ?14018 =<= meet (meet ?14018 ?14018) (meet (join ?14018 ?14018) (meet ?14018 ?14018)) [14018] by Demod 10487 with 7035 at 2 Id : 10489, {_}: meet ?14018 ?14018 =<= meet (join ?14018 ?14018) (meet ?14018 ?14018) [14018] by Demod 10488 with 9827 at 3 Id : 10554, {_}: join (meet (meet (join ?14134 ?14134) (meet ?14134 ?14134)) (meet (join ?14134 ?14134) (join (join ?14134 ?14134) (meet ?14134 ?14134)))) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Super 1663 with 10489 at 1,2,2 Id : 10591, {_}: join (meet (meet ?14134 ?14134) (meet (join ?14134 ?14134) (join (join ?14134 ?14134) (meet ?14134 ?14134)))) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10554 with 10489 at 1,1,2 Id : 10592, {_}: join (meet (meet ?14134 ?14134) (meet (join ?14134 ?14134) ?14134)) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10591 with 6038 at 2,2,1,2 Id : 10593, {_}: join (meet (meet ?14134 ?14134) ?14134) (meet (meet ?14134 ?14134) (join ?14134 ?14134)) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10592 with 6754 at 2,1,2 Id : 10594, {_}: join (meet (meet ?14134 ?14134) ?14134) (join ?14134 ?14134) =>= meet (join ?14134 ?14134) (meet ?14134 ?14134) [14134] by Demod 10593 with 5973 at 2,2 Id : 10595, {_}: join (meet (meet ?14134 ?14134) ?14134) (join ?14134 ?14134) =>= meet ?14134 ?14134 [14134] by Demod 10594 with 10489 at 3 Id : 11369, {_}: join (meet (meet (meet ?14314 ?14314) ?14314) (join ?14314 ?14314)) (meet (join ?14314 ?14314) (meet ?14314 ?14314)) =>= join ?14314 ?14314 [14314] by Super 4445 with 10595 at 2,2,2 Id : 9049, {_}: meet (meet ?12484 ?12484) (join ?12484 ?12484) =<= meet (meet (join ?12485 (meet ?12484 ?12484)) ?12484) (join ?12484 ?12484) [12485, 12484] by Super 9042 with 5973 at 2,3 Id : 10101, {_}: join ?13865 ?13865 =<= meet (meet (join ?13866 (meet ?13865 ?13865)) ?13865) (join ?13865 ?13865) [13866, 13865] by Demod 9049 with 5973 at 2 Id : 10110, {_}: join ?13887 ?13887 =<= meet (meet (meet ?13887 ?13887) ?13887) (join ?13887 ?13887) [13887] by Super 10101 with 7035 at 1,1,3 Id : 11497, {_}: join (join ?14314 ?14314) (meet (join ?14314 ?14314) (meet ?14314 ?14314)) =>= join ?14314 ?14314 [14314] by Demod 11369 with 10110 at 1,2 Id : 11498, {_}: join (join ?14314 ?14314) (meet ?14314 ?14314) =>= join ?14314 ?14314 [14314] by Demod 11497 with 10489 at 2,2 Id : 11499, {_}: ?14314 =<= join ?14314 ?14314 [14314] by Demod 11498 with 6038 at 2 Id : 11665, {_}: ?14391 =<= join (meet (join (join (meet ?14392 ?14391) (meet ?14391 ?14393)) ?14391) (join (join (meet ?14392 ?14391) (meet ?14391 ?14393)) ?14391)) (meet ?14391 (join (join (meet ?14392 ?14391) (meet ?14391 ?14393)) ?14391)) [14393, 14392, 14391] by Super 2946 with 11499 at 2,2,3 Id : 7769, {_}: join (meet ?10951 ?10951) (meet ?10951 (join ?10951 (meet ?10951 ?10951))) =>= ?10951 [10951] by Super 1544 with 7687 at 1,2 Id : 6859, {_}: join ?9931 (meet (join ?9931 ?9931) (join (join ?9931 ?9931) ?9931)) =>= join ?9931 ?9931 [9931] by Super 1544 with 6754 at 1,2 Id : 6928, {_}: join ?9931 (meet (join ?9931 ?9931) (join ?9931 ?9931)) =>= join ?9931 ?9931 [9931] by Demod 6859 with 6835 at 2,2,2 Id : 11572, {_}: join ?9931 (meet ?9931 (join ?9931 ?9931)) =>= join ?9931 ?9931 [9931] by Demod 6928 with 11499 at 1,2,2 Id : 11573, {_}: join ?9931 (meet ?9931 ?9931) =>= join ?9931 ?9931 [9931] by Demod 11572 with 11499 at 2,2,2 Id : 11574, {_}: join ?9931 (meet ?9931 ?9931) =>= ?9931 [9931] by Demod 11573 with 11499 at 3 Id : 11586, {_}: join (meet ?10951 ?10951) (meet ?10951 ?10951) =>= ?10951 [10951] by Demod 7769 with 11574 at 2,2,2 Id : 11587, {_}: meet ?10951 ?10951 =>= ?10951 [10951] by Demod 11586 with 11499 at 2 Id : 11845, {_}: ?14391 =<= join (join (join (meet ?14392 ?14391) (meet ?14391 ?14393)) ?14391) (meet ?14391 (join (join (meet ?14392 ?14391) (meet ?14391 ?14393)) ?14391)) [14393, 14392, 14391] by Demod 11665 with 11587 at 1,3 Id : 11590, {_}: ?10089 =<= join (meet ?10089 ?10089) (meet ?10090 (meet ?10089 ?10089)) [10090, 10089] by Demod 7108 with 11587 at 2 Id : 11591, {_}: ?10089 =<= join ?10089 (meet ?10090 (meet ?10089 ?10089)) [10090, 10089] by Demod 11590 with 11587 at 1,3 Id : 11592, {_}: ?10089 =<= join ?10089 (meet ?10090 ?10089) [10090, 10089] by Demod 11591 with 11587 at 2,2,3 Id : 12482, {_}: ?15327 =<= join (join (meet ?15328 ?15327) (meet ?15327 ?15329)) ?15327 [15329, 15328, 15327] by Demod 11845 with 11592 at 3 Id : 12500, {_}: ?15409 =<= join (join ?15409 (meet ?15409 ?15410)) ?15409 [15410, 15409] by Super 12482 with 11587 at 1,1,3 Id : 13009, {_}: join (meet (join ?15804 (meet ?15804 ?15805)) ?15804) (meet (join ?15804 (meet ?15804 ?15805)) ?15804) =>= join ?15804 (meet ?15804 ?15805) [15805, 15804] by Super 1544 with 12500 at 2,2,2 Id : 11927, {_}: ?14648 =<= meet (meet (join ?14649 (join ?14648 ?14650)) ?14648) ?14648 [14650, 14649, 14648] by Super 4913 with 11499 at 2,1,3 Id : 11941, {_}: ?14705 =<= meet (meet (join ?14705 ?14706) ?14705) ?14705 [14706, 14705] by Super 11927 with 11499 at 1,1,3 Id : 12520, {_}: ?15476 =<= join (meet ?15477 ?15476) ?15476 [15477, 15476] by Super 12482 with 11592 at 1,3 Id : 12625, {_}: join (meet (meet ?15551 ?15552) ?15552) (meet (meet ?15551 ?15552) ?15552) =>= meet ?15551 ?15552 [15552, 15551] by Super 1544 with 12520 at 2,2,2 Id : 12684, {_}: meet (meet ?15551 ?15552) ?15552 =>= meet ?15551 ?15552 [15552, 15551] by Demod 12625 with 11499 at 2 Id : 12754, {_}: ?14705 =<= meet (join ?14705 ?14706) ?14705 [14706, 14705] by Demod 11941 with 12684 at 3 Id : 13098, {_}: join ?15804 (meet (join ?15804 (meet ?15804 ?15805)) ?15804) =>= join ?15804 (meet ?15804 ?15805) [15805, 15804] by Demod 13009 with 12754 at 1,2 Id : 13099, {_}: join ?15804 ?15804 =<= join ?15804 (meet ?15804 ?15805) [15805, 15804] by Demod 13098 with 12754 at 2,2 Id : 13100, {_}: ?15804 =<= join ?15804 (meet ?15804 ?15805) [15805, 15804] by Demod 13099 with 11499 at 2 Id : 13247, {_}: a === a [] by Demod 1 with 13100 at 2 Id : 1, {_}: join a (meet a b) =>= a [] by prove_normal_axioms_8 % SZS output end CNFRefutation for LAT087-1.p 23966: solved LAT087-1.p in 19.065191 using nrkbo WARNING: TreeLimitedRun lost 40.86s, total lost is 40.86s FINAL WATCH: 59.9 CPU 38.2 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT092-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 23991 TreeLimitedRun: ---------------------------------------------------------- 23993: Facts: 23993: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 23993: Goal: 23993: Id : 1, {_}: meet a a =>= a [] by prove_wal_axioms_1 Statistics : Max weight : 2918 Found proof, 34.007154s % SZS status Unsatisfiable for LAT092-1.p % SZS output start CNFRefutation for LAT092-1.p Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 Id : 3, {_}: join (meet (join (meet ?9 ?10) (meet ?10 (join ?9 ?10))) ?11) (meet (join (meet ?9 (join (join (meet ?10 ?12) (meet ?13 ?10)) ?10)) (meet (join (meet ?10 (meet (meet (join ?10 ?12) (join ?13 ?10)) ?10)) (meet ?14 (join ?10 (meet (meet (join ?10 ?12) (join ?13 ?10)) ?10)))) (join ?9 (join (join (meet ?10 ?12) (meet ?13 ?10)) ?10)))) (join (join (meet ?9 ?10) (meet ?10 (join ?9 ?10))) ?11)) =>= ?10 [14, 13, 12, 11, 10, 9] by single_axiom ?9 ?10 ?11 ?12 ?13 ?14 Id : 31, {_}: join (meet (join (meet ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))) (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) (join ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))))) ?208) (meet (join (meet ?205 (join (join (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) ?209) (meet ?210 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))) (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))) (meet ?207 (join ?205 (join (join (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) ?209) (meet ?210 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))) (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))))) (join (join (meet ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))) (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) (join ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))))) ?208)) =>= join (meet ?206 ?207) (meet ?207 (join ?206 ?207)) [210, 209, 208, 207, 206, 205] by Super 3 with 2 at 1,2,1,2,2 Id : 34, {_}: join (meet (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 240, 239, 238, 237, 236, 235, 234] by Super 31 with 2 at 2,2,2,1,2,2,2 Id : 116, {_}: join (meet (join (meet ?234 ?236) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 240, 239, 238, 237, 235, 236, 234] by Demod 34 with 2 at 2,1,1,1,2 Id : 117, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 240, 239, 238, 237, 235, 236, 234] by Demod 116 with 2 at 1,2,1,1,2 Id : 118, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 239, 238, 237, 235, 240, 236, 234] by Demod 117 with 2 at 2,2,2,1,1,2 Id : 119, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 118 with 2 at 1,1,1,2,1,1,2,2 Id : 120, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 119 with 2 at 2,2,1,2,1,1,2,2 Id : 121, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 120 with 2 at 2,2,1,1,2,2 Id : 122, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 121 with 2 at 1,1,1,2,2,2,1,2,2 Id : 123, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 122 with 2 at 2,2,1,2,2,2,1,2,2 Id : 124, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 123 with 2 at 2,2,2,2,1,2,2 Id : 125, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)))) (join (join (meet ?234 ?236) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 124 with 2 at 2,1,1,2,2,2 Id : 126, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)))) (join (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240)) =?= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 125 with 2 at 1,2,1,2,2,2 Id : 702, {_}: join (meet (join (meet ?1187 ?1188) (meet ?1188 (join ?1187 ?1188))) ?1189) (meet (join (meet ?1187 (join (join (meet ?1188 ?1190) (meet ?1191 ?1188)) ?1188)) (meet (join (meet ?1192 (join (join (meet ?1188 ?1193) (meet ?1194 ?1188)) ?1188)) (meet (join (meet ?1188 (meet (meet (join ?1188 ?1193) (join ?1194 ?1188)) ?1188)) (meet ?1195 (join ?1188 (meet (meet (join ?1188 ?1193) (join ?1194 ?1188)) ?1188)))) (join ?1192 (join (join (meet ?1188 ?1193) (meet ?1194 ?1188)) ?1188)))) (join ?1187 (join (join (meet ?1188 ?1190) (meet ?1191 ?1188)) ?1188)))) (join (join (meet ?1187 ?1188) (meet ?1188 (join ?1187 ?1188))) ?1189)) =>= ?1188 [1195, 1194, 1193, 1192, 1191, 1190, 1189, 1188, 1187] by Demod 126 with 2 at 3 Id : 1101, {_}: join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1978) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1978)) =>= ?1977 [1978, 1977, 1976] by Super 702 with 2 at 1,2,2 Id : 724, {_}: join (meet (join (meet (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496) (meet ?1496 (join (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496))) ?1497) (meet ?1496 (join (join (meet (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496) (meet ?1496 (join (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496))) ?1497)) =>= ?1496 [1497, 1496, 1495] by Super 702 with 2 at 1,2,2 Id : 1118, {_}: join (meet (join (meet (join (meet (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101) (meet ?2101 (join (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101))) ?2101) (meet ?2101 (join (join (meet (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101) (meet ?2101 (join (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101))) ?2101))) ?2102) (meet ?2101 (join ?2101 ?2102)) =>= ?2101 [2102, 2101, 2100] by Super 1101 with 724 at 1,2,2,2 Id : 1598, {_}: join (meet ?2599 ?2600) (meet ?2599 (join ?2599 ?2600)) =>= ?2599 [2600, 2599] by Demod 1118 with 724 at 1,1,2 Id : 1492, {_}: join (meet ?2101 ?2102) (meet ?2101 (join ?2101 ?2102)) =>= ?2101 [2102, 2101] by Demod 1118 with 724 at 1,1,2 Id : 1603, {_}: join (meet (meet ?2630 ?2631) (meet ?2630 (join ?2630 ?2631))) (meet (meet ?2630 ?2631) ?2630) =>= meet ?2630 ?2631 [2631, 2630] by Super 1598 with 1492 at 2,2,2 Id : 10, {_}: join (meet (join (meet ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))) (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) (join ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))))) ?84) (meet (join (meet ?81 (join (join (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) ?85) (meet ?86 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))) (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))) (meet ?83 (join ?81 (join (join (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) ?85) (meet ?86 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))) (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))))) (join (join (meet ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))) (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) (join ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))))) ?84)) =>= join (meet ?82 ?83) (meet ?83 (join ?82 ?83)) [86, 85, 84, 83, 82, 81] by Super 3 with 2 at 1,2,1,2,2 Id : 1054, {_}: join (meet (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1599, 1598, 1597, 1596] by Super 10 with 724 at 2,2,2,1,2,2,2 Id : 1166, {_}: join (meet (join (meet ?1596 ?1598) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1599, 1597, 1598, 1596] by Demod 1054 with 724 at 2,1,1,1,2 Id : 1167, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1599, 1597, 1598, 1596] by Demod 1166 with 724 at 1,2,1,1,2 Id : 1168, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1597, 1599, 1598, 1596] by Demod 1167 with 724 at 2,2,2,1,1,2 Id : 1169, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1168 with 724 at 1,1,1,2,1,1,2,2 Id : 1170, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1169 with 724 at 2,2,1,2,1,1,2,2 Id : 1171, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1170 with 724 at 2,2,1,1,2,2 Id : 1172, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1171 with 724 at 1,1,1,2,2,2,1,2,2 Id : 1173, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1172 with 724 at 2,2,1,2,2,2,1,2,2 Id : 1174, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1173 with 724 at 2,2,2,2,1,2,2 Id : 1175, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 ?1598) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1174 with 724 at 2,1,1,2,2,2 Id : 1176, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599)) =?= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1175 with 724 at 1,2,1,2,2,2 Id : 1177, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599)) =>= ?1598 [1601, 1600, 1599, 1598, 1596] by Demod 1176 with 724 at 3 Id : 2463, {_}: join (meet (join (meet ?3676 ?3677) (meet ?3677 (join ?3676 ?3677))) ?3678) (meet (join (meet ?3676 (join (join (meet ?3677 ?3679) (meet ?3680 ?3677)) ?3677)) (meet ?3677 (join ?3676 (join (join (meet ?3677 ?3679) (meet ?3680 ?3677)) ?3677)))) (join (join (meet ?3676 ?3677) (meet ?3677 (join ?3676 ?3677))) ?3678)) =>= ?3677 [3680, 3679, 3678, 3677, 3676] by Demod 1176 with 724 at 3 Id : 2476, {_}: join (meet (join (meet (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))))) (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) (join (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))))))) ?3789) (meet (join (meet (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) (join (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))))) (join ?3786 ?3789)) =>= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3791, 3790, 3789, 3788, 3787, 3786, 3785] by Super 2463 with 1177 at 1,2,2,2 Id : 2852, {_}: join (meet ?3786 ?3789) (meet (join (meet (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) (join (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))))) (join ?3786 ?3789)) =>= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3791, 3790, 3788, 3787, 3785, 3789, 3786] by Demod 2476 with 1177 at 1,1,2 Id : 2853, {_}: join (meet ?3786 ?3789) (meet ?3786 (join ?3786 ?3789)) =?= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3788, 3787, 3785, 3789, 3786] by Demod 2852 with 1177 at 1,2,2 Id : 2854, {_}: ?3786 =<= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3788, 3787, 3785, 3786] by Demod 2853 with 1492 at 2 Id : 2902, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet ?1598 (join (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599)) =>= ?1598 [1599, 1598, 1596] by Demod 1177 with 2854 at 1,2,2 Id : 2472, {_}: join (meet (join (meet (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))))) (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) (join (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))))))) ?3754) (meet (join (meet (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) (join (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))))) (join ?3750 ?3754)) =>= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3756, 3755, 3754, 3753, 3752, 3751, 3750, 3749] by Super 2463 with 2 at 1,2,2,2 Id : 2840, {_}: join (meet ?3750 ?3754) (meet (join (meet (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) (join (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))))) (join ?3750 ?3754)) =>= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3756, 3755, 3753, 3752, 3751, 3749, 3754, 3750] by Demod 2472 with 2 at 1,1,2 Id : 2841, {_}: join (meet ?3750 ?3754) (meet ?3750 (join ?3750 ?3754)) =?= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3753, 3752, 3751, 3749, 3754, 3750] by Demod 2840 with 2 at 1,2,2 Id : 2842, {_}: ?3750 =<= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3753, 3752, 3751, 3749, 3750] by Demod 2841 with 1492 at 2 Id : 3363, {_}: ?4574 =<= join (meet ?4574 (meet (meet (join ?4574 ?4575) (join ?4576 ?4574)) ?4574)) (meet ?4577 (join ?4574 (meet (meet (join ?4574 ?4575) (join ?4576 ?4574)) ?4574))) [4577, 4576, 4575, 4574] by Super 2902 with 2842 at 2 Id : 3639, {_}: join (meet ?5256 ?5257) (meet ?5257 (join ?5256 ?5257)) =>= ?5257 [5257, 5256] by Super 2902 with 3363 at 2 Id : 4080, {_}: ?5672 =<= meet (meet (join ?5672 ?5673) (join ?5674 ?5672)) ?5672 [5674, 5673, 5672] by Super 3363 with 3639 at 3 Id : 4531, {_}: meet ?6392 ?6393 =<= meet (meet ?6393 (join ?6394 (meet ?6392 ?6393))) (meet ?6392 ?6393) [6394, 6393, 6392] by Super 4080 with 3639 at 1,1,3 Id : 4034, {_}: ?5513 =<= meet (meet (join ?5513 ?5514) (join ?5515 ?5513)) ?5513 [5515, 5514, 5513] by Super 3363 with 3639 at 3 Id : 4055, {_}: ?4574 =<= join (meet ?4574 ?4574) (meet ?4577 (join ?4574 (meet (meet (join ?4574 ?4575) (join ?4576 ?4574)) ?4574))) [4576, 4575, 4577, 4574] by Demod 3363 with 4034 at 2,1,3 Id : 4056, {_}: ?4574 =<= join (meet ?4574 ?4574) (meet ?4577 (join ?4574 ?4574)) [4577, 4574] by Demod 4055 with 4034 at 2,2,2,3 Id : 4550, {_}: meet ?6472 (join ?6473 ?6473) =<= meet (meet (join ?6473 ?6473) ?6473) (meet ?6472 (join ?6473 ?6473)) [6473, 6472] by Super 4531 with 4056 at 2,1,3 Id : 4175, {_}: meet ?5858 ?5859 =<= meet (meet ?5858 (join ?5860 (meet ?5858 ?5859))) (meet ?5858 ?5859) [5860, 5859, 5858] by Super 4080 with 1492 at 1,1,3 Id : 4180, {_}: meet ?5882 (join ?5882 ?5883) =<= meet (meet ?5882 ?5882) (meet ?5882 (join ?5882 ?5883)) [5883, 5882] by Super 4175 with 1492 at 2,1,3 Id : 4253, {_}: join (meet ?5965 (join ?5965 ?5965)) (meet (meet ?5965 ?5965) ?5965) =>= meet ?5965 ?5965 [5965] by Super 1603 with 4180 at 1,2 Id : 1976, {_}: join (meet (meet (meet ?2837 ?2838) (meet ?2837 (join ?2837 ?2838))) (meet (meet ?2837 ?2838) ?2837)) (meet (meet (meet ?2837 ?2838) (meet ?2837 (join ?2837 ?2838))) (meet ?2837 ?2838)) =>= meet (meet ?2837 ?2838) (meet ?2837 (join ?2837 ?2838)) [2838, 2837] by Super 1492 with 1603 at 2,2,2 Id : 4544, {_}: meet ?6450 (join ?6450 ?6451) =<= meet (meet (join ?6450 ?6451) ?6450) (meet ?6450 (join ?6450 ?6451)) [6451, 6450] by Super 4531 with 1492 at 2,1,3 Id : 4532, {_}: meet (meet (join ?6396 ?6397) (join ?6398 ?6396)) ?6396 =<= meet (meet ?6396 (join ?6399 (meet (meet (join ?6396 ?6397) (join ?6398 ?6396)) ?6396))) ?6396 [6399, 6398, 6397, 6396] by Super 4531 with 4034 at 2,3 Id : 4599, {_}: ?6396 =<= meet (meet ?6396 (join ?6399 (meet (meet (join ?6396 ?6397) (join ?6398 ?6396)) ?6396))) ?6396 [6398, 6397, 6399, 6396] by Demod 4532 with 4034 at 2 Id : 4600, {_}: ?6396 =<= meet (meet ?6396 (join ?6399 ?6396)) ?6396 [6399, 6396] by Demod 4599 with 4034 at 2,2,1,3 Id : 4648, {_}: join ?6582 (meet ?6582 (join (meet ?6582 (join ?6583 ?6582)) ?6582)) =>= ?6582 [6583, 6582] by Super 3639 with 4600 at 1,2 Id : 5871, {_}: meet ?7887 (join ?7887 (meet ?7887 (join (meet ?7887 (join ?7888 ?7887)) ?7887))) =<= meet (meet (join ?7887 (meet ?7887 (join (meet ?7887 (join ?7888 ?7887)) ?7887))) ?7887) (meet ?7887 ?7887) [7888, 7887] by Super 4544 with 4648 at 2,2,3 Id : 5903, {_}: meet ?7887 ?7887 =<= meet (meet (join ?7887 (meet ?7887 (join (meet ?7887 (join ?7888 ?7887)) ?7887))) ?7887) (meet ?7887 ?7887) [7888, 7887] by Demod 5871 with 4648 at 2,2 Id : 5904, {_}: meet ?7887 ?7887 =<= meet (meet ?7887 ?7887) (meet ?7887 ?7887) [7887] by Demod 5903 with 4648 at 1,1,3 Id : 5957, {_}: join (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Super 1976 with 5904 at 2,2,2 Id : 6021, {_}: join (meet (meet (meet ?7970 ?7970) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 5957 with 5904 at 1,1,1,2 Id : 4654, {_}: ?6603 =<= meet (meet ?6603 (join ?6604 ?6603)) ?6603 [6604, 6603] by Demod 4599 with 4034 at 2,2,1,3 Id : 4659, {_}: meet ?6620 (join ?6621 ?6620) =<= meet (meet (meet ?6620 (join ?6621 ?6620)) ?6620) (meet ?6620 (join ?6621 ?6620)) [6621, 6620] by Super 4654 with 3639 at 2,1,3 Id : 4722, {_}: meet ?6620 (join ?6621 ?6620) =<= meet ?6620 (meet ?6620 (join ?6621 ?6620)) [6621, 6620] by Demod 4659 with 4600 at 1,3 Id : 6022, {_}: join (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6021 with 4722 at 1,1,2 Id : 6023, {_}: join (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6022 with 5904 at 1,2,1,2 Id : 6024, {_}: join (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet ?7970 ?7970)) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6023 with 5904 at 2,1,2 Id : 6025, {_}: join (meet ?7970 ?7970) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6024 with 4600 at 1,2 Id : 6026, {_}: join (meet ?7970 ?7970) (meet (meet (meet ?7970 ?7970) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6025 with 5904 at 1,1,2,2 Id : 6027, {_}: join (meet ?7970 ?7970) (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet ?7970 ?7970)) =<= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6026 with 4722 at 1,2,2 Id : 6028, {_}: join (meet ?7970 ?7970) (meet ?7970 ?7970) =<= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6027 with 4600 at 2,2 Id : 6029, {_}: join (meet ?7970 ?7970) (meet ?7970 ?7970) =<= meet (meet ?7970 ?7970) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6028 with 5904 at 1,3 Id : 6030, {_}: join (meet ?7970 ?7970) (meet ?7970 ?7970) =<= meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)) [7970] by Demod 6029 with 4722 at 3 Id : 7104, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet (meet (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet ?9198 ?9198)) =>= meet (meet ?9198 ?9198) (meet ?9198 ?9198) [9198] by Super 4253 with 6030 at 1,2 Id : 7136, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet (meet ?9198 ?9198) (meet ?9198 ?9198)) =>= meet (meet ?9198 ?9198) (meet ?9198 ?9198) [9198] by Demod 7104 with 5904 at 1,2,2 Id : 7137, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet ?9198 ?9198) =>= meet (meet ?9198 ?9198) (meet ?9198 ?9198) [9198] by Demod 7136 with 5904 at 2,2 Id : 7138, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet ?9198 ?9198) =>= meet ?9198 ?9198 [9198] by Demod 7137 with 5904 at 3 Id : 7455, {_}: join (meet (join (meet ?9362 ?9362) (meet ?9362 ?9362)) (meet ?9362 ?9362)) (meet (meet ?9362 ?9362) (meet ?9362 ?9362)) =>= meet ?9362 ?9362 [9362] by Super 3639 with 7138 at 2,2,2 Id : 7070, {_}: meet ?9106 ?9106 =<= meet (join (meet ?9106 ?9106) (meet ?9106 ?9106)) (meet ?9106 ?9106) [9106] by Super 4600 with 6030 at 1,3 Id : 7486, {_}: join (meet ?9362 ?9362) (meet (meet ?9362 ?9362) (meet ?9362 ?9362)) =>= meet ?9362 ?9362 [9362] by Demod 7455 with 7070 at 1,2 Id : 7487, {_}: join (meet ?9362 ?9362) (meet ?9362 ?9362) =>= meet ?9362 ?9362 [9362] by Demod 7486 with 5904 at 2,2 Id : 7603, {_}: meet ?9408 (join (meet ?9409 ?9409) (meet ?9409 ?9409)) =<= meet (meet (join (meet ?9409 ?9409) (meet ?9409 ?9409)) (meet ?9409 ?9409)) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Super 4550 with 7487 at 2,2,3 Id : 7813, {_}: meet ?9408 (meet ?9409 ?9409) =<= meet (meet (join (meet ?9409 ?9409) (meet ?9409 ?9409)) (meet ?9409 ?9409)) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7603 with 7487 at 2,2 Id : 7814, {_}: meet ?9408 (meet ?9409 ?9409) =<= meet (meet (meet ?9409 ?9409) (meet ?9409 ?9409)) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7813 with 7487 at 1,1,3 Id : 7815, {_}: meet ?9408 (meet ?9409 ?9409) =<= meet (meet ?9409 ?9409) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7814 with 5904 at 1,3 Id : 4186, {_}: meet ?5904 (join ?5905 ?5905) =<= meet (meet ?5904 ?5905) (meet ?5904 (join ?5905 ?5905)) [5905, 5904] by Super 4175 with 4056 at 2,1,3 Id : 7627, {_}: meet ?9466 (join (meet ?9467 ?9467) (meet ?9467 ?9467)) =<= meet (meet ?9466 (meet ?9467 ?9467)) (meet ?9466 (meet ?9467 ?9467)) [9467, 9466] by Super 4186 with 7487 at 2,2,3 Id : 7721, {_}: meet ?9466 (meet ?9467 ?9467) =<= meet (meet ?9466 (meet ?9467 ?9467)) (meet ?9466 (meet ?9467 ?9467)) [9467, 9466] by Demod 7627 with 7487 at 2,2 Id : 8388, {_}: meet ?9978 (meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9979 (meet ?9980 ?9980))) =<= meet (meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9979 (meet ?9980 ?9980))) (meet ?9978 (meet ?9979 (meet ?9980 ?9980))) [9980, 9979, 9978] by Super 7815 with 7721 at 2,2,3 Id : 8609, {_}: meet ?9978 (meet ?9979 (meet ?9980 ?9980)) =<= meet (meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9979 (meet ?9980 ?9980))) (meet ?9978 (meet ?9979 (meet ?9980 ?9980))) [9980, 9979, 9978] by Demod 8388 with 7721 at 2,2 Id : 8610, {_}: meet ?9978 (meet ?9979 (meet ?9980 ?9980)) =<= meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9978 (meet ?9979 (meet ?9980 ?9980))) [9980, 9979, 9978] by Demod 8609 with 7721 at 1,3 Id : 9628, {_}: meet (meet ?11055 ?11056) ?11055 =<= meet (meet (meet ?11055 ?11056) (meet ?11055 ?11056)) (meet (meet ?11055 ?11056) ?11055) [11056, 11055] by Super 4175 with 1603 at 2,1,3 Id : 9629, {_}: meet (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058) (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058) (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058)) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Super 9628 with 4034 at 1,2,3 Id : 9779, {_}: meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058) (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058)) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Demod 9629 with 4034 at 1,2 Id : 9780, {_}: meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet ?11058 (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058)) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Demod 9779 with 4034 at 1,1,3 Id : 9781, {_}: meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet ?11058 ?11058) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Demod 9780 with 4034 at 2,1,3 Id : 19039, {_}: meet (meet ?19609 ?19609) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) =<= meet (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) [19609] by Super 8610 with 9781 at 2,3 Id : 11891, {_}: meet ?13166 (join ?13167 ?13167) =<= meet (meet (meet ?13166 (join ?13167 ?13167)) ?13167) (meet ?13166 (join ?13167 ?13167)) [13167, 13166] by Super 4654 with 4056 at 2,1,3 Id : 11910, {_}: meet (join ?13229 ?13230) (join ?13229 ?13229) =<= meet ?13229 (meet (join ?13229 ?13230) (join ?13229 ?13229)) [13230, 13229] by Super 11891 with 4034 at 1,3 Id : 19095, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =<= meet (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) [19609] by Demod 19039 with 11910 at 2,2 Id : 19096, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =<= meet (meet (join ?19609 ?19609) (join ?19609 ?19609)) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) [19609] by Demod 19095 with 11910 at 1,3 Id : 19097, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =<= meet (meet (join ?19609 ?19609) (join ?19609 ?19609)) (meet (join ?19609 ?19609) (join ?19609 ?19609)) [19609] by Demod 19096 with 11910 at 2,3 Id : 19098, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =>= meet (join ?19609 ?19609) (join ?19609 ?19609) [19609] by Demod 19097 with 5904 at 3 Id : 19320, {_}: join (meet (join ?19872 ?19872) (join ?19872 ?19872)) (meet (meet (join ?19872 ?19872) (join ?19872 ?19872)) (join (meet ?19872 ?19872) (meet (join ?19872 ?19872) (join ?19872 ?19872)))) =>= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Super 3639 with 19098 at 1,2 Id : 19473, {_}: join (meet (join ?19872 ?19872) (join ?19872 ?19872)) (meet (meet (join ?19872 ?19872) (join ?19872 ?19872)) ?19872) =>= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Demod 19320 with 4056 at 2,2,2 Id : 19474, {_}: join (meet (join ?19872 ?19872) (join ?19872 ?19872)) ?19872 =>= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Demod 19473 with 4034 at 2,2 Id : 19603, {_}: join (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (join ?20044 ?20044) (join ?20044 ?20044)))) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Super 1603 with 19474 at 2,2,1,2 Id : 19685, {_}: join (meet ?20044 (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (join ?20044 ?20044) (join ?20044 ?20044)))) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19603 with 4034 at 1,1,2 Id : 19686, {_}: join (meet ?20044 (meet (join ?20044 ?20044) (join ?20044 ?20044))) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19685 with 5904 at 2,1,2 Id : 19687, {_}: join (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19686 with 11910 at 1,2 Id : 19688, {_}: join (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet ?20044 (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19687 with 4034 at 1,2,2 Id : 19689, {_}: join (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (join ?20044 ?20044) (join ?20044 ?20044)) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19688 with 11910 at 2,2 Id : 19690, {_}: meet (join ?20044 ?20044) (join ?20044 ?20044) =<= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19689 with 7487 at 2 Id : 19691, {_}: meet (join ?20044 ?20044) (join ?20044 ?20044) =>= ?20044 [20044] by Demod 19690 with 4034 at 3 Id : 19840, {_}: join ?19872 ?19872 =<= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Demod 19474 with 19691 at 1,2 Id : 19841, {_}: join ?19872 ?19872 =>= ?19872 [19872] by Demod 19840 with 19691 at 3 Id : 19901, {_}: meet ?20044 (join ?20044 ?20044) =>= ?20044 [20044] by Demod 19691 with 19841 at 1,2 Id : 19902, {_}: meet ?20044 ?20044 =>= ?20044 [20044] by Demod 19901 with 19841 at 2,2 Id : 20277, {_}: a === a [] by Demod 1 with 19902 at 2 Id : 1, {_}: meet a a =>= a [] by prove_wal_axioms_1 % SZS output end CNFRefutation for LAT092-1.p 23996: solved LAT092-1.p in 17.345083 using nrkbo WARNING: TreeLimitedRun lost 42.48s, total lost is 42.48s FINAL WATCH: 59.8 CPU 34.9 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT093-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 24045 TreeLimitedRun: ---------------------------------------------------------- 24047: Facts: 24047: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 24047: Goal: 24047: Id : 1, {_}: meet b a =<= meet a b [] by prove_wal_axioms_2 Statistics : Max weight : 2918 Found proof, 34.986408s % SZS status Unsatisfiable for LAT093-1.p % SZS output start CNFRefutation for LAT093-1.p Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 Id : 3, {_}: join (meet (join (meet ?9 ?10) (meet ?10 (join ?9 ?10))) ?11) (meet (join (meet ?9 (join (join (meet ?10 ?12) (meet ?13 ?10)) ?10)) (meet (join (meet ?10 (meet (meet (join ?10 ?12) (join ?13 ?10)) ?10)) (meet ?14 (join ?10 (meet (meet (join ?10 ?12) (join ?13 ?10)) ?10)))) (join ?9 (join (join (meet ?10 ?12) (meet ?13 ?10)) ?10)))) (join (join (meet ?9 ?10) (meet ?10 (join ?9 ?10))) ?11)) =>= ?10 [14, 13, 12, 11, 10, 9] by single_axiom ?9 ?10 ?11 ?12 ?13 ?14 Id : 31, {_}: join (meet (join (meet ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))) (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) (join ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))))) ?208) (meet (join (meet ?205 (join (join (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) ?209) (meet ?210 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))) (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))) (meet ?207 (join ?205 (join (join (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) ?209) (meet ?210 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))) (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))))) (join (join (meet ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))) (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) (join ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))))) ?208)) =>= join (meet ?206 ?207) (meet ?207 (join ?206 ?207)) [210, 209, 208, 207, 206, 205] by Super 3 with 2 at 1,2,1,2,2 Id : 34, {_}: join (meet (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 240, 239, 238, 237, 236, 235, 234] by Super 31 with 2 at 2,2,2,1,2,2,2 Id : 116, {_}: join (meet (join (meet ?234 ?236) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 240, 239, 238, 237, 235, 236, 234] by Demod 34 with 2 at 2,1,1,1,2 Id : 117, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 240, 239, 238, 237, 235, 236, 234] by Demod 116 with 2 at 1,2,1,1,2 Id : 118, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 239, 238, 237, 235, 240, 236, 234] by Demod 117 with 2 at 2,2,2,1,1,2 Id : 119, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 118 with 2 at 1,1,1,2,1,1,2,2 Id : 120, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 119 with 2 at 2,2,1,2,1,1,2,2 Id : 121, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 120 with 2 at 2,2,1,1,2,2 Id : 122, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 121 with 2 at 1,1,1,2,2,2,1,2,2 Id : 123, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 122 with 2 at 2,2,1,2,2,2,1,2,2 Id : 124, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 123 with 2 at 2,2,2,2,1,2,2 Id : 125, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)))) (join (join (meet ?234 ?236) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 124 with 2 at 2,1,1,2,2,2 Id : 126, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)))) (join (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240)) =?= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 125 with 2 at 1,2,1,2,2,2 Id : 702, {_}: join (meet (join (meet ?1187 ?1188) (meet ?1188 (join ?1187 ?1188))) ?1189) (meet (join (meet ?1187 (join (join (meet ?1188 ?1190) (meet ?1191 ?1188)) ?1188)) (meet (join (meet ?1192 (join (join (meet ?1188 ?1193) (meet ?1194 ?1188)) ?1188)) (meet (join (meet ?1188 (meet (meet (join ?1188 ?1193) (join ?1194 ?1188)) ?1188)) (meet ?1195 (join ?1188 (meet (meet (join ?1188 ?1193) (join ?1194 ?1188)) ?1188)))) (join ?1192 (join (join (meet ?1188 ?1193) (meet ?1194 ?1188)) ?1188)))) (join ?1187 (join (join (meet ?1188 ?1190) (meet ?1191 ?1188)) ?1188)))) (join (join (meet ?1187 ?1188) (meet ?1188 (join ?1187 ?1188))) ?1189)) =>= ?1188 [1195, 1194, 1193, 1192, 1191, 1190, 1189, 1188, 1187] by Demod 126 with 2 at 3 Id : 1101, {_}: join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1978) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1978)) =>= ?1977 [1978, 1977, 1976] by Super 702 with 2 at 1,2,2 Id : 724, {_}: join (meet (join (meet (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496) (meet ?1496 (join (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496))) ?1497) (meet ?1496 (join (join (meet (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496) (meet ?1496 (join (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496))) ?1497)) =>= ?1496 [1497, 1496, 1495] by Super 702 with 2 at 1,2,2 Id : 1118, {_}: join (meet (join (meet (join (meet (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101) (meet ?2101 (join (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101))) ?2101) (meet ?2101 (join (join (meet (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101) (meet ?2101 (join (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101))) ?2101))) ?2102) (meet ?2101 (join ?2101 ?2102)) =>= ?2101 [2102, 2101, 2100] by Super 1101 with 724 at 1,2,2,2 Id : 1492, {_}: join (meet ?2101 ?2102) (meet ?2101 (join ?2101 ?2102)) =>= ?2101 [2102, 2101] by Demod 1118 with 724 at 1,1,2 Id : 10, {_}: join (meet (join (meet ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))) (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) (join ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))))) ?84) (meet (join (meet ?81 (join (join (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) ?85) (meet ?86 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))) (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))) (meet ?83 (join ?81 (join (join (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) ?85) (meet ?86 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))) (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))))) (join (join (meet ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))) (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) (join ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))))) ?84)) =>= join (meet ?82 ?83) (meet ?83 (join ?82 ?83)) [86, 85, 84, 83, 82, 81] by Super 3 with 2 at 1,2,1,2,2 Id : 1054, {_}: join (meet (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1599, 1598, 1597, 1596] by Super 10 with 724 at 2,2,2,1,2,2,2 Id : 1166, {_}: join (meet (join (meet ?1596 ?1598) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1599, 1597, 1598, 1596] by Demod 1054 with 724 at 2,1,1,1,2 Id : 1167, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1599, 1597, 1598, 1596] by Demod 1166 with 724 at 1,2,1,1,2 Id : 1168, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1597, 1599, 1598, 1596] by Demod 1167 with 724 at 2,2,2,1,1,2 Id : 1169, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1168 with 724 at 1,1,1,2,1,1,2,2 Id : 1170, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1169 with 724 at 2,2,1,2,1,1,2,2 Id : 1171, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1170 with 724 at 2,2,1,1,2,2 Id : 1172, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1171 with 724 at 1,1,1,2,2,2,1,2,2 Id : 1173, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1172 with 724 at 2,2,1,2,2,2,1,2,2 Id : 1174, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1173 with 724 at 2,2,2,2,1,2,2 Id : 1175, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 ?1598) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1174 with 724 at 2,1,1,2,2,2 Id : 1176, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599)) =?= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1175 with 724 at 1,2,1,2,2,2 Id : 1177, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599)) =>= ?1598 [1601, 1600, 1599, 1598, 1596] by Demod 1176 with 724 at 3 Id : 2463, {_}: join (meet (join (meet ?3676 ?3677) (meet ?3677 (join ?3676 ?3677))) ?3678) (meet (join (meet ?3676 (join (join (meet ?3677 ?3679) (meet ?3680 ?3677)) ?3677)) (meet ?3677 (join ?3676 (join (join (meet ?3677 ?3679) (meet ?3680 ?3677)) ?3677)))) (join (join (meet ?3676 ?3677) (meet ?3677 (join ?3676 ?3677))) ?3678)) =>= ?3677 [3680, 3679, 3678, 3677, 3676] by Demod 1176 with 724 at 3 Id : 2476, {_}: join (meet (join (meet (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))))) (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) (join (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))))))) ?3789) (meet (join (meet (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) (join (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))))) (join ?3786 ?3789)) =>= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3791, 3790, 3789, 3788, 3787, 3786, 3785] by Super 2463 with 1177 at 1,2,2,2 Id : 2852, {_}: join (meet ?3786 ?3789) (meet (join (meet (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) (join (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))))) (join ?3786 ?3789)) =>= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3791, 3790, 3788, 3787, 3785, 3789, 3786] by Demod 2476 with 1177 at 1,1,2 Id : 2853, {_}: join (meet ?3786 ?3789) (meet ?3786 (join ?3786 ?3789)) =?= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3788, 3787, 3785, 3789, 3786] by Demod 2852 with 1177 at 1,2,2 Id : 2854, {_}: ?3786 =<= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3788, 3787, 3785, 3786] by Demod 2853 with 1492 at 2 Id : 2902, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet ?1598 (join (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599)) =>= ?1598 [1599, 1598, 1596] by Demod 1177 with 2854 at 1,2,2 Id : 2472, {_}: join (meet (join (meet (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))))) (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) (join (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))))))) ?3754) (meet (join (meet (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) (join (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))))) (join ?3750 ?3754)) =>= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3756, 3755, 3754, 3753, 3752, 3751, 3750, 3749] by Super 2463 with 2 at 1,2,2,2 Id : 2840, {_}: join (meet ?3750 ?3754) (meet (join (meet (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) (join (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))))) (join ?3750 ?3754)) =>= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3756, 3755, 3753, 3752, 3751, 3749, 3754, 3750] by Demod 2472 with 2 at 1,1,2 Id : 2841, {_}: join (meet ?3750 ?3754) (meet ?3750 (join ?3750 ?3754)) =?= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3753, 3752, 3751, 3749, 3754, 3750] by Demod 2840 with 2 at 1,2,2 Id : 2842, {_}: ?3750 =<= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3753, 3752, 3751, 3749, 3750] by Demod 2841 with 1492 at 2 Id : 3363, {_}: ?4574 =<= join (meet ?4574 (meet (meet (join ?4574 ?4575) (join ?4576 ?4574)) ?4574)) (meet ?4577 (join ?4574 (meet (meet (join ?4574 ?4575) (join ?4576 ?4574)) ?4574))) [4577, 4576, 4575, 4574] by Super 2902 with 2842 at 2 Id : 3639, {_}: join (meet ?5256 ?5257) (meet ?5257 (join ?5256 ?5257)) =>= ?5257 [5257, 5256] by Super 2902 with 3363 at 2 Id : 4080, {_}: ?5672 =<= meet (meet (join ?5672 ?5673) (join ?5674 ?5672)) ?5672 [5674, 5673, 5672] by Super 3363 with 3639 at 3 Id : 4531, {_}: meet ?6392 ?6393 =<= meet (meet ?6393 (join ?6394 (meet ?6392 ?6393))) (meet ?6392 ?6393) [6394, 6393, 6392] by Super 4080 with 3639 at 1,1,3 Id : 4034, {_}: ?5513 =<= meet (meet (join ?5513 ?5514) (join ?5515 ?5513)) ?5513 [5515, 5514, 5513] by Super 3363 with 3639 at 3 Id : 4532, {_}: meet (meet (join ?6396 ?6397) (join ?6398 ?6396)) ?6396 =<= meet (meet ?6396 (join ?6399 (meet (meet (join ?6396 ?6397) (join ?6398 ?6396)) ?6396))) ?6396 [6399, 6398, 6397, 6396] by Super 4531 with 4034 at 2,3 Id : 4599, {_}: ?6396 =<= meet (meet ?6396 (join ?6399 (meet (meet (join ?6396 ?6397) (join ?6398 ?6396)) ?6396))) ?6396 [6398, 6397, 6399, 6396] by Demod 4532 with 4034 at 2 Id : 4600, {_}: ?6396 =<= meet (meet ?6396 (join ?6399 ?6396)) ?6396 [6399, 6396] by Demod 4599 with 4034 at 2,2,1,3 Id : 1598, {_}: join (meet ?2599 ?2600) (meet ?2599 (join ?2599 ?2600)) =>= ?2599 [2600, 2599] by Demod 1118 with 724 at 1,1,2 Id : 1603, {_}: join (meet (meet ?2630 ?2631) (meet ?2630 (join ?2630 ?2631))) (meet (meet ?2630 ?2631) ?2630) =>= meet ?2630 ?2631 [2631, 2630] by Super 1598 with 1492 at 2,2,2 Id : 4175, {_}: meet ?5858 ?5859 =<= meet (meet ?5858 (join ?5860 (meet ?5858 ?5859))) (meet ?5858 ?5859) [5860, 5859, 5858] by Super 4080 with 1492 at 1,1,3 Id : 4180, {_}: meet ?5882 (join ?5882 ?5883) =<= meet (meet ?5882 ?5882) (meet ?5882 (join ?5882 ?5883)) [5883, 5882] by Super 4175 with 1492 at 2,1,3 Id : 4253, {_}: join (meet ?5965 (join ?5965 ?5965)) (meet (meet ?5965 ?5965) ?5965) =>= meet ?5965 ?5965 [5965] by Super 1603 with 4180 at 1,2 Id : 1976, {_}: join (meet (meet (meet ?2837 ?2838) (meet ?2837 (join ?2837 ?2838))) (meet (meet ?2837 ?2838) ?2837)) (meet (meet (meet ?2837 ?2838) (meet ?2837 (join ?2837 ?2838))) (meet ?2837 ?2838)) =>= meet (meet ?2837 ?2838) (meet ?2837 (join ?2837 ?2838)) [2838, 2837] by Super 1492 with 1603 at 2,2,2 Id : 4544, {_}: meet ?6450 (join ?6450 ?6451) =<= meet (meet (join ?6450 ?6451) ?6450) (meet ?6450 (join ?6450 ?6451)) [6451, 6450] by Super 4531 with 1492 at 2,1,3 Id : 4648, {_}: join ?6582 (meet ?6582 (join (meet ?6582 (join ?6583 ?6582)) ?6582)) =>= ?6582 [6583, 6582] by Super 3639 with 4600 at 1,2 Id : 5871, {_}: meet ?7887 (join ?7887 (meet ?7887 (join (meet ?7887 (join ?7888 ?7887)) ?7887))) =<= meet (meet (join ?7887 (meet ?7887 (join (meet ?7887 (join ?7888 ?7887)) ?7887))) ?7887) (meet ?7887 ?7887) [7888, 7887] by Super 4544 with 4648 at 2,2,3 Id : 5903, {_}: meet ?7887 ?7887 =<= meet (meet (join ?7887 (meet ?7887 (join (meet ?7887 (join ?7888 ?7887)) ?7887))) ?7887) (meet ?7887 ?7887) [7888, 7887] by Demod 5871 with 4648 at 2,2 Id : 5904, {_}: meet ?7887 ?7887 =<= meet (meet ?7887 ?7887) (meet ?7887 ?7887) [7887] by Demod 5903 with 4648 at 1,1,3 Id : 5957, {_}: join (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Super 1976 with 5904 at 2,2,2 Id : 6021, {_}: join (meet (meet (meet ?7970 ?7970) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 5957 with 5904 at 1,1,1,2 Id : 4654, {_}: ?6603 =<= meet (meet ?6603 (join ?6604 ?6603)) ?6603 [6604, 6603] by Demod 4599 with 4034 at 2,2,1,3 Id : 4659, {_}: meet ?6620 (join ?6621 ?6620) =<= meet (meet (meet ?6620 (join ?6621 ?6620)) ?6620) (meet ?6620 (join ?6621 ?6620)) [6621, 6620] by Super 4654 with 3639 at 2,1,3 Id : 4722, {_}: meet ?6620 (join ?6621 ?6620) =<= meet ?6620 (meet ?6620 (join ?6621 ?6620)) [6621, 6620] by Demod 4659 with 4600 at 1,3 Id : 6022, {_}: join (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6021 with 4722 at 1,1,2 Id : 6023, {_}: join (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6022 with 5904 at 1,2,1,2 Id : 6024, {_}: join (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet ?7970 ?7970)) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6023 with 5904 at 2,1,2 Id : 6025, {_}: join (meet ?7970 ?7970) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6024 with 4600 at 1,2 Id : 6026, {_}: join (meet ?7970 ?7970) (meet (meet (meet ?7970 ?7970) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6025 with 5904 at 1,1,2,2 Id : 6027, {_}: join (meet ?7970 ?7970) (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet ?7970 ?7970)) =<= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6026 with 4722 at 1,2,2 Id : 6028, {_}: join (meet ?7970 ?7970) (meet ?7970 ?7970) =<= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6027 with 4600 at 2,2 Id : 6029, {_}: join (meet ?7970 ?7970) (meet ?7970 ?7970) =<= meet (meet ?7970 ?7970) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6028 with 5904 at 1,3 Id : 6030, {_}: join (meet ?7970 ?7970) (meet ?7970 ?7970) =<= meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)) [7970] by Demod 6029 with 4722 at 3 Id : 7104, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet (meet (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet ?9198 ?9198)) =>= meet (meet ?9198 ?9198) (meet ?9198 ?9198) [9198] by Super 4253 with 6030 at 1,2 Id : 7136, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet (meet ?9198 ?9198) (meet ?9198 ?9198)) =>= meet (meet ?9198 ?9198) (meet ?9198 ?9198) [9198] by Demod 7104 with 5904 at 1,2,2 Id : 7137, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet ?9198 ?9198) =>= meet (meet ?9198 ?9198) (meet ?9198 ?9198) [9198] by Demod 7136 with 5904 at 2,2 Id : 7138, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet ?9198 ?9198) =>= meet ?9198 ?9198 [9198] by Demod 7137 with 5904 at 3 Id : 7455, {_}: join (meet (join (meet ?9362 ?9362) (meet ?9362 ?9362)) (meet ?9362 ?9362)) (meet (meet ?9362 ?9362) (meet ?9362 ?9362)) =>= meet ?9362 ?9362 [9362] by Super 3639 with 7138 at 2,2,2 Id : 7070, {_}: meet ?9106 ?9106 =<= meet (join (meet ?9106 ?9106) (meet ?9106 ?9106)) (meet ?9106 ?9106) [9106] by Super 4600 with 6030 at 1,3 Id : 7486, {_}: join (meet ?9362 ?9362) (meet (meet ?9362 ?9362) (meet ?9362 ?9362)) =>= meet ?9362 ?9362 [9362] by Demod 7455 with 7070 at 1,2 Id : 7487, {_}: join (meet ?9362 ?9362) (meet ?9362 ?9362) =>= meet ?9362 ?9362 [9362] by Demod 7486 with 5904 at 2,2 Id : 7612, {_}: meet ?9428 ?9428 =<= meet (meet (join (meet ?9428 ?9428) ?9429) (meet ?9428 ?9428)) (meet ?9428 ?9428) [9429, 9428] by Super 4034 with 7487 at 2,1,3 Id : 14086, {_}: join (meet ?15167 ?15167) (meet (meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167)) (join (meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167)) (meet ?15167 ?15167))) =>= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Super 1492 with 7612 at 1,2 Id : 4055, {_}: ?4574 =<= join (meet ?4574 ?4574) (meet ?4577 (join ?4574 (meet (meet (join ?4574 ?4575) (join ?4576 ?4574)) ?4574))) [4576, 4575, 4577, 4574] by Demod 3363 with 4034 at 2,1,3 Id : 4056, {_}: ?4574 =<= join (meet ?4574 ?4574) (meet ?4577 (join ?4574 ?4574)) [4577, 4574] by Demod 4055 with 4034 at 2,2,2,3 Id : 4550, {_}: meet ?6472 (join ?6473 ?6473) =<= meet (meet (join ?6473 ?6473) ?6473) (meet ?6472 (join ?6473 ?6473)) [6473, 6472] by Super 4531 with 4056 at 2,1,3 Id : 7603, {_}: meet ?9408 (join (meet ?9409 ?9409) (meet ?9409 ?9409)) =<= meet (meet (join (meet ?9409 ?9409) (meet ?9409 ?9409)) (meet ?9409 ?9409)) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Super 4550 with 7487 at 2,2,3 Id : 7813, {_}: meet ?9408 (meet ?9409 ?9409) =<= meet (meet (join (meet ?9409 ?9409) (meet ?9409 ?9409)) (meet ?9409 ?9409)) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7603 with 7487 at 2,2 Id : 7814, {_}: meet ?9408 (meet ?9409 ?9409) =<= meet (meet (meet ?9409 ?9409) (meet ?9409 ?9409)) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7813 with 7487 at 1,1,3 Id : 7815, {_}: meet ?9408 (meet ?9409 ?9409) =<= meet (meet ?9409 ?9409) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7814 with 5904 at 1,3 Id : 8072, {_}: join (meet ?9755 (meet ?9756 ?9756)) (meet (meet ?9756 ?9756) (join (meet ?9756 ?9756) (meet ?9755 (meet ?9756 ?9756)))) =>= meet ?9756 ?9756 [9756, 9755] by Super 1492 with 7815 at 1,2 Id : 7614, {_}: meet ?9434 ?9434 =<= join (meet (meet ?9434 ?9434) (meet ?9434 ?9434)) (meet ?9435 (meet ?9434 ?9434)) [9435, 9434] by Super 4056 with 7487 at 2,2,3 Id : 7787, {_}: meet ?9434 ?9434 =<= join (meet ?9434 ?9434) (meet ?9435 (meet ?9434 ?9434)) [9435, 9434] by Demod 7614 with 5904 at 1,3 Id : 8152, {_}: join (meet ?9755 (meet ?9756 ?9756)) (meet (meet ?9756 ?9756) (meet ?9756 ?9756)) =>= meet ?9756 ?9756 [9756, 9755] by Demod 8072 with 7787 at 2,2,2 Id : 8153, {_}: join (meet ?9755 (meet ?9756 ?9756)) (meet ?9756 ?9756) =>= meet ?9756 ?9756 [9756, 9755] by Demod 8152 with 5904 at 2,2 Id : 14280, {_}: join (meet ?15167 ?15167) (meet (meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167)) (meet ?15167 ?15167)) =>= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 14086 with 8153 at 2,2,2 Id : 14281, {_}: join (meet ?15167 ?15167) (meet ?15167 ?15167) =<= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 14280 with 7612 at 2,2 Id : 14282, {_}: meet ?15167 ?15167 =<= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 14281 with 7487 at 2 Id : 4186, {_}: meet ?5904 (join ?5905 ?5905) =<= meet (meet ?5904 ?5905) (meet ?5904 (join ?5905 ?5905)) [5905, 5904] by Super 4175 with 4056 at 2,1,3 Id : 7627, {_}: meet ?9466 (join (meet ?9467 ?9467) (meet ?9467 ?9467)) =<= meet (meet ?9466 (meet ?9467 ?9467)) (meet ?9466 (meet ?9467 ?9467)) [9467, 9466] by Super 4186 with 7487 at 2,2,3 Id : 7721, {_}: meet ?9466 (meet ?9467 ?9467) =<= meet (meet ?9466 (meet ?9467 ?9467)) (meet ?9466 (meet ?9467 ?9467)) [9467, 9466] by Demod 7627 with 7487 at 2,2 Id : 8388, {_}: meet ?9978 (meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9979 (meet ?9980 ?9980))) =<= meet (meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9979 (meet ?9980 ?9980))) (meet ?9978 (meet ?9979 (meet ?9980 ?9980))) [9980, 9979, 9978] by Super 7815 with 7721 at 2,2,3 Id : 8609, {_}: meet ?9978 (meet ?9979 (meet ?9980 ?9980)) =<= meet (meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9979 (meet ?9980 ?9980))) (meet ?9978 (meet ?9979 (meet ?9980 ?9980))) [9980, 9979, 9978] by Demod 8388 with 7721 at 2,2 Id : 8610, {_}: meet ?9978 (meet ?9979 (meet ?9980 ?9980)) =<= meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9978 (meet ?9979 (meet ?9980 ?9980))) [9980, 9979, 9978] by Demod 8609 with 7721 at 1,3 Id : 9628, {_}: meet (meet ?11055 ?11056) ?11055 =<= meet (meet (meet ?11055 ?11056) (meet ?11055 ?11056)) (meet (meet ?11055 ?11056) ?11055) [11056, 11055] by Super 4175 with 1603 at 2,1,3 Id : 9629, {_}: meet (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058) (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058) (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058)) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Super 9628 with 4034 at 1,2,3 Id : 9779, {_}: meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058) (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058)) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Demod 9629 with 4034 at 1,2 Id : 9780, {_}: meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet ?11058 (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058)) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Demod 9779 with 4034 at 1,1,3 Id : 9781, {_}: meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet ?11058 ?11058) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Demod 9780 with 4034 at 2,1,3 Id : 19039, {_}: meet (meet ?19609 ?19609) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) =<= meet (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) [19609] by Super 8610 with 9781 at 2,3 Id : 11891, {_}: meet ?13166 (join ?13167 ?13167) =<= meet (meet (meet ?13166 (join ?13167 ?13167)) ?13167) (meet ?13166 (join ?13167 ?13167)) [13167, 13166] by Super 4654 with 4056 at 2,1,3 Id : 11910, {_}: meet (join ?13229 ?13230) (join ?13229 ?13229) =<= meet ?13229 (meet (join ?13229 ?13230) (join ?13229 ?13229)) [13230, 13229] by Super 11891 with 4034 at 1,3 Id : 19095, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =<= meet (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) [19609] by Demod 19039 with 11910 at 2,2 Id : 19096, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =<= meet (meet (join ?19609 ?19609) (join ?19609 ?19609)) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) [19609] by Demod 19095 with 11910 at 1,3 Id : 19097, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =<= meet (meet (join ?19609 ?19609) (join ?19609 ?19609)) (meet (join ?19609 ?19609) (join ?19609 ?19609)) [19609] by Demod 19096 with 11910 at 2,3 Id : 19098, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =>= meet (join ?19609 ?19609) (join ?19609 ?19609) [19609] by Demod 19097 with 5904 at 3 Id : 19320, {_}: join (meet (join ?19872 ?19872) (join ?19872 ?19872)) (meet (meet (join ?19872 ?19872) (join ?19872 ?19872)) (join (meet ?19872 ?19872) (meet (join ?19872 ?19872) (join ?19872 ?19872)))) =>= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Super 3639 with 19098 at 1,2 Id : 19473, {_}: join (meet (join ?19872 ?19872) (join ?19872 ?19872)) (meet (meet (join ?19872 ?19872) (join ?19872 ?19872)) ?19872) =>= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Demod 19320 with 4056 at 2,2,2 Id : 19474, {_}: join (meet (join ?19872 ?19872) (join ?19872 ?19872)) ?19872 =>= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Demod 19473 with 4034 at 2,2 Id : 19603, {_}: join (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (join ?20044 ?20044) (join ?20044 ?20044)))) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Super 1603 with 19474 at 2,2,1,2 Id : 19685, {_}: join (meet ?20044 (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (join ?20044 ?20044) (join ?20044 ?20044)))) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19603 with 4034 at 1,1,2 Id : 19686, {_}: join (meet ?20044 (meet (join ?20044 ?20044) (join ?20044 ?20044))) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19685 with 5904 at 2,1,2 Id : 19687, {_}: join (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19686 with 11910 at 1,2 Id : 19688, {_}: join (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet ?20044 (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19687 with 4034 at 1,2,2 Id : 19689, {_}: join (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (join ?20044 ?20044) (join ?20044 ?20044)) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19688 with 11910 at 2,2 Id : 19690, {_}: meet (join ?20044 ?20044) (join ?20044 ?20044) =<= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19689 with 7487 at 2 Id : 19691, {_}: meet (join ?20044 ?20044) (join ?20044 ?20044) =>= ?20044 [20044] by Demod 19690 with 4034 at 3 Id : 19840, {_}: join ?19872 ?19872 =<= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Demod 19474 with 19691 at 1,2 Id : 19841, {_}: join ?19872 ?19872 =>= ?19872 [19872] by Demod 19840 with 19691 at 3 Id : 19901, {_}: meet ?20044 (join ?20044 ?20044) =>= ?20044 [20044] by Demod 19691 with 19841 at 1,2 Id : 19902, {_}: meet ?20044 ?20044 =>= ?20044 [20044] by Demod 19901 with 19841 at 2,2 Id : 19913, {_}: ?15167 =<= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 14282 with 19902 at 2 Id : 19914, {_}: ?15167 =<= meet (join ?15167 ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 19913 with 19902 at 1,1,3 Id : 19915, {_}: ?15167 =<= meet (join ?15167 ?15168) ?15167 [15168, 15167] by Demod 19914 with 19902 at 2,3 Id : 20061, {_}: ?20159 =<= join (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159) (meet ?20159 (join (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159) (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159))) [20161, 20160, 20159] by Super 2854 with 19902 at 1,3 Id : 20247, {_}: ?20159 =<= join (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159) (meet ?20159 (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159)) [20161, 20160, 20159] by Demod 20061 with 19841 at 2,2,3 Id : 19937, {_}: ?9434 =<= join (meet ?9434 ?9434) (meet ?9435 (meet ?9434 ?9434)) [9435, 9434] by Demod 7787 with 19902 at 2 Id : 19938, {_}: ?9434 =<= join ?9434 (meet ?9435 (meet ?9434 ?9434)) [9435, 9434] by Demod 19937 with 19902 at 1,3 Id : 19939, {_}: ?9434 =<= join ?9434 (meet ?9435 ?9434) [9435, 9434] by Demod 19938 with 19902 at 2,2,3 Id : 20310, {_}: ?20323 =<= join (join (meet ?20323 ?20324) (meet ?20325 ?20323)) ?20323 [20325, 20324, 20323] by Demod 20247 with 19939 at 3 Id : 20311, {_}: ?20327 =<= join (join (meet ?20327 ?20328) ?20327) ?20327 [20328, 20327] by Super 20310 with 19902 at 2,1,3 Id : 20418, {_}: join (meet ?20444 ?20445) ?20444 =<= meet ?20444 (join (meet ?20444 ?20445) ?20444) [20445, 20444] by Super 19915 with 20311 at 1,3 Id : 20570, {_}: ?20658 =<= meet (join (meet ?20658 ?20659) ?20658) ?20658 [20659, 20658] by Super 4600 with 20418 at 1,3 Id : 20428, {_}: join (meet (join (meet ?20476 ?20477) ?20476) ?20476) (meet (join (meet ?20476 ?20477) ?20476) ?20476) =>= join (meet ?20476 ?20477) ?20476 [20477, 20476] by Super 1492 with 20311 at 2,2,2 Id : 20488, {_}: meet (join (meet ?20476 ?20477) ?20476) ?20476 =>= join (meet ?20476 ?20477) ?20476 [20477, 20476] by Demod 20428 with 19841 at 2 Id : 20904, {_}: ?20658 =<= join (meet ?20658 ?20659) ?20658 [20659, 20658] by Demod 20570 with 20488 at 3 Id : 20921, {_}: join (meet (meet ?20906 ?20907) ?20906) (meet (meet ?20906 ?20907) ?20906) =>= meet ?20906 ?20907 [20907, 20906] by Super 1492 with 20904 at 2,2,2 Id : 20982, {_}: meet (meet ?20906 ?20907) ?20906 =>= meet ?20906 ?20907 [20907, 20906] by Demod 20921 with 19841 at 2 Id : 4092, {_}: meet ?5726 ?5727 =<= meet (meet ?5727 (join ?5728 (meet ?5726 ?5727))) (meet ?5726 ?5727) [5728, 5727, 5726] by Super 4080 with 3639 at 1,1,3 Id : 21147, {_}: ?21138 =<= join ?21138 (meet ?21138 ?21139) [21139, 21138] by Super 19939 with 20982 at 2,3 Id : 21292, {_}: meet ?21342 ?21343 =<= meet (meet ?21343 ?21342) (meet ?21342 ?21343) [21343, 21342] by Super 4092 with 21147 at 2,1,3 Id : 21456, {_}: meet (meet ?21613 ?21614) (meet ?21614 ?21613) =<->= meet (meet ?21614 ?21613) (meet ?21613 ?21614) [21614, 21613] by Super 20982 with 21292 at 1,2 Id : 21489, {_}: meet ?21614 ?21613 =<= meet (meet ?21614 ?21613) (meet ?21613 ?21614) [21613, 21614] by Demod 21456 with 21292 at 2 Id : 21490, {_}: meet ?21614 ?21613 =<->= meet ?21613 ?21614 [21613, 21614] by Demod 21489 with 21292 at 3 Id : 21662, {_}: meet b a === meet b a [] by Demod 1 with 21490 at 3 Id : 1, {_}: meet b a =<= meet a b [] by prove_wal_axioms_2 % SZS output end CNFRefutation for LAT093-1.p 24050: solved LAT093-1.p in 17.861116 using nrkbo WARNING: TreeLimitedRun lost 42.10s, total lost is 42.10s FINAL WATCH: 60.0 CPU 36.0 WC Killed 1 orphans TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT094-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 24068 TreeLimitedRun: ---------------------------------------------------------- 24070: Facts: 24070: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 24070: Goal: 24070: Id : 1, {_}: join a a =>= a [] by prove_wal_axioms_3 Statistics : Max weight : 2918 Found proof, 33.913529s % SZS status Unsatisfiable for LAT094-1.p % SZS output start CNFRefutation for LAT094-1.p Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 Id : 3, {_}: join (meet (join (meet ?9 ?10) (meet ?10 (join ?9 ?10))) ?11) (meet (join (meet ?9 (join (join (meet ?10 ?12) (meet ?13 ?10)) ?10)) (meet (join (meet ?10 (meet (meet (join ?10 ?12) (join ?13 ?10)) ?10)) (meet ?14 (join ?10 (meet (meet (join ?10 ?12) (join ?13 ?10)) ?10)))) (join ?9 (join (join (meet ?10 ?12) (meet ?13 ?10)) ?10)))) (join (join (meet ?9 ?10) (meet ?10 (join ?9 ?10))) ?11)) =>= ?10 [14, 13, 12, 11, 10, 9] by single_axiom ?9 ?10 ?11 ?12 ?13 ?14 Id : 10, {_}: join (meet (join (meet ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))) (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) (join ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))))) ?84) (meet (join (meet ?81 (join (join (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) ?85) (meet ?86 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))) (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))) (meet ?83 (join ?81 (join (join (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) ?85) (meet ?86 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))) (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))))) (join (join (meet ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))) (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) (join ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))))) ?84)) =>= join (meet ?82 ?83) (meet ?83 (join ?82 ?83)) [86, 85, 84, 83, 82, 81] by Super 3 with 2 at 1,2,1,2,2 Id : 31, {_}: join (meet (join (meet ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))) (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) (join ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))))) ?208) (meet (join (meet ?205 (join (join (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) ?209) (meet ?210 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))) (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))) (meet ?207 (join ?205 (join (join (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) ?209) (meet ?210 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))) (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))))) (join (join (meet ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))) (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) (join ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))))) ?208)) =>= join (meet ?206 ?207) (meet ?207 (join ?206 ?207)) [210, 209, 208, 207, 206, 205] by Super 3 with 2 at 1,2,1,2,2 Id : 34, {_}: join (meet (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 240, 239, 238, 237, 236, 235, 234] by Super 31 with 2 at 2,2,2,1,2,2,2 Id : 116, {_}: join (meet (join (meet ?234 ?236) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 240, 239, 238, 237, 235, 236, 234] by Demod 34 with 2 at 2,1,1,1,2 Id : 117, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 240, 239, 238, 237, 235, 236, 234] by Demod 116 with 2 at 1,2,1,1,2 Id : 118, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 239, 238, 237, 235, 240, 236, 234] by Demod 117 with 2 at 2,2,2,1,1,2 Id : 119, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 118 with 2 at 1,1,1,2,1,1,2,2 Id : 120, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 119 with 2 at 2,2,1,2,1,1,2,2 Id : 121, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 120 with 2 at 2,2,1,1,2,2 Id : 122, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 121 with 2 at 1,1,1,2,2,2,1,2,2 Id : 123, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 122 with 2 at 2,2,1,2,2,2,1,2,2 Id : 124, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 123 with 2 at 2,2,2,2,1,2,2 Id : 125, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)))) (join (join (meet ?234 ?236) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 124 with 2 at 2,1,1,2,2,2 Id : 126, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)))) (join (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240)) =?= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 125 with 2 at 1,2,1,2,2,2 Id : 702, {_}: join (meet (join (meet ?1187 ?1188) (meet ?1188 (join ?1187 ?1188))) ?1189) (meet (join (meet ?1187 (join (join (meet ?1188 ?1190) (meet ?1191 ?1188)) ?1188)) (meet (join (meet ?1192 (join (join (meet ?1188 ?1193) (meet ?1194 ?1188)) ?1188)) (meet (join (meet ?1188 (meet (meet (join ?1188 ?1193) (join ?1194 ?1188)) ?1188)) (meet ?1195 (join ?1188 (meet (meet (join ?1188 ?1193) (join ?1194 ?1188)) ?1188)))) (join ?1192 (join (join (meet ?1188 ?1193) (meet ?1194 ?1188)) ?1188)))) (join ?1187 (join (join (meet ?1188 ?1190) (meet ?1191 ?1188)) ?1188)))) (join (join (meet ?1187 ?1188) (meet ?1188 (join ?1187 ?1188))) ?1189)) =>= ?1188 [1195, 1194, 1193, 1192, 1191, 1190, 1189, 1188, 1187] by Demod 126 with 2 at 3 Id : 724, {_}: join (meet (join (meet (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496) (meet ?1496 (join (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496))) ?1497) (meet ?1496 (join (join (meet (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496) (meet ?1496 (join (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496))) ?1497)) =>= ?1496 [1497, 1496, 1495] by Super 702 with 2 at 1,2,2 Id : 1054, {_}: join (meet (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1599, 1598, 1597, 1596] by Super 10 with 724 at 2,2,2,1,2,2,2 Id : 1166, {_}: join (meet (join (meet ?1596 ?1598) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1599, 1597, 1598, 1596] by Demod 1054 with 724 at 2,1,1,1,2 Id : 1167, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1599, 1597, 1598, 1596] by Demod 1166 with 724 at 1,2,1,1,2 Id : 1168, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1597, 1599, 1598, 1596] by Demod 1167 with 724 at 2,2,2,1,1,2 Id : 1169, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1168 with 724 at 1,1,1,2,1,1,2,2 Id : 1170, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1169 with 724 at 2,2,1,2,1,1,2,2 Id : 1171, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1170 with 724 at 2,2,1,1,2,2 Id : 1172, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1171 with 724 at 1,1,1,2,2,2,1,2,2 Id : 1173, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1172 with 724 at 2,2,1,2,2,2,1,2,2 Id : 1174, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1173 with 724 at 2,2,2,2,1,2,2 Id : 1175, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 ?1598) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1174 with 724 at 2,1,1,2,2,2 Id : 1176, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599)) =?= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1175 with 724 at 1,2,1,2,2,2 Id : 1177, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599)) =>= ?1598 [1601, 1600, 1599, 1598, 1596] by Demod 1176 with 724 at 3 Id : 2463, {_}: join (meet (join (meet ?3676 ?3677) (meet ?3677 (join ?3676 ?3677))) ?3678) (meet (join (meet ?3676 (join (join (meet ?3677 ?3679) (meet ?3680 ?3677)) ?3677)) (meet ?3677 (join ?3676 (join (join (meet ?3677 ?3679) (meet ?3680 ?3677)) ?3677)))) (join (join (meet ?3676 ?3677) (meet ?3677 (join ?3676 ?3677))) ?3678)) =>= ?3677 [3680, 3679, 3678, 3677, 3676] by Demod 1176 with 724 at 3 Id : 2476, {_}: join (meet (join (meet (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))))) (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) (join (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))))))) ?3789) (meet (join (meet (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) (join (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))))) (join ?3786 ?3789)) =>= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3791, 3790, 3789, 3788, 3787, 3786, 3785] by Super 2463 with 1177 at 1,2,2,2 Id : 2852, {_}: join (meet ?3786 ?3789) (meet (join (meet (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) (join (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))))) (join ?3786 ?3789)) =>= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3791, 3790, 3788, 3787, 3785, 3789, 3786] by Demod 2476 with 1177 at 1,1,2 Id : 2853, {_}: join (meet ?3786 ?3789) (meet ?3786 (join ?3786 ?3789)) =?= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3788, 3787, 3785, 3789, 3786] by Demod 2852 with 1177 at 1,2,2 Id : 1101, {_}: join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1978) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1978)) =>= ?1977 [1978, 1977, 1976] by Super 702 with 2 at 1,2,2 Id : 1118, {_}: join (meet (join (meet (join (meet (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101) (meet ?2101 (join (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101))) ?2101) (meet ?2101 (join (join (meet (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101) (meet ?2101 (join (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101))) ?2101))) ?2102) (meet ?2101 (join ?2101 ?2102)) =>= ?2101 [2102, 2101, 2100] by Super 1101 with 724 at 1,2,2,2 Id : 1492, {_}: join (meet ?2101 ?2102) (meet ?2101 (join ?2101 ?2102)) =>= ?2101 [2102, 2101] by Demod 1118 with 724 at 1,1,2 Id : 2854, {_}: ?3786 =<= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3788, 3787, 3785, 3786] by Demod 2853 with 1492 at 2 Id : 2902, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet ?1598 (join (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599)) =>= ?1598 [1599, 1598, 1596] by Demod 1177 with 2854 at 1,2,2 Id : 2472, {_}: join (meet (join (meet (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))))) (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) (join (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))))))) ?3754) (meet (join (meet (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) (join (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))))) (join ?3750 ?3754)) =>= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3756, 3755, 3754, 3753, 3752, 3751, 3750, 3749] by Super 2463 with 2 at 1,2,2,2 Id : 2840, {_}: join (meet ?3750 ?3754) (meet (join (meet (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) (join (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))))) (join ?3750 ?3754)) =>= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3756, 3755, 3753, 3752, 3751, 3749, 3754, 3750] by Demod 2472 with 2 at 1,1,2 Id : 2841, {_}: join (meet ?3750 ?3754) (meet ?3750 (join ?3750 ?3754)) =?= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3753, 3752, 3751, 3749, 3754, 3750] by Demod 2840 with 2 at 1,2,2 Id : 2842, {_}: ?3750 =<= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3753, 3752, 3751, 3749, 3750] by Demod 2841 with 1492 at 2 Id : 3363, {_}: ?4574 =<= join (meet ?4574 (meet (meet (join ?4574 ?4575) (join ?4576 ?4574)) ?4574)) (meet ?4577 (join ?4574 (meet (meet (join ?4574 ?4575) (join ?4576 ?4574)) ?4574))) [4577, 4576, 4575, 4574] by Super 2902 with 2842 at 2 Id : 3639, {_}: join (meet ?5256 ?5257) (meet ?5257 (join ?5256 ?5257)) =>= ?5257 [5257, 5256] by Super 2902 with 3363 at 2 Id : 4080, {_}: ?5672 =<= meet (meet (join ?5672 ?5673) (join ?5674 ?5672)) ?5672 [5674, 5673, 5672] by Super 3363 with 3639 at 3 Id : 4531, {_}: meet ?6392 ?6393 =<= meet (meet ?6393 (join ?6394 (meet ?6392 ?6393))) (meet ?6392 ?6393) [6394, 6393, 6392] by Super 4080 with 3639 at 1,1,3 Id : 4034, {_}: ?5513 =<= meet (meet (join ?5513 ?5514) (join ?5515 ?5513)) ?5513 [5515, 5514, 5513] by Super 3363 with 3639 at 3 Id : 4055, {_}: ?4574 =<= join (meet ?4574 ?4574) (meet ?4577 (join ?4574 (meet (meet (join ?4574 ?4575) (join ?4576 ?4574)) ?4574))) [4576, 4575, 4577, 4574] by Demod 3363 with 4034 at 2,1,3 Id : 4056, {_}: ?4574 =<= join (meet ?4574 ?4574) (meet ?4577 (join ?4574 ?4574)) [4577, 4574] by Demod 4055 with 4034 at 2,2,2,3 Id : 4550, {_}: meet ?6472 (join ?6473 ?6473) =<= meet (meet (join ?6473 ?6473) ?6473) (meet ?6472 (join ?6473 ?6473)) [6473, 6472] by Super 4531 with 4056 at 2,1,3 Id : 1598, {_}: join (meet ?2599 ?2600) (meet ?2599 (join ?2599 ?2600)) =>= ?2599 [2600, 2599] by Demod 1118 with 724 at 1,1,2 Id : 1603, {_}: join (meet (meet ?2630 ?2631) (meet ?2630 (join ?2630 ?2631))) (meet (meet ?2630 ?2631) ?2630) =>= meet ?2630 ?2631 [2631, 2630] by Super 1598 with 1492 at 2,2,2 Id : 4175, {_}: meet ?5858 ?5859 =<= meet (meet ?5858 (join ?5860 (meet ?5858 ?5859))) (meet ?5858 ?5859) [5860, 5859, 5858] by Super 4080 with 1492 at 1,1,3 Id : 4180, {_}: meet ?5882 (join ?5882 ?5883) =<= meet (meet ?5882 ?5882) (meet ?5882 (join ?5882 ?5883)) [5883, 5882] by Super 4175 with 1492 at 2,1,3 Id : 4253, {_}: join (meet ?5965 (join ?5965 ?5965)) (meet (meet ?5965 ?5965) ?5965) =>= meet ?5965 ?5965 [5965] by Super 1603 with 4180 at 1,2 Id : 1976, {_}: join (meet (meet (meet ?2837 ?2838) (meet ?2837 (join ?2837 ?2838))) (meet (meet ?2837 ?2838) ?2837)) (meet (meet (meet ?2837 ?2838) (meet ?2837 (join ?2837 ?2838))) (meet ?2837 ?2838)) =>= meet (meet ?2837 ?2838) (meet ?2837 (join ?2837 ?2838)) [2838, 2837] by Super 1492 with 1603 at 2,2,2 Id : 4544, {_}: meet ?6450 (join ?6450 ?6451) =<= meet (meet (join ?6450 ?6451) ?6450) (meet ?6450 (join ?6450 ?6451)) [6451, 6450] by Super 4531 with 1492 at 2,1,3 Id : 4532, {_}: meet (meet (join ?6396 ?6397) (join ?6398 ?6396)) ?6396 =<= meet (meet ?6396 (join ?6399 (meet (meet (join ?6396 ?6397) (join ?6398 ?6396)) ?6396))) ?6396 [6399, 6398, 6397, 6396] by Super 4531 with 4034 at 2,3 Id : 4599, {_}: ?6396 =<= meet (meet ?6396 (join ?6399 (meet (meet (join ?6396 ?6397) (join ?6398 ?6396)) ?6396))) ?6396 [6398, 6397, 6399, 6396] by Demod 4532 with 4034 at 2 Id : 4600, {_}: ?6396 =<= meet (meet ?6396 (join ?6399 ?6396)) ?6396 [6399, 6396] by Demod 4599 with 4034 at 2,2,1,3 Id : 4648, {_}: join ?6582 (meet ?6582 (join (meet ?6582 (join ?6583 ?6582)) ?6582)) =>= ?6582 [6583, 6582] by Super 3639 with 4600 at 1,2 Id : 5871, {_}: meet ?7887 (join ?7887 (meet ?7887 (join (meet ?7887 (join ?7888 ?7887)) ?7887))) =<= meet (meet (join ?7887 (meet ?7887 (join (meet ?7887 (join ?7888 ?7887)) ?7887))) ?7887) (meet ?7887 ?7887) [7888, 7887] by Super 4544 with 4648 at 2,2,3 Id : 5903, {_}: meet ?7887 ?7887 =<= meet (meet (join ?7887 (meet ?7887 (join (meet ?7887 (join ?7888 ?7887)) ?7887))) ?7887) (meet ?7887 ?7887) [7888, 7887] by Demod 5871 with 4648 at 2,2 Id : 5904, {_}: meet ?7887 ?7887 =<= meet (meet ?7887 ?7887) (meet ?7887 ?7887) [7887] by Demod 5903 with 4648 at 1,1,3 Id : 5957, {_}: join (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Super 1976 with 5904 at 2,2,2 Id : 6021, {_}: join (meet (meet (meet ?7970 ?7970) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 5957 with 5904 at 1,1,1,2 Id : 4654, {_}: ?6603 =<= meet (meet ?6603 (join ?6604 ?6603)) ?6603 [6604, 6603] by Demod 4599 with 4034 at 2,2,1,3 Id : 4659, {_}: meet ?6620 (join ?6621 ?6620) =<= meet (meet (meet ?6620 (join ?6621 ?6620)) ?6620) (meet ?6620 (join ?6621 ?6620)) [6621, 6620] by Super 4654 with 3639 at 2,1,3 Id : 4722, {_}: meet ?6620 (join ?6621 ?6620) =<= meet ?6620 (meet ?6620 (join ?6621 ?6620)) [6621, 6620] by Demod 4659 with 4600 at 1,3 Id : 6022, {_}: join (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6021 with 4722 at 1,1,2 Id : 6023, {_}: join (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6022 with 5904 at 1,2,1,2 Id : 6024, {_}: join (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet ?7970 ?7970)) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6023 with 5904 at 2,1,2 Id : 6025, {_}: join (meet ?7970 ?7970) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6024 with 4600 at 1,2 Id : 6026, {_}: join (meet ?7970 ?7970) (meet (meet (meet ?7970 ?7970) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6025 with 5904 at 1,1,2,2 Id : 6027, {_}: join (meet ?7970 ?7970) (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6026 with 4722 at 1,2,2 Id : 6028, {_}: join (meet ?7970 ?7970) (meet ?7970 ?7970) =<= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6027 with 4600 at 2,2 Id : 6029, {_}: join (meet ?7970 ?7970) (meet ?7970 ?7970) =<= meet (meet ?7970 ?7970) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6028 with 5904 at 1,3 Id : 6030, {_}: join (meet ?7970 ?7970) (meet ?7970 ?7970) =<= meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)) [7970] by Demod 6029 with 4722 at 3 Id : 7104, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet (meet (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet ?9198 ?9198)) =>= meet (meet ?9198 ?9198) (meet ?9198 ?9198) [9198] by Super 4253 with 6030 at 1,2 Id : 7136, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet (meet ?9198 ?9198) (meet ?9198 ?9198)) =>= meet (meet ?9198 ?9198) (meet ?9198 ?9198) [9198] by Demod 7104 with 5904 at 1,2,2 Id : 7137, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet ?9198 ?9198) =>= meet (meet ?9198 ?9198) (meet ?9198 ?9198) [9198] by Demod 7136 with 5904 at 2,2 Id : 7138, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet ?9198 ?9198) =>= meet ?9198 ?9198 [9198] by Demod 7137 with 5904 at 3 Id : 7455, {_}: join (meet (join (meet ?9362 ?9362) (meet ?9362 ?9362)) (meet ?9362 ?9362)) (meet (meet ?9362 ?9362) (meet ?9362 ?9362)) =>= meet ?9362 ?9362 [9362] by Super 3639 with 7138 at 2,2,2 Id : 7070, {_}: meet ?9106 ?9106 =<= meet (join (meet ?9106 ?9106) (meet ?9106 ?9106)) (meet ?9106 ?9106) [9106] by Super 4600 with 6030 at 1,3 Id : 7486, {_}: join (meet ?9362 ?9362) (meet (meet ?9362 ?9362) (meet ?9362 ?9362)) =>= meet ?9362 ?9362 [9362] by Demod 7455 with 7070 at 1,2 Id : 7487, {_}: join (meet ?9362 ?9362) (meet ?9362 ?9362) =>= meet ?9362 ?9362 [9362] by Demod 7486 with 5904 at 2,2 Id : 7603, {_}: meet ?9408 (join (meet ?9409 ?9409) (meet ?9409 ?9409)) =<= meet (meet (join (meet ?9409 ?9409) (meet ?9409 ?9409)) (meet ?9409 ?9409)) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Super 4550 with 7487 at 2,2,3 Id : 7813, {_}: meet ?9408 (meet ?9409 ?9409) =<= meet (meet (join (meet ?9409 ?9409) (meet ?9409 ?9409)) (meet ?9409 ?9409)) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7603 with 7487 at 2,2 Id : 7814, {_}: meet ?9408 (meet ?9409 ?9409) =<= meet (meet (meet ?9409 ?9409) (meet ?9409 ?9409)) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7813 with 7487 at 1,1,3 Id : 7815, {_}: meet ?9408 (meet ?9409 ?9409) =<= meet (meet ?9409 ?9409) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7814 with 5904 at 1,3 Id : 4186, {_}: meet ?5904 (join ?5905 ?5905) =<= meet (meet ?5904 ?5905) (meet ?5904 (join ?5905 ?5905)) [5905, 5904] by Super 4175 with 4056 at 2,1,3 Id : 7627, {_}: meet ?9466 (join (meet ?9467 ?9467) (meet ?9467 ?9467)) =<= meet (meet ?9466 (meet ?9467 ?9467)) (meet ?9466 (meet ?9467 ?9467)) [9467, 9466] by Super 4186 with 7487 at 2,2,3 Id : 7721, {_}: meet ?9466 (meet ?9467 ?9467) =<= meet (meet ?9466 (meet ?9467 ?9467)) (meet ?9466 (meet ?9467 ?9467)) [9467, 9466] by Demod 7627 with 7487 at 2,2 Id : 8388, {_}: meet ?9978 (meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9979 (meet ?9980 ?9980))) =<= meet (meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9979 (meet ?9980 ?9980))) (meet ?9978 (meet ?9979 (meet ?9980 ?9980))) [9980, 9979, 9978] by Super 7815 with 7721 at 2,2,3 Id : 8609, {_}: meet ?9978 (meet ?9979 (meet ?9980 ?9980)) =<= meet (meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9979 (meet ?9980 ?9980))) (meet ?9978 (meet ?9979 (meet ?9980 ?9980))) [9980, 9979, 9978] by Demod 8388 with 7721 at 2,2 Id : 8610, {_}: meet ?9978 (meet ?9979 (meet ?9980 ?9980)) =<= meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9978 (meet ?9979 (meet ?9980 ?9980))) [9980, 9979, 9978] by Demod 8609 with 7721 at 1,3 Id : 9628, {_}: meet (meet ?11055 ?11056) ?11055 =<= meet (meet (meet ?11055 ?11056) (meet ?11055 ?11056)) (meet (meet ?11055 ?11056) ?11055) [11056, 11055] by Super 4175 with 1603 at 2,1,3 Id : 9629, {_}: meet (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058) (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058) (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058)) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Super 9628 with 4034 at 1,2,3 Id : 9779, {_}: meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058) (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058)) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Demod 9629 with 4034 at 1,2 Id : 9780, {_}: meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet ?11058 (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058)) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Demod 9779 with 4034 at 1,1,3 Id : 9781, {_}: meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet ?11058 ?11058) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Demod 9780 with 4034 at 2,1,3 Id : 19039, {_}: meet (meet ?19609 ?19609) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) =<= meet (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) [19609] by Super 8610 with 9781 at 2,3 Id : 11891, {_}: meet ?13166 (join ?13167 ?13167) =<= meet (meet (meet ?13166 (join ?13167 ?13167)) ?13167) (meet ?13166 (join ?13167 ?13167)) [13167, 13166] by Super 4654 with 4056 at 2,1,3 Id : 11910, {_}: meet (join ?13229 ?13230) (join ?13229 ?13229) =<= meet ?13229 (meet (join ?13229 ?13230) (join ?13229 ?13229)) [13230, 13229] by Super 11891 with 4034 at 1,3 Id : 19095, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =<= meet (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) [19609] by Demod 19039 with 11910 at 2,2 Id : 19096, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =<= meet (meet (join ?19609 ?19609) (join ?19609 ?19609)) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) [19609] by Demod 19095 with 11910 at 1,3 Id : 19097, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =<= meet (meet (join ?19609 ?19609) (join ?19609 ?19609)) (meet (join ?19609 ?19609) (join ?19609 ?19609)) [19609] by Demod 19096 with 11910 at 2,3 Id : 19098, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =>= meet (join ?19609 ?19609) (join ?19609 ?19609) [19609] by Demod 19097 with 5904 at 3 Id : 19320, {_}: join (meet (join ?19872 ?19872) (join ?19872 ?19872)) (meet (meet (join ?19872 ?19872) (join ?19872 ?19872)) (join (meet ?19872 ?19872) (meet (join ?19872 ?19872) (join ?19872 ?19872)))) =>= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Super 3639 with 19098 at 1,2 Id : 19473, {_}: join (meet (join ?19872 ?19872) (join ?19872 ?19872)) (meet (meet (join ?19872 ?19872) (join ?19872 ?19872)) ?19872) =>= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Demod 19320 with 4056 at 2,2,2 Id : 19474, {_}: join (meet (join ?19872 ?19872) (join ?19872 ?19872)) ?19872 =>= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Demod 19473 with 4034 at 2,2 Id : 19603, {_}: join (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (join ?20044 ?20044) (join ?20044 ?20044)))) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Super 1603 with 19474 at 2,2,1,2 Id : 19685, {_}: join (meet ?20044 (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (join ?20044 ?20044) (join ?20044 ?20044)))) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19603 with 4034 at 1,1,2 Id : 19686, {_}: join (meet ?20044 (meet (join ?20044 ?20044) (join ?20044 ?20044))) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19685 with 5904 at 2,1,2 Id : 19687, {_}: join (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19686 with 11910 at 1,2 Id : 19688, {_}: join (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet ?20044 (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19687 with 4034 at 1,2,2 Id : 19689, {_}: join (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (join ?20044 ?20044) (join ?20044 ?20044)) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19688 with 11910 at 2,2 Id : 19690, {_}: meet (join ?20044 ?20044) (join ?20044 ?20044) =<= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19689 with 7487 at 2 Id : 19691, {_}: meet (join ?20044 ?20044) (join ?20044 ?20044) =>= ?20044 [20044] by Demod 19690 with 4034 at 3 Id : 19840, {_}: join ?19872 ?19872 =<= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Demod 19474 with 19691 at 1,2 Id : 19841, {_}: join ?19872 ?19872 =>= ?19872 [19872] by Demod 19840 with 19691 at 3 Id : 20277, {_}: a === a [] by Demod 1 with 19841 at 2 Id : 1, {_}: join a a =>= a [] by prove_wal_axioms_3 % SZS output end CNFRefutation for LAT094-1.p 24073: solved LAT094-1.p in 17.365085 using nrkbo WARNING: TreeLimitedRun lost 42.53s, total lost is 42.53s FINAL WATCH: 59.9 CPU 34.8 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT095-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 24102 TreeLimitedRun: ---------------------------------------------------------- 24104: Facts: 24104: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 24104: Goal: 24104: Id : 1, {_}: join b a =<= join a b [] by prove_wal_axioms_4 Statistics : Max weight : 2918 Found proof, 41.176674s % SZS status Unsatisfiable for LAT095-1.p % SZS output start CNFRefutation for LAT095-1.p Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 Id : 3, {_}: join (meet (join (meet ?9 ?10) (meet ?10 (join ?9 ?10))) ?11) (meet (join (meet ?9 (join (join (meet ?10 ?12) (meet ?13 ?10)) ?10)) (meet (join (meet ?10 (meet (meet (join ?10 ?12) (join ?13 ?10)) ?10)) (meet ?14 (join ?10 (meet (meet (join ?10 ?12) (join ?13 ?10)) ?10)))) (join ?9 (join (join (meet ?10 ?12) (meet ?13 ?10)) ?10)))) (join (join (meet ?9 ?10) (meet ?10 (join ?9 ?10))) ?11)) =>= ?10 [14, 13, 12, 11, 10, 9] by single_axiom ?9 ?10 ?11 ?12 ?13 ?14 Id : 10, {_}: join (meet (join (meet ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))) (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) (join ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))))) ?84) (meet (join (meet ?81 (join (join (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) ?85) (meet ?86 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))) (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))) (meet ?83 (join ?81 (join (join (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) ?85) (meet ?86 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))) (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))))) (join (join (meet ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))) (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) (join ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))))) ?84)) =>= join (meet ?82 ?83) (meet ?83 (join ?82 ?83)) [86, 85, 84, 83, 82, 81] by Super 3 with 2 at 1,2,1,2,2 Id : 31, {_}: join (meet (join (meet ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))) (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) (join ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))))) ?208) (meet (join (meet ?205 (join (join (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) ?209) (meet ?210 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))) (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))) (meet ?207 (join ?205 (join (join (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) ?209) (meet ?210 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))) (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))))) (join (join (meet ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))) (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) (join ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))))) ?208)) =>= join (meet ?206 ?207) (meet ?207 (join ?206 ?207)) [210, 209, 208, 207, 206, 205] by Super 3 with 2 at 1,2,1,2,2 Id : 34, {_}: join (meet (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 240, 239, 238, 237, 236, 235, 234] by Super 31 with 2 at 2,2,2,1,2,2,2 Id : 116, {_}: join (meet (join (meet ?234 ?236) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 240, 239, 238, 237, 235, 236, 234] by Demod 34 with 2 at 2,1,1,1,2 Id : 117, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 240, 239, 238, 237, 235, 236, 234] by Demod 116 with 2 at 1,2,1,1,2 Id : 118, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 239, 238, 237, 235, 240, 236, 234] by Demod 117 with 2 at 2,2,2,1,1,2 Id : 119, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 118 with 2 at 1,1,1,2,1,1,2,2 Id : 120, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 119 with 2 at 2,2,1,2,1,1,2,2 Id : 121, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 120 with 2 at 2,2,1,1,2,2 Id : 122, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 121 with 2 at 1,1,1,2,2,2,1,2,2 Id : 123, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 122 with 2 at 2,2,1,2,2,2,1,2,2 Id : 124, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 123 with 2 at 2,2,2,2,1,2,2 Id : 125, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)))) (join (join (meet ?234 ?236) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 124 with 2 at 2,1,1,2,2,2 Id : 126, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)))) (join (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240)) =?= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 125 with 2 at 1,2,1,2,2,2 Id : 702, {_}: join (meet (join (meet ?1187 ?1188) (meet ?1188 (join ?1187 ?1188))) ?1189) (meet (join (meet ?1187 (join (join (meet ?1188 ?1190) (meet ?1191 ?1188)) ?1188)) (meet (join (meet ?1192 (join (join (meet ?1188 ?1193) (meet ?1194 ?1188)) ?1188)) (meet (join (meet ?1188 (meet (meet (join ?1188 ?1193) (join ?1194 ?1188)) ?1188)) (meet ?1195 (join ?1188 (meet (meet (join ?1188 ?1193) (join ?1194 ?1188)) ?1188)))) (join ?1192 (join (join (meet ?1188 ?1193) (meet ?1194 ?1188)) ?1188)))) (join ?1187 (join (join (meet ?1188 ?1190) (meet ?1191 ?1188)) ?1188)))) (join (join (meet ?1187 ?1188) (meet ?1188 (join ?1187 ?1188))) ?1189)) =>= ?1188 [1195, 1194, 1193, 1192, 1191, 1190, 1189, 1188, 1187] by Demod 126 with 2 at 3 Id : 724, {_}: join (meet (join (meet (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496) (meet ?1496 (join (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496))) ?1497) (meet ?1496 (join (join (meet (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496) (meet ?1496 (join (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496))) ?1497)) =>= ?1496 [1497, 1496, 1495] by Super 702 with 2 at 1,2,2 Id : 1054, {_}: join (meet (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1599, 1598, 1597, 1596] by Super 10 with 724 at 2,2,2,1,2,2,2 Id : 1166, {_}: join (meet (join (meet ?1596 ?1598) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1599, 1597, 1598, 1596] by Demod 1054 with 724 at 2,1,1,1,2 Id : 1167, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1599, 1597, 1598, 1596] by Demod 1166 with 724 at 1,2,1,1,2 Id : 1168, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1597, 1599, 1598, 1596] by Demod 1167 with 724 at 2,2,2,1,1,2 Id : 1169, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1168 with 724 at 1,1,1,2,1,1,2,2 Id : 1170, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1169 with 724 at 2,2,1,2,1,1,2,2 Id : 1171, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1170 with 724 at 2,2,1,1,2,2 Id : 1172, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1171 with 724 at 1,1,1,2,2,2,1,2,2 Id : 1173, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1172 with 724 at 2,2,1,2,2,2,1,2,2 Id : 1174, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1173 with 724 at 2,2,2,2,1,2,2 Id : 1175, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 ?1598) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1174 with 724 at 2,1,1,2,2,2 Id : 1176, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599)) =?= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1175 with 724 at 1,2,1,2,2,2 Id : 1177, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599)) =>= ?1598 [1601, 1600, 1599, 1598, 1596] by Demod 1176 with 724 at 3 Id : 2463, {_}: join (meet (join (meet ?3676 ?3677) (meet ?3677 (join ?3676 ?3677))) ?3678) (meet (join (meet ?3676 (join (join (meet ?3677 ?3679) (meet ?3680 ?3677)) ?3677)) (meet ?3677 (join ?3676 (join (join (meet ?3677 ?3679) (meet ?3680 ?3677)) ?3677)))) (join (join (meet ?3676 ?3677) (meet ?3677 (join ?3676 ?3677))) ?3678)) =>= ?3677 [3680, 3679, 3678, 3677, 3676] by Demod 1176 with 724 at 3 Id : 2476, {_}: join (meet (join (meet (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))))) (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) (join (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))))))) ?3789) (meet (join (meet (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) (join (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))))) (join ?3786 ?3789)) =>= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3791, 3790, 3789, 3788, 3787, 3786, 3785] by Super 2463 with 1177 at 1,2,2,2 Id : 2852, {_}: join (meet ?3786 ?3789) (meet (join (meet (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) (join (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))))) (join ?3786 ?3789)) =>= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3791, 3790, 3788, 3787, 3785, 3789, 3786] by Demod 2476 with 1177 at 1,1,2 Id : 2853, {_}: join (meet ?3786 ?3789) (meet ?3786 (join ?3786 ?3789)) =?= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3788, 3787, 3785, 3789, 3786] by Demod 2852 with 1177 at 1,2,2 Id : 1101, {_}: join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1978) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1978)) =>= ?1977 [1978, 1977, 1976] by Super 702 with 2 at 1,2,2 Id : 1118, {_}: join (meet (join (meet (join (meet (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101) (meet ?2101 (join (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101))) ?2101) (meet ?2101 (join (join (meet (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101) (meet ?2101 (join (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101))) ?2101))) ?2102) (meet ?2101 (join ?2101 ?2102)) =>= ?2101 [2102, 2101, 2100] by Super 1101 with 724 at 1,2,2,2 Id : 1492, {_}: join (meet ?2101 ?2102) (meet ?2101 (join ?2101 ?2102)) =>= ?2101 [2102, 2101] by Demod 1118 with 724 at 1,1,2 Id : 2854, {_}: ?3786 =<= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3788, 3787, 3785, 3786] by Demod 2853 with 1492 at 2 Id : 2902, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet ?1598 (join (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599)) =>= ?1598 [1599, 1598, 1596] by Demod 1177 with 2854 at 1,2,2 Id : 2472, {_}: join (meet (join (meet (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))))) (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) (join (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))))))) ?3754) (meet (join (meet (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) (join (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))))) (join ?3750 ?3754)) =>= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3756, 3755, 3754, 3753, 3752, 3751, 3750, 3749] by Super 2463 with 2 at 1,2,2,2 Id : 2840, {_}: join (meet ?3750 ?3754) (meet (join (meet (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) (join (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))))) (join ?3750 ?3754)) =>= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3756, 3755, 3753, 3752, 3751, 3749, 3754, 3750] by Demod 2472 with 2 at 1,1,2 Id : 2841, {_}: join (meet ?3750 ?3754) (meet ?3750 (join ?3750 ?3754)) =?= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3753, 3752, 3751, 3749, 3754, 3750] by Demod 2840 with 2 at 1,2,2 Id : 2842, {_}: ?3750 =<= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3753, 3752, 3751, 3749, 3750] by Demod 2841 with 1492 at 2 Id : 3363, {_}: ?4574 =<= join (meet ?4574 (meet (meet (join ?4574 ?4575) (join ?4576 ?4574)) ?4574)) (meet ?4577 (join ?4574 (meet (meet (join ?4574 ?4575) (join ?4576 ?4574)) ?4574))) [4577, 4576, 4575, 4574] by Super 2902 with 2842 at 2 Id : 3639, {_}: join (meet ?5256 ?5257) (meet ?5257 (join ?5256 ?5257)) =>= ?5257 [5257, 5256] by Super 2902 with 3363 at 2 Id : 4034, {_}: ?5513 =<= meet (meet (join ?5513 ?5514) (join ?5515 ?5513)) ?5513 [5515, 5514, 5513] by Super 3363 with 3639 at 3 Id : 4055, {_}: ?4574 =<= join (meet ?4574 ?4574) (meet ?4577 (join ?4574 (meet (meet (join ?4574 ?4575) (join ?4576 ?4574)) ?4574))) [4576, 4575, 4577, 4574] by Demod 3363 with 4034 at 2,1,3 Id : 4056, {_}: ?4574 =<= join (meet ?4574 ?4574) (meet ?4577 (join ?4574 ?4574)) [4577, 4574] by Demod 4055 with 4034 at 2,2,2,3 Id : 1598, {_}: join (meet ?2599 ?2600) (meet ?2599 (join ?2599 ?2600)) =>= ?2599 [2600, 2599] by Demod 1118 with 724 at 1,1,2 Id : 1603, {_}: join (meet (meet ?2630 ?2631) (meet ?2630 (join ?2630 ?2631))) (meet (meet ?2630 ?2631) ?2630) =>= meet ?2630 ?2631 [2631, 2630] by Super 1598 with 1492 at 2,2,2 Id : 4080, {_}: ?5672 =<= meet (meet (join ?5672 ?5673) (join ?5674 ?5672)) ?5672 [5674, 5673, 5672] by Super 3363 with 3639 at 3 Id : 4175, {_}: meet ?5858 ?5859 =<= meet (meet ?5858 (join ?5860 (meet ?5858 ?5859))) (meet ?5858 ?5859) [5860, 5859, 5858] by Super 4080 with 1492 at 1,1,3 Id : 4180, {_}: meet ?5882 (join ?5882 ?5883) =<= meet (meet ?5882 ?5882) (meet ?5882 (join ?5882 ?5883)) [5883, 5882] by Super 4175 with 1492 at 2,1,3 Id : 4253, {_}: join (meet ?5965 (join ?5965 ?5965)) (meet (meet ?5965 ?5965) ?5965) =>= meet ?5965 ?5965 [5965] by Super 1603 with 4180 at 1,2 Id : 1976, {_}: join (meet (meet (meet ?2837 ?2838) (meet ?2837 (join ?2837 ?2838))) (meet (meet ?2837 ?2838) ?2837)) (meet (meet (meet ?2837 ?2838) (meet ?2837 (join ?2837 ?2838))) (meet ?2837 ?2838)) =>= meet (meet ?2837 ?2838) (meet ?2837 (join ?2837 ?2838)) [2838, 2837] by Super 1492 with 1603 at 2,2,2 Id : 4531, {_}: meet ?6392 ?6393 =<= meet (meet ?6393 (join ?6394 (meet ?6392 ?6393))) (meet ?6392 ?6393) [6394, 6393, 6392] by Super 4080 with 3639 at 1,1,3 Id : 4544, {_}: meet ?6450 (join ?6450 ?6451) =<= meet (meet (join ?6450 ?6451) ?6450) (meet ?6450 (join ?6450 ?6451)) [6451, 6450] by Super 4531 with 1492 at 2,1,3 Id : 4532, {_}: meet (meet (join ?6396 ?6397) (join ?6398 ?6396)) ?6396 =<= meet (meet ?6396 (join ?6399 (meet (meet (join ?6396 ?6397) (join ?6398 ?6396)) ?6396))) ?6396 [6399, 6398, 6397, 6396] by Super 4531 with 4034 at 2,3 Id : 4599, {_}: ?6396 =<= meet (meet ?6396 (join ?6399 (meet (meet (join ?6396 ?6397) (join ?6398 ?6396)) ?6396))) ?6396 [6398, 6397, 6399, 6396] by Demod 4532 with 4034 at 2 Id : 4600, {_}: ?6396 =<= meet (meet ?6396 (join ?6399 ?6396)) ?6396 [6399, 6396] by Demod 4599 with 4034 at 2,2,1,3 Id : 4648, {_}: join ?6582 (meet ?6582 (join (meet ?6582 (join ?6583 ?6582)) ?6582)) =>= ?6582 [6583, 6582] by Super 3639 with 4600 at 1,2 Id : 5871, {_}: meet ?7887 (join ?7887 (meet ?7887 (join (meet ?7887 (join ?7888 ?7887)) ?7887))) =<= meet (meet (join ?7887 (meet ?7887 (join (meet ?7887 (join ?7888 ?7887)) ?7887))) ?7887) (meet ?7887 ?7887) [7888, 7887] by Super 4544 with 4648 at 2,2,3 Id : 5903, {_}: meet ?7887 ?7887 =<= meet (meet (join ?7887 (meet ?7887 (join (meet ?7887 (join ?7888 ?7887)) ?7887))) ?7887) (meet ?7887 ?7887) [7888, 7887] by Demod 5871 with 4648 at 2,2 Id : 5904, {_}: meet ?7887 ?7887 =<= meet (meet ?7887 ?7887) (meet ?7887 ?7887) [7887] by Demod 5903 with 4648 at 1,1,3 Id : 5957, {_}: join (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Super 1976 with 5904 at 2,2,2 Id : 6021, {_}: join (meet (meet (meet ?7970 ?7970) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 5957 with 5904 at 1,1,1,2 Id : 4654, {_}: ?6603 =<= meet (meet ?6603 (join ?6604 ?6603)) ?6603 [6604, 6603] by Demod 4599 with 4034 at 2,2,1,3 Id : 4659, {_}: meet ?6620 (join ?6621 ?6620) =<= meet (meet (meet ?6620 (join ?6621 ?6620)) ?6620) (meet ?6620 (join ?6621 ?6620)) [6621, 6620] by Super 4654 with 3639 at 2,1,3 Id : 4722, {_}: meet ?6620 (join ?6621 ?6620) =<= meet ?6620 (meet ?6620 (join ?6621 ?6620)) [6621, 6620] by Demod 4659 with 4600 at 1,3 Id : 6022, {_}: join (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6021 with 4722 at 1,1,2 Id : 6023, {_}: join (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6022 with 5904 at 1,2,1,2 Id : 6024, {_}: join (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet ?7970 ?7970)) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6023 with 5904 at 2,1,2 Id : 6025, {_}: join (meet ?7970 ?7970) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6024 with 4600 at 1,2 Id : 6026, {_}: join (meet ?7970 ?7970) (meet (meet (meet ?7970 ?7970) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6025 with 5904 at 1,1,2,2 Id : 6027, {_}: join (meet ?7970 ?7970) (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6026 with 4722 at 1,2,2 Id : 6028, {_}: join (meet ?7970 ?7970) (meet ?7970 ?7970) =<= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6027 with 4600 at 2,2 Id : 6029, {_}: join (meet ?7970 ?7970) (meet ?7970 ?7970) =<= meet (meet ?7970 ?7970) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6028 with 5904 at 1,3 Id : 6030, {_}: join (meet ?7970 ?7970) (meet ?7970 ?7970) =<= meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)) [7970] by Demod 6029 with 4722 at 3 Id : 7104, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet (meet (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet ?9198 ?9198)) =>= meet (meet ?9198 ?9198) (meet ?9198 ?9198) [9198] by Super 4253 with 6030 at 1,2 Id : 7136, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet (meet ?9198 ?9198) (meet ?9198 ?9198)) =>= meet (meet ?9198 ?9198) (meet ?9198 ?9198) [9198] by Demod 7104 with 5904 at 1,2,2 Id : 7137, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet ?9198 ?9198) =>= meet (meet ?9198 ?9198) (meet ?9198 ?9198) [9198] by Demod 7136 with 5904 at 2,2 Id : 7138, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet ?9198 ?9198) =>= meet ?9198 ?9198 [9198] by Demod 7137 with 5904 at 3 Id : 7455, {_}: join (meet (join (meet ?9362 ?9362) (meet ?9362 ?9362)) (meet ?9362 ?9362)) (meet (meet ?9362 ?9362) (meet ?9362 ?9362)) =>= meet ?9362 ?9362 [9362] by Super 3639 with 7138 at 2,2,2 Id : 7070, {_}: meet ?9106 ?9106 =<= meet (join (meet ?9106 ?9106) (meet ?9106 ?9106)) (meet ?9106 ?9106) [9106] by Super 4600 with 6030 at 1,3 Id : 7486, {_}: join (meet ?9362 ?9362) (meet (meet ?9362 ?9362) (meet ?9362 ?9362)) =>= meet ?9362 ?9362 [9362] by Demod 7455 with 7070 at 1,2 Id : 7487, {_}: join (meet ?9362 ?9362) (meet ?9362 ?9362) =>= meet ?9362 ?9362 [9362] by Demod 7486 with 5904 at 2,2 Id : 7614, {_}: meet ?9434 ?9434 =<= join (meet (meet ?9434 ?9434) (meet ?9434 ?9434)) (meet ?9435 (meet ?9434 ?9434)) [9435, 9434] by Super 4056 with 7487 at 2,2,3 Id : 7787, {_}: meet ?9434 ?9434 =<= join (meet ?9434 ?9434) (meet ?9435 (meet ?9434 ?9434)) [9435, 9434] by Demod 7614 with 5904 at 1,3 Id : 4550, {_}: meet ?6472 (join ?6473 ?6473) =<= meet (meet (join ?6473 ?6473) ?6473) (meet ?6472 (join ?6473 ?6473)) [6473, 6472] by Super 4531 with 4056 at 2,1,3 Id : 7603, {_}: meet ?9408 (join (meet ?9409 ?9409) (meet ?9409 ?9409)) =<= meet (meet (join (meet ?9409 ?9409) (meet ?9409 ?9409)) (meet ?9409 ?9409)) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Super 4550 with 7487 at 2,2,3 Id : 7813, {_}: meet ?9408 (meet ?9409 ?9409) =<= meet (meet (join (meet ?9409 ?9409) (meet ?9409 ?9409)) (meet ?9409 ?9409)) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7603 with 7487 at 2,2 Id : 7814, {_}: meet ?9408 (meet ?9409 ?9409) =<= meet (meet (meet ?9409 ?9409) (meet ?9409 ?9409)) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7813 with 7487 at 1,1,3 Id : 7815, {_}: meet ?9408 (meet ?9409 ?9409) =<= meet (meet ?9409 ?9409) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7814 with 5904 at 1,3 Id : 4186, {_}: meet ?5904 (join ?5905 ?5905) =<= meet (meet ?5904 ?5905) (meet ?5904 (join ?5905 ?5905)) [5905, 5904] by Super 4175 with 4056 at 2,1,3 Id : 7627, {_}: meet ?9466 (join (meet ?9467 ?9467) (meet ?9467 ?9467)) =<= meet (meet ?9466 (meet ?9467 ?9467)) (meet ?9466 (meet ?9467 ?9467)) [9467, 9466] by Super 4186 with 7487 at 2,2,3 Id : 7721, {_}: meet ?9466 (meet ?9467 ?9467) =<= meet (meet ?9466 (meet ?9467 ?9467)) (meet ?9466 (meet ?9467 ?9467)) [9467, 9466] by Demod 7627 with 7487 at 2,2 Id : 8388, {_}: meet ?9978 (meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9979 (meet ?9980 ?9980))) =<= meet (meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9979 (meet ?9980 ?9980))) (meet ?9978 (meet ?9979 (meet ?9980 ?9980))) [9980, 9979, 9978] by Super 7815 with 7721 at 2,2,3 Id : 8609, {_}: meet ?9978 (meet ?9979 (meet ?9980 ?9980)) =<= meet (meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9979 (meet ?9980 ?9980))) (meet ?9978 (meet ?9979 (meet ?9980 ?9980))) [9980, 9979, 9978] by Demod 8388 with 7721 at 2,2 Id : 8610, {_}: meet ?9978 (meet ?9979 (meet ?9980 ?9980)) =<= meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9978 (meet ?9979 (meet ?9980 ?9980))) [9980, 9979, 9978] by Demod 8609 with 7721 at 1,3 Id : 9628, {_}: meet (meet ?11055 ?11056) ?11055 =<= meet (meet (meet ?11055 ?11056) (meet ?11055 ?11056)) (meet (meet ?11055 ?11056) ?11055) [11056, 11055] by Super 4175 with 1603 at 2,1,3 Id : 9629, {_}: meet (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058) (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058) (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058)) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Super 9628 with 4034 at 1,2,3 Id : 9779, {_}: meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058) (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058)) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Demod 9629 with 4034 at 1,2 Id : 9780, {_}: meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet ?11058 (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058)) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Demod 9779 with 4034 at 1,1,3 Id : 9781, {_}: meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet ?11058 ?11058) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Demod 9780 with 4034 at 2,1,3 Id : 19039, {_}: meet (meet ?19609 ?19609) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) =<= meet (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) [19609] by Super 8610 with 9781 at 2,3 Id : 11891, {_}: meet ?13166 (join ?13167 ?13167) =<= meet (meet (meet ?13166 (join ?13167 ?13167)) ?13167) (meet ?13166 (join ?13167 ?13167)) [13167, 13166] by Super 4654 with 4056 at 2,1,3 Id : 11910, {_}: meet (join ?13229 ?13230) (join ?13229 ?13229) =<= meet ?13229 (meet (join ?13229 ?13230) (join ?13229 ?13229)) [13230, 13229] by Super 11891 with 4034 at 1,3 Id : 19095, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =<= meet (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) [19609] by Demod 19039 with 11910 at 2,2 Id : 19096, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =<= meet (meet (join ?19609 ?19609) (join ?19609 ?19609)) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) [19609] by Demod 19095 with 11910 at 1,3 Id : 19097, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =<= meet (meet (join ?19609 ?19609) (join ?19609 ?19609)) (meet (join ?19609 ?19609) (join ?19609 ?19609)) [19609] by Demod 19096 with 11910 at 2,3 Id : 19098, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =>= meet (join ?19609 ?19609) (join ?19609 ?19609) [19609] by Demod 19097 with 5904 at 3 Id : 19320, {_}: join (meet (join ?19872 ?19872) (join ?19872 ?19872)) (meet (meet (join ?19872 ?19872) (join ?19872 ?19872)) (join (meet ?19872 ?19872) (meet (join ?19872 ?19872) (join ?19872 ?19872)))) =>= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Super 3639 with 19098 at 1,2 Id : 19473, {_}: join (meet (join ?19872 ?19872) (join ?19872 ?19872)) (meet (meet (join ?19872 ?19872) (join ?19872 ?19872)) ?19872) =>= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Demod 19320 with 4056 at 2,2,2 Id : 19474, {_}: join (meet (join ?19872 ?19872) (join ?19872 ?19872)) ?19872 =>= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Demod 19473 with 4034 at 2,2 Id : 19603, {_}: join (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (join ?20044 ?20044) (join ?20044 ?20044)))) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Super 1603 with 19474 at 2,2,1,2 Id : 19685, {_}: join (meet ?20044 (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (join ?20044 ?20044) (join ?20044 ?20044)))) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19603 with 4034 at 1,1,2 Id : 19686, {_}: join (meet ?20044 (meet (join ?20044 ?20044) (join ?20044 ?20044))) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19685 with 5904 at 2,1,2 Id : 19687, {_}: join (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19686 with 11910 at 1,2 Id : 19688, {_}: join (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet ?20044 (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19687 with 4034 at 1,2,2 Id : 19689, {_}: join (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (join ?20044 ?20044) (join ?20044 ?20044)) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19688 with 11910 at 2,2 Id : 19690, {_}: meet (join ?20044 ?20044) (join ?20044 ?20044) =<= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19689 with 7487 at 2 Id : 19691, {_}: meet (join ?20044 ?20044) (join ?20044 ?20044) =>= ?20044 [20044] by Demod 19690 with 4034 at 3 Id : 19840, {_}: join ?19872 ?19872 =<= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Demod 19474 with 19691 at 1,2 Id : 19841, {_}: join ?19872 ?19872 =>= ?19872 [19872] by Demod 19840 with 19691 at 3 Id : 19901, {_}: meet ?20044 (join ?20044 ?20044) =>= ?20044 [20044] by Demod 19691 with 19841 at 1,2 Id : 19902, {_}: meet ?20044 ?20044 =>= ?20044 [20044] by Demod 19901 with 19841 at 2,2 Id : 19937, {_}: ?9434 =<= join (meet ?9434 ?9434) (meet ?9435 (meet ?9434 ?9434)) [9435, 9434] by Demod 7787 with 19902 at 2 Id : 19938, {_}: ?9434 =<= join ?9434 (meet ?9435 (meet ?9434 ?9434)) [9435, 9434] by Demod 19937 with 19902 at 1,3 Id : 19939, {_}: ?9434 =<= join ?9434 (meet ?9435 ?9434) [9435, 9434] by Demod 19938 with 19902 at 2,2,3 Id : 7612, {_}: meet ?9428 ?9428 =<= meet (meet (join (meet ?9428 ?9428) ?9429) (meet ?9428 ?9428)) (meet ?9428 ?9428) [9429, 9428] by Super 4034 with 7487 at 2,1,3 Id : 14086, {_}: join (meet ?15167 ?15167) (meet (meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167)) (join (meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167)) (meet ?15167 ?15167))) =>= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Super 1492 with 7612 at 1,2 Id : 8072, {_}: join (meet ?9755 (meet ?9756 ?9756)) (meet (meet ?9756 ?9756) (join (meet ?9756 ?9756) (meet ?9755 (meet ?9756 ?9756)))) =>= meet ?9756 ?9756 [9756, 9755] by Super 1492 with 7815 at 1,2 Id : 8152, {_}: join (meet ?9755 (meet ?9756 ?9756)) (meet (meet ?9756 ?9756) (meet ?9756 ?9756)) =>= meet ?9756 ?9756 [9756, 9755] by Demod 8072 with 7787 at 2,2,2 Id : 8153, {_}: join (meet ?9755 (meet ?9756 ?9756)) (meet ?9756 ?9756) =>= meet ?9756 ?9756 [9756, 9755] by Demod 8152 with 5904 at 2,2 Id : 14280, {_}: join (meet ?15167 ?15167) (meet (meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167)) (meet ?15167 ?15167)) =>= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 14086 with 8153 at 2,2,2 Id : 14281, {_}: join (meet ?15167 ?15167) (meet ?15167 ?15167) =<= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 14280 with 7612 at 2,2 Id : 14282, {_}: meet ?15167 ?15167 =<= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 14281 with 7487 at 2 Id : 19913, {_}: ?15167 =<= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 14282 with 19902 at 2 Id : 19914, {_}: ?15167 =<= meet (join ?15167 ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 19913 with 19902 at 1,1,3 Id : 19915, {_}: ?15167 =<= meet (join ?15167 ?15168) ?15167 [15168, 15167] by Demod 19914 with 19902 at 2,3 Id : 20061, {_}: ?20159 =<= join (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159) (meet ?20159 (join (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159) (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159))) [20161, 20160, 20159] by Super 2854 with 19902 at 1,3 Id : 20247, {_}: ?20159 =<= join (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159) (meet ?20159 (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159)) [20161, 20160, 20159] by Demod 20061 with 19841 at 2,2,3 Id : 20310, {_}: ?20323 =<= join (join (meet ?20323 ?20324) (meet ?20325 ?20323)) ?20323 [20325, 20324, 20323] by Demod 20247 with 19939 at 3 Id : 20311, {_}: ?20327 =<= join (join (meet ?20327 ?20328) ?20327) ?20327 [20328, 20327] by Super 20310 with 19902 at 2,1,3 Id : 20418, {_}: join (meet ?20444 ?20445) ?20444 =<= meet ?20444 (join (meet ?20444 ?20445) ?20444) [20445, 20444] by Super 19915 with 20311 at 1,3 Id : 20570, {_}: ?20658 =<= meet (join (meet ?20658 ?20659) ?20658) ?20658 [20659, 20658] by Super 4600 with 20418 at 1,3 Id : 20428, {_}: join (meet (join (meet ?20476 ?20477) ?20476) ?20476) (meet (join (meet ?20476 ?20477) ?20476) ?20476) =>= join (meet ?20476 ?20477) ?20476 [20477, 20476] by Super 1492 with 20311 at 2,2,2 Id : 20488, {_}: meet (join (meet ?20476 ?20477) ?20476) ?20476 =>= join (meet ?20476 ?20477) ?20476 [20477, 20476] by Demod 20428 with 19841 at 2 Id : 20938, {_}: ?20963 =<= join (meet ?20963 ?20964) ?20963 [20964, 20963] by Demod 20570 with 20488 at 3 Id : 20949, {_}: join ?21001 ?21002 =<= join ?21001 (join ?21001 ?21002) [21002, 21001] by Super 20938 with 19915 at 1,3 Id : 21032, {_}: join (meet ?21070 (join ?21070 ?21071)) (meet ?21070 (join ?21070 ?21071)) =>= ?21070 [21071, 21070] by Super 1492 with 20949 at 2,2,2 Id : 21083, {_}: meet ?21070 (join ?21070 ?21071) =>= ?21070 [21071, 21070] by Demod 21032 with 19841 at 2 Id : 21236, {_}: join ?21275 ?21276 =<= join (join ?21275 ?21276) ?21275 [21276, 21275] by Super 19939 with 21083 at 2,3 Id : 20248, {_}: ?20159 =<= join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159 [20161, 20160, 20159] by Demod 20247 with 19939 at 3 Id : 39274, {_}: join ?49538 ?49539 =<= join (join (meet (join ?49538 ?49539) ?49540) ?49538) (join ?49538 ?49539) [49540, 49539, 49538] by Super 20248 with 21083 at 2,1,3 Id : 4548, {_}: meet ?6464 (join ?6465 ?6464) =<= meet (meet (join ?6465 ?6464) ?6464) (meet ?6464 (join ?6465 ?6464)) [6465, 6464] by Super 4531 with 3639 at 2,1,3 Id : 20904, {_}: ?20658 =<= join (meet ?20658 ?20659) ?20658 [20659, 20658] by Demod 20570 with 20488 at 3 Id : 20921, {_}: join (meet (meet ?20906 ?20907) ?20906) (meet (meet ?20906 ?20907) ?20906) =>= meet ?20906 ?20907 [20907, 20906] by Super 1492 with 20904 at 2,2,2 Id : 20982, {_}: meet (meet ?20906 ?20907) ?20906 =>= meet ?20906 ?20907 [20907, 20906] by Demod 20921 with 19841 at 2 Id : 21129, {_}: ?6396 =<= meet ?6396 (join ?6399 ?6396) [6399, 6396] by Demod 4600 with 20982 at 3 Id : 21130, {_}: ?6464 =<= meet (meet (join ?6465 ?6464) ?6464) (meet ?6464 (join ?6465 ?6464)) [6465, 6464] by Demod 4548 with 21129 at 2 Id : 21131, {_}: ?6464 =<= meet (meet (join ?6465 ?6464) ?6464) ?6464 [6465, 6464] by Demod 21130 with 21129 at 2,3 Id : 2937, {_}: join (meet (meet ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228)) (meet ?4228 (join ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228)))) (meet (meet ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228)) ?4228) =>= meet ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228) [4230, 4229, 4228, 4227] by Super 1492 with 2854 at 2,2,2 Id : 20279, {_}: join (meet (meet ?4227 ?4228) (meet ?4228 (join ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228)))) (meet (meet ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228)) ?4228) =>= meet ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228) [4230, 4229, 4228, 4227] by Demod 2937 with 20248 at 2,1,1,2 Id : 20280, {_}: join (meet (meet ?4227 ?4228) (meet ?4228 (join ?4227 ?4228))) (meet (meet ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228)) ?4228) =>= meet ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228) [4230, 4229, 4228, 4227] by Demod 20279 with 20248 at 2,2,2,1,2 Id : 20281, {_}: join (meet (meet ?4227 ?4228) (meet ?4228 (join ?4227 ?4228))) (meet (meet ?4227 ?4228) ?4228) =?= meet ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228) [4230, 4229, 4228, 4227] by Demod 20280 with 20248 at 2,1,2,2 Id : 20282, {_}: join (meet (meet ?4227 ?4228) (meet ?4228 (join ?4227 ?4228))) (meet (meet ?4227 ?4228) ?4228) =>= meet ?4227 ?4228 [4228, 4227] by Demod 20281 with 20248 at 2,3 Id : 21135, {_}: join (meet (meet ?4227 ?4228) ?4228) (meet (meet ?4227 ?4228) ?4228) =>= meet ?4227 ?4228 [4228, 4227] by Demod 20282 with 21129 at 2,1,2 Id : 21137, {_}: meet (meet ?4227 ?4228) ?4228 =>= meet ?4227 ?4228 [4228, 4227] by Demod 21135 with 19841 at 2 Id : 21140, {_}: ?6464 =<= meet (join ?6465 ?6464) ?6464 [6465, 6464] by Demod 21131 with 21137 at 3 Id : 39375, {_}: join ?49997 ?49998 =<= join (join ?49998 ?49997) (join ?49997 ?49998) [49998, 49997] by Super 39274 with 21140 at 1,1,3 Id : 39752, {_}: join (join ?50116 ?50117) (join ?50117 ?50116) =<->= join (join ?50117 ?50116) (join ?50116 ?50117) [50117, 50116] by Super 21236 with 39375 at 1,3 Id : 39912, {_}: join ?50117 ?50116 =<= join (join ?50117 ?50116) (join ?50116 ?50117) [50116, 50117] by Demod 39752 with 39375 at 2 Id : 39913, {_}: join ?50117 ?50116 =<->= join ?50116 ?50117 [50116, 50117] by Demod 39912 with 39375 at 3 Id : 40465, {_}: join b a === join b a [] by Demod 1 with 39913 at 3 Id : 1, {_}: join b a =<= join a b [] by prove_wal_axioms_4 % SZS output end CNFRefutation for LAT095-1.p 24107: solved LAT095-1.p in 20.933307 using nrkbo WARNING: TreeLimitedRun lost 58.96s, total lost is 58.96s FINAL WATCH: 79.9 CPU 42.1 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT096-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 24138 TreeLimitedRun: ---------------------------------------------------------- 24140: Facts: 24140: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 24140: Goal: 24140: Id : 1, {_}: meet (meet (join a b) (join c b)) b =>= b [] by prove_wal_axioms_5 Statistics : Max weight : 2918 Found proof, 36.998936s % SZS status Unsatisfiable for LAT096-1.p % SZS output start CNFRefutation for LAT096-1.p Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 Id : 3, {_}: join (meet (join (meet ?9 ?10) (meet ?10 (join ?9 ?10))) ?11) (meet (join (meet ?9 (join (join (meet ?10 ?12) (meet ?13 ?10)) ?10)) (meet (join (meet ?10 (meet (meet (join ?10 ?12) (join ?13 ?10)) ?10)) (meet ?14 (join ?10 (meet (meet (join ?10 ?12) (join ?13 ?10)) ?10)))) (join ?9 (join (join (meet ?10 ?12) (meet ?13 ?10)) ?10)))) (join (join (meet ?9 ?10) (meet ?10 (join ?9 ?10))) ?11)) =>= ?10 [14, 13, 12, 11, 10, 9] by single_axiom ?9 ?10 ?11 ?12 ?13 ?14 Id : 31, {_}: join (meet (join (meet ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))) (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) (join ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))))) ?208) (meet (join (meet ?205 (join (join (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) ?209) (meet ?210 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))) (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))) (meet ?207 (join ?205 (join (join (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) ?209) (meet ?210 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))) (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))))) (join (join (meet ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))) (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) (join ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))))) ?208)) =>= join (meet ?206 ?207) (meet ?207 (join ?206 ?207)) [210, 209, 208, 207, 206, 205] by Super 3 with 2 at 1,2,1,2,2 Id : 34, {_}: join (meet (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 240, 239, 238, 237, 236, 235, 234] by Super 31 with 2 at 2,2,2,1,2,2,2 Id : 116, {_}: join (meet (join (meet ?234 ?236) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 240, 239, 238, 237, 235, 236, 234] by Demod 34 with 2 at 2,1,1,1,2 Id : 117, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 240, 239, 238, 237, 235, 236, 234] by Demod 116 with 2 at 1,2,1,1,2 Id : 118, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 239, 238, 237, 235, 240, 236, 234] by Demod 117 with 2 at 2,2,2,1,1,2 Id : 119, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 118 with 2 at 1,1,1,2,1,1,2,2 Id : 120, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 119 with 2 at 2,2,1,2,1,1,2,2 Id : 121, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 120 with 2 at 2,2,1,1,2,2 Id : 122, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 121 with 2 at 1,1,1,2,2,2,1,2,2 Id : 123, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 122 with 2 at 2,2,1,2,2,2,1,2,2 Id : 124, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 123 with 2 at 2,2,2,2,1,2,2 Id : 125, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)))) (join (join (meet ?234 ?236) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 124 with 2 at 2,1,1,2,2,2 Id : 126, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)))) (join (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240)) =?= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 125 with 2 at 1,2,1,2,2,2 Id : 702, {_}: join (meet (join (meet ?1187 ?1188) (meet ?1188 (join ?1187 ?1188))) ?1189) (meet (join (meet ?1187 (join (join (meet ?1188 ?1190) (meet ?1191 ?1188)) ?1188)) (meet (join (meet ?1192 (join (join (meet ?1188 ?1193) (meet ?1194 ?1188)) ?1188)) (meet (join (meet ?1188 (meet (meet (join ?1188 ?1193) (join ?1194 ?1188)) ?1188)) (meet ?1195 (join ?1188 (meet (meet (join ?1188 ?1193) (join ?1194 ?1188)) ?1188)))) (join ?1192 (join (join (meet ?1188 ?1193) (meet ?1194 ?1188)) ?1188)))) (join ?1187 (join (join (meet ?1188 ?1190) (meet ?1191 ?1188)) ?1188)))) (join (join (meet ?1187 ?1188) (meet ?1188 (join ?1187 ?1188))) ?1189)) =>= ?1188 [1195, 1194, 1193, 1192, 1191, 1190, 1189, 1188, 1187] by Demod 126 with 2 at 3 Id : 1101, {_}: join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1978) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1978)) =>= ?1977 [1978, 1977, 1976] by Super 702 with 2 at 1,2,2 Id : 724, {_}: join (meet (join (meet (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496) (meet ?1496 (join (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496))) ?1497) (meet ?1496 (join (join (meet (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496) (meet ?1496 (join (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496))) ?1497)) =>= ?1496 [1497, 1496, 1495] by Super 702 with 2 at 1,2,2 Id : 1118, {_}: join (meet (join (meet (join (meet (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101) (meet ?2101 (join (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101))) ?2101) (meet ?2101 (join (join (meet (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101) (meet ?2101 (join (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101))) ?2101))) ?2102) (meet ?2101 (join ?2101 ?2102)) =>= ?2101 [2102, 2101, 2100] by Super 1101 with 724 at 1,2,2,2 Id : 1492, {_}: join (meet ?2101 ?2102) (meet ?2101 (join ?2101 ?2102)) =>= ?2101 [2102, 2101] by Demod 1118 with 724 at 1,1,2 Id : 10, {_}: join (meet (join (meet ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))) (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) (join ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))))) ?84) (meet (join (meet ?81 (join (join (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) ?85) (meet ?86 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))) (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))) (meet ?83 (join ?81 (join (join (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) ?85) (meet ?86 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))) (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))))) (join (join (meet ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))) (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) (join ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))))) ?84)) =>= join (meet ?82 ?83) (meet ?83 (join ?82 ?83)) [86, 85, 84, 83, 82, 81] by Super 3 with 2 at 1,2,1,2,2 Id : 1054, {_}: join (meet (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1599, 1598, 1597, 1596] by Super 10 with 724 at 2,2,2,1,2,2,2 Id : 1166, {_}: join (meet (join (meet ?1596 ?1598) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1599, 1597, 1598, 1596] by Demod 1054 with 724 at 2,1,1,1,2 Id : 1167, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1599, 1597, 1598, 1596] by Demod 1166 with 724 at 1,2,1,1,2 Id : 1168, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1597, 1599, 1598, 1596] by Demod 1167 with 724 at 2,2,2,1,1,2 Id : 1169, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1168 with 724 at 1,1,1,2,1,1,2,2 Id : 1170, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1169 with 724 at 2,2,1,2,1,1,2,2 Id : 1171, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1170 with 724 at 2,2,1,1,2,2 Id : 1172, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1171 with 724 at 1,1,1,2,2,2,1,2,2 Id : 1173, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1172 with 724 at 2,2,1,2,2,2,1,2,2 Id : 1174, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1173 with 724 at 2,2,2,2,1,2,2 Id : 1175, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 ?1598) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1174 with 724 at 2,1,1,2,2,2 Id : 1176, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599)) =?= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1175 with 724 at 1,2,1,2,2,2 Id : 1177, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599)) =>= ?1598 [1601, 1600, 1599, 1598, 1596] by Demod 1176 with 724 at 3 Id : 2463, {_}: join (meet (join (meet ?3676 ?3677) (meet ?3677 (join ?3676 ?3677))) ?3678) (meet (join (meet ?3676 (join (join (meet ?3677 ?3679) (meet ?3680 ?3677)) ?3677)) (meet ?3677 (join ?3676 (join (join (meet ?3677 ?3679) (meet ?3680 ?3677)) ?3677)))) (join (join (meet ?3676 ?3677) (meet ?3677 (join ?3676 ?3677))) ?3678)) =>= ?3677 [3680, 3679, 3678, 3677, 3676] by Demod 1176 with 724 at 3 Id : 2476, {_}: join (meet (join (meet (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))))) (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) (join (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))))))) ?3789) (meet (join (meet (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) (join (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))))) (join ?3786 ?3789)) =>= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3791, 3790, 3789, 3788, 3787, 3786, 3785] by Super 2463 with 1177 at 1,2,2,2 Id : 2852, {_}: join (meet ?3786 ?3789) (meet (join (meet (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) (join (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))))) (join ?3786 ?3789)) =>= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3791, 3790, 3788, 3787, 3785, 3789, 3786] by Demod 2476 with 1177 at 1,1,2 Id : 2853, {_}: join (meet ?3786 ?3789) (meet ?3786 (join ?3786 ?3789)) =?= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3788, 3787, 3785, 3789, 3786] by Demod 2852 with 1177 at 1,2,2 Id : 2854, {_}: ?3786 =<= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3788, 3787, 3785, 3786] by Demod 2853 with 1492 at 2 Id : 2902, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet ?1598 (join (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599)) =>= ?1598 [1599, 1598, 1596] by Demod 1177 with 2854 at 1,2,2 Id : 2472, {_}: join (meet (join (meet (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))))) (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) (join (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))))))) ?3754) (meet (join (meet (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) (join (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))))) (join ?3750 ?3754)) =>= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3756, 3755, 3754, 3753, 3752, 3751, 3750, 3749] by Super 2463 with 2 at 1,2,2,2 Id : 2840, {_}: join (meet ?3750 ?3754) (meet (join (meet (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) (join (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))))) (join ?3750 ?3754)) =>= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3756, 3755, 3753, 3752, 3751, 3749, 3754, 3750] by Demod 2472 with 2 at 1,1,2 Id : 2841, {_}: join (meet ?3750 ?3754) (meet ?3750 (join ?3750 ?3754)) =?= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3753, 3752, 3751, 3749, 3754, 3750] by Demod 2840 with 2 at 1,2,2 Id : 2842, {_}: ?3750 =<= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3753, 3752, 3751, 3749, 3750] by Demod 2841 with 1492 at 2 Id : 3363, {_}: ?4574 =<= join (meet ?4574 (meet (meet (join ?4574 ?4575) (join ?4576 ?4574)) ?4574)) (meet ?4577 (join ?4574 (meet (meet (join ?4574 ?4575) (join ?4576 ?4574)) ?4574))) [4577, 4576, 4575, 4574] by Super 2902 with 2842 at 2 Id : 3639, {_}: join (meet ?5256 ?5257) (meet ?5257 (join ?5256 ?5257)) =>= ?5257 [5257, 5256] by Super 2902 with 3363 at 2 Id : 4080, {_}: ?5672 =<= meet (meet (join ?5672 ?5673) (join ?5674 ?5672)) ?5672 [5674, 5673, 5672] by Super 3363 with 3639 at 3 Id : 4531, {_}: meet ?6392 ?6393 =<= meet (meet ?6393 (join ?6394 (meet ?6392 ?6393))) (meet ?6392 ?6393) [6394, 6393, 6392] by Super 4080 with 3639 at 1,1,3 Id : 4034, {_}: ?5513 =<= meet (meet (join ?5513 ?5514) (join ?5515 ?5513)) ?5513 [5515, 5514, 5513] by Super 3363 with 3639 at 3 Id : 4532, {_}: meet (meet (join ?6396 ?6397) (join ?6398 ?6396)) ?6396 =<= meet (meet ?6396 (join ?6399 (meet (meet (join ?6396 ?6397) (join ?6398 ?6396)) ?6396))) ?6396 [6399, 6398, 6397, 6396] by Super 4531 with 4034 at 2,3 Id : 4599, {_}: ?6396 =<= meet (meet ?6396 (join ?6399 (meet (meet (join ?6396 ?6397) (join ?6398 ?6396)) ?6396))) ?6396 [6398, 6397, 6399, 6396] by Demod 4532 with 4034 at 2 Id : 4600, {_}: ?6396 =<= meet (meet ?6396 (join ?6399 ?6396)) ?6396 [6399, 6396] by Demod 4599 with 4034 at 2,2,1,3 Id : 1598, {_}: join (meet ?2599 ?2600) (meet ?2599 (join ?2599 ?2600)) =>= ?2599 [2600, 2599] by Demod 1118 with 724 at 1,1,2 Id : 1603, {_}: join (meet (meet ?2630 ?2631) (meet ?2630 (join ?2630 ?2631))) (meet (meet ?2630 ?2631) ?2630) =>= meet ?2630 ?2631 [2631, 2630] by Super 1598 with 1492 at 2,2,2 Id : 4175, {_}: meet ?5858 ?5859 =<= meet (meet ?5858 (join ?5860 (meet ?5858 ?5859))) (meet ?5858 ?5859) [5860, 5859, 5858] by Super 4080 with 1492 at 1,1,3 Id : 4180, {_}: meet ?5882 (join ?5882 ?5883) =<= meet (meet ?5882 ?5882) (meet ?5882 (join ?5882 ?5883)) [5883, 5882] by Super 4175 with 1492 at 2,1,3 Id : 4253, {_}: join (meet ?5965 (join ?5965 ?5965)) (meet (meet ?5965 ?5965) ?5965) =>= meet ?5965 ?5965 [5965] by Super 1603 with 4180 at 1,2 Id : 1976, {_}: join (meet (meet (meet ?2837 ?2838) (meet ?2837 (join ?2837 ?2838))) (meet (meet ?2837 ?2838) ?2837)) (meet (meet (meet ?2837 ?2838) (meet ?2837 (join ?2837 ?2838))) (meet ?2837 ?2838)) =>= meet (meet ?2837 ?2838) (meet ?2837 (join ?2837 ?2838)) [2838, 2837] by Super 1492 with 1603 at 2,2,2 Id : 4544, {_}: meet ?6450 (join ?6450 ?6451) =<= meet (meet (join ?6450 ?6451) ?6450) (meet ?6450 (join ?6450 ?6451)) [6451, 6450] by Super 4531 with 1492 at 2,1,3 Id : 4648, {_}: join ?6582 (meet ?6582 (join (meet ?6582 (join ?6583 ?6582)) ?6582)) =>= ?6582 [6583, 6582] by Super 3639 with 4600 at 1,2 Id : 5871, {_}: meet ?7887 (join ?7887 (meet ?7887 (join (meet ?7887 (join ?7888 ?7887)) ?7887))) =<= meet (meet (join ?7887 (meet ?7887 (join (meet ?7887 (join ?7888 ?7887)) ?7887))) ?7887) (meet ?7887 ?7887) [7888, 7887] by Super 4544 with 4648 at 2,2,3 Id : 5903, {_}: meet ?7887 ?7887 =<= meet (meet (join ?7887 (meet ?7887 (join (meet ?7887 (join ?7888 ?7887)) ?7887))) ?7887) (meet ?7887 ?7887) [7888, 7887] by Demod 5871 with 4648 at 2,2 Id : 5904, {_}: meet ?7887 ?7887 =<= meet (meet ?7887 ?7887) (meet ?7887 ?7887) [7887] by Demod 5903 with 4648 at 1,1,3 Id : 5957, {_}: join (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Super 1976 with 5904 at 2,2,2 Id : 6021, {_}: join (meet (meet (meet ?7970 ?7970) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 5957 with 5904 at 1,1,1,2 Id : 4654, {_}: ?6603 =<= meet (meet ?6603 (join ?6604 ?6603)) ?6603 [6604, 6603] by Demod 4599 with 4034 at 2,2,1,3 Id : 4659, {_}: meet ?6620 (join ?6621 ?6620) =<= meet (meet (meet ?6620 (join ?6621 ?6620)) ?6620) (meet ?6620 (join ?6621 ?6620)) [6621, 6620] by Super 4654 with 3639 at 2,1,3 Id : 4722, {_}: meet ?6620 (join ?6621 ?6620) =<= meet ?6620 (meet ?6620 (join ?6621 ?6620)) [6621, 6620] by Demod 4659 with 4600 at 1,3 Id : 6022, {_}: join (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6021 with 4722 at 1,1,2 Id : 6023, {_}: join (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6022 with 5904 at 1,2,1,2 Id : 6024, {_}: join (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet ?7970 ?7970)) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6023 with 5904 at 2,1,2 Id : 6025, {_}: join (meet ?7970 ?7970) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6024 with 4600 at 1,2 Id : 6026, {_}: join (meet ?7970 ?7970) (meet (meet (meet ?7970 ?7970) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6025 with 5904 at 1,1,2,2 Id : 6027, {_}: join (meet ?7970 ?7970) (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet ?7970 ?7970)) =<= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6026 with 4722 at 1,2,2 Id : 6028, {_}: join (meet ?7970 ?7970) (meet ?7970 ?7970) =<= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6027 with 4600 at 2,2 Id : 6029, {_}: join (meet ?7970 ?7970) (meet ?7970 ?7970) =<= meet (meet ?7970 ?7970) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6028 with 5904 at 1,3 Id : 6030, {_}: join (meet ?7970 ?7970) (meet ?7970 ?7970) =<= meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)) [7970] by Demod 6029 with 4722 at 3 Id : 7104, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet (meet (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet ?9198 ?9198)) =>= meet (meet ?9198 ?9198) (meet ?9198 ?9198) [9198] by Super 4253 with 6030 at 1,2 Id : 7136, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet (meet ?9198 ?9198) (meet ?9198 ?9198)) =>= meet (meet ?9198 ?9198) (meet ?9198 ?9198) [9198] by Demod 7104 with 5904 at 1,2,2 Id : 7137, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet ?9198 ?9198) =>= meet (meet ?9198 ?9198) (meet ?9198 ?9198) [9198] by Demod 7136 with 5904 at 2,2 Id : 7138, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet ?9198 ?9198) =>= meet ?9198 ?9198 [9198] by Demod 7137 with 5904 at 3 Id : 7455, {_}: join (meet (join (meet ?9362 ?9362) (meet ?9362 ?9362)) (meet ?9362 ?9362)) (meet (meet ?9362 ?9362) (meet ?9362 ?9362)) =>= meet ?9362 ?9362 [9362] by Super 3639 with 7138 at 2,2,2 Id : 7070, {_}: meet ?9106 ?9106 =<= meet (join (meet ?9106 ?9106) (meet ?9106 ?9106)) (meet ?9106 ?9106) [9106] by Super 4600 with 6030 at 1,3 Id : 7486, {_}: join (meet ?9362 ?9362) (meet (meet ?9362 ?9362) (meet ?9362 ?9362)) =>= meet ?9362 ?9362 [9362] by Demod 7455 with 7070 at 1,2 Id : 7487, {_}: join (meet ?9362 ?9362) (meet ?9362 ?9362) =>= meet ?9362 ?9362 [9362] by Demod 7486 with 5904 at 2,2 Id : 7612, {_}: meet ?9428 ?9428 =<= meet (meet (join (meet ?9428 ?9428) ?9429) (meet ?9428 ?9428)) (meet ?9428 ?9428) [9429, 9428] by Super 4034 with 7487 at 2,1,3 Id : 14086, {_}: join (meet ?15167 ?15167) (meet (meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167)) (join (meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167)) (meet ?15167 ?15167))) =>= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Super 1492 with 7612 at 1,2 Id : 4055, {_}: ?4574 =<= join (meet ?4574 ?4574) (meet ?4577 (join ?4574 (meet (meet (join ?4574 ?4575) (join ?4576 ?4574)) ?4574))) [4576, 4575, 4577, 4574] by Demod 3363 with 4034 at 2,1,3 Id : 4056, {_}: ?4574 =<= join (meet ?4574 ?4574) (meet ?4577 (join ?4574 ?4574)) [4577, 4574] by Demod 4055 with 4034 at 2,2,2,3 Id : 4550, {_}: meet ?6472 (join ?6473 ?6473) =<= meet (meet (join ?6473 ?6473) ?6473) (meet ?6472 (join ?6473 ?6473)) [6473, 6472] by Super 4531 with 4056 at 2,1,3 Id : 7603, {_}: meet ?9408 (join (meet ?9409 ?9409) (meet ?9409 ?9409)) =<= meet (meet (join (meet ?9409 ?9409) (meet ?9409 ?9409)) (meet ?9409 ?9409)) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Super 4550 with 7487 at 2,2,3 Id : 7813, {_}: meet ?9408 (meet ?9409 ?9409) =<= meet (meet (join (meet ?9409 ?9409) (meet ?9409 ?9409)) (meet ?9409 ?9409)) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7603 with 7487 at 2,2 Id : 7814, {_}: meet ?9408 (meet ?9409 ?9409) =<= meet (meet (meet ?9409 ?9409) (meet ?9409 ?9409)) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7813 with 7487 at 1,1,3 Id : 7815, {_}: meet ?9408 (meet ?9409 ?9409) =<= meet (meet ?9409 ?9409) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7814 with 5904 at 1,3 Id : 8072, {_}: join (meet ?9755 (meet ?9756 ?9756)) (meet (meet ?9756 ?9756) (join (meet ?9756 ?9756) (meet ?9755 (meet ?9756 ?9756)))) =>= meet ?9756 ?9756 [9756, 9755] by Super 1492 with 7815 at 1,2 Id : 7614, {_}: meet ?9434 ?9434 =<= join (meet (meet ?9434 ?9434) (meet ?9434 ?9434)) (meet ?9435 (meet ?9434 ?9434)) [9435, 9434] by Super 4056 with 7487 at 2,2,3 Id : 7787, {_}: meet ?9434 ?9434 =<= join (meet ?9434 ?9434) (meet ?9435 (meet ?9434 ?9434)) [9435, 9434] by Demod 7614 with 5904 at 1,3 Id : 8152, {_}: join (meet ?9755 (meet ?9756 ?9756)) (meet (meet ?9756 ?9756) (meet ?9756 ?9756)) =>= meet ?9756 ?9756 [9756, 9755] by Demod 8072 with 7787 at 2,2,2 Id : 8153, {_}: join (meet ?9755 (meet ?9756 ?9756)) (meet ?9756 ?9756) =>= meet ?9756 ?9756 [9756, 9755] by Demod 8152 with 5904 at 2,2 Id : 14280, {_}: join (meet ?15167 ?15167) (meet (meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167)) (meet ?15167 ?15167)) =>= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 14086 with 8153 at 2,2,2 Id : 14281, {_}: join (meet ?15167 ?15167) (meet ?15167 ?15167) =<= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 14280 with 7612 at 2,2 Id : 14282, {_}: meet ?15167 ?15167 =<= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 14281 with 7487 at 2 Id : 4186, {_}: meet ?5904 (join ?5905 ?5905) =<= meet (meet ?5904 ?5905) (meet ?5904 (join ?5905 ?5905)) [5905, 5904] by Super 4175 with 4056 at 2,1,3 Id : 7627, {_}: meet ?9466 (join (meet ?9467 ?9467) (meet ?9467 ?9467)) =<= meet (meet ?9466 (meet ?9467 ?9467)) (meet ?9466 (meet ?9467 ?9467)) [9467, 9466] by Super 4186 with 7487 at 2,2,3 Id : 7721, {_}: meet ?9466 (meet ?9467 ?9467) =<= meet (meet ?9466 (meet ?9467 ?9467)) (meet ?9466 (meet ?9467 ?9467)) [9467, 9466] by Demod 7627 with 7487 at 2,2 Id : 8388, {_}: meet ?9978 (meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9979 (meet ?9980 ?9980))) =<= meet (meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9979 (meet ?9980 ?9980))) (meet ?9978 (meet ?9979 (meet ?9980 ?9980))) [9980, 9979, 9978] by Super 7815 with 7721 at 2,2,3 Id : 8609, {_}: meet ?9978 (meet ?9979 (meet ?9980 ?9980)) =<= meet (meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9979 (meet ?9980 ?9980))) (meet ?9978 (meet ?9979 (meet ?9980 ?9980))) [9980, 9979, 9978] by Demod 8388 with 7721 at 2,2 Id : 8610, {_}: meet ?9978 (meet ?9979 (meet ?9980 ?9980)) =<= meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9978 (meet ?9979 (meet ?9980 ?9980))) [9980, 9979, 9978] by Demod 8609 with 7721 at 1,3 Id : 9628, {_}: meet (meet ?11055 ?11056) ?11055 =<= meet (meet (meet ?11055 ?11056) (meet ?11055 ?11056)) (meet (meet ?11055 ?11056) ?11055) [11056, 11055] by Super 4175 with 1603 at 2,1,3 Id : 9629, {_}: meet (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058) (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058) (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058)) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Super 9628 with 4034 at 1,2,3 Id : 9779, {_}: meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058) (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058)) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Demod 9629 with 4034 at 1,2 Id : 9780, {_}: meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet ?11058 (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058)) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Demod 9779 with 4034 at 1,1,3 Id : 9781, {_}: meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet ?11058 ?11058) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Demod 9780 with 4034 at 2,1,3 Id : 19039, {_}: meet (meet ?19609 ?19609) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) =<= meet (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) [19609] by Super 8610 with 9781 at 2,3 Id : 11891, {_}: meet ?13166 (join ?13167 ?13167) =<= meet (meet (meet ?13166 (join ?13167 ?13167)) ?13167) (meet ?13166 (join ?13167 ?13167)) [13167, 13166] by Super 4654 with 4056 at 2,1,3 Id : 11910, {_}: meet (join ?13229 ?13230) (join ?13229 ?13229) =<= meet ?13229 (meet (join ?13229 ?13230) (join ?13229 ?13229)) [13230, 13229] by Super 11891 with 4034 at 1,3 Id : 19095, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =<= meet (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) [19609] by Demod 19039 with 11910 at 2,2 Id : 19096, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =<= meet (meet (join ?19609 ?19609) (join ?19609 ?19609)) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) [19609] by Demod 19095 with 11910 at 1,3 Id : 19097, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =<= meet (meet (join ?19609 ?19609) (join ?19609 ?19609)) (meet (join ?19609 ?19609) (join ?19609 ?19609)) [19609] by Demod 19096 with 11910 at 2,3 Id : 19098, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =>= meet (join ?19609 ?19609) (join ?19609 ?19609) [19609] by Demod 19097 with 5904 at 3 Id : 19320, {_}: join (meet (join ?19872 ?19872) (join ?19872 ?19872)) (meet (meet (join ?19872 ?19872) (join ?19872 ?19872)) (join (meet ?19872 ?19872) (meet (join ?19872 ?19872) (join ?19872 ?19872)))) =>= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Super 3639 with 19098 at 1,2 Id : 19473, {_}: join (meet (join ?19872 ?19872) (join ?19872 ?19872)) (meet (meet (join ?19872 ?19872) (join ?19872 ?19872)) ?19872) =>= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Demod 19320 with 4056 at 2,2,2 Id : 19474, {_}: join (meet (join ?19872 ?19872) (join ?19872 ?19872)) ?19872 =>= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Demod 19473 with 4034 at 2,2 Id : 19603, {_}: join (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (join ?20044 ?20044) (join ?20044 ?20044)))) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Super 1603 with 19474 at 2,2,1,2 Id : 19685, {_}: join (meet ?20044 (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (join ?20044 ?20044) (join ?20044 ?20044)))) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19603 with 4034 at 1,1,2 Id : 19686, {_}: join (meet ?20044 (meet (join ?20044 ?20044) (join ?20044 ?20044))) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19685 with 5904 at 2,1,2 Id : 19687, {_}: join (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19686 with 11910 at 1,2 Id : 19688, {_}: join (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet ?20044 (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19687 with 4034 at 1,2,2 Id : 19689, {_}: join (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (join ?20044 ?20044) (join ?20044 ?20044)) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19688 with 11910 at 2,2 Id : 19690, {_}: meet (join ?20044 ?20044) (join ?20044 ?20044) =<= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19689 with 7487 at 2 Id : 19691, {_}: meet (join ?20044 ?20044) (join ?20044 ?20044) =>= ?20044 [20044] by Demod 19690 with 4034 at 3 Id : 19840, {_}: join ?19872 ?19872 =<= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Demod 19474 with 19691 at 1,2 Id : 19841, {_}: join ?19872 ?19872 =>= ?19872 [19872] by Demod 19840 with 19691 at 3 Id : 19901, {_}: meet ?20044 (join ?20044 ?20044) =>= ?20044 [20044] by Demod 19691 with 19841 at 1,2 Id : 19902, {_}: meet ?20044 ?20044 =>= ?20044 [20044] by Demod 19901 with 19841 at 2,2 Id : 19913, {_}: ?15167 =<= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 14282 with 19902 at 2 Id : 19914, {_}: ?15167 =<= meet (join ?15167 ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 19913 with 19902 at 1,1,3 Id : 19915, {_}: ?15167 =<= meet (join ?15167 ?15168) ?15167 [15168, 15167] by Demod 19914 with 19902 at 2,3 Id : 20061, {_}: ?20159 =<= join (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159) (meet ?20159 (join (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159) (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159))) [20161, 20160, 20159] by Super 2854 with 19902 at 1,3 Id : 20247, {_}: ?20159 =<= join (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159) (meet ?20159 (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159)) [20161, 20160, 20159] by Demod 20061 with 19841 at 2,2,3 Id : 19937, {_}: ?9434 =<= join (meet ?9434 ?9434) (meet ?9435 (meet ?9434 ?9434)) [9435, 9434] by Demod 7787 with 19902 at 2 Id : 19938, {_}: ?9434 =<= join ?9434 (meet ?9435 (meet ?9434 ?9434)) [9435, 9434] by Demod 19937 with 19902 at 1,3 Id : 19939, {_}: ?9434 =<= join ?9434 (meet ?9435 ?9434) [9435, 9434] by Demod 19938 with 19902 at 2,2,3 Id : 20310, {_}: ?20323 =<= join (join (meet ?20323 ?20324) (meet ?20325 ?20323)) ?20323 [20325, 20324, 20323] by Demod 20247 with 19939 at 3 Id : 20311, {_}: ?20327 =<= join (join (meet ?20327 ?20328) ?20327) ?20327 [20328, 20327] by Super 20310 with 19902 at 2,1,3 Id : 20418, {_}: join (meet ?20444 ?20445) ?20444 =<= meet ?20444 (join (meet ?20444 ?20445) ?20444) [20445, 20444] by Super 19915 with 20311 at 1,3 Id : 20570, {_}: ?20658 =<= meet (join (meet ?20658 ?20659) ?20658) ?20658 [20659, 20658] by Super 4600 with 20418 at 1,3 Id : 20428, {_}: join (meet (join (meet ?20476 ?20477) ?20476) ?20476) (meet (join (meet ?20476 ?20477) ?20476) ?20476) =>= join (meet ?20476 ?20477) ?20476 [20477, 20476] by Super 1492 with 20311 at 2,2,2 Id : 20488, {_}: meet (join (meet ?20476 ?20477) ?20476) ?20476 =>= join (meet ?20476 ?20477) ?20476 [20477, 20476] by Demod 20428 with 19841 at 2 Id : 20904, {_}: ?20658 =<= join (meet ?20658 ?20659) ?20658 [20659, 20658] by Demod 20570 with 20488 at 3 Id : 20921, {_}: join (meet (meet ?20906 ?20907) ?20906) (meet (meet ?20906 ?20907) ?20906) =>= meet ?20906 ?20907 [20907, 20906] by Super 1492 with 20904 at 2,2,2 Id : 20982, {_}: meet (meet ?20906 ?20907) ?20906 =>= meet ?20906 ?20907 [20907, 20906] by Demod 20921 with 19841 at 2 Id : 4092, {_}: meet ?5726 ?5727 =<= meet (meet ?5727 (join ?5728 (meet ?5726 ?5727))) (meet ?5726 ?5727) [5728, 5727, 5726] by Super 4080 with 3639 at 1,1,3 Id : 21147, {_}: ?21138 =<= join ?21138 (meet ?21138 ?21139) [21139, 21138] by Super 19939 with 20982 at 2,3 Id : 21292, {_}: meet ?21342 ?21343 =<= meet (meet ?21343 ?21342) (meet ?21342 ?21343) [21343, 21342] by Super 4092 with 21147 at 2,1,3 Id : 21456, {_}: meet (meet ?21613 ?21614) (meet ?21614 ?21613) =<->= meet (meet ?21614 ?21613) (meet ?21613 ?21614) [21614, 21613] by Super 20982 with 21292 at 1,2 Id : 21489, {_}: meet ?21614 ?21613 =<= meet (meet ?21614 ?21613) (meet ?21613 ?21614) [21613, 21614] by Demod 21456 with 21292 at 2 Id : 21490, {_}: meet ?21614 ?21613 =<->= meet ?21613 ?21614 [21613, 21614] by Demod 21489 with 21292 at 3 Id : 21160, {_}: meet (meet ?21180 ?21181) ?21180 =>= meet ?21180 ?21181 [21181, 21180] by Demod 20921 with 19841 at 2 Id : 21164, {_}: meet ?21191 (meet (join ?21191 ?21192) (join ?21193 ?21191)) =?= meet (meet (join ?21191 ?21192) (join ?21193 ?21191)) ?21191 [21193, 21192, 21191] by Super 21160 with 4034 at 1,2 Id : 22718, {_}: meet ?23397 (meet (join ?23397 ?23398) (join ?23399 ?23397)) =>= ?23397 [23399, 23398, 23397] by Demod 21164 with 4034 at 3 Id : 20938, {_}: ?20963 =<= join (meet ?20963 ?20964) ?20963 [20964, 20963] by Demod 20570 with 20488 at 3 Id : 22363, {_}: meet (join ?22827 ?22828) (join ?22829 ?22827) =<= join ?22827 (meet (join ?22827 ?22828) (join ?22829 ?22827)) [22829, 22828, 22827] by Super 20938 with 4034 at 1,3 Id : 4548, {_}: meet ?6464 (join ?6465 ?6464) =<= meet (meet (join ?6465 ?6464) ?6464) (meet ?6464 (join ?6465 ?6464)) [6465, 6464] by Super 4531 with 3639 at 2,1,3 Id : 21129, {_}: ?6396 =<= meet ?6396 (join ?6399 ?6396) [6399, 6396] by Demod 4600 with 20982 at 3 Id : 21130, {_}: ?6464 =<= meet (meet (join ?6465 ?6464) ?6464) (meet ?6464 (join ?6465 ?6464)) [6465, 6464] by Demod 4548 with 21129 at 2 Id : 21131, {_}: ?6464 =<= meet (meet (join ?6465 ?6464) ?6464) ?6464 [6465, 6464] by Demod 21130 with 21129 at 2,3 Id : 2937, {_}: join (meet (meet ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228)) (meet ?4228 (join ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228)))) (meet (meet ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228)) ?4228) =>= meet ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228) [4230, 4229, 4228, 4227] by Super 1492 with 2854 at 2,2,2 Id : 20248, {_}: ?20159 =<= join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159 [20161, 20160, 20159] by Demod 20247 with 19939 at 3 Id : 20279, {_}: join (meet (meet ?4227 ?4228) (meet ?4228 (join ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228)))) (meet (meet ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228)) ?4228) =>= meet ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228) [4230, 4229, 4228, 4227] by Demod 2937 with 20248 at 2,1,1,2 Id : 20280, {_}: join (meet (meet ?4227 ?4228) (meet ?4228 (join ?4227 ?4228))) (meet (meet ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228)) ?4228) =>= meet ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228) [4230, 4229, 4228, 4227] by Demod 20279 with 20248 at 2,2,2,1,2 Id : 20281, {_}: join (meet (meet ?4227 ?4228) (meet ?4228 (join ?4227 ?4228))) (meet (meet ?4227 ?4228) ?4228) =?= meet ?4227 (join (join (meet ?4228 ?4229) (meet ?4230 ?4228)) ?4228) [4230, 4229, 4228, 4227] by Demod 20280 with 20248 at 2,1,2,2 Id : 20282, {_}: join (meet (meet ?4227 ?4228) (meet ?4228 (join ?4227 ?4228))) (meet (meet ?4227 ?4228) ?4228) =>= meet ?4227 ?4228 [4228, 4227] by Demod 20281 with 20248 at 2,3 Id : 21135, {_}: join (meet (meet ?4227 ?4228) ?4228) (meet (meet ?4227 ?4228) ?4228) =>= meet ?4227 ?4228 [4228, 4227] by Demod 20282 with 21129 at 2,1,2 Id : 21137, {_}: meet (meet ?4227 ?4228) ?4228 =>= meet ?4227 ?4228 [4228, 4227] by Demod 21135 with 19841 at 2 Id : 21140, {_}: ?6464 =<= meet (join ?6465 ?6464) ?6464 [6465, 6464] by Demod 21131 with 21137 at 3 Id : 22391, {_}: meet (join ?22940 (join ?22941 ?22940)) (join ?22941 ?22940) =>= join ?22940 (join ?22941 ?22940) [22941, 22940] by Super 22363 with 21140 at 2,3 Id : 22489, {_}: join ?22941 ?22940 =<= join ?22940 (join ?22941 ?22940) [22940, 22941] by Demod 22391 with 21140 at 2 Id : 22746, {_}: meet ?23505 (meet (join ?23506 ?23505) (join ?23507 ?23505)) =>= ?23505 [23507, 23506, 23505] by Super 22718 with 22489 at 1,2,2 Id : 27514, {_}: b === b [] by Demod 27513 with 22746 at 2 Id : 27513, {_}: meet b (meet (join a b) (join c b)) =>= b [] by Demod 1 with 21490 at 2 Id : 1, {_}: meet (meet (join a b) (join c b)) b =>= b [] by prove_wal_axioms_5 % SZS output end CNFRefutation for LAT096-1.p 24143: solved LAT096-1.p in 18.861178 using nrkbo WARNING: TreeLimitedRun lost 41.09s, total lost is 41.09s FINAL WATCH: 60.0 CPU 37.9 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT097-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 24163 TreeLimitedRun: ---------------------------------------------------------- 24165: Facts: 24165: Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 24165: Goal: 24165: Id : 1, {_}: join (join (meet a b) (meet c b)) b =>= b [] by prove_wal_axioms_6 Statistics : Max weight : 2918 Found proof, 36.038241s % SZS status Unsatisfiable for LAT097-1.p % SZS output start CNFRefutation for LAT097-1.p Id : 2, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 Id : 3, {_}: join (meet (join (meet ?9 ?10) (meet ?10 (join ?9 ?10))) ?11) (meet (join (meet ?9 (join (join (meet ?10 ?12) (meet ?13 ?10)) ?10)) (meet (join (meet ?10 (meet (meet (join ?10 ?12) (join ?13 ?10)) ?10)) (meet ?14 (join ?10 (meet (meet (join ?10 ?12) (join ?13 ?10)) ?10)))) (join ?9 (join (join (meet ?10 ?12) (meet ?13 ?10)) ?10)))) (join (join (meet ?9 ?10) (meet ?10 (join ?9 ?10))) ?11)) =>= ?10 [14, 13, 12, 11, 10, 9] by single_axiom ?9 ?10 ?11 ?12 ?13 ?14 Id : 31, {_}: join (meet (join (meet ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))) (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) (join ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))))) ?208) (meet (join (meet ?205 (join (join (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) ?209) (meet ?210 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))) (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))) (meet ?207 (join ?205 (join (join (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) ?209) (meet ?210 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))) (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))))))) (join (join (meet ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))) (meet (join (meet ?206 ?207) (meet ?207 (join ?206 ?207))) (join ?205 (join (meet ?206 ?207) (meet ?207 (join ?206 ?207)))))) ?208)) =>= join (meet ?206 ?207) (meet ?207 (join ?206 ?207)) [210, 209, 208, 207, 206, 205] by Super 3 with 2 at 1,2,1,2,2 Id : 34, {_}: join (meet (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 240, 239, 238, 237, 236, 235, 234] by Super 31 with 2 at 2,2,2,1,2,2,2 Id : 116, {_}: join (meet (join (meet ?234 ?236) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 240, 239, 238, 237, 235, 236, 234] by Demod 34 with 2 at 2,1,1,1,2 Id : 117, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 240, 239, 238, 237, 235, 236, 234] by Demod 116 with 2 at 1,2,1,1,2 Id : 118, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [242, 241, 239, 238, 237, 235, 240, 236, 234] by Demod 117 with 2 at 2,2,2,1,1,2 Id : 119, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 118 with 2 at 1,1,1,2,1,1,2,2 Id : 120, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 119 with 2 at 2,2,1,2,1,1,2,2 Id : 121, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 120 with 2 at 2,2,1,1,2,2 Id : 122, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 121 with 2 at 1,1,1,2,2,2,1,2,2 Id : 123, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))))))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 122 with 2 at 2,2,1,2,2,2,1,2,2 Id : 124, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)))) (join (join (meet ?234 (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))))) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 123 with 2 at 2,2,2,2,1,2,2 Id : 125, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)))) (join (join (meet ?234 ?236) (meet (join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))))) (join ?234 ?236))) ?240)) =>= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 124 with 2 at 2,1,1,2,2,2 Id : 126, {_}: join (meet (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240) (meet (join (meet ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join ?234 (join (join (meet ?236 ?241) (meet ?242 ?236)) ?236)))) (join (join (meet ?234 ?236) (meet ?236 (join ?234 ?236))) ?240)) =?= join (meet (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236))))) (meet (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))) (join (join (meet ?235 ?236) (meet ?236 (join ?235 ?236))) (join (meet ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)) (meet (join (meet ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)) (meet ?239 (join ?236 (meet (meet (join ?236 ?237) (join ?238 ?236)) ?236)))) (join ?235 (join (join (meet ?236 ?237) (meet ?238 ?236)) ?236)))))) [239, 238, 237, 235, 242, 241, 240, 236, 234] by Demod 125 with 2 at 1,2,1,2,2,2 Id : 702, {_}: join (meet (join (meet ?1187 ?1188) (meet ?1188 (join ?1187 ?1188))) ?1189) (meet (join (meet ?1187 (join (join (meet ?1188 ?1190) (meet ?1191 ?1188)) ?1188)) (meet (join (meet ?1192 (join (join (meet ?1188 ?1193) (meet ?1194 ?1188)) ?1188)) (meet (join (meet ?1188 (meet (meet (join ?1188 ?1193) (join ?1194 ?1188)) ?1188)) (meet ?1195 (join ?1188 (meet (meet (join ?1188 ?1193) (join ?1194 ?1188)) ?1188)))) (join ?1192 (join (join (meet ?1188 ?1193) (meet ?1194 ?1188)) ?1188)))) (join ?1187 (join (join (meet ?1188 ?1190) (meet ?1191 ?1188)) ?1188)))) (join (join (meet ?1187 ?1188) (meet ?1188 (join ?1187 ?1188))) ?1189)) =>= ?1188 [1195, 1194, 1193, 1192, 1191, 1190, 1189, 1188, 1187] by Demod 126 with 2 at 3 Id : 1101, {_}: join (meet (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1978) (meet ?1977 (join (join (meet (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977) (meet ?1977 (join (join (meet ?1976 ?1977) (meet ?1977 (join ?1976 ?1977))) ?1977))) ?1978)) =>= ?1977 [1978, 1977, 1976] by Super 702 with 2 at 1,2,2 Id : 724, {_}: join (meet (join (meet (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496) (meet ?1496 (join (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496))) ?1497) (meet ?1496 (join (join (meet (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496) (meet ?1496 (join (join (meet ?1495 ?1496) (meet ?1496 (join ?1495 ?1496))) ?1496))) ?1497)) =>= ?1496 [1497, 1496, 1495] by Super 702 with 2 at 1,2,2 Id : 1118, {_}: join (meet (join (meet (join (meet (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101) (meet ?2101 (join (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101))) ?2101) (meet ?2101 (join (join (meet (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101) (meet ?2101 (join (join (meet ?2100 ?2101) (meet ?2101 (join ?2100 ?2101))) ?2101))) ?2101))) ?2102) (meet ?2101 (join ?2101 ?2102)) =>= ?2101 [2102, 2101, 2100] by Super 1101 with 724 at 1,2,2,2 Id : 1492, {_}: join (meet ?2101 ?2102) (meet ?2101 (join ?2101 ?2102)) =>= ?2101 [2102, 2101] by Demod 1118 with 724 at 1,1,2 Id : 10, {_}: join (meet (join (meet ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))) (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) (join ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))))) ?84) (meet (join (meet ?81 (join (join (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) ?85) (meet ?86 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))) (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))) (meet ?83 (join ?81 (join (join (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) ?85) (meet ?86 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))) (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))))))) (join (join (meet ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))) (meet (join (meet ?82 ?83) (meet ?83 (join ?82 ?83))) (join ?81 (join (meet ?82 ?83) (meet ?83 (join ?82 ?83)))))) ?84)) =>= join (meet ?82 ?83) (meet ?83 (join ?82 ?83)) [86, 85, 84, 83, 82, 81] by Super 3 with 2 at 1,2,1,2,2 Id : 1054, {_}: join (meet (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1599, 1598, 1597, 1596] by Super 10 with 724 at 2,2,2,1,2,2,2 Id : 1166, {_}: join (meet (join (meet ?1596 ?1598) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1599, 1597, 1598, 1596] by Demod 1054 with 724 at 2,1,1,1,2 Id : 1167, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1599, 1597, 1598, 1596] by Demod 1166 with 724 at 1,2,1,1,2 Id : 1168, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1601, 1600, 1597, 1599, 1598, 1596] by Demod 1167 with 724 at 2,2,2,1,1,2 Id : 1169, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1168 with 724 at 1,1,1,2,1,1,2,2 Id : 1170, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1169 with 724 at 2,2,1,2,1,1,2,2 Id : 1171, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1170 with 724 at 2,2,1,1,2,2 Id : 1172, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1171 with 724 at 1,1,1,2,2,2,1,2,2 Id : 1173, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))))))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1172 with 724 at 2,2,1,2,2,2,1,2,2 Id : 1174, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)))) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1173 with 724 at 2,2,2,2,1,2,2 Id : 1175, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 ?1598) (meet (join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598))) (join ?1596 ?1598))) ?1599)) =>= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1174 with 724 at 2,1,1,2,2,2 Id : 1176, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599)) =?= join (meet (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598) (meet ?1598 (join (join (meet (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598) (meet ?1598 (join (join (meet ?1597 ?1598) (meet ?1598 (join ?1597 ?1598))) ?1598))) ?1598)) [1597, 1601, 1600, 1599, 1598, 1596] by Demod 1175 with 724 at 1,2,1,2,2,2 Id : 1177, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet (join (meet ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)) (meet ?1598 (join ?1596 (join (join (meet ?1598 ?1600) (meet ?1601 ?1598)) ?1598)))) (join (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599)) =>= ?1598 [1601, 1600, 1599, 1598, 1596] by Demod 1176 with 724 at 3 Id : 2463, {_}: join (meet (join (meet ?3676 ?3677) (meet ?3677 (join ?3676 ?3677))) ?3678) (meet (join (meet ?3676 (join (join (meet ?3677 ?3679) (meet ?3680 ?3677)) ?3677)) (meet ?3677 (join ?3676 (join (join (meet ?3677 ?3679) (meet ?3680 ?3677)) ?3677)))) (join (join (meet ?3676 ?3677) (meet ?3677 (join ?3676 ?3677))) ?3678)) =>= ?3677 [3680, 3679, 3678, 3677, 3676] by Demod 1176 with 724 at 3 Id : 2476, {_}: join (meet (join (meet (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))))) (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) (join (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))))))) ?3789) (meet (join (meet (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) (join (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))))) (join ?3786 ?3789)) =>= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3791, 3790, 3789, 3788, 3787, 3786, 3785] by Super 2463 with 1177 at 1,2,2,2 Id : 2852, {_}: join (meet ?3786 ?3789) (meet (join (meet (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) (join (join (meet ?3785 ?3786) (meet ?3786 (join ?3785 ?3786))) (join (join (meet (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))) ?3790) (meet ?3791 (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))) (join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)))))))) (join ?3786 ?3789)) =>= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3791, 3790, 3788, 3787, 3785, 3789, 3786] by Demod 2476 with 1177 at 1,1,2 Id : 2853, {_}: join (meet ?3786 ?3789) (meet ?3786 (join ?3786 ?3789)) =?= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3788, 3787, 3785, 3789, 3786] by Demod 2852 with 1177 at 1,2,2 Id : 2854, {_}: ?3786 =<= join (meet ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786)) (meet ?3786 (join ?3785 (join (join (meet ?3786 ?3787) (meet ?3788 ?3786)) ?3786))) [3788, 3787, 3785, 3786] by Demod 2853 with 1492 at 2 Id : 2902, {_}: join (meet (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599) (meet ?1598 (join (join (meet ?1596 ?1598) (meet ?1598 (join ?1596 ?1598))) ?1599)) =>= ?1598 [1599, 1598, 1596] by Demod 1177 with 2854 at 1,2,2 Id : 2472, {_}: join (meet (join (meet (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))))) (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) (join (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))))))) ?3754) (meet (join (meet (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) (join (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))))) (join ?3750 ?3754)) =>= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3756, 3755, 3754, 3753, 3752, 3751, 3750, 3749] by Super 2463 with 2 at 1,2,2,2 Id : 2840, {_}: join (meet ?3750 ?3754) (meet (join (meet (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) (join (join (meet ?3749 ?3750) (meet ?3750 (join ?3749 ?3750))) (join (join (meet (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))) ?3755) (meet ?3756 (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))) (join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)))))))) (join ?3750 ?3754)) =>= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3756, 3755, 3753, 3752, 3751, 3749, 3754, 3750] by Demod 2472 with 2 at 1,1,2 Id : 2841, {_}: join (meet ?3750 ?3754) (meet ?3750 (join ?3750 ?3754)) =?= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3753, 3752, 3751, 3749, 3754, 3750] by Demod 2840 with 2 at 1,2,2 Id : 2842, {_}: ?3750 =<= join (meet ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750)) (meet (join (meet ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)) (meet ?3753 (join ?3750 (meet (meet (join ?3750 ?3751) (join ?3752 ?3750)) ?3750)))) (join ?3749 (join (join (meet ?3750 ?3751) (meet ?3752 ?3750)) ?3750))) [3753, 3752, 3751, 3749, 3750] by Demod 2841 with 1492 at 2 Id : 3363, {_}: ?4574 =<= join (meet ?4574 (meet (meet (join ?4574 ?4575) (join ?4576 ?4574)) ?4574)) (meet ?4577 (join ?4574 (meet (meet (join ?4574 ?4575) (join ?4576 ?4574)) ?4574))) [4577, 4576, 4575, 4574] by Super 2902 with 2842 at 2 Id : 3639, {_}: join (meet ?5256 ?5257) (meet ?5257 (join ?5256 ?5257)) =>= ?5257 [5257, 5256] by Super 2902 with 3363 at 2 Id : 4080, {_}: ?5672 =<= meet (meet (join ?5672 ?5673) (join ?5674 ?5672)) ?5672 [5674, 5673, 5672] by Super 3363 with 3639 at 3 Id : 4531, {_}: meet ?6392 ?6393 =<= meet (meet ?6393 (join ?6394 (meet ?6392 ?6393))) (meet ?6392 ?6393) [6394, 6393, 6392] by Super 4080 with 3639 at 1,1,3 Id : 4034, {_}: ?5513 =<= meet (meet (join ?5513 ?5514) (join ?5515 ?5513)) ?5513 [5515, 5514, 5513] by Super 3363 with 3639 at 3 Id : 4532, {_}: meet (meet (join ?6396 ?6397) (join ?6398 ?6396)) ?6396 =<= meet (meet ?6396 (join ?6399 (meet (meet (join ?6396 ?6397) (join ?6398 ?6396)) ?6396))) ?6396 [6399, 6398, 6397, 6396] by Super 4531 with 4034 at 2,3 Id : 4599, {_}: ?6396 =<= meet (meet ?6396 (join ?6399 (meet (meet (join ?6396 ?6397) (join ?6398 ?6396)) ?6396))) ?6396 [6398, 6397, 6399, 6396] by Demod 4532 with 4034 at 2 Id : 4600, {_}: ?6396 =<= meet (meet ?6396 (join ?6399 ?6396)) ?6396 [6399, 6396] by Demod 4599 with 4034 at 2,2,1,3 Id : 1598, {_}: join (meet ?2599 ?2600) (meet ?2599 (join ?2599 ?2600)) =>= ?2599 [2600, 2599] by Demod 1118 with 724 at 1,1,2 Id : 1603, {_}: join (meet (meet ?2630 ?2631) (meet ?2630 (join ?2630 ?2631))) (meet (meet ?2630 ?2631) ?2630) =>= meet ?2630 ?2631 [2631, 2630] by Super 1598 with 1492 at 2,2,2 Id : 4175, {_}: meet ?5858 ?5859 =<= meet (meet ?5858 (join ?5860 (meet ?5858 ?5859))) (meet ?5858 ?5859) [5860, 5859, 5858] by Super 4080 with 1492 at 1,1,3 Id : 4180, {_}: meet ?5882 (join ?5882 ?5883) =<= meet (meet ?5882 ?5882) (meet ?5882 (join ?5882 ?5883)) [5883, 5882] by Super 4175 with 1492 at 2,1,3 Id : 4253, {_}: join (meet ?5965 (join ?5965 ?5965)) (meet (meet ?5965 ?5965) ?5965) =>= meet ?5965 ?5965 [5965] by Super 1603 with 4180 at 1,2 Id : 1976, {_}: join (meet (meet (meet ?2837 ?2838) (meet ?2837 (join ?2837 ?2838))) (meet (meet ?2837 ?2838) ?2837)) (meet (meet (meet ?2837 ?2838) (meet ?2837 (join ?2837 ?2838))) (meet ?2837 ?2838)) =>= meet (meet ?2837 ?2838) (meet ?2837 (join ?2837 ?2838)) [2838, 2837] by Super 1492 with 1603 at 2,2,2 Id : 4544, {_}: meet ?6450 (join ?6450 ?6451) =<= meet (meet (join ?6450 ?6451) ?6450) (meet ?6450 (join ?6450 ?6451)) [6451, 6450] by Super 4531 with 1492 at 2,1,3 Id : 4648, {_}: join ?6582 (meet ?6582 (join (meet ?6582 (join ?6583 ?6582)) ?6582)) =>= ?6582 [6583, 6582] by Super 3639 with 4600 at 1,2 Id : 5871, {_}: meet ?7887 (join ?7887 (meet ?7887 (join (meet ?7887 (join ?7888 ?7887)) ?7887))) =<= meet (meet (join ?7887 (meet ?7887 (join (meet ?7887 (join ?7888 ?7887)) ?7887))) ?7887) (meet ?7887 ?7887) [7888, 7887] by Super 4544 with 4648 at 2,2,3 Id : 5903, {_}: meet ?7887 ?7887 =<= meet (meet (join ?7887 (meet ?7887 (join (meet ?7887 (join ?7888 ?7887)) ?7887))) ?7887) (meet ?7887 ?7887) [7888, 7887] by Demod 5871 with 4648 at 2,2 Id : 5904, {_}: meet ?7887 ?7887 =<= meet (meet ?7887 ?7887) (meet ?7887 ?7887) [7887] by Demod 5903 with 4648 at 1,1,3 Id : 5957, {_}: join (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Super 1976 with 5904 at 2,2,2 Id : 6021, {_}: join (meet (meet (meet ?7970 ?7970) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 5957 with 5904 at 1,1,1,2 Id : 4654, {_}: ?6603 =<= meet (meet ?6603 (join ?6604 ?6603)) ?6603 [6604, 6603] by Demod 4599 with 4034 at 2,2,1,3 Id : 4659, {_}: meet ?6620 (join ?6621 ?6620) =<= meet (meet (meet ?6620 (join ?6621 ?6620)) ?6620) (meet ?6620 (join ?6621 ?6620)) [6621, 6620] by Super 4654 with 3639 at 2,1,3 Id : 4722, {_}: meet ?6620 (join ?6621 ?6620) =<= meet ?6620 (meet ?6620 (join ?6621 ?6620)) [6621, 6620] by Demod 4659 with 4600 at 1,3 Id : 6022, {_}: join (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6021 with 4722 at 1,1,2 Id : 6023, {_}: join (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6022 with 5904 at 1,2,1,2 Id : 6024, {_}: join (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet ?7970 ?7970)) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6023 with 5904 at 2,1,2 Id : 6025, {_}: join (meet ?7970 ?7970) (meet (meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6024 with 4600 at 1,2 Id : 6026, {_}: join (meet ?7970 ?7970) (meet (meet (meet ?7970 ?7970) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6025 with 5904 at 1,1,2,2 Id : 6027, {_}: join (meet ?7970 ?7970) (meet (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) (meet ?7970 ?7970)) =>= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6026 with 4722 at 1,2,2 Id : 6028, {_}: join (meet ?7970 ?7970) (meet ?7970 ?7970) =<= meet (meet (meet ?7970 ?7970) (meet ?7970 ?7970)) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6027 with 4600 at 2,2 Id : 6029, {_}: join (meet ?7970 ?7970) (meet ?7970 ?7970) =<= meet (meet ?7970 ?7970) (meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970))) [7970] by Demod 6028 with 5904 at 1,3 Id : 6030, {_}: join (meet ?7970 ?7970) (meet ?7970 ?7970) =<= meet (meet ?7970 ?7970) (join (meet ?7970 ?7970) (meet ?7970 ?7970)) [7970] by Demod 6029 with 4722 at 3 Id : 7104, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet (meet (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet ?9198 ?9198)) =>= meet (meet ?9198 ?9198) (meet ?9198 ?9198) [9198] by Super 4253 with 6030 at 1,2 Id : 7136, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet (meet ?9198 ?9198) (meet ?9198 ?9198)) =>= meet (meet ?9198 ?9198) (meet ?9198 ?9198) [9198] by Demod 7104 with 5904 at 1,2,2 Id : 7137, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet ?9198 ?9198) =>= meet (meet ?9198 ?9198) (meet ?9198 ?9198) [9198] by Demod 7136 with 5904 at 2,2 Id : 7138, {_}: join (join (meet ?9198 ?9198) (meet ?9198 ?9198)) (meet ?9198 ?9198) =>= meet ?9198 ?9198 [9198] by Demod 7137 with 5904 at 3 Id : 7455, {_}: join (meet (join (meet ?9362 ?9362) (meet ?9362 ?9362)) (meet ?9362 ?9362)) (meet (meet ?9362 ?9362) (meet ?9362 ?9362)) =>= meet ?9362 ?9362 [9362] by Super 3639 with 7138 at 2,2,2 Id : 7070, {_}: meet ?9106 ?9106 =<= meet (join (meet ?9106 ?9106) (meet ?9106 ?9106)) (meet ?9106 ?9106) [9106] by Super 4600 with 6030 at 1,3 Id : 7486, {_}: join (meet ?9362 ?9362) (meet (meet ?9362 ?9362) (meet ?9362 ?9362)) =>= meet ?9362 ?9362 [9362] by Demod 7455 with 7070 at 1,2 Id : 7487, {_}: join (meet ?9362 ?9362) (meet ?9362 ?9362) =>= meet ?9362 ?9362 [9362] by Demod 7486 with 5904 at 2,2 Id : 7612, {_}: meet ?9428 ?9428 =<= meet (meet (join (meet ?9428 ?9428) ?9429) (meet ?9428 ?9428)) (meet ?9428 ?9428) [9429, 9428] by Super 4034 with 7487 at 2,1,3 Id : 14086, {_}: join (meet ?15167 ?15167) (meet (meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167)) (join (meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167)) (meet ?15167 ?15167))) =>= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Super 1492 with 7612 at 1,2 Id : 4055, {_}: ?4574 =<= join (meet ?4574 ?4574) (meet ?4577 (join ?4574 (meet (meet (join ?4574 ?4575) (join ?4576 ?4574)) ?4574))) [4576, 4575, 4577, 4574] by Demod 3363 with 4034 at 2,1,3 Id : 4056, {_}: ?4574 =<= join (meet ?4574 ?4574) (meet ?4577 (join ?4574 ?4574)) [4577, 4574] by Demod 4055 with 4034 at 2,2,2,3 Id : 4550, {_}: meet ?6472 (join ?6473 ?6473) =<= meet (meet (join ?6473 ?6473) ?6473) (meet ?6472 (join ?6473 ?6473)) [6473, 6472] by Super 4531 with 4056 at 2,1,3 Id : 7603, {_}: meet ?9408 (join (meet ?9409 ?9409) (meet ?9409 ?9409)) =<= meet (meet (join (meet ?9409 ?9409) (meet ?9409 ?9409)) (meet ?9409 ?9409)) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Super 4550 with 7487 at 2,2,3 Id : 7813, {_}: meet ?9408 (meet ?9409 ?9409) =<= meet (meet (join (meet ?9409 ?9409) (meet ?9409 ?9409)) (meet ?9409 ?9409)) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7603 with 7487 at 2,2 Id : 7814, {_}: meet ?9408 (meet ?9409 ?9409) =<= meet (meet (meet ?9409 ?9409) (meet ?9409 ?9409)) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7813 with 7487 at 1,1,3 Id : 7815, {_}: meet ?9408 (meet ?9409 ?9409) =<= meet (meet ?9409 ?9409) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7814 with 5904 at 1,3 Id : 8072, {_}: join (meet ?9755 (meet ?9756 ?9756)) (meet (meet ?9756 ?9756) (join (meet ?9756 ?9756) (meet ?9755 (meet ?9756 ?9756)))) =>= meet ?9756 ?9756 [9756, 9755] by Super 1492 with 7815 at 1,2 Id : 7614, {_}: meet ?9434 ?9434 =<= join (meet (meet ?9434 ?9434) (meet ?9434 ?9434)) (meet ?9435 (meet ?9434 ?9434)) [9435, 9434] by Super 4056 with 7487 at 2,2,3 Id : 7787, {_}: meet ?9434 ?9434 =<= join (meet ?9434 ?9434) (meet ?9435 (meet ?9434 ?9434)) [9435, 9434] by Demod 7614 with 5904 at 1,3 Id : 8152, {_}: join (meet ?9755 (meet ?9756 ?9756)) (meet (meet ?9756 ?9756) (meet ?9756 ?9756)) =>= meet ?9756 ?9756 [9756, 9755] by Demod 8072 with 7787 at 2,2,2 Id : 8153, {_}: join (meet ?9755 (meet ?9756 ?9756)) (meet ?9756 ?9756) =>= meet ?9756 ?9756 [9756, 9755] by Demod 8152 with 5904 at 2,2 Id : 14280, {_}: join (meet ?15167 ?15167) (meet (meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167)) (meet ?15167 ?15167)) =>= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 14086 with 8153 at 2,2,2 Id : 14281, {_}: join (meet ?15167 ?15167) (meet ?15167 ?15167) =<= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 14280 with 7612 at 2,2 Id : 14282, {_}: meet ?15167 ?15167 =<= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 14281 with 7487 at 2 Id : 4186, {_}: meet ?5904 (join ?5905 ?5905) =<= meet (meet ?5904 ?5905) (meet ?5904 (join ?5905 ?5905)) [5905, 5904] by Super 4175 with 4056 at 2,1,3 Id : 7627, {_}: meet ?9466 (join (meet ?9467 ?9467) (meet ?9467 ?9467)) =<= meet (meet ?9466 (meet ?9467 ?9467)) (meet ?9466 (meet ?9467 ?9467)) [9467, 9466] by Super 4186 with 7487 at 2,2,3 Id : 7721, {_}: meet ?9466 (meet ?9467 ?9467) =<= meet (meet ?9466 (meet ?9467 ?9467)) (meet ?9466 (meet ?9467 ?9467)) [9467, 9466] by Demod 7627 with 7487 at 2,2 Id : 8388, {_}: meet ?9978 (meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9979 (meet ?9980 ?9980))) =<= meet (meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9979 (meet ?9980 ?9980))) (meet ?9978 (meet ?9979 (meet ?9980 ?9980))) [9980, 9979, 9978] by Super 7815 with 7721 at 2,2,3 Id : 8609, {_}: meet ?9978 (meet ?9979 (meet ?9980 ?9980)) =<= meet (meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9979 (meet ?9980 ?9980))) (meet ?9978 (meet ?9979 (meet ?9980 ?9980))) [9980, 9979, 9978] by Demod 8388 with 7721 at 2,2 Id : 8610, {_}: meet ?9978 (meet ?9979 (meet ?9980 ?9980)) =<= meet (meet ?9979 (meet ?9980 ?9980)) (meet ?9978 (meet ?9979 (meet ?9980 ?9980))) [9980, 9979, 9978] by Demod 8609 with 7721 at 1,3 Id : 9628, {_}: meet (meet ?11055 ?11056) ?11055 =<= meet (meet (meet ?11055 ?11056) (meet ?11055 ?11056)) (meet (meet ?11055 ?11056) ?11055) [11056, 11055] by Super 4175 with 1603 at 2,1,3 Id : 9629, {_}: meet (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058) (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058) (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058)) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Super 9628 with 4034 at 1,2,3 Id : 9779, {_}: meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058) (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058)) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Demod 9629 with 4034 at 1,2 Id : 9780, {_}: meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet ?11058 (meet (meet (join ?11058 ?11059) (join ?11060 ?11058)) ?11058)) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Demod 9779 with 4034 at 1,1,3 Id : 9781, {_}: meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058)) =<= meet (meet ?11058 ?11058) (meet ?11058 (meet (join ?11058 ?11059) (join ?11060 ?11058))) [11060, 11059, 11058] by Demod 9780 with 4034 at 2,1,3 Id : 19039, {_}: meet (meet ?19609 ?19609) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) =<= meet (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) [19609] by Super 8610 with 9781 at 2,3 Id : 11891, {_}: meet ?13166 (join ?13167 ?13167) =<= meet (meet (meet ?13166 (join ?13167 ?13167)) ?13167) (meet ?13166 (join ?13167 ?13167)) [13167, 13166] by Super 4654 with 4056 at 2,1,3 Id : 11910, {_}: meet (join ?13229 ?13230) (join ?13229 ?13229) =<= meet ?13229 (meet (join ?13229 ?13230) (join ?13229 ?13229)) [13230, 13229] by Super 11891 with 4034 at 1,3 Id : 19095, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =<= meet (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) [19609] by Demod 19039 with 11910 at 2,2 Id : 19096, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =<= meet (meet (join ?19609 ?19609) (join ?19609 ?19609)) (meet ?19609 (meet (join ?19609 ?19609) (join ?19609 ?19609))) [19609] by Demod 19095 with 11910 at 1,3 Id : 19097, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =<= meet (meet (join ?19609 ?19609) (join ?19609 ?19609)) (meet (join ?19609 ?19609) (join ?19609 ?19609)) [19609] by Demod 19096 with 11910 at 2,3 Id : 19098, {_}: meet (meet ?19609 ?19609) (meet (join ?19609 ?19609) (join ?19609 ?19609)) =>= meet (join ?19609 ?19609) (join ?19609 ?19609) [19609] by Demod 19097 with 5904 at 3 Id : 19320, {_}: join (meet (join ?19872 ?19872) (join ?19872 ?19872)) (meet (meet (join ?19872 ?19872) (join ?19872 ?19872)) (join (meet ?19872 ?19872) (meet (join ?19872 ?19872) (join ?19872 ?19872)))) =>= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Super 3639 with 19098 at 1,2 Id : 19473, {_}: join (meet (join ?19872 ?19872) (join ?19872 ?19872)) (meet (meet (join ?19872 ?19872) (join ?19872 ?19872)) ?19872) =>= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Demod 19320 with 4056 at 2,2,2 Id : 19474, {_}: join (meet (join ?19872 ?19872) (join ?19872 ?19872)) ?19872 =>= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Demod 19473 with 4034 at 2,2 Id : 19603, {_}: join (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (join ?20044 ?20044) (join ?20044 ?20044)))) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Super 1603 with 19474 at 2,2,1,2 Id : 19685, {_}: join (meet ?20044 (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (join ?20044 ?20044) (join ?20044 ?20044)))) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19603 with 4034 at 1,1,2 Id : 19686, {_}: join (meet ?20044 (meet (join ?20044 ?20044) (join ?20044 ?20044))) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19685 with 5904 at 2,1,2 Id : 19687, {_}: join (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044) (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19686 with 11910 at 1,2 Id : 19688, {_}: join (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet ?20044 (meet (join ?20044 ?20044) (join ?20044 ?20044))) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19687 with 4034 at 1,2,2 Id : 19689, {_}: join (meet (join ?20044 ?20044) (join ?20044 ?20044)) (meet (join ?20044 ?20044) (join ?20044 ?20044)) =>= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19688 with 11910 at 2,2 Id : 19690, {_}: meet (join ?20044 ?20044) (join ?20044 ?20044) =<= meet (meet (join ?20044 ?20044) (join ?20044 ?20044)) ?20044 [20044] by Demod 19689 with 7487 at 2 Id : 19691, {_}: meet (join ?20044 ?20044) (join ?20044 ?20044) =>= ?20044 [20044] by Demod 19690 with 4034 at 3 Id : 19840, {_}: join ?19872 ?19872 =<= meet (join ?19872 ?19872) (join ?19872 ?19872) [19872] by Demod 19474 with 19691 at 1,2 Id : 19841, {_}: join ?19872 ?19872 =>= ?19872 [19872] by Demod 19840 with 19691 at 3 Id : 19901, {_}: meet ?20044 (join ?20044 ?20044) =>= ?20044 [20044] by Demod 19691 with 19841 at 1,2 Id : 19902, {_}: meet ?20044 ?20044 =>= ?20044 [20044] by Demod 19901 with 19841 at 2,2 Id : 19913, {_}: ?15167 =<= meet (join (meet ?15167 ?15167) ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 14282 with 19902 at 2 Id : 19914, {_}: ?15167 =<= meet (join ?15167 ?15168) (meet ?15167 ?15167) [15168, 15167] by Demod 19913 with 19902 at 1,1,3 Id : 19915, {_}: ?15167 =<= meet (join ?15167 ?15168) ?15167 [15168, 15167] by Demod 19914 with 19902 at 2,3 Id : 20061, {_}: ?20159 =<= join (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159) (meet ?20159 (join (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159) (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159))) [20161, 20160, 20159] by Super 2854 with 19902 at 1,3 Id : 20247, {_}: ?20159 =<= join (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159) (meet ?20159 (join (join (meet ?20159 ?20160) (meet ?20161 ?20159)) ?20159)) [20161, 20160, 20159] by Demod 20061 with 19841 at 2,2,3 Id : 19937, {_}: ?9434 =<= join (meet ?9434 ?9434) (meet ?9435 (meet ?9434 ?9434)) [9435, 9434] by Demod 7787 with 19902 at 2 Id : 19938, {_}: ?9434 =<= join ?9434 (meet ?9435 (meet ?9434 ?9434)) [9435, 9434] by Demod 19937 with 19902 at 1,3 Id : 19939, {_}: ?9434 =<= join ?9434 (meet ?9435 ?9434) [9435, 9434] by Demod 19938 with 19902 at 2,2,3 Id : 20310, {_}: ?20323 =<= join (join (meet ?20323 ?20324) (meet ?20325 ?20323)) ?20323 [20325, 20324, 20323] by Demod 20247 with 19939 at 3 Id : 20311, {_}: ?20327 =<= join (join (meet ?20327 ?20328) ?20327) ?20327 [20328, 20327] by Super 20310 with 19902 at 2,1,3 Id : 20418, {_}: join (meet ?20444 ?20445) ?20444 =<= meet ?20444 (join (meet ?20444 ?20445) ?20444) [20445, 20444] by Super 19915 with 20311 at 1,3 Id : 20570, {_}: ?20658 =<= meet (join (meet ?20658 ?20659) ?20658) ?20658 [20659, 20658] by Super 4600 with 20418 at 1,3 Id : 20428, {_}: join (meet (join (meet ?20476 ?20477) ?20476) ?20476) (meet (join (meet ?20476 ?20477) ?20476) ?20476) =>= join (meet ?20476 ?20477) ?20476 [20477, 20476] by Super 1492 with 20311 at 2,2,2 Id : 20488, {_}: meet (join (meet ?20476 ?20477) ?20476) ?20476 =>= join (meet ?20476 ?20477) ?20476 [20477, 20476] by Demod 20428 with 19841 at 2 Id : 20904, {_}: ?20658 =<= join (meet ?20658 ?20659) ?20658 [20659, 20658] by Demod 20570 with 20488 at 3 Id : 20921, {_}: join (meet (meet ?20906 ?20907) ?20906) (meet (meet ?20906 ?20907) ?20906) =>= meet ?20906 ?20907 [20907, 20906] by Super 1492 with 20904 at 2,2,2 Id : 20982, {_}: meet (meet ?20906 ?20907) ?20906 =>= meet ?20906 ?20907 [20907, 20906] by Demod 20921 with 19841 at 2 Id : 4092, {_}: meet ?5726 ?5727 =<= meet (meet ?5727 (join ?5728 (meet ?5726 ?5727))) (meet ?5726 ?5727) [5728, 5727, 5726] by Super 4080 with 3639 at 1,1,3 Id : 21147, {_}: ?21138 =<= join ?21138 (meet ?21138 ?21139) [21139, 21138] by Super 19939 with 20982 at 2,3 Id : 21292, {_}: meet ?21342 ?21343 =<= meet (meet ?21343 ?21342) (meet ?21342 ?21343) [21343, 21342] by Super 4092 with 21147 at 2,1,3 Id : 21456, {_}: meet (meet ?21613 ?21614) (meet ?21614 ?21613) =<->= meet (meet ?21614 ?21613) (meet ?21613 ?21614) [21614, 21613] by Super 20982 with 21292 at 1,2 Id : 21489, {_}: meet ?21614 ?21613 =<= meet (meet ?21614 ?21613) (meet ?21613 ?21614) [21613, 21614] by Demod 21456 with 21292 at 2 Id : 21490, {_}: meet ?21614 ?21613 =<->= meet ?21613 ?21614 [21613, 21614] by Demod 21489 with 21292 at 3 Id : 19928, {_}: meet ?9408 ?9409 =<= meet (meet ?9409 ?9409) (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 7815 with 19902 at 2,2 Id : 19929, {_}: meet ?9408 ?9409 =<= meet ?9409 (meet ?9408 (meet ?9409 ?9409)) [9409, 9408] by Demod 19928 with 19902 at 1,3 Id : 19930, {_}: meet ?9408 ?9409 =<= meet ?9409 (meet ?9408 ?9409) [9409, 9408] by Demod 19929 with 19902 at 2,2,3 Id : 22014, {_}: ?22351 =<= join (join (meet ?22352 ?22351) (meet ?22353 ?22351)) ?22351 [22353, 22352, 22351] by Super 20310 with 19930 at 1,1,3 Id : 22016, {_}: ?22358 =<= join (join (meet ?22359 ?22358) (meet ?22358 ?22360)) ?22358 [22360, 22359, 22358] by Super 22014 with 20982 at 2,1,3 Id : 25205, {_}: b === b [] by Demod 25204 with 22016 at 2 Id : 25204, {_}: join (join (meet a b) (meet b c)) b =>= b [] by Demod 1 with 21490 at 2,1,2 Id : 1, {_}: join (join (meet a b) (meet c b)) b =>= b [] by prove_wal_axioms_6 % SZS output end CNFRefutation for LAT097-1.p 24168: solved LAT097-1.p in 18.401149 using nrkbo WARNING: TreeLimitedRun lost 41.48s, total lost is 41.48s FINAL WATCH: 59.9 CPU 37.1 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT098-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 24197 TreeLimitedRun: ---------------------------------------------------------- 24199: Facts: 24199: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24199: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24199: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24199: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24199: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24199: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24199: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24199: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24199: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?28 (join (meet ?26 (join ?27 ?28)) (meet ?27 ?28)))) [28, 27, 26] by equation_H2 ?26 ?27 ?28 24199: Goal: 24199: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 % SZS status Timeout for LAT098-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT099-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 24259 TreeLimitedRun: ---------------------------------------------------------- 24261: Facts: 24261: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24261: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24261: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24261: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24261: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24261: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24261: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24261: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24261: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27)))))) [28, 27, 26] by equation_H3 ?26 ?27 ?28 24261: Goal: 24261: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 % SZS status Timeout for LAT099-1.p FINAL WATCH: 199.7 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT100-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 24345 TreeLimitedRun: ---------------------------------------------------------- 24347: Facts: 24347: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24347: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24347: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24347: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24347: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24347: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24347: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24347: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24347: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join (meet ?26 (join ?27 (meet ?26 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H6 ?26 ?27 ?28 24347: Goal: 24347: Id : 1, {_}: meet a (join b (meet a (join c d))) =<= meet a (join b (meet (join a (meet b d)) (join c d))) [] by prove_H4 % SZS status Timeout for LAT100-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT101-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 24418 TreeLimitedRun: ---------------------------------------------------------- 24420: Facts: 24420: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24420: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24420: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24420: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24420: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24420: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24420: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24420: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24420: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join (meet ?26 (join ?27 (meet ?26 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H6 ?26 ?27 ?28 24420: Goal: 24420: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join a (meet b c)))) [] by prove_H10 % SZS status Timeout for LAT101-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT102-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 24491 TreeLimitedRun: ---------------------------------------------------------- 24493: Facts: 24493: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24493: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24493: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24493: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24493: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24493: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24493: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24493: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24493: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?26 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27))))) [28, 27, 26] by equation_H7 ?26 ?27 ?28 24493: Goal: 24493: Id : 1, {_}: meet a (join b (meet a (join c d))) =<= meet a (join b (meet (join a (meet b d)) (join c d))) [] by prove_H4 % SZS status Timeout for LAT102-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT103-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 24551 TreeLimitedRun: ---------------------------------------------------------- 24553: Facts: 24553: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24553: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24553: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24553: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24553: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24553: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24553: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24553: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24553: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?27 ?28)))) [28, 27, 26] by equation_H10 ?26 ?27 ?28 24553: Goal: 24553: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 % SZS status Timeout for LAT103-1.p FINAL WATCH: 199.8 CPU 100.2 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT104-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 24618 TreeLimitedRun: ---------------------------------------------------------- 24620: Facts: 24620: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24620: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24620: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24620: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24620: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24620: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24620: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24620: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24620: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?26 (meet ?27 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H21 ?26 ?27 ?28 24620: Goal: 24620: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 % SZS status Timeout for LAT104-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT105-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 24688 TreeLimitedRun: ---------------------------------------------------------- 24690: Facts: 24690: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24690: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24690: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24690: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24690: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24690: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24690: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24690: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24690: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?26 (meet ?27 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H21 ?26 ?27 ?28 24690: Goal: 24690: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join a (meet b c)))) [] by prove_H10 % SZS status Timeout for LAT105-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT106-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 24749 TreeLimitedRun: ---------------------------------------------------------- 24751: Facts: 24751: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24751: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24751: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24751: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24751: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24751: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24751: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24751: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24751: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?28 (meet ?26 ?27))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H22 ?26 ?27 ?28 24751: Goal: 24751: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 % SZS status Timeout for LAT106-1.p FINAL WATCH: 199.5 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT107-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 24833 TreeLimitedRun: ---------------------------------------------------------- 24835: Facts: 24835: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24835: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24835: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24835: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24835: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24835: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24835: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24835: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24835: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?28 (meet ?26 ?27))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H22 ?26 ?27 ?28 24835: Goal: 24835: Id : 1, {_}: meet a (join (meet a b) (meet a c)) =<= meet a (join (meet b (join a (meet b c))) (meet c (join a b))) [] by prove_H17 % SZS status Timeout for LAT107-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT108-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 24904 TreeLimitedRun: ---------------------------------------------------------- 24906: Facts: 24906: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24906: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24906: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24906: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24906: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24906: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24906: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24906: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24906: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 (meet ?28 ?29))) =<= meet ?26 (join ?27 (meet ?28 (meet ?29 (join ?27 (meet ?26 ?28))))) [29, 28, 27, 26] by equation_H31 ?26 ?27 ?28 ?29 24906: Goal: 24906: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 % SZS status Timeout for LAT108-1.p FINAL WATCH: 199.9 CPU 100.2 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT109-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 24965 TreeLimitedRun: ---------------------------------------------------------- 24967: Facts: 24967: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 24967: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 24967: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 24967: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 24967: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 24967: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 24967: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 24967: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 24967: Id : 10, {_}: meet ?26 (join ?27 (join ?28 (meet ?26 ?29))) =<= meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29 24967: Goal: 24967: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 % SZS status Timeout for LAT109-1.p FINAL WATCH: 199.6 CPU 100.4 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT110-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 25059 TreeLimitedRun: ---------------------------------------------------------- 25061: Facts: 25061: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25061: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25061: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25061: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25061: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25061: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25061: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25061: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25061: Id : 10, {_}: meet ?26 (join ?27 (join ?28 (meet ?26 ?29))) =<= meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29 25061: Goal: 25061: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 % SZS status Timeout for LAT110-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT111-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 25137 TreeLimitedRun: ---------------------------------------------------------- 25139: Facts: 25139: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25139: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25139: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25139: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25139: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25139: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25139: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25139: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25139: Id : 10, {_}: meet ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= meet ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H45 ?26 ?27 ?28 ?29 25139: Goal: 25139: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 % SZS status Timeout for LAT111-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT112-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 25197 TreeLimitedRun: ---------------------------------------------------------- 25199: Facts: 25199: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25199: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25199: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25199: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25199: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25199: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25199: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25199: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25199: Id : 10, {_}: meet ?26 (meet ?27 (join ?28 (meet ?27 ?29))) =<= meet ?26 (meet ?27 (join ?28 (meet ?29 (join ?27 (meet ?26 ?28))))) [29, 28, 27, 26] by equation_H47 ?26 ?27 ?28 ?29 25199: Goal: 25199: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 % SZS status Timeout for LAT112-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT113-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 25268 TreeLimitedRun: ---------------------------------------------------------- 25270: Facts: 25270: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25270: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25270: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25270: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25270: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25270: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25270: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25270: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25270: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 25270: Goal: 25270: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 % SZS status Timeout for LAT113-1.p FINAL WATCH: 199.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT114-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 25389 TreeLimitedRun: ---------------------------------------------------------- 25391: Facts: 25391: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25391: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25391: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25391: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25391: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25391: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25391: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25391: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25391: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =<= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27)))) [28, 27, 26] by equation_H55 ?26 ?27 ?28 25391: Goal: 25391: Id : 1, {_}: join (meet a b) (meet a (join b c)) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H56 % SZS status Timeout for LAT114-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT115-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 25452 TreeLimitedRun: ---------------------------------------------------------- 25454: Facts: 25454: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25454: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25454: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25454: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25454: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25454: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25454: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25454: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25454: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =<= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27)))) [28, 27, 26] by equation_H55 ?26 ?27 ?28 25454: Goal: 25454: Id : 1, {_}: meet a (meet (join b c) (join b d)) =<= meet a (join b (meet (join b d) (join c (meet a b)))) [] by prove_H59 % SZS status Timeout for LAT115-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT116-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 25515 TreeLimitedRun: ---------------------------------------------------------- 25517: Facts: 25517: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25517: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25517: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25517: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25517: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25517: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25517: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25517: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25517: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =<= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27)))) [28, 27, 26] by equation_H55 ?26 ?27 ?28 25517: Goal: 25517: Id : 1, {_}: meet a (meet (join b c) (join b d)) =<= meet a (join b (meet (join b c) (join d (meet a b)))) [] by prove_H60 % SZS status Timeout for LAT116-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT117-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 25586 TreeLimitedRun: ---------------------------------------------------------- 25588: Facts: 25588: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25588: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25588: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25588: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25588: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25588: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25588: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25588: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25588: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 ?29)) =<= meet ?26 (join ?27 (meet ?26 (join (meet ?26 ?27) (meet ?28 ?29)))) [29, 28, 27, 26] by equation_H65 ?26 ?27 ?28 ?29 25588: Goal: 25588: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 % SZS status Timeout for LAT117-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT118-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 25659 TreeLimitedRun: ---------------------------------------------------------- 25661: Facts: 25661: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25661: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25661: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25661: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25661: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25661: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25661: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25661: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25661: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join (meet ?26 (join ?27 (meet ?26 ?28))) (meet ?28 ?29)) [29, 28, 27, 26] by equation_H79 ?26 ?27 ?28 ?29 25661: Goal: 25661: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 % SZS status Timeout for LAT118-1.p FINAL WATCH: 199.6 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT119-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 25736 TreeLimitedRun: ---------------------------------------------------------- 25738: Facts: 25738: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25738: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25738: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25738: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25738: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25738: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25738: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25738: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25738: Id : 10, {_}: meet ?26 (join (meet ?27 (join ?26 ?28)) (meet ?28 (join ?26 ?27))) =>= join (meet ?26 ?27) (meet ?26 ?28) [28, 27, 26] by equation_H82 ?26 ?27 ?28 25738: Goal: 25738: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 % SZS status Timeout for LAT119-1.p FINAL WATCH: 197.3 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT120-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 25873 TreeLimitedRun: ---------------------------------------------------------- 25875: Facts: 25875: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25875: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25875: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25875: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25875: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25875: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25875: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25875: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25875: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =<= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?27 ?28)))) [28, 27, 26] by equation_H10_dual ?26 ?27 ?28 25875: Goal: 25875: Id : 1, {_}: meet a (join b c) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H58 % SZS status Timeout for LAT120-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT121-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 25893 TreeLimitedRun: ---------------------------------------------------------- 25895: Facts: 25895: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25895: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25895: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25895: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25895: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25895: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25895: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25895: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25895: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?26 ?27) (meet (join ?26 ?28) (join ?27 (meet ?26 ?28)))) [28, 27, 26] by equation_H18_dual ?26 ?27 ?28 25895: Goal: 25895: Id : 1, {_}: join a (meet b (join a c)) =<= join a (meet b (join c (meet a (join c b)))) [] by prove_H55 % SZS status Timeout for LAT121-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT122-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 25924 TreeLimitedRun: ---------------------------------------------------------- 25926: Facts: 25926: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25926: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25926: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25926: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25926: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25926: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25926: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25926: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25926: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?27 (meet ?26 (join ?27 ?28))) (join ?28 (meet ?26 ?27))) [28, 27, 26] by equation_H21_dual ?26 ?27 ?28 25926: Goal: 25926: Id : 1, {_}: join a (meet b (join a c)) =<= join a (meet b (join c (meet a (join c b)))) [] by prove_H55 % SZS status Timeout for LAT122-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT123-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 25959 TreeLimitedRun: ---------------------------------------------------------- 25961: Facts: 25961: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25961: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25961: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25961: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25961: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25961: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25961: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25961: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25961: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?27 (meet ?28 (join ?26 ?27))) (join ?28 (meet ?26 ?27))) [28, 27, 26] by equation_H22_dual ?26 ?27 ?28 25961: Goal: 25961: Id : 1, {_}: join a (meet b (join a c)) =<= join a (meet b (join c (meet a (join c b)))) [] by prove_H55 % SZS status Timeout for LAT123-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT124-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 25982 TreeLimitedRun: ---------------------------------------------------------- 25986: Facts: 25986: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 25986: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 25986: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 25986: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 25986: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 25986: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 25986: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 25986: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 25986: Id : 10, {_}: join ?26 (meet ?27 (join ?26 (join ?28 ?29))) =<= join ?26 (meet ?27 (join ?28 (meet (join ?26 ?29) (join ?27 ?29)))) [29, 28, 27, 26] by equation_H32_dual ?26 ?27 ?28 ?29 25986: Goal: 25986: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 % SZS status Timeout for LAT124-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT125-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 26019 TreeLimitedRun: ---------------------------------------------------------- 26021: Facts: 26021: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26021: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26021: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26021: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26021: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26021: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26021: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26021: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26021: Id : 10, {_}: join ?26 (meet ?27 (join ?28 ?29)) =<= join ?26 (meet ?27 (join ?28 (meet ?27 (join ?29 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H34_dual ?26 ?27 ?28 ?29 26021: Goal: 26021: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 % SZS status Timeout for LAT125-1.p FINAL WATCH: 199.9 CPU 100.2 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT126-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 26051 TreeLimitedRun: ---------------------------------------------------------- 26053: Facts: 26053: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26053: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26053: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26053: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26053: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26053: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26053: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26053: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26053: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?28)))) [29, 28, 27, 26] by equation_H39_dual ?26 ?27 ?28 ?29 26053: Goal: 26053: Id : 1, {_}: meet a (join b c) =<= join (meet a (join c (meet a b))) (meet a (join b (meet a c))) [] by prove_H69 % SZS status Timeout for LAT126-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT127-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 26081 TreeLimitedRun: ---------------------------------------------------------- 26083: Facts: 26083: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26083: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26083: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26083: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26083: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26083: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26083: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26083: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26083: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 ?27)))) [28, 27, 26] by equation_H55_dual ?26 ?27 ?28 26083: Goal: 26083: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 % SZS status Timeout for LAT127-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT128-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 26113 TreeLimitedRun: ---------------------------------------------------------- 26115: Facts: 26115: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26115: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26115: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26115: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26115: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26115: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26115: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26115: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26115: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= join ?26 (meet ?27 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27)))) [28, 27, 26] by equation_H58_dual ?26 ?27 ?28 26115: Goal: 26115: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join b (meet a (join c (meet a b)))))) [] by prove_H3 % SZS status Timeout for LAT128-1.p FINAL WATCH: 180.0 CPU 90.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT129-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 26133 TreeLimitedRun: ---------------------------------------------------------- 26135: Facts: 26135: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26135: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26135: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26135: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26135: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26135: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26135: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26135: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26135: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= join ?26 (meet ?27 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27)))) [28, 27, 26] by equation_H58_dual ?26 ?27 ?28 26135: Goal: 26135: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join a (meet b c)))) [] by prove_H10 % SZS status Timeout for LAT129-1.p FINAL WATCH: 198.6 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT130-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 26335 TreeLimitedRun: ---------------------------------------------------------- 26337: Facts: 26337: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 26337: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 26337: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 26337: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 26337: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 26337: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 26337: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 26337: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 26337: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= join ?26 (meet ?27 (join ?26 (meet ?28 (join ?26 ?27)))) [28, 27, 26] by equation_H68_dual ?26 ?27 ?28 26337: Goal: 26337: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet a c)))) [] by prove_H39 % SZS status Timeout for LAT130-1.p FINAL WATCH: 193.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT131-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27228 TreeLimitedRun: ---------------------------------------------------------- 27230: Facts: 27230: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27230: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27230: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27230: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27230: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27230: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27230: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27230: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27230: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= join ?26 (meet ?27 (join ?26 (meet ?28 (join ?26 ?27)))) [28, 27, 26] by equation_H68_dual ?26 ?27 ?28 27230: Goal: 27230: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 % SZS status Timeout for LAT131-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT132-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27281 TreeLimitedRun: ---------------------------------------------------------- 27283: Facts: 27283: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27283: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27283: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27283: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27283: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27283: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27283: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27283: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27283: Id : 10, {_}: join ?26 (meet ?27 ?28) =<= meet (join ?26 (meet ?28 (join ?26 ?27))) (join ?26 (meet ?27 (join ?26 ?28))) [28, 27, 26] by equation_H69_dual ?26 ?27 ?28 27283: Goal: 27283: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 % SZS status Timeout for LAT132-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT133-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27313 TreeLimitedRun: ---------------------------------------------------------- 27315: Facts: 27315: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27315: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27315: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27315: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27315: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27315: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27315: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27315: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27315: Id : 10, {_}: join ?26 (meet ?27 (join ?26 ?28)) =<= join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27)))) [28, 27, 26] by equation_H55 ?26 ?27 ?28 27315: Goal: 27315: Id : 1, {_}: join a (meet b (join a c)) =<= join a (meet (join a (meet b (join a c))) (join c (meet a b))) [] by prove_H6_dual % SZS status Timeout for LAT133-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT134-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27344 TreeLimitedRun: ---------------------------------------------------------- 27346: Facts: 27346: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27346: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27346: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27346: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27346: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27346: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27346: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27346: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27346: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?26 ?27) (join (meet ?26 ?27) ?28)) [28, 27, 26] by equation_H61 ?26 ?27 ?28 27346: Goal: 27346: Id : 1, {_}: meet (join a b) (join a c) =<= join a (meet (join b (meet c (join a b))) (join c (meet a b))) [] by prove_H22_dual % SZS status Timeout for LAT134-1.p FINAL WATCH: 180.0 CPU 90.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT135-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27364 TreeLimitedRun: ---------------------------------------------------------- 27366: Facts: 27366: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27366: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27366: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27366: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27366: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27366: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27366: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27366: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27366: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= meet ?26 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27)))) [28, 27, 26] by equation_H68 ?26 ?27 ?28 27366: Goal: 27366: Id : 1, {_}: join a (meet b (join c (meet a d))) =<= join a (meet b (join c (meet d (join a c)))) [] by prove_H39_dual % SZS status Timeout for LAT135-1.p FINAL WATCH: 199.1 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT136-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27412 TreeLimitedRun: ---------------------------------------------------------- 27414: Facts: 27414: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27414: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27414: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27414: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27414: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27414: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27414: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27414: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27414: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= join (meet ?26 (join ?28 (meet ?26 ?27))) (meet ?26 (join ?27 (meet ?26 ?28))) [28, 27, 26] by equation_H69 ?26 ?27 ?28 27414: Goal: 27414: Id : 1, {_}: join a (meet b (join c (meet a d))) =<= join a (meet b (join c (meet d (join a c)))) [] by prove_H39_dual % SZS status Timeout for LAT136-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT137-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27443 TreeLimitedRun: ---------------------------------------------------------- 27445: Facts: 27445: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27445: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27445: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27445: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27445: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27445: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27445: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27445: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27445: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= join (meet ?26 (join ?28 (meet ?26 ?27))) (meet ?26 (join ?27 (meet ?26 ?28))) [28, 27, 26] by equation_H69 ?26 ?27 ?28 27445: Goal: 27445: Id : 1, {_}: join a (meet b (join c (meet a d))) =<= join a (meet b (join c (meet d (join c (meet a b))))) [] by prove_H40_dual % SZS status Timeout for LAT137-1.p FINAL WATCH: 200.0 CPU 100.2 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT138-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27464 TreeLimitedRun: ---------------------------------------------------------- 27466: Facts: 27466: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27466: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27466: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27466: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27466: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27466: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27466: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27466: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27466: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?26 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27))))) [28, 27, 26] by equation_H7 ?26 ?27 ?28 27466: Goal: 27466: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 % SZS status Timeout for LAT138-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT139-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27495 TreeLimitedRun: ---------------------------------------------------------- 27497: Facts: 27497: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27497: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27497: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27497: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27497: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27497: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27497: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27497: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27497: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 ?28)) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?27 (join ?28 (meet ?26 ?27)))))) [28, 27, 26] by equation_H11 ?26 ?27 ?28 27497: Goal: 27497: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join a (meet b c)))) [] by prove_H10 % SZS status Timeout for LAT139-1.p FINAL WATCH: 199.7 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT140-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27552 TreeLimitedRun: ---------------------------------------------------------- 27554: Facts: 27554: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27554: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27554: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27554: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27554: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27554: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27554: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27554: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27554: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?26 (meet ?27 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H21 ?26 ?27 ?28 27554: Goal: 27554: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 % SZS status Timeout for LAT140-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT141-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27578 TreeLimitedRun: ---------------------------------------------------------- 27580: Facts: 27580: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27580: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27580: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27580: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27580: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27580: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27580: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27580: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27580: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?26 (meet ?27 ?28))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H21 ?26 ?27 ?28 27580: Goal: 27580: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 % SZS status Timeout for LAT141-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT142-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27620 TreeLimitedRun: ---------------------------------------------------------- 27622: Facts: 27622: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27622: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27622: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27622: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27622: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27622: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27622: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27622: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27622: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?27 (join ?28 (meet ?26 ?27))) (meet ?28 (join ?26 ?27))) [28, 27, 26] by equation_H22 ?26 ?27 ?28 27622: Goal: 27622: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 % SZS status Timeout for LAT142-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT144-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27651 TreeLimitedRun: ---------------------------------------------------------- 27653: Facts: 27653: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27653: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27653: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27653: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27653: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27653: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27653: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27653: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27653: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 (meet ?28 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join (meet ?26 ?29) (meet ?27 ?29)))) [29, 28, 27, 26] by equation_H32 ?26 ?27 ?28 ?29 27653: Goal: 27653: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 % SZS status Timeout for LAT144-1.p FINAL WATCH: 180.0 CPU 90.2 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT145-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27671 TreeLimitedRun: ---------------------------------------------------------- 27673: Facts: 27673: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27673: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27673: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27673: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27673: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27673: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27673: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27673: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27673: Id : 10, {_}: meet ?26 (join ?27 (meet ?26 (meet ?28 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join (meet ?26 ?29) (meet ?27 ?29)))) [29, 28, 27, 26] by equation_H32 ?26 ?27 ?28 ?29 27673: Goal: 27673: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 % SZS status Timeout for LAT145-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT146-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27710 TreeLimitedRun: ---------------------------------------------------------- 27712: Facts: 27712: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27712: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27712: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27712: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27712: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27712: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27712: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27712: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27712: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 ?29)) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28))))) [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29 27712: Goal: 27712: Id : 1, {_}: meet a (join b (meet a (meet c d))) =<= meet a (join b (meet c (meet d (join a (meet b d))))) [] by prove_H28 % SZS status Timeout for LAT146-1.p FINAL WATCH: 180.0 CPU 90.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT147-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27731 TreeLimitedRun: ---------------------------------------------------------- 27733: Facts: 27733: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27733: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27733: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27733: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27733: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27733: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27733: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27733: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27733: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 ?29)) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28))))) [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29 27733: Goal: 27733: Id : 1, {_}: meet a (meet b (join c (meet a d))) =<= meet a (meet b (join c (meet d (join a (meet b c))))) [] by prove_H45 % SZS status Timeout for LAT147-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT148-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27763 TreeLimitedRun: ---------------------------------------------------------- 27765: Facts: 27765: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27765: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27765: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27765: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27765: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27765: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27765: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27765: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27765: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 ?29)) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28))))) [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29 27765: Goal: 27765: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet a (join (meet a b) (meet c (join a b))))) [] by prove_H7 % SZS status Timeout for LAT148-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT149-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27794 TreeLimitedRun: ---------------------------------------------------------- 27796: Facts: 27796: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27796: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27796: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27796: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27796: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27796: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27796: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27796: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27796: Id : 10, {_}: meet ?26 (join ?27 (join ?28 (meet ?26 ?29))) =<= meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29 27796: Goal: 27796: Id : 1, {_}: meet a (join b (meet c (join b d))) =<= meet a (join b (meet c (join d (meet a (join b d))))) [] by prove_H43 % SZS status Timeout for LAT149-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT150-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27814 TreeLimitedRun: ---------------------------------------------------------- 27816: Facts: 27816: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27816: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27816: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27816: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27816: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27816: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27816: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27816: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27816: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?28)))) [29, 28, 27, 26] by equation_H39 ?26 ?27 ?28 ?29 27816: Goal: 27816: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 % SZS status Timeout for LAT150-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT151-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27849 TreeLimitedRun: ---------------------------------------------------------- 27851: Facts: 27851: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27851: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27851: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27851: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27851: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27851: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27851: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27851: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27851: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?28)))) [29, 28, 27, 26] by equation_H39 ?26 ?27 ?28 ?29 27851: Goal: 27851: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 % SZS status Timeout for LAT151-1.p FINAL WATCH: 199.7 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT152-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27929 TreeLimitedRun: ---------------------------------------------------------- 27931: Facts: 27931: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27931: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27931: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27931: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27931: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27931: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27931: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27931: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27931: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?28 (join ?26 ?27))))) [29, 28, 27, 26] by equation_H40 ?26 ?27 ?28 ?29 27931: Goal: 27931: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 % SZS status Timeout for LAT152-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT153-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27949 TreeLimitedRun: ---------------------------------------------------------- 27951: Facts: 27951: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27951: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27951: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27951: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27951: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27951: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27951: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27951: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27951: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?28 (join ?26 ?27))))) [29, 28, 27, 26] by equation_H40 ?26 ?27 ?28 ?29 27951: Goal: 27951: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet a (join (meet a b) (meet c (join a b))))) [] by prove_H7 % SZS status Timeout for LAT153-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT154-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 27980 TreeLimitedRun: ---------------------------------------------------------- 27982: Facts: 27982: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 27982: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 27982: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 27982: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 27982: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 27982: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 27982: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 27982: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 27982: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?27 (join ?29 (meet ?26 ?28))))) [29, 28, 27, 26] by equation_H42 ?26 ?27 ?28 ?29 27982: Goal: 27982: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 % SZS status Timeout for LAT154-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT155-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28012 TreeLimitedRun: ---------------------------------------------------------- 28014: Facts: 28014: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28014: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28014: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28014: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28014: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28014: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28014: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28014: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28014: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (join (meet ?26 ?28) (meet ?28 (join ?27 ?29)))) [29, 28, 27, 26] by equation_H49 ?26 ?27 ?28 ?29 28014: Goal: 28014: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 % SZS status Timeout for LAT155-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT156-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28036 TreeLimitedRun: ---------------------------------------------------------- 28038: Facts: 28038: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28038: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28038: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28038: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28038: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28038: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28038: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28038: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28038: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (join (meet ?26 ?28) (meet ?28 (join ?27 ?29)))) [29, 28, 27, 26] by equation_H49 ?26 ?27 ?28 ?29 28038: Goal: 28038: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 % SZS status Timeout for LAT156-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT157-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28069 TreeLimitedRun: ---------------------------------------------------------- 28071: Facts: 28071: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28071: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28071: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28071: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28071: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28071: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28071: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28071: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28071: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 28071: Goal: 28071: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) [] by prove_H2 % SZS status Timeout for LAT157-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT158-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28100 TreeLimitedRun: ---------------------------------------------------------- 28102: Facts: 28102: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28102: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28102: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28102: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28102: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28102: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28102: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28102: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28102: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 28102: Goal: 28102: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (join (meet a c) (meet c (join b d)))) [] by prove_H49 % SZS status Timeout for LAT158-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT159-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28120 TreeLimitedRun: ---------------------------------------------------------- 28122: Facts: 28122: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28122: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28122: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28122: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28122: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28122: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28122: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28122: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28122: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 28122: Goal: 28122: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join b (meet a (join (meet a b) (meet c (join a b))))) [] by prove_H7 % SZS status Timeout for LAT159-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT160-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28155 TreeLimitedRun: ---------------------------------------------------------- 28157: Facts: 28157: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28157: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28157: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28157: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28157: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28157: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28157: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28157: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28157: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) =<= meet ?26 (join ?27 (join (meet ?28 ?29) (meet ?28 (join ?26 ?27)))) [29, 28, 27, 26] by equation_H52 ?26 ?27 ?28 ?29 28157: Goal: 28157: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (join (meet a c) (meet c d))) [] by prove_H51 % SZS status Timeout for LAT160-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT161-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28186 TreeLimitedRun: ---------------------------------------------------------- 28188: Facts: 28188: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28188: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28188: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28188: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28188: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28188: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28188: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28188: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28188: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= meet ?26 (join ?27 (meet (join ?26 ?27) (join ?28 (meet ?26 ?27)))) [28, 27, 26] by equation_H58 ?26 ?27 ?28 28188: Goal: 28188: Id : 1, {_}: meet a (meet (join b c) (join b d)) =<= meet a (join b (meet (join b d) (join c (meet a b)))) [] by prove_H59 % SZS status Timeout for LAT161-1.p FINAL WATCH: 199.4 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT162-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28287 TreeLimitedRun: ---------------------------------------------------------- 28289: Facts: 28289: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28289: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28289: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28289: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28289: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28289: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28289: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28289: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28289: Id : 10, {_}: meet ?26 (join ?27 ?28) =<= meet ?26 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27)))) [28, 27, 26] by equation_H68 ?26 ?27 ?28 28289: Goal: 28289: Id : 1, {_}: meet a (meet b (join c d)) =<= meet a (meet b (join c (meet a (join d (meet b c))))) [] by prove_H73 % SZS status Timeout for LAT162-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT163-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28318 TreeLimitedRun: ---------------------------------------------------------- 28320: Facts: 28320: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28320: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28320: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28320: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28320: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28320: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28320: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28320: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28320: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27)))) [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29 28320: Goal: 28320: Id : 1, {_}: meet a (join b (meet a (meet c d))) =<= meet a (join b (meet c (join (meet a d) (meet b d)))) [] by prove_H32 % SZS status Timeout for LAT163-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT164-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28360 TreeLimitedRun: ---------------------------------------------------------- 28362: Facts: 28362: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28362: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28362: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28362: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28362: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28362: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28362: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28362: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28362: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27)))) [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29 28362: Goal: 28362: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 % SZS status Timeout for LAT164-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT165-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28386 TreeLimitedRun: ---------------------------------------------------------- 28388: Facts: 28388: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28388: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28388: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28388: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28388: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28388: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28388: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28388: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28388: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27)))) [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29 28388: Goal: 28388: Id : 1, {_}: meet a (join b (meet c (join b d))) =<= meet a (join b (meet c (join d (meet a (meet b c))))) [] by prove_H77 % SZS status Timeout for LAT165-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT166-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28418 TreeLimitedRun: ---------------------------------------------------------- 28420: Facts: 28420: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28420: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28420: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28420: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28420: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28420: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28420: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28420: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28420: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 (meet ?27 ?28))))) [29, 28, 27, 26] by equation_H77 ?26 ?27 ?28 ?29 28420: Goal: 28420: Id : 1, {_}: meet a (join b (meet c (join b d))) =<= meet a (join b (meet c (join d (meet b (join a d))))) [] by prove_H78 % SZS status Timeout for LAT166-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT167-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28450 TreeLimitedRun: ---------------------------------------------------------- 28452: Facts: 28452: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28452: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28452: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28452: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28452: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28452: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28452: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28452: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28452: Id : 10, {_}: meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) =<= meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?27 (join ?26 ?29))))) [29, 28, 27, 26] by equation_H78 ?26 ?27 ?28 ?29 28452: Goal: 28452: Id : 1, {_}: meet a (join b (meet c (join b d))) =<= meet a (join b (meet c (join d (meet a (meet b c))))) [] by prove_H77 % SZS status Timeout for LAT167-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT168-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28470 TreeLimitedRun: ---------------------------------------------------------- 28472: Facts: 28472: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28472: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28472: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28472: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28472: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28472: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28472: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28472: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28472: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?26 ?27) (meet (join ?26 ?28) (join ?27 (meet ?26 ?28)))) [28, 27, 26] by equation_H18_dual ?26 ?27 ?28 28472: Goal: 28472: Id : 1, {_}: meet a (join b c) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H58 % SZS status Timeout for LAT168-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT169-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28506 TreeLimitedRun: ---------------------------------------------------------- 28508: Facts: 28508: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28508: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28508: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28508: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28508: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28508: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28508: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28508: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28508: Id : 10, {_}: meet (join ?26 ?27) (join ?26 ?28) =<= join ?26 (meet (join ?27 (meet ?26 (join ?27 ?28))) (join ?28 (meet ?26 ?27))) [28, 27, 26] by equation_H21_dual ?26 ?27 ?28 28508: Goal: 28508: Id : 1, {_}: meet a (join b c) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H58 % SZS status Timeout for LAT169-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT170-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28561 TreeLimitedRun: ---------------------------------------------------------- 28563: Facts: 28563: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28563: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28563: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28563: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28563: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28563: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28563: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28563: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28563: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= join ?26 (meet ?27 (meet (join ?26 ?28) (join ?28 (meet ?27 ?29)))) [29, 28, 27, 26] by equation_H49_dual ?26 ?27 ?28 ?29 28563: Goal: 28563: Id : 1, {_}: meet a (join b c) =<= meet a (join b (meet (join a b) (join c (meet a b)))) [] by prove_H58 % SZS status Timeout for LAT170-1.p FINAL WATCH: 180.1 CPU 90.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT171-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28581 TreeLimitedRun: ---------------------------------------------------------- 28583: Facts: 28583: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28583: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28583: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28583: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28583: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28583: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28583: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28583: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28583: Id : 10, {_}: join (meet ?26 ?27) (meet ?26 ?28) =<= meet ?26 (join (meet ?26 ?27) (meet (join ?26 ?27) ?28)) [28, 27, 26] by equation_H61_dual ?26 ?27 ?28 28583: Goal: 28583: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 % SZS status Timeout for LAT171-1.p FINAL WATCH: 199.5 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT172-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28665 TreeLimitedRun: ---------------------------------------------------------- 28667: Facts: 28667: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28667: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28667: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28667: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28667: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28667: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28667: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28667: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28667: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?27 ?29))) =<= join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27)))) [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29 28667: Goal: 28667: Id : 1, {_}: meet a (join b (meet a (meet c d))) =<= meet a (join b (meet c (join (meet a d) (meet b d)))) [] by prove_H32 % SZS status Timeout for LAT172-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT173-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28698 TreeLimitedRun: ---------------------------------------------------------- 28700: Facts: 28700: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28700: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28700: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28700: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28700: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28700: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28700: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28700: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28700: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?27 ?29))) =<= join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27)))) [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29 28700: Goal: 28700: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join d (meet c (join a b))))) [] by prove_H40 % SZS status Timeout for LAT173-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT174-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28718 TreeLimitedRun: ---------------------------------------------------------- 28720: Facts: 28720: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28720: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28720: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28720: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28720: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28720: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28720: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28720: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28720: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?27 ?29))) =<= join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27)))) [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29 28720: Goal: 28720: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 % SZS status Timeout for LAT174-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT175-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28750 TreeLimitedRun: ---------------------------------------------------------- 28752: Facts: 28752: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28752: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28752: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28752: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28752: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28752: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28752: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28752: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28752: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29)) [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29 28752: Goal: 28752: Id : 1, {_}: meet a (join b (meet a (meet c d))) =<= meet a (join b (meet c (join (meet a d) (meet b d)))) [] by prove_H32 % SZS status Timeout for LAT175-1.p FINAL WATCH: 180.0 CPU 90.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT176-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28770 TreeLimitedRun: ---------------------------------------------------------- 28772: Facts: 28772: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28772: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28772: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28772: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28772: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28772: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28772: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28772: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28772: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29)) [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29 28772: Goal: 28772: Id : 1, {_}: meet a (join b (meet c (join a d))) =<= meet a (join b (meet c (join b (join d (meet a c))))) [] by prove_H42 % SZS status Timeout for LAT176-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LAT177-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28804 TreeLimitedRun: ---------------------------------------------------------- 28806: Facts: 28806: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 28806: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 28806: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 28806: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 28806: Id : 6, {_}: meet ?12 ?13 =<->= meet ?13 ?12 [13, 12] by commutativity_of_meet ?12 ?13 28806: Id : 7, {_}: join ?15 ?16 =<->= join ?16 ?15 [16, 15] by commutativity_of_join ?15 ?16 28806: Id : 8, {_}: meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 28806: Id : 9, {_}: join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) [24, 23, 22] by associativity_of_join ?22 ?23 ?24 28806: Id : 10, {_}: join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) =<= join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29)) [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29 28806: Goal: 28806: Id : 1, {_}: meet a (join b (meet a c)) =<= meet a (join (meet a (join b (meet a c))) (meet c (join a b))) [] by prove_H6 % SZS status Timeout for LAT177-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LCL109-2.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28839 TreeLimitedRun: ---------------------------------------------------------- 28841: Facts: 28841: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 28841: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 28841: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 28841: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 28841: Goal: 28841: Id : 1, {_}: implies (implies (implies a b) (implies b a)) (implies b a) =>= truth [] by prove_wajsberg_mv_4 % SZS status Timeout for LCL109-2.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LCL136-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28868 TreeLimitedRun: ---------------------------------------------------------- 28870: Facts: 28870: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 28870: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 28870: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 28870: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 28870: Id : 6, {_}: implies x y =<= implies y z [] by lemma_antecedent 28870: Goal: 28870: Id : 1, {_}: implies x z =>= truth [] by prove_wajsberg_lemma % SZS status Timeout for LCL136-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LCL137-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28899 TreeLimitedRun: ---------------------------------------------------------- 28901: Facts: 28901: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 28901: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 28901: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 28901: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 28901: Goal: 28901: Id : 1, {_}: implies (implies (implies x y) y) (implies (implies y z) (implies x z)) =>= truth [] by prove_wajsberg_lemma % SZS status Timeout for LCL137-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LCL138-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 28933 TreeLimitedRun: ---------------------------------------------------------- 28935: Facts: 28935: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 28935: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 28935: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 28935: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 28935: Goal: 28935: Id : 1, {_}: implies x (implies y z) =<= implies y (implies x z) [] by prove_wajsberg_lemma % SZS status Timeout for LCL138-1.p FINAL WATCH: 193.1 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LCL159-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 29925 TreeLimitedRun: ---------------------------------------------------------- 29927: Facts: 29927: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 29927: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 29927: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 29927: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 29927: Id : 6, {_}: or ?14 ?15 =<= implies (not ?14) ?15 [15, 14] by or_definition ?14 ?15 29927: Id : 7, {_}: or (or ?17 ?18) ?19 =?= or ?17 (or ?18 ?19) [19, 18, 17] by or_associativity ?17 ?18 ?19 29927: Id : 8, {_}: or ?21 ?22 =<->= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22 29927: Id : 9, {_}: and ?24 ?25 =<= not (or (not ?24) (not ?25)) [25, 24] by and_definition ?24 ?25 29927: Id : 10, {_}: and (and ?27 ?28) ?29 =?= and ?27 (and ?28 ?29) [29, 28, 27] by and_associativity ?27 ?28 ?29 29927: Id : 11, {_}: and ?31 ?32 =<->= and ?32 ?31 [32, 31] by and_commutativity ?31 ?32 29927: Id : 12, {_}: xor ?34 ?35 =<= or (and ?34 (not ?35)) (and (not ?34) ?35) [35, 34] by xor_definition ?34 ?35 29927: Id : 13, {_}: xor ?37 ?38 =<->= xor ?38 ?37 [38, 37] by xor_commutativity ?37 ?38 29927: Id : 14, {_}: and_star ?40 ?41 =<= not (or (not ?40) (not ?41)) [41, 40] by and_star_definition ?40 ?41 29927: Id : 15, {_}: and_star (and_star ?43 ?44) ?45 =?= and_star ?43 (and_star ?44 ?45) [45, 44, 43] by and_star_associativity ?43 ?44 ?45 29927: Id : 16, {_}: and_star ?47 ?48 =<->= and_star ?48 ?47 [48, 47] by and_star_commutativity ?47 ?48 29927: Id : 17, {_}: not truth =>= falsehood [] by false_definition 29927: Goal: 29927: Id : 1, {_}: xor x (xor truth y) =<= xor (xor x truth) y [] by prove_alternative_wajsberg_axiom Statistics : Max weight : 25 Found proof, 8.012155s % SZS status Unsatisfiable for LCL159-1.p % SZS output start CNFRefutation for LCL159-1.p Id : 98, {_}: and ?268 ?269 =<= not (or (not ?268) (not ?269)) [269, 268] by and_definition ?268 ?269 Id : 13, {_}: xor ?37 ?38 =?= xor ?38 ?37 [38, 37] by xor_commutativity ?37 ?38 Id : 11, {_}: and ?31 ?32 =?= and ?32 ?31 [32, 31] by and_commutativity ?31 ?32 Id : 7, {_}: or (or ?17 ?18) ?19 =>= or ?17 (or ?18 ?19) [19, 18, 17] by or_associativity ?17 ?18 ?19 Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 Id : 12, {_}: xor ?34 ?35 =<= or (and ?34 (not ?35)) (and (not ?34) ?35) [35, 34] by xor_definition ?34 ?35 Id : 9, {_}: and ?24 ?25 =<= not (or (not ?24) (not ?25)) [25, 24] by and_definition ?24 ?25 Id : 14, {_}: and_star ?40 ?41 =<= not (or (not ?40) (not ?41)) [41, 40] by and_star_definition ?40 ?41 Id : 10, {_}: and (and ?27 ?28) ?29 =>= and ?27 (and ?28 ?29) [29, 28, 27] by and_associativity ?27 ?28 ?29 Id : 20, {_}: implies (implies ?55 ?56) (implies (implies ?56 ?57) (implies ?55 ?57)) =>= truth [57, 56, 55] by wajsberg_2 ?55 ?56 ?57 Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 Id : 17, {_}: not truth =>= falsehood [] by false_definition Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 Id : 6, {_}: or ?14 ?15 =<= implies (not ?14) ?15 [15, 14] by or_definition ?14 ?15 Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22 Id : 63, {_}: implies (or ?11 (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by Demod 5 with 6 at 1,2 Id : 163, {_}: implies (or ?405 falsehood) (implies truth ?405) =>= truth [405] by Super 63 with 17 at 2,1,2 Id : 391, {_}: implies (or ?832 falsehood) ?832 =>= truth [832] by Demod 163 with 2 at 2,2 Id : 1016, {_}: implies (or falsehood ?1592) ?1592 =>= truth [1592] by Super 391 with 8 at 1,2 Id : 417, {_}: implies (implies ?886 truth) (implies ?887 (implies ?886 ?887)) =>= truth [887, 886] by Super 20 with 2 at 1,2,2 Id : 418, {_}: implies (implies truth truth) (implies ?889 ?889) =>= truth [889] by Super 417 with 2 at 2,2,2 Id : 454, {_}: implies truth (implies ?889 ?889) =>= truth [889] by Demod 418 with 2 at 1,2 Id : 455, {_}: implies ?889 ?889 =>= truth [889] by Demod 454 with 2 at 2 Id : 481, {_}: or ?972 (not ?972) =>= truth [972] by Super 6 with 455 at 3 Id : 1020, {_}: implies truth (not falsehood) =>= truth [] by Super 1016 with 481 at 1,2 Id : 1040, {_}: not falsehood =>= truth [] by Demod 1020 with 2 at 2 Id : 1047, {_}: or falsehood ?1609 =<= implies truth ?1609 [1609] by Super 6 with 1040 at 1,3 Id : 1067, {_}: or falsehood ?1609 =>= ?1609 [1609] by Demod 1047 with 2 at 3 Id : 1110, {_}: or ?1626 falsehood =>= ?1626 [1626] by Super 8 with 1067 at 3 Id : 144, {_}: and_star ?40 ?41 =<= and ?40 ?41 [41, 40] by Demod 14 with 9 at 3 Id : 148, {_}: and (and_star ?27 ?28) ?29 =>= and ?27 (and ?28 ?29) [29, 28, 27] by Demod 10 with 144 at 1,2 Id : 149, {_}: and_star (and_star ?27 ?28) ?29 =<= and ?27 (and ?28 ?29) [29, 28, 27] by Demod 148 with 144 at 2 Id : 150, {_}: and_star (and_star ?27 ?28) ?29 =<= and ?27 (and_star ?28 ?29) [29, 28, 27] by Demod 149 with 144 at 2,3 Id : 151, {_}: and_star (and_star ?27 ?28) ?29 =>= and_star ?27 (and_star ?28 ?29) [29, 28, 27] by Demod 150 with 144 at 3 Id : 147, {_}: and_star ?24 ?25 =<= not (or (not ?24) (not ?25)) [25, 24] by Demod 9 with 144 at 2 Id : 286, {_}: and_star truth ?700 =<= not (or falsehood (not ?700)) [700] by Super 147 with 17 at 1,1,3 Id : 159, {_}: and_star truth ?397 =<= not (or falsehood (not ?397)) [397] by Super 147 with 17 at 1,1,3 Id : 289, {_}: and_star truth (or falsehood (not ?706)) =>= not (or falsehood (and_star truth ?706)) [706] by Super 286 with 159 at 2,1,3 Id : 889, {_}: and_star (not (or falsehood (and_star truth ?1406))) ?1407 =>= and_star truth (and_star (or falsehood (not ?1406)) ?1407) [1407, 1406] by Super 151 with 289 at 1,2 Id : 1081, {_}: and_star truth ?397 =>= not (not ?397) [397] by Demod 159 with 1067 at 1,3 Id : 10664, {_}: and_star (not (or falsehood (not (not ?1406)))) ?1407 =>= and_star truth (and_star (or falsehood (not ?1406)) ?1407) [1407, 1406] by Demod 889 with 1081 at 2,1,1,2 Id : 10665, {_}: and_star (not (not (not ?1406))) ?1407 =<= and_star truth (and_star (or falsehood (not ?1406)) ?1407) [1407, 1406] by Demod 10664 with 1067 at 1,1,2 Id : 152, {_}: xor ?34 ?35 =<= or (and_star ?34 (not ?35)) (and (not ?34) ?35) [35, 34] by Demod 12 with 144 at 1,3 Id : 153, {_}: xor ?34 ?35 =<= or (and_star ?34 (not ?35)) (and_star (not ?34) ?35) [35, 34] by Demod 152 with 144 at 2,3 Id : 160, {_}: xor truth ?399 =<= or (and_star truth (not ?399)) (and_star falsehood ?399) [399] by Super 153 with 17 at 1,2,3 Id : 167, {_}: xor truth ?399 =<= or (and_star falsehood ?399) (and_star truth (not ?399)) [399] by Demod 160 with 8 at 3 Id : 1051, {_}: and_star falsehood ?1617 =<= not (or truth (not ?1617)) [1617] by Super 147 with 1040 at 1,1,3 Id : 21, {_}: implies (implies truth ?59) (implies (implies ?59 ?60) ?60) =>= truth [60, 59] by Super 20 with 2 at 2,2,2 Id : 29, {_}: implies ?59 (implies (implies ?59 ?60) ?60) =>= truth [60, 59] by Demod 21 with 2 at 1,2 Id : 5432, {_}: implies (implies ?6393 (implies ?6394 ?6395)) (implies (implies (implies ?6395 ?6394) ?6394) (implies ?6393 ?6395)) =>= truth [6395, 6394, 6393] by Super 3 with 4 at 1,2,2 Id : 22, {_}: implies (implies (implies ?62 ?63) ?64) (implies (implies ?64 (implies (implies ?63 ?65) (implies ?62 ?65))) truth) =>= truth [65, 64, 63, 62] by Super 20 with 3 at 2,2,2 Id : 5488, {_}: implies (implies (implies ?6610 (implies (implies ?6610 ?6611) (implies truth ?6611))) (implies ?6610 truth)) truth =>= truth [6611, 6610] by Super 5432 with 22 at 2,2 Id : 5627, {_}: implies (implies (implies ?6610 (implies (implies ?6610 ?6611) ?6611)) (implies ?6610 truth)) truth =>= truth [6611, 6610] by Demod 5488 with 2 at 2,2,1,1,2 Id : 5628, {_}: implies (implies truth (implies ?6610 truth)) truth =>= truth [6610] by Demod 5627 with 29 at 1,1,2 Id : 5629, {_}: implies (implies ?6610 truth) truth =>= truth [6610] by Demod 5628 with 2 at 1,2 Id : 5709, {_}: implies ?6849 truth =>= truth [6849] by Super 29 with 5629 at 2,2 Id : 5871, {_}: or ?6956 truth =>= truth [6956] by Super 6 with 5709 at 3 Id : 6187, {_}: or truth ?7101 =>= truth [7101] by Super 8 with 5871 at 3 Id : 6243, {_}: and_star falsehood ?1617 =>= not truth [1617] by Demod 1051 with 6187 at 1,3 Id : 6261, {_}: and_star falsehood ?1617 =>= falsehood [1617] by Demod 6243 with 17 at 3 Id : 7974, {_}: xor truth ?399 =<= or falsehood (and_star truth (not ?399)) [399] by Demod 167 with 6261 at 1,3 Id : 7975, {_}: xor truth ?399 =<= or falsehood (not (not (not ?399))) [399] by Demod 7974 with 1081 at 2,3 Id : 7976, {_}: xor truth ?399 =<= not (not (not ?399)) [399] by Demod 7975 with 1067 at 3 Id : 10666, {_}: and_star (xor truth ?1406) ?1407 =<= and_star truth (and_star (or falsehood (not ?1406)) ?1407) [1407, 1406] by Demod 10665 with 7976 at 1,2 Id : 10667, {_}: and_star (xor truth ?1406) ?1407 =<= and_star truth (and_star (not ?1406) ?1407) [1407, 1406] by Demod 10666 with 1067 at 1,2,3 Id : 10710, {_}: and_star (xor truth ?10761) ?10762 =<= not (not (and_star (not ?10761) ?10762)) [10762, 10761] by Demod 10667 with 1081 at 3 Id : 10712, {_}: and_star (xor truth falsehood) ?10766 =>= not (not (and_star truth ?10766)) [10766] by Super 10710 with 1040 at 1,1,1,3 Id : 539, {_}: and_star ?1028 (not ?1028) =>= not truth [1028] by Super 147 with 481 at 1,3 Id : 548, {_}: and_star ?1028 (not ?1028) =>= falsehood [1028] by Demod 539 with 17 at 3 Id : 671, {_}: and_star falsehood ?1186 =<= and_star ?1187 (and_star (not ?1187) ?1186) [1187, 1186] by Super 151 with 548 at 1,2 Id : 6489, {_}: falsehood =<= and_star ?7170 (and_star (not ?7170) ?7171) [7171, 7170] by Demod 671 with 6261 at 2 Id : 6495, {_}: falsehood =<= and_star ?7187 falsehood [7187] by Super 6489 with 548 at 2,3 Id : 6535, {_}: xor ?7205 falsehood =<= or (and_star ?7205 (not falsehood)) falsehood [7205] by Super 153 with 6495 at 2,3 Id : 6559, {_}: xor ?7205 falsehood =<= or (and_star ?7205 truth) falsehood [7205] by Demod 6535 with 1040 at 2,1,3 Id : 1179, {_}: and_star falsehood ?1703 =<= not (or truth (not ?1703)) [1703] by Super 147 with 1040 at 1,1,3 Id : 1181, {_}: and_star falsehood falsehood =<= not (or truth truth) [] by Super 1179 with 1040 at 2,1,3 Id : 1219, {_}: and_star ?1736 (or truth truth) =<= not (or (not ?1736) (and_star falsehood falsehood)) [1736] by Super 147 with 1181 at 2,1,3 Id : 1176, {_}: or (or truth (not ?1695)) ?1696 =>= implies (and_star falsehood ?1695) ?1696 [1696, 1695] by Super 6 with 1051 at 1,3 Id : 2096, {_}: or truth (or (not ?2663) ?2664) =>= implies (and_star falsehood ?2663) ?2664 [2664, 2663] by Demod 1176 with 7 at 2 Id : 1112, {_}: implies (not ?1630) (implies ?1630 falsehood) =>= truth [1630] by Super 63 with 1067 at 1,2 Id : 1126, {_}: or ?1630 (implies ?1630 falsehood) =>= truth [1630] by Demod 1112 with 6 at 2 Id : 2110, {_}: or truth truth =<= implies (and_star falsehood ?2700) (implies (not ?2700) falsehood) [2700] by Super 2096 with 1126 at 2,2 Id : 2139, {_}: or truth truth =<= implies (and_star falsehood ?2700) (or ?2700 falsehood) [2700] by Demod 2110 with 6 at 2,3 Id : 2477, {_}: or truth truth =<= implies (and_star falsehood ?3422) ?3422 [3422] by Demod 2139 with 1110 at 2,3 Id : 145, {_}: and_star ?31 ?32 =<= and ?32 ?31 [32, 31] by Demod 11 with 144 at 2 Id : 146, {_}: and_star ?31 ?32 =?= and_star ?32 ?31 [32, 31] by Demod 145 with 144 at 3 Id : 2480, {_}: or truth truth =<= implies (and_star ?3428 falsehood) ?3428 [3428] by Super 2477 with 146 at 1,3 Id : 5870, {_}: or truth truth =>= truth [] by Super 2480 with 5709 at 3 Id : 6030, {_}: and_star ?1736 truth =<= not (or (not ?1736) (and_star falsehood falsehood)) [1736] by Demod 1219 with 5870 at 2,2 Id : 6033, {_}: and_star falsehood falsehood =>= not truth [] by Demod 1181 with 5870 at 1,3 Id : 6055, {_}: and_star falsehood falsehood =>= falsehood [] by Demod 6033 with 17 at 3 Id : 6085, {_}: and_star ?1736 truth =<= not (or (not ?1736) falsehood) [1736] by Demod 6030 with 6055 at 2,1,3 Id : 6086, {_}: and_star ?1736 truth =<= not (or falsehood (not ?1736)) [1736] by Demod 6085 with 8 at 1,3 Id : 6087, {_}: and_star ?1736 truth =>= not (not ?1736) [1736] by Demod 6086 with 1067 at 1,3 Id : 6560, {_}: xor ?7205 falsehood =<= or (not (not ?7205)) falsehood [7205] by Demod 6559 with 6087 at 1,3 Id : 6561, {_}: xor ?7205 falsehood =<= or falsehood (not (not ?7205)) [7205] by Demod 6560 with 8 at 3 Id : 6562, {_}: xor ?7205 falsehood =>= not (not ?7205) [7205] by Demod 6561 with 1067 at 3 Id : 10768, {_}: and_star (not (not truth)) ?10766 =>= not (not (and_star truth ?10766)) [10766] by Demod 10712 with 6562 at 1,2 Id : 10769, {_}: and_star (not falsehood) ?10766 =<= not (not (and_star truth ?10766)) [10766] by Demod 10768 with 17 at 1,1,2 Id : 10770, {_}: and_star truth ?10766 =<= not (not (and_star truth ?10766)) [10766] by Demod 10769 with 1040 at 1,2 Id : 10771, {_}: not (not ?10766) =<= not (not (and_star truth ?10766)) [10766] by Demod 10770 with 1081 at 2 Id : 10772, {_}: not (not ?10766) =<= not (not (not (not ?10766))) [10766] by Demod 10771 with 1081 at 1,1,3 Id : 10773, {_}: not (not ?10766) =<= not (xor truth ?10766) [10766] by Demod 10772 with 7976 at 1,3 Id : 11383, {_}: or (xor truth ?11441) ?11442 =<= implies (not (not ?11441)) ?11442 [11442, 11441] by Super 6 with 10773 at 1,3 Id : 11457, {_}: or (xor truth ?11441) ?11442 =>= or (not ?11441) ?11442 [11442, 11441] by Demod 11383 with 6 at 3 Id : 11824, {_}: or (not ?11760) falsehood =>= xor truth ?11760 [11760] by Super 1110 with 11457 at 2 Id : 11867, {_}: or falsehood (not ?11760) =>= xor truth ?11760 [11760] by Demod 11824 with 8 at 2 Id : 11868, {_}: not ?11760 =<= xor truth ?11760 [11760] by Demod 11867 with 1067 at 2 Id : 11948, {_}: xor ?11855 truth =>= not ?11855 [11855] by Super 13 with 11868 at 3 Id : 99, {_}: and ?271 (or (not ?272) (not ?273)) =>= not (or (not ?271) (and ?272 ?273)) [273, 272, 271] by Super 98 with 9 at 2,1,3 Id : 7110, {_}: and_star ?271 (or (not ?272) (not ?273)) =>= not (or (not ?271) (and ?272 ?273)) [273, 272, 271] by Demod 99 with 144 at 2 Id : 7111, {_}: and_star ?271 (or (not ?272) (not ?273)) =>= not (or (not ?271) (and_star ?272 ?273)) [273, 272, 271] by Demod 7110 with 144 at 2,1,3 Id : 7114, {_}: and_star (or (not ?7427) (not ?7428)) ?7429 =>= not (or (not ?7429) (and_star ?7427 ?7428)) [7429, 7428, 7427] by Super 146 with 7111 at 3 Id : 100, {_}: and (or (not ?275) (not ?276)) ?277 =>= not (or (and ?275 ?276) (not ?277)) [277, 276, 275] by Super 98 with 9 at 1,1,3 Id : 7178, {_}: and_star (or (not ?275) (not ?276)) ?277 =>= not (or (and ?275 ?276) (not ?277)) [277, 276, 275] by Demod 100 with 144 at 2 Id : 7179, {_}: and_star (or (not ?275) (not ?276)) ?277 =>= not (or (and_star ?275 ?276) (not ?277)) [277, 276, 275] by Demod 7178 with 144 at 1,1,3 Id : 13048, {_}: not (or (and_star ?12420 ?12421) (not ?12422)) =?= not (or (not ?12422) (and_star ?12420 ?12421)) [12422, 12421, 12420] by Demod 7114 with 7179 at 2 Id : 13052, {_}: not (or (and_star truth ?12436) (not ?12437)) =?= not (or (not ?12437) (not (not ?12436))) [12437, 12436] by Super 13048 with 1081 at 2,1,3 Id : 13146, {_}: not (or (not (not ?12436)) (not ?12437)) =?= not (or (not ?12437) (not (not ?12436))) [12437, 12436] by Demod 13052 with 1081 at 1,1,2 Id : 7986, {_}: or (not (not ?8588)) ?8589 =<= implies (xor truth ?8588) ?8589 [8589, 8588] by Super 6 with 7976 at 1,3 Id : 11923, {_}: or (not (not ?8588)) ?8589 =>= implies (not ?8588) ?8589 [8589, 8588] by Demod 7986 with 11868 at 1,3 Id : 11936, {_}: or (not (not ?8588)) ?8589 =>= or ?8588 ?8589 [8589, 8588] by Demod 11923 with 6 at 3 Id : 13147, {_}: not (or ?12436 (not ?12437)) =<= not (or (not ?12437) (not (not ?12436))) [12437, 12436] by Demod 13146 with 11936 at 1,2 Id : 13259, {_}: not (or ?12717 (not ?12718)) =>= and_star ?12718 (not ?12717) [12718, 12717] by Demod 13147 with 147 at 3 Id : 13267, {_}: not (or (not ?12744) ?12745) =>= and_star ?12744 (not ?12745) [12745, 12744] by Super 13259 with 8 at 1,2 Id : 97, {_}: or (or (not ?264) (not ?265)) ?266 =>= implies (and ?264 ?265) ?266 [266, 265, 264] by Super 6 with 9 at 1,3 Id : 104, {_}: or (not ?264) (or (not ?265) ?266) =>= implies (and ?264 ?265) ?266 [266, 265, 264] by Demod 97 with 7 at 2 Id : 7287, {_}: or (not ?7655) (or (not ?7656) ?7657) =>= implies (and_star ?7655 ?7656) ?7657 [7657, 7656, 7655] by Demod 104 with 144 at 1,3 Id : 7293, {_}: or (not ?7677) (not ?7678) =<= implies (and_star ?7677 ?7678) falsehood [7678, 7677] by Super 7287 with 1110 at 2,2 Id : 13336, {_}: not (or (not ?12863) ?12864) =>= and_star ?12863 (not ?12864) [12864, 12863] by Super 13259 with 8 at 1,2 Id : 13349, {_}: not (or ?12900 ?12901) =<= and_star (not ?12900) (not ?12901) [12901, 12900] by Super 13336 with 11936 at 1,2 Id : 13413, {_}: or (not (not ?12930)) (not (not ?12931)) =>= implies (not (or ?12930 ?12931)) falsehood [12931, 12930] by Super 7293 with 13349 at 1,3 Id : 13460, {_}: or ?12930 (not (not ?12931)) =<= implies (not (or ?12930 ?12931)) falsehood [12931, 12930] by Demod 13413 with 11936 at 2 Id : 13461, {_}: or ?12930 (not (not ?12931)) =<= or (or ?12930 ?12931) falsehood [12931, 12930] by Demod 13460 with 6 at 3 Id : 13462, {_}: or ?12930 (not (not ?12931)) =<= or ?12930 (or ?12931 falsehood) [12931, 12930] by Demod 13461 with 7 at 3 Id : 13463, {_}: or ?12930 (not (not ?12931)) =>= or ?12930 ?12931 [12931, 12930] by Demod 13462 with 1110 at 2,3 Id : 13519, {_}: or falsehood ?13064 =>= not (not ?13064) [13064] by Super 1067 with 13463 at 2 Id : 13548, {_}: ?13064 =<= not (not ?13064) [13064] by Demod 13519 with 1067 at 2 Id : 13609, {_}: or (not ?13176) ?13177 =>= implies ?13176 ?13177 [13177, 13176] by Super 6 with 13548 at 1,3 Id : 13655, {_}: not (implies ?12744 ?12745) =<= and_star ?12744 (not ?12745) [12745, 12744] by Demod 13267 with 13609 at 1,2 Id : 13658, {_}: xor ?34 ?35 =<= or (not (implies ?34 ?35)) (and_star (not ?34) ?35) [35, 34] by Demod 153 with 13655 at 1,3 Id : 13665, {_}: xor ?34 ?35 =<= implies (implies ?34 ?35) (and_star (not ?34) ?35) [35, 34] by Demod 13658 with 13609 at 3 Id : 7280, {_}: or (not ?264) (or (not ?265) ?266) =>= implies (and_star ?264 ?265) ?266 [266, 265, 264] by Demod 104 with 144 at 1,3 Id : 13652, {_}: or (not ?264) (implies ?265 ?266) =>= implies (and_star ?264 ?265) ?266 [266, 265, 264] by Demod 7280 with 13609 at 2,2 Id : 13653, {_}: implies ?264 (implies ?265 ?266) =<= implies (and_star ?264 ?265) ?266 [266, 265, 264] by Demod 13652 with 13609 at 2 Id : 13682, {_}: implies ?13235 falsehood =>= not ?13235 [13235] by Super 1110 with 13609 at 2 Id : 13742, {_}: implies ?13299 (implies ?13300 falsehood) =>= not (and_star ?13299 ?13300) [13300, 13299] by Super 13653 with 13682 at 3 Id : 13949, {_}: implies ?13299 (not ?13300) =>= not (and_star ?13299 ?13300) [13300, 13299] by Demod 13742 with 13682 at 2,2 Id : 14068, {_}: xor ?13656 (not ?13657) =<= implies (not (and_star ?13656 ?13657)) (and_star (not ?13656) (not ?13657)) [13657, 13656] by Super 13665 with 13949 at 1,3 Id : 14085, {_}: xor ?13656 (not ?13657) =<= implies (not (and_star ?13656 ?13657)) (not (implies (not ?13656) ?13657)) [13657, 13656] by Demod 14068 with 13655 at 2,3 Id : 14086, {_}: xor ?13656 (not ?13657) =<= implies (not (and_star ?13656 ?13657)) (not (or ?13656 ?13657)) [13657, 13656] by Demod 14085 with 6 at 1,2,3 Id : 14087, {_}: xor ?13656 (not ?13657) =<= not (and_star (not (and_star ?13656 ?13657)) (or ?13656 ?13657)) [13657, 13656] by Demod 14086 with 13949 at 3 Id : 14088, {_}: xor ?13656 (not ?13657) =<= not (and_star (or ?13656 ?13657) (not (and_star ?13656 ?13657))) [13657, 13656] by Demod 14087 with 146 at 1,3 Id : 14089, {_}: xor ?13656 (not ?13657) =<= not (not (implies (or ?13656 ?13657) (and_star ?13656 ?13657))) [13657, 13656] by Demod 14088 with 13655 at 1,3 Id : 18208, {_}: xor ?17747 (not ?17748) =<= implies (or ?17747 ?17748) (and_star ?17747 ?17748) [17748, 17747] by Demod 14089 with 13548 at 3 Id : 18219, {_}: xor ?17778 (not ?17779) =<= implies (or ?17779 ?17778) (and_star ?17778 ?17779) [17779, 17778] by Super 18208 with 8 at 1,3 Id : 18209, {_}: xor ?17750 (not ?17751) =<= implies (or ?17750 ?17751) (and_star ?17751 ?17750) [17751, 17750] by Super 18208 with 146 at 2,3 Id : 22988, {_}: xor ?17778 (not ?17779) =?= xor ?17779 (not ?17778) [17779, 17778] by Demod 18219 with 18209 at 3 Id : 23111, {_}: xor x (not y) =?= xor x (not y) [] by Demod 23110 with 22988 at 3 Id : 23110, {_}: xor x (not y) =<= xor y (not x) [] by Demod 23109 with 13 at 3 Id : 23109, {_}: xor x (not y) =<= xor (not x) y [] by Demod 23108 with 11948 at 1,3 Id : 23108, {_}: xor x (not y) =<= xor (xor x truth) y [] by Demod 1 with 11868 at 2,2 Id : 1, {_}: xor x (xor truth y) =<= xor (xor x truth) y [] by prove_alternative_wajsberg_axiom % SZS output end CNFRefutation for LCL159-1.p 29928: solved LCL159-1.p in 3.996249 using kbo FINAL WATCH: 4.0 CPU 8.1 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LCL160-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 29946 TreeLimitedRun: ---------------------------------------------------------- 29948: Facts: 29948: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 29948: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 29948: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 29948: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 29948: Id : 6, {_}: or ?14 ?15 =<= implies (not ?14) ?15 [15, 14] by or_definition ?14 ?15 29948: Id : 7, {_}: or (or ?17 ?18) ?19 =?= or ?17 (or ?18 ?19) [19, 18, 17] by or_associativity ?17 ?18 ?19 29948: Id : 8, {_}: or ?21 ?22 =<->= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22 29948: Id : 9, {_}: and ?24 ?25 =<= not (or (not ?24) (not ?25)) [25, 24] by and_definition ?24 ?25 29948: Id : 10, {_}: and (and ?27 ?28) ?29 =?= and ?27 (and ?28 ?29) [29, 28, 27] by and_associativity ?27 ?28 ?29 29948: Id : 11, {_}: and ?31 ?32 =<->= and ?32 ?31 [32, 31] by and_commutativity ?31 ?32 29948: Id : 12, {_}: xor ?34 ?35 =<= or (and ?34 (not ?35)) (and (not ?34) ?35) [35, 34] by xor_definition ?34 ?35 29948: Id : 13, {_}: xor ?37 ?38 =<->= xor ?38 ?37 [38, 37] by xor_commutativity ?37 ?38 29948: Id : 14, {_}: and_star ?40 ?41 =<= not (or (not ?40) (not ?41)) [41, 40] by and_star_definition ?40 ?41 29948: Id : 15, {_}: and_star (and_star ?43 ?44) ?45 =?= and_star ?43 (and_star ?44 ?45) [45, 44, 43] by and_star_associativity ?43 ?44 ?45 29948: Id : 16, {_}: and_star ?47 ?48 =<->= and_star ?48 ?47 [48, 47] by and_star_commutativity ?47 ?48 29948: Id : 17, {_}: not truth =>= falsehood [] by false_definition 29948: Goal: 29948: Id : 1, {_}: and_star (xor (and_star (xor truth x) y) truth) y =<= and_star (xor (and_star (xor truth y) x) truth) x [] by prove_alternative_wajsberg_axiom % SZS status Timeout for LCL160-1.p FINAL WATCH: 180.0 CPU 90.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ LCL165-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 29966 TreeLimitedRun: ---------------------------------------------------------- 29968: Facts: 29968: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2 29968: Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6 29968: Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9 29968: Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12 29968: Id : 6, {_}: or ?14 ?15 =<= implies (not ?14) ?15 [15, 14] by or_definition ?14 ?15 29968: Id : 7, {_}: or (or ?17 ?18) ?19 =?= or ?17 (or ?18 ?19) [19, 18, 17] by or_associativity ?17 ?18 ?19 29968: Id : 8, {_}: or ?21 ?22 =<->= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22 29968: Id : 9, {_}: and ?24 ?25 =<= not (or (not ?24) (not ?25)) [25, 24] by and_definition ?24 ?25 29968: Id : 10, {_}: and (and ?27 ?28) ?29 =?= and ?27 (and ?28 ?29) [29, 28, 27] by and_associativity ?27 ?28 ?29 29968: Id : 11, {_}: and ?31 ?32 =<->= and ?32 ?31 [32, 31] by and_commutativity ?31 ?32 29968: Goal: 29968: Id : 1, {_}: not (or (and x (or x x)) (and x x)) =<= and (not x) (or (or (not x) (not x)) (and (not x) (not x))) [] by prove_wajsberg_theorem % SZS status Timeout for LCL165-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG009-5.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30007 TreeLimitedRun: ---------------------------------------------------------- 30009: Facts: 30009: Id : 2, {_}: add ?2 additive_identity =>= ?2 [2] by right_identity ?2 30009: Id : 3, {_}: add ?4 (additive_inverse ?4) =>= additive_identity [4] by right_additive_inverse ?4 30009: Id : 4, {_}: multiply ?6 (add ?7 ?8) =<= add (multiply ?6 ?7) (multiply ?6 ?8) [8, 7, 6] by distribute1 ?6 ?7 ?8 30009: Id : 5, {_}: multiply (add ?10 ?11) ?12 =<= add (multiply ?10 ?12) (multiply ?11 ?12) [12, 11, 10] by distribute2 ?10 ?11 ?12 30009: Id : 6, {_}: add (add ?14 ?15) ?16 =?= add ?14 (add ?15 ?16) [16, 15, 14] by associative_addition ?14 ?15 ?16 30009: Id : 7, {_}: add ?18 ?19 =<->= add ?19 ?18 [19, 18] by commutative_addition ?18 ?19 30009: Id : 8, {_}: multiply (multiply ?21 ?22) ?23 =?= multiply ?21 (multiply ?22 ?23) [23, 22, 21] by associative_multiplication ?21 ?22 ?23 30009: Id : 9, {_}: multiply ?25 (multiply ?25 ?25) =>= ?25 [25] by x_cubed_is_x ?25 30009: Goal: 30009: Id : 1, {_}: multiply a b =<= multiply b a [] by prove_commutativity % SZS status Timeout for RNG009-5.p FINAL WATCH: 180.0 CPU 90.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG009-7.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30027 TreeLimitedRun: ---------------------------------------------------------- 30029: Facts: 30029: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30029: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30029: Id : 4, {_}: add (additive_inverse ?6) ?6 =>= additive_identity [6] by left_additive_inverse ?6 30029: Id : 5, {_}: add ?8 (additive_inverse ?8) =>= additive_identity [8] by right_additive_inverse ?8 30029: Id : 6, {_}: add ?10 (add ?11 ?12) =?= add (add ?10 ?11) ?12 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12 30029: Id : 7, {_}: add ?14 ?15 =<->= add ?15 ?14 [15, 14] by commutativity_for_addition ?14 ?15 30029: Id : 8, {_}: multiply ?17 (multiply ?18 ?19) =?= multiply (multiply ?17 ?18) ?19 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19 30029: Id : 9, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 30029: Id : 10, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 30029: Id : 11, {_}: multiply ?29 (multiply ?29 ?29) =>= ?29 [29] by x_cubed_is_x ?29 30029: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c 30029: Goal: 30029: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity % SZS status Timeout for RNG009-7.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG010-5.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30066 TreeLimitedRun: ---------------------------------------------------------- 30068: Facts: 30068: Id : 2, {_}: add ?2 ?3 =<->= add ?3 ?2 [3, 2] by commutative_addition ?2 ?3 30068: Id : 3, {_}: add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) [7, 6, 5] by associative_addition ?5 ?6 ?7 30068: Id : 4, {_}: add ?9 additive_identity =>= ?9 [9] by right_identity ?9 30068: Id : 5, {_}: add additive_identity ?11 =>= ?11 [11] by left_identity ?11 30068: Id : 6, {_}: add ?13 (additive_inverse ?13) =>= additive_identity [13] by right_additive_inverse ?13 30068: Id : 7, {_}: add (additive_inverse ?15) ?15 =>= additive_identity [15] by left_additive_inverse ?15 30068: Id : 8, {_}: additive_inverse additive_identity =>= additive_identity [] by additive_inverse_identity 30068: Id : 9, {_}: add ?18 (add (additive_inverse ?18) ?19) =>= ?19 [19, 18] by property_of_inverse_and_add ?18 ?19 30068: Id : 10, {_}: additive_inverse (add ?21 ?22) =<= add (additive_inverse ?21) (additive_inverse ?22) [22, 21] by distribute_additive_inverse ?21 ?22 30068: Id : 11, {_}: additive_inverse (additive_inverse ?24) =>= ?24 [24] by additive_inverse_additive_inverse ?24 30068: Id : 12, {_}: multiply ?26 additive_identity =>= additive_identity [26] by multiply_additive_id1 ?26 30068: Id : 13, {_}: multiply additive_identity ?28 =>= additive_identity [28] by multiply_additive_id2 ?28 30068: Id : 14, {_}: multiply (additive_inverse ?30) (additive_inverse ?31) =>= multiply ?30 ?31 [31, 30] by product_of_inverse ?30 ?31 30068: Id : 15, {_}: multiply ?33 (additive_inverse ?34) =>= additive_inverse (multiply ?33 ?34) [34, 33] by multiply_additive_inverse1 ?33 ?34 30068: Id : 16, {_}: multiply (additive_inverse ?36) ?37 =>= additive_inverse (multiply ?36 ?37) [37, 36] by multiply_additive_inverse2 ?36 ?37 30068: Id : 17, {_}: multiply ?39 (add ?40 ?41) =<= add (multiply ?39 ?40) (multiply ?39 ?41) [41, 40, 39] by distribute1 ?39 ?40 ?41 30068: Id : 18, {_}: multiply (add ?43 ?44) ?45 =<= add (multiply ?43 ?45) (multiply ?44 ?45) [45, 44, 43] by distribute2 ?43 ?44 ?45 30068: Id : 19, {_}: multiply (multiply ?47 ?48) ?48 =?= multiply ?47 (multiply ?48 ?48) [48, 47] by right_alternative ?47 ?48 30068: Id : 20, {_}: associator ?50 ?51 ?52 =<= add (multiply (multiply ?50 ?51) ?52) (additive_inverse (multiply ?50 (multiply ?51 ?52))) [52, 51, 50] by associator ?50 ?51 ?52 30068: Id : 21, {_}: commutator ?54 ?55 =<= add (multiply ?55 ?54) (additive_inverse (multiply ?54 ?55)) [55, 54] by commutator ?54 ?55 30068: Id : 22, {_}: multiply (multiply (associator ?57 ?57 ?58) ?57) (associator ?57 ?57 ?58) =>= additive_identity [58, 57] by middle_associator ?57 ?58 30068: Id : 23, {_}: multiply (multiply ?60 ?60) ?61 =?= multiply ?60 (multiply ?60 ?61) [61, 60] by left_alternative ?60 ?61 30068: Id : 24, {_}: s ?63 ?64 ?65 ?66 =<= add (add (associator (multiply ?63 ?64) ?65 ?66) (additive_inverse (multiply ?64 (associator ?63 ?65 ?66)))) (additive_inverse (multiply (associator ?64 ?65 ?66) ?63)) [66, 65, 64, 63] by defines_s ?63 ?64 ?65 ?66 30068: Id : 25, {_}: multiply ?68 (multiply ?69 (multiply ?70 ?69)) =?= multiply (multiply (multiply ?68 ?69) ?70) ?69 [70, 69, 68] by right_moufang ?68 ?69 ?70 30068: Id : 26, {_}: multiply (multiply ?72 (multiply ?73 ?72)) ?74 =?= multiply ?72 (multiply ?73 (multiply ?72 ?74)) [74, 73, 72] by left_moufang ?72 ?73 ?74 30068: Id : 27, {_}: multiply (multiply ?76 ?77) (multiply ?78 ?76) =?= multiply (multiply ?76 (multiply ?77 ?78)) ?76 [78, 77, 76] by middle_moufang ?76 ?77 ?78 30068: Goal: 30068: Id : 1, {_}: s a b c d =<= additive_inverse (s b a c d) [] by prove_skew_symmetry % SZS status Timeout for RNG010-5.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG010-6.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30102 TreeLimitedRun: ---------------------------------------------------------- 30104: Facts: 30104: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30104: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30104: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30104: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30104: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30104: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30104: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30104: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30104: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30104: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30104: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30104: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30104: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30104: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30104: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30104: Id : 17, {_}: s ?44 ?45 ?46 ?47 =<= add (add (associator (multiply ?44 ?45) ?46 ?47) (additive_inverse (multiply ?45 (associator ?44 ?46 ?47)))) (additive_inverse (multiply (associator ?45 ?46 ?47) ?44)) [47, 46, 45, 44] by defines_s ?44 ?45 ?46 ?47 30104: Id : 18, {_}: multiply ?49 (multiply ?50 (multiply ?51 ?50)) =?= multiply (multiply (multiply ?49 ?50) ?51) ?50 [51, 50, 49] by right_moufang ?49 ?50 ?51 30104: Id : 19, {_}: multiply (multiply ?53 (multiply ?54 ?53)) ?55 =?= multiply ?53 (multiply ?54 (multiply ?53 ?55)) [55, 54, 53] by left_moufang ?53 ?54 ?55 30104: Id : 20, {_}: multiply (multiply ?57 ?58) (multiply ?59 ?57) =?= multiply (multiply ?57 (multiply ?58 ?59)) ?57 [59, 58, 57] by middle_moufang ?57 ?58 ?59 30104: Goal: 30104: Id : 1, {_}: s a b c d =<= additive_inverse (s b a c d) [] by prove_skew_symmetry % SZS status Timeout for RNG010-6.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG010-7.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30152 TreeLimitedRun: ---------------------------------------------------------- 30154: Facts: 30154: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30154: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30154: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30154: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30154: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30154: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30154: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30154: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30154: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30154: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30154: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30154: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30154: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30154: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30154: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30154: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 30154: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 30154: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 30154: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 30154: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 30154: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 30154: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 30154: Id : 24, {_}: s ?69 ?70 ?71 ?72 =<= add (add (associator (multiply ?69 ?70) ?71 ?72) (additive_inverse (multiply ?70 (associator ?69 ?71 ?72)))) (additive_inverse (multiply (associator ?70 ?71 ?72) ?69)) [72, 71, 70, 69] by defines_s ?69 ?70 ?71 ?72 30154: Id : 25, {_}: multiply ?74 (multiply ?75 (multiply ?76 ?75)) =?= multiply (multiply (multiply ?74 ?75) ?76) ?75 [76, 75, 74] by right_moufang ?74 ?75 ?76 30154: Id : 26, {_}: multiply (multiply ?78 (multiply ?79 ?78)) ?80 =?= multiply ?78 (multiply ?79 (multiply ?78 ?80)) [80, 79, 78] by left_moufang ?78 ?79 ?80 30154: Id : 27, {_}: multiply (multiply ?82 ?83) (multiply ?84 ?82) =?= multiply (multiply ?82 (multiply ?83 ?84)) ?82 [84, 83, 82] by middle_moufang ?82 ?83 ?84 30154: Goal: 30154: Id : 1, {_}: s a b c d =<= additive_inverse (s b a c d) [] by prove_skew_symmetry % SZS status Timeout for RNG010-7.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG019-6.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30192 TreeLimitedRun: ---------------------------------------------------------- 30194: Facts: 30194: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30194: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30194: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30194: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30194: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30194: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30194: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30194: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30194: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30194: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30194: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30194: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30194: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30194: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30194: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30194: Goal: 30194: Id : 1, {_}: associator x y (add u v) =<= add (associator x y u) (associator x y v) [] by prove_linearised_form1 Statistics : Max weight : 50 Found proof, 18.454674s % SZS status Unsatisfiable for RNG019-6.p % SZS output start CNFRefutation for RNG019-6.p Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 Id : 131, {_}: add ?215 (add ?216 ?217) =<= add (add ?215 ?216) ?217 [217, 216, 215] by associativity_for_addition ?215 ?216 ?217 Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 Id : 15, {_}: associator ?37 ?38 ?39 =>= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 Id : 289, {_}: associator ?37 ?38 ?39 =>= add (additive_inverse (multiply ?37 (multiply ?38 ?39))) (multiply (multiply ?37 ?38) ?39) [39, 38, 37] by Demod 15 with 11 at 3 Id : 134, {_}: add ?225 (add (additive_inverse ?225) ?226) =>= add additive_identity ?226 [226, 225] by Super 131 with 7 at 1,3 Id : 154, {_}: add ?225 (add (additive_inverse ?225) ?226) =>= ?226 [226, 225] by Demod 134 with 2 at 3 Id : 454, {_}: add ?498 (add (additive_inverse ?498) ?499) =>= ?499 [499, 498] by Demod 134 with 2 at 3 Id : 490, {_}: add (additive_inverse ?542) (add ?542 ?543) =>= ?543 [543, 542] by Super 454 with 8 at 1,2,2 Id : 1051, {_}: add (additive_inverse ?1135) (add ?1136 ?1135) =>= ?1136 [1136, 1135] by Super 490 with 11 at 2,2 Id : 494, {_}: add (additive_inverse ?551) (add ?552 ?551) =>= ?552 [552, 551] by Super 490 with 11 at 2,2 Id : 1059, {_}: add (additive_inverse (add ?1156 ?1157)) ?1156 =>= additive_inverse ?1157 [1157, 1156] by Super 1051 with 494 at 2,2 Id : 1087, {_}: add ?1156 (additive_inverse (add ?1156 ?1157)) =>= additive_inverse ?1157 [1157, 1156] by Demod 1059 with 11 at 2 Id : 1172, {_}: add ?1278 (additive_inverse ?1279) =<= additive_inverse (add (additive_inverse ?1278) ?1279) [1279, 1278] by Super 154 with 1087 at 2,2 Id : 1246, {_}: additive_inverse (add ?1384 (additive_inverse ?1385)) =<= add (additive_inverse ?1384) ?1385 [1385, 1384] by Super 8 with 1172 at 1,2 Id : 1316, {_}: associator ?37 ?38 ?39 =>= additive_inverse (add (multiply ?37 (multiply ?38 ?39)) (additive_inverse (multiply (multiply ?37 ?38) ?39))) [39, 38, 37] by Demod 289 with 1246 at 3 Id : 135, {_}: add ?228 (add ?229 ?230) =<= add (add ?229 ?228) ?230 [230, 229, 228] by Super 131 with 11 at 1,3 Id : 155, {_}: add ?228 (add ?229 ?230) =?= add ?229 (add ?228 ?230) [230, 229, 228] by Demod 135 with 12 at 3 Id : 4471, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) === additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) [] by Demod 4470 with 155 at 1,3 Id : 4470, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) =<= additive_inverse (add (multiply x (multiply y v)) (add (multiply x (multiply y u)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) [] by Demod 4469 with 8 at 2,1,2,2,1,3 Id : 4469, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) =<= additive_inverse (add (multiply x (multiply y v)) (add (multiply x (multiply y u)) (additive_inverse (add (multiply (multiply x y) u) (additive_inverse (additive_inverse (multiply (multiply x y) v))))))) [] by Demod 4468 with 1246 at 2,2,1,3 Id : 4468, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) =<= additive_inverse (add (multiply x (multiply y v)) (add (multiply x (multiply y u)) (add (additive_inverse (multiply (multiply x y) u)) (additive_inverse (multiply (multiply x y) v))))) [] by Demod 4467 with 12 at 2,1,3 Id : 4467, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) =<= additive_inverse (add (multiply x (multiply y v)) (add (add (multiply x (multiply y u)) (additive_inverse (multiply (multiply x y) u))) (additive_inverse (multiply (multiply x y) v)))) [] by Demod 4466 with 155 at 1,3 Id : 4466, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) =<= additive_inverse (add (add (multiply x (multiply y u)) (additive_inverse (multiply (multiply x y) u))) (add (multiply x (multiply y v)) (additive_inverse (multiply (multiply x y) v)))) [] by Demod 4465 with 8 at 2,1,3 Id : 4465, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) =<= additive_inverse (add (add (multiply x (multiply y u)) (additive_inverse (multiply (multiply x y) u))) (additive_inverse (additive_inverse (add (multiply x (multiply y v)) (additive_inverse (multiply (multiply x y) v)))))) [] by Demod 4464 with 1246 at 3 Id : 4464, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) =<= add (additive_inverse (add (multiply x (multiply y u)) (additive_inverse (multiply (multiply x y) u)))) (additive_inverse (add (multiply x (multiply y v)) (additive_inverse (multiply (multiply x y) v)))) [] by Demod 4463 with 1316 at 2,3 Id : 4463, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) =<= add (additive_inverse (add (multiply x (multiply y u)) (additive_inverse (multiply (multiply x y) u)))) (associator x y v) [] by Demod 4462 with 1316 at 1,3 Id : 4462, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) =<= add (associator x y u) (associator x y v) [] by Demod 4461 with 12 at 1,2 Id : 4461, {_}: additive_inverse (add (add (multiply x (multiply y u)) (multiply x (multiply y v))) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v)))) =<= add (associator x y u) (associator x y v) [] by Demod 4460 with 9 at 1,2,1,2 Id : 4460, {_}: additive_inverse (add (add (multiply x (multiply y u)) (multiply x (multiply y v))) (additive_inverse (multiply (multiply x y) (add u v)))) =<= add (associator x y u) (associator x y v) [] by Demod 4459 with 9 at 1,1,2 Id : 4459, {_}: additive_inverse (add (multiply x (add (multiply y u) (multiply y v))) (additive_inverse (multiply (multiply x y) (add u v)))) =<= add (associator x y u) (associator x y v) [] by Demod 4458 with 9 at 2,1,1,2 Id : 4458, {_}: additive_inverse (add (multiply x (multiply y (add u v))) (additive_inverse (multiply (multiply x y) (add u v)))) =<= add (associator x y u) (associator x y v) [] by Demod 1 with 1316 at 2 Id : 1, {_}: associator x y (add u v) =>= add (associator x y u) (associator x y v) [] by prove_linearised_form1 % SZS output end CNFRefutation for RNG019-6.p 30196: solved RNG019-6.p in 9.208575 using lpo WARNING: TreeLimitedRun lost 10.76s, total lost is 10.76s FINAL WATCH: 20.0 CPU 18.6 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG019-7.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30201 TreeLimitedRun: ---------------------------------------------------------- 30203: Facts: 30203: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30203: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30203: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30203: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30203: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30203: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30203: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30203: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30203: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30203: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30203: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30203: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30203: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30203: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30203: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30203: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 30203: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 30203: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 30203: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 30203: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 30203: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 30203: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 30203: Goal: 30203: Id : 1, {_}: associator x y (add u v) =<= add (associator x y u) (associator x y v) [] by prove_linearised_form1 Statistics : Max weight : 50 Found proof, 21.545063s % SZS status Unsatisfiable for RNG019-7.p % SZS output start CNFRefutation for RNG019-7.p Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 Id : 138, {_}: add ?240 (add ?241 ?242) =<= add (add ?240 ?241) ?242 [242, 241, 240] by associativity_for_addition ?240 ?241 ?242 Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 Id : 15, {_}: associator ?37 ?38 ?39 =>= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 Id : 296, {_}: associator ?37 ?38 ?39 =>= add (additive_inverse (multiply ?37 (multiply ?38 ?39))) (multiply (multiply ?37 ?38) ?39) [39, 38, 37] by Demod 15 with 11 at 3 Id : 141, {_}: add ?250 (add (additive_inverse ?250) ?251) =>= add additive_identity ?251 [251, 250] by Super 138 with 7 at 1,3 Id : 161, {_}: add ?250 (add (additive_inverse ?250) ?251) =>= ?251 [251, 250] by Demod 141 with 2 at 3 Id : 1081, {_}: add ?1081 (add (additive_inverse ?1081) ?1082) =>= ?1082 [1082, 1081] by Demod 141 with 2 at 3 Id : 1124, {_}: add (additive_inverse ?1125) (add ?1125 ?1126) =>= ?1126 [1126, 1125] by Super 1081 with 8 at 1,2,2 Id : 1225, {_}: add (additive_inverse ?1257) (add ?1258 ?1257) =>= ?1258 [1258, 1257] by Super 1124 with 11 at 2,2 Id : 1128, {_}: add (additive_inverse ?1134) (add ?1135 ?1134) =>= ?1135 [1135, 1134] by Super 1124 with 11 at 2,2 Id : 1234, {_}: add (additive_inverse (add ?1283 ?1284)) ?1283 =>= additive_inverse ?1284 [1284, 1283] by Super 1225 with 1128 at 2,2 Id : 1263, {_}: add ?1283 (additive_inverse (add ?1283 ?1284)) =>= additive_inverse ?1284 [1284, 1283] by Demod 1234 with 11 at 2 Id : 1552, {_}: add ?1761 (additive_inverse ?1762) =<= additive_inverse (add (additive_inverse ?1761) ?1762) [1762, 1761] by Super 161 with 1263 at 2,2 Id : 1629, {_}: additive_inverse (add ?1873 (additive_inverse ?1874)) =<= add (additive_inverse ?1873) ?1874 [1874, 1873] by Super 8 with 1552 at 1,2 Id : 1705, {_}: associator ?37 ?38 ?39 =>= additive_inverse (add (multiply ?37 (multiply ?38 ?39)) (additive_inverse (multiply (multiply ?37 ?38) ?39))) [39, 38, 37] by Demod 296 with 1629 at 3 Id : 142, {_}: add ?253 (add ?254 ?255) =<= add (add ?254 ?253) ?255 [255, 254, 253] by Super 138 with 11 at 1,3 Id : 162, {_}: add ?253 (add ?254 ?255) =?= add ?254 (add ?253 ?255) [255, 254, 253] by Demod 142 with 12 at 3 Id : 2645, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) === additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) [] by Demod 2644 with 162 at 1,3 Id : 2644, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) =<= additive_inverse (add (multiply x (multiply y v)) (add (multiply x (multiply y u)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) [] by Demod 2643 with 8 at 2,1,2,2,1,3 Id : 2643, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) =<= additive_inverse (add (multiply x (multiply y v)) (add (multiply x (multiply y u)) (additive_inverse (add (multiply (multiply x y) u) (additive_inverse (additive_inverse (multiply (multiply x y) v))))))) [] by Demod 2642 with 1629 at 2,2,1,3 Id : 2642, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) =<= additive_inverse (add (multiply x (multiply y v)) (add (multiply x (multiply y u)) (add (additive_inverse (multiply (multiply x y) u)) (additive_inverse (multiply (multiply x y) v))))) [] by Demod 2641 with 12 at 2,1,3 Id : 2641, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) =<= additive_inverse (add (multiply x (multiply y v)) (add (add (multiply x (multiply y u)) (additive_inverse (multiply (multiply x y) u))) (additive_inverse (multiply (multiply x y) v)))) [] by Demod 2640 with 162 at 1,3 Id : 2640, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) =<= additive_inverse (add (add (multiply x (multiply y u)) (additive_inverse (multiply (multiply x y) u))) (add (multiply x (multiply y v)) (additive_inverse (multiply (multiply x y) v)))) [] by Demod 2639 with 8 at 2,1,3 Id : 2639, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) =<= additive_inverse (add (add (multiply x (multiply y u)) (additive_inverse (multiply (multiply x y) u))) (additive_inverse (additive_inverse (add (multiply x (multiply y v)) (additive_inverse (multiply (multiply x y) v)))))) [] by Demod 2638 with 1629 at 3 Id : 2638, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) =<= add (additive_inverse (add (multiply x (multiply y u)) (additive_inverse (multiply (multiply x y) u)))) (additive_inverse (add (multiply x (multiply y v)) (additive_inverse (multiply (multiply x y) v)))) [] by Demod 2637 with 1705 at 2,3 Id : 2637, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) =<= add (additive_inverse (add (multiply x (multiply y u)) (additive_inverse (multiply (multiply x y) u)))) (associator x y v) [] by Demod 2636 with 1705 at 1,3 Id : 2636, {_}: additive_inverse (add (multiply x (multiply y u)) (add (multiply x (multiply y v)) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v))))) =<= add (associator x y u) (associator x y v) [] by Demod 2635 with 12 at 1,2 Id : 2635, {_}: additive_inverse (add (add (multiply x (multiply y u)) (multiply x (multiply y v))) (additive_inverse (add (multiply (multiply x y) u) (multiply (multiply x y) v)))) =<= add (associator x y u) (associator x y v) [] by Demod 2634 with 9 at 1,2,1,2 Id : 2634, {_}: additive_inverse (add (add (multiply x (multiply y u)) (multiply x (multiply y v))) (additive_inverse (multiply (multiply x y) (add u v)))) =<= add (associator x y u) (associator x y v) [] by Demod 2633 with 9 at 1,1,2 Id : 2633, {_}: additive_inverse (add (multiply x (add (multiply y u) (multiply y v))) (additive_inverse (multiply (multiply x y) (add u v)))) =<= add (associator x y u) (associator x y v) [] by Demod 2632 with 9 at 2,1,1,2 Id : 2632, {_}: additive_inverse (add (multiply x (multiply y (add u v))) (additive_inverse (multiply (multiply x y) (add u v)))) =<= add (associator x y u) (associator x y v) [] by Demod 1 with 1705 at 2 Id : 1, {_}: associator x y (add u v) =>= add (associator x y u) (associator x y v) [] by prove_linearised_form1 % SZS output end CNFRefutation for RNG019-7.p 30205: solved RNG019-7.p in 10.812675 using lpo WARNING: TreeLimitedRun lost 29.09s, total lost is 29.09s FINAL WATCH: 39.9 CPU 21.7 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG020-6.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30223 TreeLimitedRun: ---------------------------------------------------------- 30225: Facts: 30225: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30225: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30225: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30225: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30225: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30225: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30225: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30225: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30225: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30225: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30225: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30225: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30225: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30225: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30225: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30225: Goal: 30225: Id : 1, {_}: associator x (add u v) y =<= add (associator x u y) (associator x v y) [] by prove_linearised_form2 Statistics : Max weight : 50 Found proof, 19.557864s % SZS status Unsatisfiable for RNG020-6.p % SZS output start CNFRefutation for RNG020-6.p Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 Id : 131, {_}: add ?215 (add ?216 ?217) =<= add (add ?215 ?216) ?217 [217, 216, 215] by associativity_for_addition ?215 ?216 ?217 Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 Id : 15, {_}: associator ?37 ?38 ?39 =>= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 Id : 289, {_}: associator ?37 ?38 ?39 =>= add (additive_inverse (multiply ?37 (multiply ?38 ?39))) (multiply (multiply ?37 ?38) ?39) [39, 38, 37] by Demod 15 with 11 at 3 Id : 134, {_}: add ?225 (add (additive_inverse ?225) ?226) =>= add additive_identity ?226 [226, 225] by Super 131 with 7 at 1,3 Id : 154, {_}: add ?225 (add (additive_inverse ?225) ?226) =>= ?226 [226, 225] by Demod 134 with 2 at 3 Id : 461, {_}: add ?498 (add (additive_inverse ?498) ?499) =>= ?499 [499, 498] by Demod 134 with 2 at 3 Id : 498, {_}: add (additive_inverse ?542) (add ?542 ?543) =>= ?543 [543, 542] by Super 461 with 8 at 1,2,2 Id : 1063, {_}: add (additive_inverse ?1135) (add ?1136 ?1135) =>= ?1136 [1136, 1135] by Super 498 with 11 at 2,2 Id : 502, {_}: add (additive_inverse ?551) (add ?552 ?551) =>= ?552 [552, 551] by Super 498 with 11 at 2,2 Id : 1071, {_}: add (additive_inverse (add ?1156 ?1157)) ?1156 =>= additive_inverse ?1157 [1157, 1156] by Super 1063 with 502 at 2,2 Id : 1099, {_}: add ?1156 (additive_inverse (add ?1156 ?1157)) =>= additive_inverse ?1157 [1157, 1156] by Demod 1071 with 11 at 2 Id : 1186, {_}: add ?1278 (additive_inverse ?1279) =<= additive_inverse (add (additive_inverse ?1278) ?1279) [1279, 1278] by Super 154 with 1099 at 2,2 Id : 1261, {_}: additive_inverse (add ?1384 (additive_inverse ?1385)) =<= add (additive_inverse ?1384) ?1385 [1385, 1384] by Super 8 with 1186 at 1,2 Id : 1332, {_}: associator ?37 ?38 ?39 =>= additive_inverse (add (multiply ?37 (multiply ?38 ?39)) (additive_inverse (multiply (multiply ?37 ?38) ?39))) [39, 38, 37] by Demod 289 with 1261 at 3 Id : 135, {_}: add ?228 (add ?229 ?230) =<= add (add ?229 ?228) ?230 [230, 229, 228] by Super 131 with 11 at 1,3 Id : 155, {_}: add ?228 (add ?229 ?230) =?= add ?229 (add ?228 ?230) [230, 229, 228] by Demod 135 with 12 at 3 Id : 4507, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) === additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) [] by Demod 4506 with 155 at 1,3 Id : 4506, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) =<= additive_inverse (add (multiply x (multiply v y)) (add (multiply x (multiply u y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) [] by Demod 4505 with 8 at 2,1,2,2,1,3 Id : 4505, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) =<= additive_inverse (add (multiply x (multiply v y)) (add (multiply x (multiply u y)) (additive_inverse (add (multiply (multiply x u) y) (additive_inverse (additive_inverse (multiply (multiply x v) y))))))) [] by Demod 4504 with 1261 at 2,2,1,3 Id : 4504, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) =<= additive_inverse (add (multiply x (multiply v y)) (add (multiply x (multiply u y)) (add (additive_inverse (multiply (multiply x u) y)) (additive_inverse (multiply (multiply x v) y))))) [] by Demod 4503 with 12 at 2,1,3 Id : 4503, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) =<= additive_inverse (add (multiply x (multiply v y)) (add (add (multiply x (multiply u y)) (additive_inverse (multiply (multiply x u) y))) (additive_inverse (multiply (multiply x v) y)))) [] by Demod 4502 with 155 at 1,3 Id : 4502, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) =<= additive_inverse (add (add (multiply x (multiply u y)) (additive_inverse (multiply (multiply x u) y))) (add (multiply x (multiply v y)) (additive_inverse (multiply (multiply x v) y)))) [] by Demod 4501 with 8 at 2,1,3 Id : 4501, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) =<= additive_inverse (add (add (multiply x (multiply u y)) (additive_inverse (multiply (multiply x u) y))) (additive_inverse (additive_inverse (add (multiply x (multiply v y)) (additive_inverse (multiply (multiply x v) y)))))) [] by Demod 4500 with 1261 at 3 Id : 4500, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) =<= add (additive_inverse (add (multiply x (multiply u y)) (additive_inverse (multiply (multiply x u) y)))) (additive_inverse (add (multiply x (multiply v y)) (additive_inverse (multiply (multiply x v) y)))) [] by Demod 4499 with 1332 at 2,3 Id : 4499, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) =<= add (additive_inverse (add (multiply x (multiply u y)) (additive_inverse (multiply (multiply x u) y)))) (associator x v y) [] by Demod 4498 with 1332 at 1,3 Id : 4498, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) =<= add (associator x u y) (associator x v y) [] by Demod 4497 with 12 at 1,2 Id : 4497, {_}: additive_inverse (add (add (multiply x (multiply u y)) (multiply x (multiply v y))) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y)))) =<= add (associator x u y) (associator x v y) [] by Demod 4496 with 10 at 1,2,1,2 Id : 4496, {_}: additive_inverse (add (add (multiply x (multiply u y)) (multiply x (multiply v y))) (additive_inverse (multiply (add (multiply x u) (multiply x v)) y))) =<= add (associator x u y) (associator x v y) [] by Demod 4495 with 9 at 1,1,2,1,2 Id : 4495, {_}: additive_inverse (add (add (multiply x (multiply u y)) (multiply x (multiply v y))) (additive_inverse (multiply (multiply x (add u v)) y))) =<= add (associator x u y) (associator x v y) [] by Demod 4494 with 9 at 1,1,2 Id : 4494, {_}: additive_inverse (add (multiply x (add (multiply u y) (multiply v y))) (additive_inverse (multiply (multiply x (add u v)) y))) =<= add (associator x u y) (associator x v y) [] by Demod 4493 with 10 at 2,1,1,2 Id : 4493, {_}: additive_inverse (add (multiply x (multiply (add u v) y)) (additive_inverse (multiply (multiply x (add u v)) y))) =<= add (associator x u y) (associator x v y) [] by Demod 1 with 1332 at 2 Id : 1, {_}: associator x (add u v) y =>= add (associator x u y) (associator x v y) [] by prove_linearised_form2 % SZS output end CNFRefutation for RNG020-6.p 30227: solved RNG020-6.p in 9.752608 using lpo WARNING: TreeLimitedRun lost 10.22s, total lost is 10.22s FINAL WATCH: 20.0 CPU 19.6 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG020-7.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30232 TreeLimitedRun: ---------------------------------------------------------- 30234: Facts: 30234: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30234: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30234: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30234: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30234: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30234: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30234: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30234: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30234: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30234: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30234: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30234: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30234: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30234: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30234: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30234: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 30234: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 30234: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 30234: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 30234: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 30234: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 30234: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 30234: Goal: 30234: Id : 1, {_}: associator x (add u v) y =<= add (associator x u y) (associator x v y) [] by prove_linearised_form2 Statistics : Max weight : 50 Found proof, 22.019533s % SZS status Unsatisfiable for RNG020-7.p % SZS output start CNFRefutation for RNG020-7.p Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 Id : 138, {_}: add ?240 (add ?241 ?242) =<= add (add ?240 ?241) ?242 [242, 241, 240] by associativity_for_addition ?240 ?241 ?242 Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 Id : 15, {_}: associator ?37 ?38 ?39 =>= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 Id : 296, {_}: associator ?37 ?38 ?39 =>= add (additive_inverse (multiply ?37 (multiply ?38 ?39))) (multiply (multiply ?37 ?38) ?39) [39, 38, 37] by Demod 15 with 11 at 3 Id : 141, {_}: add ?250 (add (additive_inverse ?250) ?251) =>= add additive_identity ?251 [251, 250] by Super 138 with 7 at 1,3 Id : 161, {_}: add ?250 (add (additive_inverse ?250) ?251) =>= ?251 [251, 250] by Demod 141 with 2 at 3 Id : 1093, {_}: add ?1081 (add (additive_inverse ?1081) ?1082) =>= ?1082 [1082, 1081] by Demod 141 with 2 at 3 Id : 1137, {_}: add (additive_inverse ?1125) (add ?1125 ?1126) =>= ?1126 [1126, 1125] by Super 1093 with 8 at 1,2,2 Id : 1240, {_}: add (additive_inverse ?1257) (add ?1258 ?1257) =>= ?1258 [1258, 1257] by Super 1137 with 11 at 2,2 Id : 1141, {_}: add (additive_inverse ?1134) (add ?1135 ?1134) =>= ?1135 [1135, 1134] by Super 1137 with 11 at 2,2 Id : 1249, {_}: add (additive_inverse (add ?1283 ?1284)) ?1283 =>= additive_inverse ?1284 [1284, 1283] by Super 1240 with 1141 at 2,2 Id : 1278, {_}: add ?1283 (additive_inverse (add ?1283 ?1284)) =>= additive_inverse ?1284 [1284, 1283] by Demod 1249 with 11 at 2 Id : 1570, {_}: add ?1761 (additive_inverse ?1762) =<= additive_inverse (add (additive_inverse ?1761) ?1762) [1762, 1761] by Super 161 with 1278 at 2,2 Id : 1648, {_}: additive_inverse (add ?1873 (additive_inverse ?1874)) =<= add (additive_inverse ?1873) ?1874 [1874, 1873] by Super 8 with 1570 at 1,2 Id : 1725, {_}: associator ?37 ?38 ?39 =>= additive_inverse (add (multiply ?37 (multiply ?38 ?39)) (additive_inverse (multiply (multiply ?37 ?38) ?39))) [39, 38, 37] by Demod 296 with 1648 at 3 Id : 142, {_}: add ?253 (add ?254 ?255) =<= add (add ?254 ?253) ?255 [255, 254, 253] by Super 138 with 11 at 1,3 Id : 162, {_}: add ?253 (add ?254 ?255) =?= add ?254 (add ?253 ?255) [255, 254, 253] by Demod 142 with 12 at 3 Id : 2671, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) === additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) [] by Demod 2670 with 162 at 1,3 Id : 2670, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) =<= additive_inverse (add (multiply x (multiply v y)) (add (multiply x (multiply u y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) [] by Demod 2669 with 8 at 2,1,2,2,1,3 Id : 2669, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) =<= additive_inverse (add (multiply x (multiply v y)) (add (multiply x (multiply u y)) (additive_inverse (add (multiply (multiply x u) y) (additive_inverse (additive_inverse (multiply (multiply x v) y))))))) [] by Demod 2668 with 1648 at 2,2,1,3 Id : 2668, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) =<= additive_inverse (add (multiply x (multiply v y)) (add (multiply x (multiply u y)) (add (additive_inverse (multiply (multiply x u) y)) (additive_inverse (multiply (multiply x v) y))))) [] by Demod 2667 with 12 at 2,1,3 Id : 2667, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) =<= additive_inverse (add (multiply x (multiply v y)) (add (add (multiply x (multiply u y)) (additive_inverse (multiply (multiply x u) y))) (additive_inverse (multiply (multiply x v) y)))) [] by Demod 2666 with 162 at 1,3 Id : 2666, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) =<= additive_inverse (add (add (multiply x (multiply u y)) (additive_inverse (multiply (multiply x u) y))) (add (multiply x (multiply v y)) (additive_inverse (multiply (multiply x v) y)))) [] by Demod 2665 with 8 at 2,1,3 Id : 2665, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) =<= additive_inverse (add (add (multiply x (multiply u y)) (additive_inverse (multiply (multiply x u) y))) (additive_inverse (additive_inverse (add (multiply x (multiply v y)) (additive_inverse (multiply (multiply x v) y)))))) [] by Demod 2664 with 1648 at 3 Id : 2664, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) =<= add (additive_inverse (add (multiply x (multiply u y)) (additive_inverse (multiply (multiply x u) y)))) (additive_inverse (add (multiply x (multiply v y)) (additive_inverse (multiply (multiply x v) y)))) [] by Demod 2663 with 1725 at 2,3 Id : 2663, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) =<= add (additive_inverse (add (multiply x (multiply u y)) (additive_inverse (multiply (multiply x u) y)))) (associator x v y) [] by Demod 2662 with 1725 at 1,3 Id : 2662, {_}: additive_inverse (add (multiply x (multiply u y)) (add (multiply x (multiply v y)) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y))))) =<= add (associator x u y) (associator x v y) [] by Demod 2661 with 12 at 1,2 Id : 2661, {_}: additive_inverse (add (add (multiply x (multiply u y)) (multiply x (multiply v y))) (additive_inverse (add (multiply (multiply x u) y) (multiply (multiply x v) y)))) =<= add (associator x u y) (associator x v y) [] by Demod 2660 with 10 at 1,2,1,2 Id : 2660, {_}: additive_inverse (add (add (multiply x (multiply u y)) (multiply x (multiply v y))) (additive_inverse (multiply (add (multiply x u) (multiply x v)) y))) =<= add (associator x u y) (associator x v y) [] by Demod 2659 with 9 at 1,1,2,1,2 Id : 2659, {_}: additive_inverse (add (add (multiply x (multiply u y)) (multiply x (multiply v y))) (additive_inverse (multiply (multiply x (add u v)) y))) =<= add (associator x u y) (associator x v y) [] by Demod 2658 with 9 at 1,1,2 Id : 2658, {_}: additive_inverse (add (multiply x (add (multiply u y) (multiply v y))) (additive_inverse (multiply (multiply x (add u v)) y))) =<= add (associator x u y) (associator x v y) [] by Demod 2657 with 10 at 2,1,1,2 Id : 2657, {_}: additive_inverse (add (multiply x (multiply (add u v) y)) (additive_inverse (multiply (multiply x (add u v)) y))) =<= add (associator x u y) (associator x v y) [] by Demod 1 with 1725 at 2 Id : 1, {_}: associator x (add u v) y =>= add (associator x u y) (associator x v y) [] by prove_linearised_form2 % SZS output end CNFRefutation for RNG020-7.p 30236: solved RNG020-7.p in 10.992686 using lpo WARNING: TreeLimitedRun lost 28.99s, total lost is 28.99s FINAL WATCH: 40.0 CPU 22.1 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG021-6.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30241 TreeLimitedRun: ---------------------------------------------------------- 30243: Facts: 30243: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30243: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30243: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30243: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30243: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30243: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30243: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30243: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30243: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30243: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30243: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30243: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30243: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30243: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30243: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30243: Goal: 30243: Id : 1, {_}: associator (add u v) x y =<= add (associator u x y) (associator v x y) [] by prove_linearised_form3 Statistics : Max weight : 50 Found proof, 19.361422s % SZS status Unsatisfiable for RNG021-6.p % SZS output start CNFRefutation for RNG021-6.p Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 Id : 131, {_}: add ?215 (add ?216 ?217) =<= add (add ?215 ?216) ?217 [217, 216, 215] by associativity_for_addition ?215 ?216 ?217 Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 Id : 15, {_}: associator ?37 ?38 ?39 =>= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 Id : 289, {_}: associator ?37 ?38 ?39 =>= add (additive_inverse (multiply ?37 (multiply ?38 ?39))) (multiply (multiply ?37 ?38) ?39) [39, 38, 37] by Demod 15 with 11 at 3 Id : 134, {_}: add ?225 (add (additive_inverse ?225) ?226) =>= add additive_identity ?226 [226, 225] by Super 131 with 7 at 1,3 Id : 154, {_}: add ?225 (add (additive_inverse ?225) ?226) =>= ?226 [226, 225] by Demod 134 with 2 at 3 Id : 454, {_}: add ?498 (add (additive_inverse ?498) ?499) =>= ?499 [499, 498] by Demod 134 with 2 at 3 Id : 490, {_}: add (additive_inverse ?542) (add ?542 ?543) =>= ?543 [543, 542] by Super 454 with 8 at 1,2,2 Id : 1051, {_}: add (additive_inverse ?1135) (add ?1136 ?1135) =>= ?1136 [1136, 1135] by Super 490 with 11 at 2,2 Id : 494, {_}: add (additive_inverse ?551) (add ?552 ?551) =>= ?552 [552, 551] by Super 490 with 11 at 2,2 Id : 1059, {_}: add (additive_inverse (add ?1156 ?1157)) ?1156 =>= additive_inverse ?1157 [1157, 1156] by Super 1051 with 494 at 2,2 Id : 1087, {_}: add ?1156 (additive_inverse (add ?1156 ?1157)) =>= additive_inverse ?1157 [1157, 1156] by Demod 1059 with 11 at 2 Id : 1172, {_}: add ?1278 (additive_inverse ?1279) =<= additive_inverse (add (additive_inverse ?1278) ?1279) [1279, 1278] by Super 154 with 1087 at 2,2 Id : 1246, {_}: additive_inverse (add ?1384 (additive_inverse ?1385)) =<= add (additive_inverse ?1384) ?1385 [1385, 1384] by Super 8 with 1172 at 1,2 Id : 1316, {_}: associator ?37 ?38 ?39 =>= additive_inverse (add (multiply ?37 (multiply ?38 ?39)) (additive_inverse (multiply (multiply ?37 ?38) ?39))) [39, 38, 37] by Demod 289 with 1246 at 3 Id : 135, {_}: add ?228 (add ?229 ?230) =<= add (add ?229 ?228) ?230 [230, 229, 228] by Super 131 with 11 at 1,3 Id : 155, {_}: add ?228 (add ?229 ?230) =?= add ?229 (add ?228 ?230) [230, 229, 228] by Demod 135 with 12 at 3 Id : 4471, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) === additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) [] by Demod 4470 with 155 at 1,3 Id : 4470, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) =<= additive_inverse (add (multiply v (multiply x y)) (add (multiply u (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) [] by Demod 4469 with 8 at 2,1,2,2,1,3 Id : 4469, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) =<= additive_inverse (add (multiply v (multiply x y)) (add (multiply u (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (additive_inverse (additive_inverse (multiply (multiply v x) y))))))) [] by Demod 4468 with 1246 at 2,2,1,3 Id : 4468, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) =<= additive_inverse (add (multiply v (multiply x y)) (add (multiply u (multiply x y)) (add (additive_inverse (multiply (multiply u x) y)) (additive_inverse (multiply (multiply v x) y))))) [] by Demod 4467 with 12 at 2,1,3 Id : 4467, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) =<= additive_inverse (add (multiply v (multiply x y)) (add (add (multiply u (multiply x y)) (additive_inverse (multiply (multiply u x) y))) (additive_inverse (multiply (multiply v x) y)))) [] by Demod 4466 with 155 at 1,3 Id : 4466, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) =<= additive_inverse (add (add (multiply u (multiply x y)) (additive_inverse (multiply (multiply u x) y))) (add (multiply v (multiply x y)) (additive_inverse (multiply (multiply v x) y)))) [] by Demod 4465 with 8 at 2,1,3 Id : 4465, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) =<= additive_inverse (add (add (multiply u (multiply x y)) (additive_inverse (multiply (multiply u x) y))) (additive_inverse (additive_inverse (add (multiply v (multiply x y)) (additive_inverse (multiply (multiply v x) y)))))) [] by Demod 4464 with 1246 at 3 Id : 4464, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) =<= add (additive_inverse (add (multiply u (multiply x y)) (additive_inverse (multiply (multiply u x) y)))) (additive_inverse (add (multiply v (multiply x y)) (additive_inverse (multiply (multiply v x) y)))) [] by Demod 4463 with 1316 at 2,3 Id : 4463, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) =<= add (additive_inverse (add (multiply u (multiply x y)) (additive_inverse (multiply (multiply u x) y)))) (associator v x y) [] by Demod 4462 with 1316 at 1,3 Id : 4462, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) =<= add (associator u x y) (associator v x y) [] by Demod 4461 with 12 at 1,2 Id : 4461, {_}: additive_inverse (add (add (multiply u (multiply x y)) (multiply v (multiply x y))) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y)))) =<= add (associator u x y) (associator v x y) [] by Demod 4460 with 10 at 1,2,1,2 Id : 4460, {_}: additive_inverse (add (add (multiply u (multiply x y)) (multiply v (multiply x y))) (additive_inverse (multiply (add (multiply u x) (multiply v x)) y))) =<= add (associator u x y) (associator v x y) [] by Demod 4459 with 10 at 1,1,2,1,2 Id : 4459, {_}: additive_inverse (add (add (multiply u (multiply x y)) (multiply v (multiply x y))) (additive_inverse (multiply (multiply (add u v) x) y))) =<= add (associator u x y) (associator v x y) [] by Demod 4458 with 10 at 1,1,2 Id : 4458, {_}: additive_inverse (add (multiply (add u v) (multiply x y)) (additive_inverse (multiply (multiply (add u v) x) y))) =<= add (associator u x y) (associator v x y) [] by Demod 1 with 1316 at 2 Id : 1, {_}: associator (add u v) x y =>= add (associator u x y) (associator v x y) [] by prove_linearised_form3 % SZS output end CNFRefutation for RNG021-6.p 30245: solved RNG021-6.p in 9.632601 using lpo WARNING: TreeLimitedRun lost 10.30s, total lost is 10.30s FINAL WATCH: 19.9 CPU 19.4 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG021-7.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30261 TreeLimitedRun: ---------------------------------------------------------- 30263: Facts: 30263: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30263: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30263: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30263: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30263: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30263: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30263: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30263: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30263: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30263: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30263: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30263: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30263: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30263: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30263: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30263: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 30263: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 30263: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 30263: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 30263: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 30263: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 30263: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 30263: Goal: 30263: Id : 1, {_}: associator (add u v) x y =<= add (associator u x y) (associator v x y) [] by prove_linearised_form3 Statistics : Max weight : 50 Found proof, 21.812991s % SZS status Unsatisfiable for RNG021-7.p % SZS output start CNFRefutation for RNG021-7.p Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 Id : 138, {_}: add ?240 (add ?241 ?242) =<= add (add ?240 ?241) ?242 [242, 241, 240] by associativity_for_addition ?240 ?241 ?242 Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 Id : 15, {_}: associator ?37 ?38 ?39 =>= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 Id : 296, {_}: associator ?37 ?38 ?39 =>= add (additive_inverse (multiply ?37 (multiply ?38 ?39))) (multiply (multiply ?37 ?38) ?39) [39, 38, 37] by Demod 15 with 11 at 3 Id : 141, {_}: add ?250 (add (additive_inverse ?250) ?251) =>= add additive_identity ?251 [251, 250] by Super 138 with 7 at 1,3 Id : 161, {_}: add ?250 (add (additive_inverse ?250) ?251) =>= ?251 [251, 250] by Demod 141 with 2 at 3 Id : 1081, {_}: add ?1081 (add (additive_inverse ?1081) ?1082) =>= ?1082 [1082, 1081] by Demod 141 with 2 at 3 Id : 1124, {_}: add (additive_inverse ?1125) (add ?1125 ?1126) =>= ?1126 [1126, 1125] by Super 1081 with 8 at 1,2,2 Id : 1225, {_}: add (additive_inverse ?1257) (add ?1258 ?1257) =>= ?1258 [1258, 1257] by Super 1124 with 11 at 2,2 Id : 1128, {_}: add (additive_inverse ?1134) (add ?1135 ?1134) =>= ?1135 [1135, 1134] by Super 1124 with 11 at 2,2 Id : 1234, {_}: add (additive_inverse (add ?1283 ?1284)) ?1283 =>= additive_inverse ?1284 [1284, 1283] by Super 1225 with 1128 at 2,2 Id : 1263, {_}: add ?1283 (additive_inverse (add ?1283 ?1284)) =>= additive_inverse ?1284 [1284, 1283] by Demod 1234 with 11 at 2 Id : 1552, {_}: add ?1761 (additive_inverse ?1762) =<= additive_inverse (add (additive_inverse ?1761) ?1762) [1762, 1761] by Super 161 with 1263 at 2,2 Id : 1629, {_}: additive_inverse (add ?1873 (additive_inverse ?1874)) =<= add (additive_inverse ?1873) ?1874 [1874, 1873] by Super 8 with 1552 at 1,2 Id : 1705, {_}: associator ?37 ?38 ?39 =>= additive_inverse (add (multiply ?37 (multiply ?38 ?39)) (additive_inverse (multiply (multiply ?37 ?38) ?39))) [39, 38, 37] by Demod 296 with 1629 at 3 Id : 142, {_}: add ?253 (add ?254 ?255) =<= add (add ?254 ?253) ?255 [255, 254, 253] by Super 138 with 11 at 1,3 Id : 162, {_}: add ?253 (add ?254 ?255) =?= add ?254 (add ?253 ?255) [255, 254, 253] by Demod 142 with 12 at 3 Id : 2645, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) === additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) [] by Demod 2644 with 162 at 1,3 Id : 2644, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) =<= additive_inverse (add (multiply v (multiply x y)) (add (multiply u (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) [] by Demod 2643 with 8 at 2,1,2,2,1,3 Id : 2643, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) =<= additive_inverse (add (multiply v (multiply x y)) (add (multiply u (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (additive_inverse (additive_inverse (multiply (multiply v x) y))))))) [] by Demod 2642 with 1629 at 2,2,1,3 Id : 2642, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) =<= additive_inverse (add (multiply v (multiply x y)) (add (multiply u (multiply x y)) (add (additive_inverse (multiply (multiply u x) y)) (additive_inverse (multiply (multiply v x) y))))) [] by Demod 2641 with 12 at 2,1,3 Id : 2641, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) =<= additive_inverse (add (multiply v (multiply x y)) (add (add (multiply u (multiply x y)) (additive_inverse (multiply (multiply u x) y))) (additive_inverse (multiply (multiply v x) y)))) [] by Demod 2640 with 162 at 1,3 Id : 2640, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) =<= additive_inverse (add (add (multiply u (multiply x y)) (additive_inverse (multiply (multiply u x) y))) (add (multiply v (multiply x y)) (additive_inverse (multiply (multiply v x) y)))) [] by Demod 2639 with 8 at 2,1,3 Id : 2639, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) =<= additive_inverse (add (add (multiply u (multiply x y)) (additive_inverse (multiply (multiply u x) y))) (additive_inverse (additive_inverse (add (multiply v (multiply x y)) (additive_inverse (multiply (multiply v x) y)))))) [] by Demod 2638 with 1629 at 3 Id : 2638, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) =<= add (additive_inverse (add (multiply u (multiply x y)) (additive_inverse (multiply (multiply u x) y)))) (additive_inverse (add (multiply v (multiply x y)) (additive_inverse (multiply (multiply v x) y)))) [] by Demod 2637 with 1705 at 2,3 Id : 2637, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) =<= add (additive_inverse (add (multiply u (multiply x y)) (additive_inverse (multiply (multiply u x) y)))) (associator v x y) [] by Demod 2636 with 1705 at 1,3 Id : 2636, {_}: additive_inverse (add (multiply u (multiply x y)) (add (multiply v (multiply x y)) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y))))) =<= add (associator u x y) (associator v x y) [] by Demod 2635 with 12 at 1,2 Id : 2635, {_}: additive_inverse (add (add (multiply u (multiply x y)) (multiply v (multiply x y))) (additive_inverse (add (multiply (multiply u x) y) (multiply (multiply v x) y)))) =<= add (associator u x y) (associator v x y) [] by Demod 2634 with 10 at 1,2,1,2 Id : 2634, {_}: additive_inverse (add (add (multiply u (multiply x y)) (multiply v (multiply x y))) (additive_inverse (multiply (add (multiply u x) (multiply v x)) y))) =<= add (associator u x y) (associator v x y) [] by Demod 2633 with 10 at 1,1,2,1,2 Id : 2633, {_}: additive_inverse (add (add (multiply u (multiply x y)) (multiply v (multiply x y))) (additive_inverse (multiply (multiply (add u v) x) y))) =<= add (associator u x y) (associator v x y) [] by Demod 2632 with 10 at 1,1,2 Id : 2632, {_}: additive_inverse (add (multiply (add u v) (multiply x y)) (additive_inverse (multiply (multiply (add u v) x) y))) =<= add (associator u x y) (associator v x y) [] by Demod 1 with 1705 at 2 Id : 1, {_}: associator (add u v) x y =>= add (associator u x y) (associator v x y) [] by prove_linearised_form3 % SZS output end CNFRefutation for RNG021-7.p 30265: solved RNG021-7.p in 10.904681 using lpo WARNING: TreeLimitedRun lost 29.07s, total lost is 29.07s FINAL WATCH: 40.0 CPU 22.0 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG025-4.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30272 TreeLimitedRun: ---------------------------------------------------------- 30274: Facts: 30274: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30274: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30274: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30274: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30274: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30274: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30274: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30274: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30274: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30274: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30274: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30274: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30274: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30274: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30274: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30274: Goal: 30274: Id : 1, {_}: add (associator x y z) (associator x z y) =>= additive_identity [] by prove_equation % SZS status Timeout for RNG025-4.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG025-5.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30305 TreeLimitedRun: ---------------------------------------------------------- 30307: Facts: 30307: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30307: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30307: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30307: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30307: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30307: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30307: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30307: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30307: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30307: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30307: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30307: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30307: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30307: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30307: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30307: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 30307: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 30307: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 30307: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 30307: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 30307: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 30307: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 30307: Goal: 30307: Id : 1, {_}: add (associator x y z) (associator x z y) =>= additive_identity [] by prove_equation % SZS status Timeout for RNG025-5.p FINAL WATCH: 199.7 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG025-6.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30361 TreeLimitedRun: ---------------------------------------------------------- 30363: Facts: 30363: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30363: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30363: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30363: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30363: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30363: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30363: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30363: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30363: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30363: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30363: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30363: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30363: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30363: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30363: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30363: Goal: 30363: Id : 1, {_}: associator x y x =>= additive_identity [] by prove_flexible_law % SZS status Timeout for RNG025-6.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG025-7.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30393 TreeLimitedRun: ---------------------------------------------------------- 30395: Facts: 30395: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30395: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30395: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30395: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30395: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30395: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30395: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30395: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30395: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30395: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30395: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30395: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30395: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30395: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30395: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30395: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 30395: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 30395: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 30395: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 30395: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 30395: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 30395: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 30395: Goal: 30395: Id : 1, {_}: associator x y x =>= additive_identity [] by prove_flexible_law % SZS status Timeout for RNG025-7.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG025-8.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30437 TreeLimitedRun: ---------------------------------------------------------- 30439: Facts: 30439: Id : 2, {_}: add ?2 ?3 =<->= add ?3 ?2 [3, 2] by commutativity_for_addition ?2 ?3 30439: Id : 3, {_}: add ?5 (add ?6 ?7) =?= add (add ?5 ?6) ?7 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7 30439: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9 30439: Id : 5, {_}: add ?11 additive_identity =>= ?11 [11] by right_additive_identity ?11 30439: Id : 6, {_}: multiply additive_identity ?13 =>= additive_identity [13] by left_multiplicative_zero ?13 30439: Id : 7, {_}: multiply ?15 additive_identity =>= additive_identity [15] by right_multiplicative_zero ?15 30439: Id : 8, {_}: add (additive_inverse ?17) ?17 =>= additive_identity [17] by left_additive_inverse ?17 30439: Id : 9, {_}: add ?19 (additive_inverse ?19) =>= additive_identity [19] by right_additive_inverse ?19 30439: Id : 10, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 30439: Id : 11, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 30439: Id : 12, {_}: additive_inverse (additive_inverse ?29) =>= ?29 [29] by additive_inverse_additive_inverse ?29 30439: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30439: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30439: Id : 15, {_}: associator ?37 ?38 (add ?39 ?40) =<= add (associator ?37 ?38 ?39) (associator ?37 ?38 ?40) [40, 39, 38, 37] by linearised_associator1 ?37 ?38 ?39 ?40 30439: Id : 16, {_}: associator ?42 (add ?43 ?44) ?45 =<= add (associator ?42 ?43 ?45) (associator ?42 ?44 ?45) [45, 44, 43, 42] by linearised_associator2 ?42 ?43 ?44 ?45 30439: Id : 17, {_}: associator (add ?47 ?48) ?49 ?50 =<= add (associator ?47 ?49 ?50) (associator ?48 ?49 ?50) [50, 49, 48, 47] by linearised_associator3 ?47 ?48 ?49 ?50 30439: Id : 18, {_}: commutator ?52 ?53 =<= add (multiply ?53 ?52) (additive_inverse (multiply ?52 ?53)) [53, 52] by commutator ?52 ?53 30439: Goal: 30439: Id : 1, {_}: add (associator a b c) (associator a c b) =>= additive_identity [] by prove_flexible_law % SZS status Timeout for RNG025-8.p FINAL WATCH: 180.0 CPU 90.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG025-9.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30457 TreeLimitedRun: ---------------------------------------------------------- 30459: Facts: 30459: Id : 2, {_}: multiply (additive_inverse ?2) (additive_inverse ?3) =>= multiply ?2 ?3 [3, 2] by product_of_inverses ?2 ?3 30459: Id : 3, {_}: multiply (additive_inverse ?5) ?6 =>= additive_inverse (multiply ?5 ?6) [6, 5] by inverse_product1 ?5 ?6 30459: Id : 4, {_}: multiply ?8 (additive_inverse ?9) =>= additive_inverse (multiply ?8 ?9) [9, 8] by inverse_product2 ?8 ?9 30459: Id : 5, {_}: multiply ?11 (add ?12 (additive_inverse ?13)) =<= add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13)) [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13 30459: Id : 6, {_}: multiply (add ?15 (additive_inverse ?16)) ?17 =<= add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17)) [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17 30459: Id : 7, {_}: multiply (additive_inverse ?19) (add ?20 ?21) =<= add (additive_inverse (multiply ?19 ?20)) (additive_inverse (multiply ?19 ?21)) [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21 30459: Id : 8, {_}: multiply (add ?23 ?24) (additive_inverse ?25) =<= add (additive_inverse (multiply ?23 ?25)) (additive_inverse (multiply ?24 ?25)) [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25 30459: Id : 9, {_}: add ?27 ?28 =<->= add ?28 ?27 [28, 27] by commutativity_for_addition ?27 ?28 30459: Id : 10, {_}: add ?30 (add ?31 ?32) =?= add (add ?30 ?31) ?32 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32 30459: Id : 11, {_}: add additive_identity ?34 =>= ?34 [34] by left_additive_identity ?34 30459: Id : 12, {_}: add ?36 additive_identity =>= ?36 [36] by right_additive_identity ?36 30459: Id : 13, {_}: multiply additive_identity ?38 =>= additive_identity [38] by left_multiplicative_zero ?38 30459: Id : 14, {_}: multiply ?40 additive_identity =>= additive_identity [40] by right_multiplicative_zero ?40 30459: Id : 15, {_}: add (additive_inverse ?42) ?42 =>= additive_identity [42] by left_additive_inverse ?42 30459: Id : 16, {_}: add ?44 (additive_inverse ?44) =>= additive_identity [44] by right_additive_inverse ?44 30459: Id : 17, {_}: multiply ?46 (add ?47 ?48) =<= add (multiply ?46 ?47) (multiply ?46 ?48) [48, 47, 46] by distribute1 ?46 ?47 ?48 30459: Id : 18, {_}: multiply (add ?50 ?51) ?52 =<= add (multiply ?50 ?52) (multiply ?51 ?52) [52, 51, 50] by distribute2 ?50 ?51 ?52 30459: Id : 19, {_}: additive_inverse (additive_inverse ?54) =>= ?54 [54] by additive_inverse_additive_inverse ?54 30459: Id : 20, {_}: multiply (multiply ?56 ?57) ?57 =?= multiply ?56 (multiply ?57 ?57) [57, 56] by right_alternative ?56 ?57 30459: Id : 21, {_}: multiply (multiply ?59 ?59) ?60 =?= multiply ?59 (multiply ?59 ?60) [60, 59] by left_alternative ?59 ?60 30459: Id : 22, {_}: associator ?62 ?63 (add ?64 ?65) =<= add (associator ?62 ?63 ?64) (associator ?62 ?63 ?65) [65, 64, 63, 62] by linearised_associator1 ?62 ?63 ?64 ?65 30459: Id : 23, {_}: associator ?67 (add ?68 ?69) ?70 =<= add (associator ?67 ?68 ?70) (associator ?67 ?69 ?70) [70, 69, 68, 67] by linearised_associator2 ?67 ?68 ?69 ?70 30459: Id : 24, {_}: associator (add ?72 ?73) ?74 ?75 =<= add (associator ?72 ?74 ?75) (associator ?73 ?74 ?75) [75, 74, 73, 72] by linearised_associator3 ?72 ?73 ?74 ?75 30459: Id : 25, {_}: commutator ?77 ?78 =<= add (multiply ?78 ?77) (additive_inverse (multiply ?77 ?78)) [78, 77] by commutator ?77 ?78 30459: Goal: 30459: Id : 1, {_}: add (associator a b c) (associator a c b) =>= additive_identity [] by prove_flexible_law % SZS status Timeout for RNG025-9.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG026-6.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30492 TreeLimitedRun: ---------------------------------------------------------- 30494: Facts: 30494: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30494: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30494: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30494: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30494: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30494: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30494: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30494: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30494: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30494: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30494: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30494: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30494: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30494: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30494: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30494: Goal: 30494: Id : 1, {_}: add (add (associator (multiply a b) c d) (associator a b (multiply c d))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by prove_teichmuller_identity Statistics : Max weight : 62 Found proof, 16.068540s % SZS status Unsatisfiable for RNG026-6.p % SZS output start CNFRefutation for RNG026-6.p Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 Id : 66, {_}: multiply (add ?116 ?117) ?118 =>= add (multiply ?116 ?118) (multiply ?117 ?118) [118, 117, 116] by distribute2 ?116 ?117 ?118 Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 Id : 45, {_}: multiply ?85 (add ?86 ?87) =>= add (multiply ?85 ?86) (multiply ?85 ?87) [87, 86, 85] by distribute1 ?85 ?86 ?87 Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 Id : 134, {_}: add ?215 (add ?216 ?217) =<= add (add ?215 ?216) ?217 [217, 216, 215] by associativity_for_addition ?215 ?216 ?217 Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 Id : 15, {_}: associator ?37 ?38 ?39 =>= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 Id : 301, {_}: associator ?37 ?38 ?39 =>= add (additive_inverse (multiply ?37 (multiply ?38 ?39))) (multiply (multiply ?37 ?38) ?39) [39, 38, 37] by Demod 15 with 11 at 3 Id : 137, {_}: add ?225 (add (additive_inverse ?225) ?226) =>= add additive_identity ?226 [226, 225] by Super 134 with 7 at 1,3 Id : 157, {_}: add ?225 (add (additive_inverse ?225) ?226) =>= ?226 [226, 225] by Demod 137 with 2 at 3 Id : 536, {_}: add ?498 (add (additive_inverse ?498) ?499) =>= ?499 [499, 498] by Demod 137 with 2 at 3 Id : 580, {_}: add (additive_inverse ?542) (add ?542 ?543) =>= ?543 [543, 542] by Super 536 with 8 at 1,2,2 Id : 1176, {_}: add (additive_inverse ?1135) (add ?1136 ?1135) =>= ?1136 [1136, 1135] by Super 580 with 11 at 2,2 Id : 584, {_}: add (additive_inverse ?551) (add ?552 ?551) =>= ?552 [552, 551] by Super 580 with 11 at 2,2 Id : 1184, {_}: add (additive_inverse (add ?1156 ?1157)) ?1156 =>= additive_inverse ?1157 [1157, 1156] by Super 1176 with 584 at 2,2 Id : 1212, {_}: add ?1156 (additive_inverse (add ?1156 ?1157)) =>= additive_inverse ?1157 [1157, 1156] by Demod 1184 with 11 at 2 Id : 1315, {_}: add ?1278 (additive_inverse ?1279) =<= additive_inverse (add (additive_inverse ?1278) ?1279) [1279, 1278] by Super 157 with 1212 at 2,2 Id : 1398, {_}: additive_inverse (add ?1384 (additive_inverse ?1385)) =<= add (additive_inverse ?1384) ?1385 [1385, 1384] by Super 8 with 1315 at 1,2 Id : 1478, {_}: associator ?37 ?38 ?39 =>= additive_inverse (add (multiply ?37 (multiply ?38 ?39)) (additive_inverse (multiply (multiply ?37 ?38) ?39))) [39, 38, 37] by Demod 301 with 1398 at 3 Id : 48, {_}: multiply ?95 additive_identity =<= add (multiply ?95 (additive_inverse ?96)) (multiply ?95 ?96) [96, 95] by Super 45 with 6 at 2,2 Id : 59, {_}: additive_identity =<= add (multiply ?95 (additive_inverse ?96)) (multiply ?95 ?96) [96, 95] by Demod 48 with 5 at 2 Id : 423, {_}: additive_identity =<= add (multiply ?95 ?96) (multiply ?95 (additive_inverse ?96)) [96, 95] by Demod 59 with 11 at 3 Id : 590, {_}: add (additive_inverse (multiply ?570 ?571)) additive_identity =<= multiply ?570 (additive_inverse ?571) [571, 570] by Super 580 with 423 at 2,2 Id : 605, {_}: additive_inverse (multiply ?570 ?571) =<= multiply ?570 (additive_inverse ?571) [571, 570] by Demod 590 with 3 at 2 Id : 537, {_}: add (additive_inverse ?501) (add ?501 ?502) =>= ?502 [502, 501] by Super 536 with 8 at 1,2,2 Id : 1182, {_}: add (additive_inverse (add ?1150 ?1151)) ?1151 =>= additive_inverse ?1150 [1151, 1150] by Super 1176 with 537 at 2,2 Id : 1210, {_}: add ?1151 (additive_inverse (add ?1150 ?1151)) =>= additive_inverse ?1150 [1150, 1151] by Demod 1182 with 11 at 2 Id : 69, {_}: multiply additive_identity ?126 =<= add (multiply (additive_inverse ?127) ?126) (multiply ?127 ?126) [127, 126] by Super 66 with 6 at 1,2 Id : 85, {_}: additive_identity =<= add (multiply (additive_inverse ?127) ?126) (multiply ?127 ?126) [126, 127] by Demod 69 with 4 at 2 Id : 1597, {_}: additive_identity =<= add (multiply ?127 ?126) (multiply (additive_inverse ?127) ?126) [126, 127] by Demod 85 with 11 at 3 Id : 1598, {_}: add (multiply (additive_inverse ?1515) ?1516) (additive_inverse additive_identity) =>= additive_inverse (multiply ?1515 ?1516) [1516, 1515] by Super 1210 with 1597 at 1,2,2 Id : 29, {_}: additive_identity =<= additive_inverse additive_identity [] by Super 3 with 6 at 2 Id : 1625, {_}: add (multiply (additive_inverse ?1515) ?1516) additive_identity =>= additive_inverse (multiply ?1515 ?1516) [1516, 1515] by Demod 1598 with 29 at 2,2 Id : 1626, {_}: multiply (additive_inverse ?1515) ?1516 =>= additive_inverse (multiply ?1515 ?1516) [1516, 1515] by Demod 1625 with 3 at 2 Id : 1844, {_}: additive_identity === additive_identity [] by Demod 1843 with 7 at 2 Id : 1843, {_}: add (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d))) (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) =>= additive_identity [] by Demod 1842 with 11 at 2 Id : 1842, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d))) =>= additive_identity [] by Demod 1841 with 8 at 2,2 Id : 1841, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d))))) =>= additive_identity [] by Demod 1840 with 8 at 1,2,1,1,2,2 Id : 1840, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (additive_inverse (additive_inverse (multiply (multiply (multiply a b) c) d))))))) =>= additive_identity [] by Demod 1839 with 1212 at 1,2,1,1,2,2 Id : 1839, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (add (multiply (multiply a (multiply b c)) d) (additive_inverse (add (multiply (multiply a (multiply b c)) d) (additive_inverse (multiply (multiply (multiply a b) c) d))))))))) =>= additive_identity [] by Demod 1838 with 1398 at 2,1,1,2,2 Id : 1838, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (additive_inverse (add (multiply a (multiply b (multiply c d))) (add (additive_inverse (multiply (multiply a (multiply b c)) d)) (add (multiply (multiply a (multiply b c)) d) (additive_inverse (multiply (multiply (multiply a b) c) d))))))) =>= additive_identity [] by Demod 1837 with 12 at 1,1,2,2 Id : 1837, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (additive_inverse (add (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply a (multiply b c)) d))) (add (multiply (multiply a (multiply b c)) d) (additive_inverse (multiply (multiply (multiply a b) c) d)))))) =>= additive_identity [] by Demod 1836 with 8 at 2,1,1,2,2 Id : 1836, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (additive_inverse (add (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply a (multiply b c)) d))) (additive_inverse (additive_inverse (add (multiply (multiply a (multiply b c)) d) (additive_inverse (multiply (multiply (multiply a b) c) d)))))))) =>= additive_identity [] by Demod 1835 with 1398 at 1,2,2 Id : 1835, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply a (multiply b c)) d)))) (additive_inverse (add (multiply (multiply a (multiply b c)) d) (additive_inverse (multiply (multiply (multiply a b) c) d)))))) =>= additive_identity [] by Demod 1834 with 1626 at 2,1,2,1,2,2 Id : 1834, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply a (multiply b c)) d)))) (additive_inverse (add (multiply (multiply a (multiply b c)) d) (multiply (additive_inverse (multiply (multiply a b) c)) d))))) =>= additive_identity [] by Demod 1833 with 10 at 1,2,1,2,2 Id : 1833, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply a (multiply b c)) d)))) (additive_inverse (multiply (add (multiply a (multiply b c)) (additive_inverse (multiply (multiply a b) c))) d)))) =>= additive_identity [] by Demod 1832 with 1626 at 2,1,2,2 Id : 1832, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply a (multiply b c)) d)))) (multiply (additive_inverse (add (multiply a (multiply b c)) (additive_inverse (multiply (multiply a b) c)))) d))) =>= additive_identity [] by Demod 1831 with 1478 at 1,2,1,2,2 Id : 1831, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply a (multiply b c)) d)))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1830 with 8 at 1,2,1,1,1,2,2 Id : 1830, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (additive_inverse (additive_inverse (multiply (multiply a (multiply b c)) d)))))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1829 with 1212 at 1,2,1,1,1,2,2 Id : 1829, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (add (multiply a (multiply (multiply b c) d)) (additive_inverse (add (multiply a (multiply (multiply b c) d)) (additive_inverse (multiply (multiply a (multiply b c)) d)))))))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1828 with 1398 at 2,1,1,1,2,2 Id : 1828, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (additive_inverse (add (multiply a (multiply b (multiply c d))) (add (additive_inverse (multiply a (multiply (multiply b c) d))) (add (multiply a (multiply (multiply b c) d)) (additive_inverse (multiply (multiply a (multiply b c)) d)))))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1827 with 12 at 1,1,1,2,2 Id : 1827, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (additive_inverse (add (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply a (multiply (multiply b c) d)))) (add (multiply a (multiply (multiply b c) d)) (additive_inverse (multiply (multiply a (multiply b c)) d))))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1826 with 8 at 2,1,1,1,2,2 Id : 1826, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (additive_inverse (add (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply a (multiply (multiply b c) d)))) (additive_inverse (additive_inverse (add (multiply a (multiply (multiply b c) d)) (additive_inverse (multiply (multiply a (multiply b c)) d))))))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1825 with 1398 at 1,1,2,2 Id : 1825, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply a (multiply (multiply b c) d))))) (additive_inverse (add (multiply a (multiply (multiply b c) d)) (additive_inverse (multiply (multiply a (multiply b c)) d))))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1824 with 11 at 1,1,2,2 Id : 1824, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (add (additive_inverse (add (multiply a (multiply (multiply b c) d)) (additive_inverse (multiply (multiply a (multiply b c)) d)))) (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply a (multiply (multiply b c) d)))))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1823 with 605 at 2,1,2,1,1,2,2 Id : 1823, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (add (additive_inverse (add (multiply a (multiply (multiply b c) d)) (additive_inverse (multiply (multiply a (multiply b c)) d)))) (additive_inverse (add (multiply a (multiply b (multiply c d))) (multiply a (additive_inverse (multiply (multiply b c) d)))))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1822 with 9 at 1,2,1,1,2,2 Id : 1822, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (add (additive_inverse (add (multiply a (multiply (multiply b c) d)) (additive_inverse (multiply (multiply a (multiply b c)) d)))) (additive_inverse (multiply a (add (multiply b (multiply c d)) (additive_inverse (multiply (multiply b c) d)))))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1821 with 605 at 2,1,1,2,2 Id : 1821, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (add (additive_inverse (add (multiply a (multiply (multiply b c) d)) (additive_inverse (multiply (multiply a (multiply b c)) d)))) (multiply a (additive_inverse (add (multiply b (multiply c d)) (additive_inverse (multiply (multiply b c) d)))))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1820 with 1478 at 2,2,1,1,2,2 Id : 1820, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (add (additive_inverse (add (multiply a (multiply (multiply b c) d)) (additive_inverse (multiply (multiply a (multiply b c)) d)))) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1819 with 1478 at 1,1,1,2,2 Id : 1819, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1818 with 8 at 1,2,1,1,2 Id : 1818, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (additive_inverse (additive_inverse (multiply (multiply (multiply a b) c) d)))))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1817 with 1212 at 1,2,1,1,2 Id : 1817, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (add (multiply (multiply a b) (multiply c d)) (additive_inverse (add (multiply (multiply a b) (multiply c d)) (additive_inverse (multiply (multiply (multiply a b) c) d)))))))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1816 with 1398 at 2,1,1,2 Id : 1816, {_}: add (additive_inverse (add (multiply a (multiply b (multiply c d))) (add (additive_inverse (multiply (multiply a b) (multiply c d))) (add (multiply (multiply a b) (multiply c d)) (additive_inverse (multiply (multiply (multiply a b) c) d)))))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1815 with 12 at 1,1,2 Id : 1815, {_}: add (additive_inverse (add (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply a b) (multiply c d)))) (add (multiply (multiply a b) (multiply c d)) (additive_inverse (multiply (multiply (multiply a b) c) d))))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1814 with 8 at 2,1,1,2 Id : 1814, {_}: add (additive_inverse (add (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply a b) (multiply c d)))) (additive_inverse (additive_inverse (add (multiply (multiply a b) (multiply c d)) (additive_inverse (multiply (multiply (multiply a b) c) d))))))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1813 with 1398 at 1,2 Id : 1813, {_}: add (add (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply a b) (multiply c d))))) (additive_inverse (add (multiply (multiply a b) (multiply c d)) (additive_inverse (multiply (multiply (multiply a b) c) d))))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1812 with 11 at 1,2 Id : 1812, {_}: add (add (additive_inverse (add (multiply (multiply a b) (multiply c d)) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (multiply a (multiply b (multiply c d))) (additive_inverse (multiply (multiply a b) (multiply c d)))))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1811 with 1478 at 2,1,2 Id : 1811, {_}: add (add (additive_inverse (add (multiply (multiply a b) (multiply c d)) (additive_inverse (multiply (multiply (multiply a b) c) d)))) (associator a b (multiply c d))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1 with 1478 at 1,1,2 Id : 1, {_}: add (add (associator (multiply a b) c d) (associator a b (multiply c d))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by prove_teichmuller_identity % SZS output end CNFRefutation for RNG026-6.p 30496: solved RNG026-6.p in 8.092505 using lpo WARNING: TreeLimitedRun lost 11.87s, total lost is 11.87s FINAL WATCH: 20.0 CPU 16.2 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG026-7.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30501 TreeLimitedRun: ---------------------------------------------------------- 30503: Facts: 30503: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30503: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30503: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30503: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30503: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30503: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30503: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30503: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30503: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30503: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30503: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30503: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30503: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30503: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30503: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30503: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 30503: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 30503: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 30503: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 30503: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 30503: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 30503: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 30503: Goal: 30503: Id : 1, {_}: add (add (associator (multiply a b) c d) (associator a b (multiply c d))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by prove_teichmuller_identity Statistics : Max weight : 58 Found proof, 18.958663s % SZS status Unsatisfiable for RNG026-7.p % SZS output start CNFRefutation for RNG026-7.p Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 Id : 10, {_}: multiply (add ?20 ?21) ?22 =>= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 Id : 9, {_}: multiply ?16 (add ?17 ?18) =>= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 Id : 141, {_}: add ?240 (add ?241 ?242) =<= add (add ?240 ?241) ?242 [242, 241, 240] by associativity_for_addition ?240 ?241 ?242 Id : 12, {_}: add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 Id : 11, {_}: add ?24 ?25 =?= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 Id : 15, {_}: associator ?37 ?38 ?39 =>= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 Id : 308, {_}: associator ?37 ?38 ?39 =>= add (additive_inverse (multiply ?37 (multiply ?38 ?39))) (multiply (multiply ?37 ?38) ?39) [39, 38, 37] by Demod 15 with 11 at 3 Id : 144, {_}: add ?250 (add (additive_inverse ?250) ?251) =>= add additive_identity ?251 [251, 250] by Super 141 with 7 at 1,3 Id : 164, {_}: add ?250 (add (additive_inverse ?250) ?251) =>= ?251 [251, 250] by Demod 144 with 2 at 3 Id : 1276, {_}: additive_identity === additive_identity [] by Demod 1275 with 7 at 2 Id : 1275, {_}: add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply (multiply a b) c) d)) (additive_inverse (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply (multiply a b) c) d))) =>= additive_identity [] by Demod 1274 with 164 at 2,1,2,2 Id : 1274, {_}: add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply (multiply a b) c) d)) (additive_inverse (add (additive_inverse (multiply a (multiply b (multiply c d)))) (add (multiply (multiply a (multiply b c)) d) (add (additive_inverse (multiply (multiply a (multiply b c)) d)) (multiply (multiply (multiply a b) c) d))))) =>= additive_identity [] by Demod 1273 with 12 at 1,2,2 Id : 1273, {_}: add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply (multiply a b) c) d)) (additive_inverse (add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply a (multiply b c)) d)) (add (additive_inverse (multiply (multiply a (multiply b c)) d)) (multiply (multiply (multiply a b) c) d)))) =>= additive_identity [] by Demod 1272 with 18 at 1,2,1,2,2 Id : 1272, {_}: add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply (multiply a b) c) d)) (additive_inverse (add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply a (multiply b c)) d)) (add (multiply (additive_inverse (multiply a (multiply b c))) d) (multiply (multiply (multiply a b) c) d)))) =>= additive_identity [] by Demod 1271 with 10 at 2,1,2,2 Id : 1271, {_}: add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply (multiply a b) c) d)) (additive_inverse (add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply a (multiply b c)) d)) (multiply (add (additive_inverse (multiply a (multiply b c))) (multiply (multiply a b) c)) d))) =>= additive_identity [] by Demod 1270 with 308 at 1,2,1,2,2 Id : 1270, {_}: add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply (multiply a b) c) d)) (additive_inverse (add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply a (multiply b c)) d)) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1269 with 164 at 2,1,1,2,2 Id : 1269, {_}: add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply (multiply a b) c) d)) (additive_inverse (add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (add (multiply a (multiply (multiply b c) d)) (add (additive_inverse (multiply a (multiply (multiply b c) d))) (multiply (multiply a (multiply b c)) d)))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1268 with 12 at 1,1,2,2 Id : 1268, {_}: add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply (multiply a b) c) d)) (additive_inverse (add (add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply a (multiply (multiply b c) d))) (add (additive_inverse (multiply a (multiply (multiply b c) d))) (multiply (multiply a (multiply b c)) d))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1267 with 11 at 1,1,2,2 Id : 1267, {_}: add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply (multiply a b) c) d)) (additive_inverse (add (add (add (additive_inverse (multiply a (multiply (multiply b c) d))) (multiply (multiply a (multiply b c)) d)) (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply a (multiply (multiply b c) d)))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1266 with 19 at 1,2,1,1,2,2 Id : 1266, {_}: add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply (multiply a b) c) d)) (additive_inverse (add (add (add (additive_inverse (multiply a (multiply (multiply b c) d))) (multiply (multiply a (multiply b c)) d)) (add (multiply a (additive_inverse (multiply b (multiply c d)))) (multiply a (multiply (multiply b c) d)))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1265 with 9 at 2,1,1,2,2 Id : 1265, {_}: add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply (multiply a b) c) d)) (additive_inverse (add (add (add (additive_inverse (multiply a (multiply (multiply b c) d))) (multiply (multiply a (multiply b c)) d)) (multiply a (add (additive_inverse (multiply b (multiply c d))) (multiply (multiply b c) d)))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1264 with 308 at 2,2,1,1,2,2 Id : 1264, {_}: add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply (multiply a b) c) d)) (additive_inverse (add (add (add (additive_inverse (multiply a (multiply (multiply b c) d))) (multiply (multiply a (multiply b c)) d)) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1263 with 308 at 1,1,1,2,2 Id : 1263, {_}: add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply (multiply a b) c) d)) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1262 with 164 at 2,1,2 Id : 1262, {_}: add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (add (multiply (multiply a b) (multiply c d)) (add (additive_inverse (multiply (multiply a b) (multiply c d))) (multiply (multiply (multiply a b) c) d)))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1261 with 12 at 1,2 Id : 1261, {_}: add (add (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply a b) (multiply c d))) (add (additive_inverse (multiply (multiply a b) (multiply c d))) (multiply (multiply (multiply a b) c) d))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1260 with 11 at 1,2 Id : 1260, {_}: add (add (add (additive_inverse (multiply (multiply a b) (multiply c d))) (multiply (multiply (multiply a b) c) d)) (add (additive_inverse (multiply a (multiply b (multiply c d)))) (multiply (multiply a b) (multiply c d)))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1259 with 308 at 2,1,2 Id : 1259, {_}: add (add (add (additive_inverse (multiply (multiply a b) (multiply c d))) (multiply (multiply (multiply a b) c) d)) (associator a b (multiply c d))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by Demod 1 with 308 at 1,1,2 Id : 1, {_}: add (add (associator (multiply a b) c d) (associator a b (multiply c d))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d))) =>= additive_identity [] by prove_teichmuller_identity % SZS output end CNFRefutation for RNG026-7.p 30505: solved RNG026-7.p in 9.46059 using lpo WARNING: TreeLimitedRun lost 10.50s, total lost is 10.50s FINAL WATCH: 20.0 CPU 19.0 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG027-5.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30510 TreeLimitedRun: ---------------------------------------------------------- 30512: Facts: 30512: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30512: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30512: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30512: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30512: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30512: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30512: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30512: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30512: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30512: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30512: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30512: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30512: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30512: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30512: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30512: Goal: 30512: Id : 1, {_}: multiply cz (multiply cx (multiply cy cx)) =<= multiply (multiply (multiply cz cx) cy) cx [] by prove_right_moufang % SZS status Timeout for RNG027-5.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG027-7.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30542 TreeLimitedRun: ---------------------------------------------------------- 30544: Facts: 30544: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30544: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30544: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30544: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30544: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30544: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30544: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30544: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30544: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30544: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30544: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30544: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30544: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30544: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30544: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30544: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 30544: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 30544: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 30544: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 30544: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 30544: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 30544: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 30544: Goal: 30544: Id : 1, {_}: multiply cz (multiply cx (multiply cy cx)) =<= multiply (multiply (multiply cz cx) cy) cx [] by prove_right_moufang % SZS status Timeout for RNG027-7.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG027-8.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30585 TreeLimitedRun: ---------------------------------------------------------- 30587: Facts: 30587: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30587: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30587: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30587: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30587: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30587: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30587: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30587: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30587: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30587: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30587: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30587: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30587: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30587: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30587: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30587: Goal: 30587: Id : 1, {_}: associator x (multiply x y) z =>= multiply (associator x y z) x [] by prove_right_moufang % SZS status Timeout for RNG027-8.p FINAL WATCH: 199.4 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG027-9.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30606 TreeLimitedRun: ---------------------------------------------------------- 30608: Facts: 30608: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30608: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30608: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30608: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30608: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30608: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30608: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30608: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30608: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30608: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30608: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30608: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30608: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30608: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30608: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30608: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 30608: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 30608: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 30608: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 30608: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 30608: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 30608: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 30608: Goal: 30608: Id : 1, {_}: associator x (multiply x y) z =>= multiply (associator x y z) x [] by prove_right_moufang % SZS status Timeout for RNG027-9.p FINAL WATCH: 193.6 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG028-5.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30660 TreeLimitedRun: ---------------------------------------------------------- 30662: Facts: 30662: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30662: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30662: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30662: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30662: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30662: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30662: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30662: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30662: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30662: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30662: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30662: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30662: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30662: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30662: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30662: Goal: 30662: Id : 1, {_}: multiply (multiply cx (multiply cy cx)) cz =>= multiply cx (multiply cy (multiply cx cz)) [] by prove_left_moufang % SZS status Timeout for RNG028-5.p FINAL WATCH: 199.6 CPU 100.2 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG028-7.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30729 TreeLimitedRun: ---------------------------------------------------------- 30731: Facts: 30731: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30731: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30731: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30731: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30731: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30731: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30731: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30731: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30731: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30731: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30731: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30731: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30731: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30731: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30731: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30731: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 30731: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 30731: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 30731: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 30731: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 30731: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 30731: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 30731: Goal: 30731: Id : 1, {_}: multiply (multiply cx (multiply cy cx)) cz =>= multiply cx (multiply cy (multiply cx cz)) [] by prove_left_moufang % SZS status Timeout for RNG028-7.p FINAL WATCH: 180.1 CPU 90.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG028-8.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30749 TreeLimitedRun: ---------------------------------------------------------- 30751: Facts: 30751: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30751: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30751: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30751: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30751: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30751: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30751: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30751: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30751: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30751: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30751: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30751: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30751: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30751: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30751: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30751: Goal: 30751: Id : 1, {_}: associator x (multiply y x) z =>= multiply x (associator x y z) [] by prove_left_moufang % SZS status Timeout for RNG028-8.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG028-9.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30781 TreeLimitedRun: ---------------------------------------------------------- 30783: Facts: 30783: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30783: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30783: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30783: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30783: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30783: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30783: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30783: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30783: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30783: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30783: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30783: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30783: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30783: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30783: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30783: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 30783: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 30783: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 30783: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 30783: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 30783: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 30783: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 30783: Goal: 30783: Id : 1, {_}: associator x (multiply y x) z =>= multiply x (associator x y z) [] by prove_left_moufang % SZS status Timeout for RNG028-9.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG029-5.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30812 TreeLimitedRun: ---------------------------------------------------------- 30814: Facts: 30814: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30814: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30814: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30814: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30814: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30814: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30814: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30814: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30814: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30814: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30814: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30814: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30814: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30814: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30814: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30814: Goal: 30814: Id : 1, {_}: multiply (multiply cx cy) (multiply cz cx) =>= multiply cx (multiply (multiply cy cz) cx) [] by prove_middle_law % SZS status Timeout for RNG029-5.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG029-6.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30860 TreeLimitedRun: ---------------------------------------------------------- 30862: Facts: 30862: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30862: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30862: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30862: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30862: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30862: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30862: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30862: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30862: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30862: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30862: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30862: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30862: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30862: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30862: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30862: Goal: 30862: Id : 1, {_}: multiply (multiply x y) (multiply z x) =<= multiply (multiply x (multiply y z)) x [] by prove_middle_moufang % SZS status Timeout for RNG029-6.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG029-7.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30891 TreeLimitedRun: ---------------------------------------------------------- 30893: Facts: 30893: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 30893: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 30893: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 30893: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 30893: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 30893: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 30893: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 30893: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 30893: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 30893: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 30893: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 30893: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30893: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 30893: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 30893: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 30893: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 30893: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 30893: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 30893: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 30893: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 30893: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 30893: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 30893: Goal: 30893: Id : 1, {_}: multiply (multiply x y) (multiply z x) =<= multiply (multiply x (multiply y z)) x [] by prove_middle_moufang % SZS status Timeout for RNG029-7.p FINAL WATCH: 199.9 CPU 100.2 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG030-6.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30923 TreeLimitedRun: ---------------------------------------------------------- 30925: Facts: 30925: Id : 2, {_}: add ?2 ?3 =<->= add ?3 ?2 [3, 2] by commutativity_for_addition ?2 ?3 30925: Id : 3, {_}: add ?5 (add ?6 ?7) =?= add (add ?5 ?6) ?7 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7 30925: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9 30925: Id : 5, {_}: add ?11 additive_identity =>= ?11 [11] by right_additive_identity ?11 30925: Id : 6, {_}: multiply additive_identity ?13 =>= additive_identity [13] by left_multiplicative_zero ?13 30925: Id : 7, {_}: multiply ?15 additive_identity =>= additive_identity [15] by right_multiplicative_zero ?15 30925: Id : 8, {_}: add (additive_inverse ?17) ?17 =>= additive_identity [17] by left_additive_inverse ?17 30925: Id : 9, {_}: add ?19 (additive_inverse ?19) =>= additive_identity [19] by right_additive_inverse ?19 30925: Id : 10, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 30925: Id : 11, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 30925: Id : 12, {_}: additive_inverse (additive_inverse ?29) =>= ?29 [29] by additive_inverse_additive_inverse ?29 30925: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30925: Id : 14, {_}: associator ?34 ?35 ?36 =<= add (multiply (multiply ?34 ?35) ?36) (additive_inverse (multiply ?34 (multiply ?35 ?36))) [36, 35, 34] by associator ?34 ?35 ?36 30925: Id : 15, {_}: commutator ?38 ?39 =<= add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39)) [39, 38] by commutator ?38 ?39 30925: Goal: 30925: Id : 1, {_}: add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) =>= additive_identity [] by prove_conjecture_1 % SZS status Timeout for RNG030-6.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG030-7.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30952 TreeLimitedRun: ---------------------------------------------------------- 30954: Facts: 30954: Id : 2, {_}: multiply (additive_inverse ?2) (additive_inverse ?3) =>= multiply ?2 ?3 [3, 2] by product_of_inverses ?2 ?3 30954: Id : 3, {_}: multiply (additive_inverse ?5) ?6 =>= additive_inverse (multiply ?5 ?6) [6, 5] by inverse_product1 ?5 ?6 30954: Id : 4, {_}: multiply ?8 (additive_inverse ?9) =>= additive_inverse (multiply ?8 ?9) [9, 8] by inverse_product2 ?8 ?9 30954: Id : 5, {_}: multiply ?11 (add ?12 (additive_inverse ?13)) =<= add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13)) [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13 30954: Id : 6, {_}: multiply (add ?15 (additive_inverse ?16)) ?17 =<= add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17)) [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17 30954: Id : 7, {_}: multiply (additive_inverse ?19) (add ?20 ?21) =<= add (additive_inverse (multiply ?19 ?20)) (additive_inverse (multiply ?19 ?21)) [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21 30954: Id : 8, {_}: multiply (add ?23 ?24) (additive_inverse ?25) =<= add (additive_inverse (multiply ?23 ?25)) (additive_inverse (multiply ?24 ?25)) [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25 30954: Id : 9, {_}: add ?27 ?28 =<->= add ?28 ?27 [28, 27] by commutativity_for_addition ?27 ?28 30954: Id : 10, {_}: add ?30 (add ?31 ?32) =?= add (add ?30 ?31) ?32 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32 30954: Id : 11, {_}: add additive_identity ?34 =>= ?34 [34] by left_additive_identity ?34 30954: Id : 12, {_}: add ?36 additive_identity =>= ?36 [36] by right_additive_identity ?36 30954: Id : 13, {_}: multiply additive_identity ?38 =>= additive_identity [38] by left_multiplicative_zero ?38 30954: Id : 14, {_}: multiply ?40 additive_identity =>= additive_identity [40] by right_multiplicative_zero ?40 30954: Id : 15, {_}: add (additive_inverse ?42) ?42 =>= additive_identity [42] by left_additive_inverse ?42 30954: Id : 16, {_}: add ?44 (additive_inverse ?44) =>= additive_identity [44] by right_additive_inverse ?44 30954: Id : 17, {_}: multiply ?46 (add ?47 ?48) =<= add (multiply ?46 ?47) (multiply ?46 ?48) [48, 47, 46] by distribute1 ?46 ?47 ?48 30954: Id : 18, {_}: multiply (add ?50 ?51) ?52 =<= add (multiply ?50 ?52) (multiply ?51 ?52) [52, 51, 50] by distribute2 ?50 ?51 ?52 30954: Id : 19, {_}: additive_inverse (additive_inverse ?54) =>= ?54 [54] by additive_inverse_additive_inverse ?54 30954: Id : 20, {_}: multiply (multiply ?56 ?57) ?57 =?= multiply ?56 (multiply ?57 ?57) [57, 56] by right_alternative ?56 ?57 30954: Id : 21, {_}: associator ?59 ?60 ?61 =<= add (multiply (multiply ?59 ?60) ?61) (additive_inverse (multiply ?59 (multiply ?60 ?61))) [61, 60, 59] by associator ?59 ?60 ?61 30954: Id : 22, {_}: commutator ?63 ?64 =<= add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64)) [64, 63] by commutator ?63 ?64 30954: Goal: 30954: Id : 1, {_}: add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) =>= additive_identity [] by prove_conjecture_1 % SZS status Timeout for RNG030-7.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG031-6.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 30985 TreeLimitedRun: ---------------------------------------------------------- 30987: Facts: 30987: Id : 2, {_}: add ?2 ?3 =<->= add ?3 ?2 [3, 2] by commutativity_for_addition ?2 ?3 30987: Id : 3, {_}: add ?5 (add ?6 ?7) =?= add (add ?5 ?6) ?7 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7 30987: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9 30987: Id : 5, {_}: add ?11 additive_identity =>= ?11 [11] by right_additive_identity ?11 30987: Id : 6, {_}: multiply additive_identity ?13 =>= additive_identity [13] by left_multiplicative_zero ?13 30987: Id : 7, {_}: multiply ?15 additive_identity =>= additive_identity [15] by right_multiplicative_zero ?15 30987: Id : 8, {_}: add (additive_inverse ?17) ?17 =>= additive_identity [17] by left_additive_inverse ?17 30987: Id : 9, {_}: add ?19 (additive_inverse ?19) =>= additive_identity [19] by right_additive_inverse ?19 30987: Id : 10, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 30987: Id : 11, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 30987: Id : 12, {_}: additive_inverse (additive_inverse ?29) =>= ?29 [29] by additive_inverse_additive_inverse ?29 30987: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 30987: Id : 14, {_}: associator ?34 ?35 ?36 =<= add (multiply (multiply ?34 ?35) ?36) (additive_inverse (multiply ?34 (multiply ?35 ?36))) [36, 35, 34] by associator ?34 ?35 ?36 30987: Id : 15, {_}: commutator ?38 ?39 =<= add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39)) [39, 38] by commutator ?38 ?39 30987: Goal: 30987: Id : 1, {_}: multiply (multiply (multiply (associator x x y) (associator x x y)) x) (multiply (associator x x y) (associator x x y)) =>= additive_identity [] by prove_conjecture_2 % SZS status Timeout for RNG031-6.p FINAL WATCH: 199.7 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG031-7.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31016 TreeLimitedRun: ---------------------------------------------------------- 31018: Facts: 31018: Id : 2, {_}: multiply (additive_inverse ?2) (additive_inverse ?3) =>= multiply ?2 ?3 [3, 2] by product_of_inverses ?2 ?3 31018: Id : 3, {_}: multiply (additive_inverse ?5) ?6 =>= additive_inverse (multiply ?5 ?6) [6, 5] by inverse_product1 ?5 ?6 31018: Id : 4, {_}: multiply ?8 (additive_inverse ?9) =>= additive_inverse (multiply ?8 ?9) [9, 8] by inverse_product2 ?8 ?9 31018: Id : 5, {_}: multiply ?11 (add ?12 (additive_inverse ?13)) =<= add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13)) [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13 31018: Id : 6, {_}: multiply (add ?15 (additive_inverse ?16)) ?17 =<= add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17)) [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17 31018: Id : 7, {_}: multiply (additive_inverse ?19) (add ?20 ?21) =<= add (additive_inverse (multiply ?19 ?20)) (additive_inverse (multiply ?19 ?21)) [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21 31018: Id : 8, {_}: multiply (add ?23 ?24) (additive_inverse ?25) =<= add (additive_inverse (multiply ?23 ?25)) (additive_inverse (multiply ?24 ?25)) [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25 31018: Id : 9, {_}: add ?27 ?28 =<->= add ?28 ?27 [28, 27] by commutativity_for_addition ?27 ?28 31018: Id : 10, {_}: add ?30 (add ?31 ?32) =?= add (add ?30 ?31) ?32 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32 31018: Id : 11, {_}: add additive_identity ?34 =>= ?34 [34] by left_additive_identity ?34 31018: Id : 12, {_}: add ?36 additive_identity =>= ?36 [36] by right_additive_identity ?36 31018: Id : 13, {_}: multiply additive_identity ?38 =>= additive_identity [38] by left_multiplicative_zero ?38 31018: Id : 14, {_}: multiply ?40 additive_identity =>= additive_identity [40] by right_multiplicative_zero ?40 31018: Id : 15, {_}: add (additive_inverse ?42) ?42 =>= additive_identity [42] by left_additive_inverse ?42 31018: Id : 16, {_}: add ?44 (additive_inverse ?44) =>= additive_identity [44] by right_additive_inverse ?44 31018: Id : 17, {_}: multiply ?46 (add ?47 ?48) =<= add (multiply ?46 ?47) (multiply ?46 ?48) [48, 47, 46] by distribute1 ?46 ?47 ?48 31018: Id : 18, {_}: multiply (add ?50 ?51) ?52 =<= add (multiply ?50 ?52) (multiply ?51 ?52) [52, 51, 50] by distribute2 ?50 ?51 ?52 31018: Id : 19, {_}: additive_inverse (additive_inverse ?54) =>= ?54 [54] by additive_inverse_additive_inverse ?54 31018: Id : 20, {_}: multiply (multiply ?56 ?57) ?57 =?= multiply ?56 (multiply ?57 ?57) [57, 56] by right_alternative ?56 ?57 31018: Id : 21, {_}: associator ?59 ?60 ?61 =<= add (multiply (multiply ?59 ?60) ?61) (additive_inverse (multiply ?59 (multiply ?60 ?61))) [61, 60, 59] by associator ?59 ?60 ?61 31018: Id : 22, {_}: commutator ?63 ?64 =<= add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64)) [64, 63] by commutator ?63 ?64 31018: Goal: 31018: Id : 1, {_}: multiply (multiply (multiply (associator x x y) (associator x x y)) x) (multiply (associator x x y) (associator x x y)) =>= additive_identity [] by prove_conjecture_2 % SZS status Timeout for RNG031-7.p FINAL WATCH: 199.1 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG032-6.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31148 TreeLimitedRun: ---------------------------------------------------------- 31150: Facts: 31150: Id : 2, {_}: add ?2 ?3 =<->= add ?3 ?2 [3, 2] by commutativity_for_addition ?2 ?3 31150: Id : 3, {_}: add ?5 (add ?6 ?7) =?= add (add ?5 ?6) ?7 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7 31150: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9 31150: Id : 5, {_}: add ?11 additive_identity =>= ?11 [11] by right_additive_identity ?11 31150: Id : 6, {_}: multiply additive_identity ?13 =>= additive_identity [13] by left_multiplicative_zero ?13 31150: Id : 7, {_}: multiply ?15 additive_identity =>= additive_identity [15] by right_multiplicative_zero ?15 31150: Id : 8, {_}: add (additive_inverse ?17) ?17 =>= additive_identity [17] by left_additive_inverse ?17 31150: Id : 9, {_}: add ?19 (additive_inverse ?19) =>= additive_identity [19] by right_additive_inverse ?19 31150: Id : 10, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 31150: Id : 11, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 31150: Id : 12, {_}: additive_inverse (additive_inverse ?29) =>= ?29 [29] by additive_inverse_additive_inverse ?29 31150: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 31150: Id : 14, {_}: associator ?34 ?35 ?36 =<= add (multiply (multiply ?34 ?35) ?36) (additive_inverse (multiply ?34 (multiply ?35 ?36))) [36, 35, 34] by associator ?34 ?35 ?36 31150: Id : 15, {_}: commutator ?38 ?39 =<= add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39)) [39, 38] by commutator ?38 ?39 31150: Goal: 31150: Id : 1, {_}: add (add (add (add (add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) =>= additive_identity [] by prove_conjecture_3 % SZS status Timeout for RNG032-6.p FINAL WATCH: 199.6 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG032-7.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31187 TreeLimitedRun: ---------------------------------------------------------- 31189: Facts: 31189: Id : 2, {_}: multiply (additive_inverse ?2) (additive_inverse ?3) =>= multiply ?2 ?3 [3, 2] by product_of_inverses ?2 ?3 31189: Id : 3, {_}: multiply (additive_inverse ?5) ?6 =>= additive_inverse (multiply ?5 ?6) [6, 5] by inverse_product1 ?5 ?6 31189: Id : 4, {_}: multiply ?8 (additive_inverse ?9) =>= additive_inverse (multiply ?8 ?9) [9, 8] by inverse_product2 ?8 ?9 31189: Id : 5, {_}: multiply ?11 (add ?12 (additive_inverse ?13)) =<= add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13)) [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13 31189: Id : 6, {_}: multiply (add ?15 (additive_inverse ?16)) ?17 =<= add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17)) [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17 31189: Id : 7, {_}: multiply (additive_inverse ?19) (add ?20 ?21) =<= add (additive_inverse (multiply ?19 ?20)) (additive_inverse (multiply ?19 ?21)) [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21 31189: Id : 8, {_}: multiply (add ?23 ?24) (additive_inverse ?25) =<= add (additive_inverse (multiply ?23 ?25)) (additive_inverse (multiply ?24 ?25)) [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25 31189: Id : 9, {_}: add ?27 ?28 =<->= add ?28 ?27 [28, 27] by commutativity_for_addition ?27 ?28 31189: Id : 10, {_}: add ?30 (add ?31 ?32) =?= add (add ?30 ?31) ?32 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32 31189: Id : 11, {_}: add additive_identity ?34 =>= ?34 [34] by left_additive_identity ?34 31189: Id : 12, {_}: add ?36 additive_identity =>= ?36 [36] by right_additive_identity ?36 31189: Id : 13, {_}: multiply additive_identity ?38 =>= additive_identity [38] by left_multiplicative_zero ?38 31189: Id : 14, {_}: multiply ?40 additive_identity =>= additive_identity [40] by right_multiplicative_zero ?40 31189: Id : 15, {_}: add (additive_inverse ?42) ?42 =>= additive_identity [42] by left_additive_inverse ?42 31189: Id : 16, {_}: add ?44 (additive_inverse ?44) =>= additive_identity [44] by right_additive_inverse ?44 31189: Id : 17, {_}: multiply ?46 (add ?47 ?48) =<= add (multiply ?46 ?47) (multiply ?46 ?48) [48, 47, 46] by distribute1 ?46 ?47 ?48 31189: Id : 18, {_}: multiply (add ?50 ?51) ?52 =<= add (multiply ?50 ?52) (multiply ?51 ?52) [52, 51, 50] by distribute2 ?50 ?51 ?52 31189: Id : 19, {_}: additive_inverse (additive_inverse ?54) =>= ?54 [54] by additive_inverse_additive_inverse ?54 31189: Id : 20, {_}: multiply (multiply ?56 ?57) ?57 =?= multiply ?56 (multiply ?57 ?57) [57, 56] by right_alternative ?56 ?57 31189: Id : 21, {_}: associator ?59 ?60 ?61 =<= add (multiply (multiply ?59 ?60) ?61) (additive_inverse (multiply ?59 (multiply ?60 ?61))) [61, 60, 59] by associator ?59 ?60 ?61 31189: Id : 22, {_}: commutator ?63 ?64 =<= add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64)) [64, 63] by commutator ?63 ?64 31189: Goal: 31189: Id : 1, {_}: add (add (add (add (add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) =>= additive_identity [] by prove_conjecture_3 % SZS status Timeout for RNG032-7.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG033-6.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31218 TreeLimitedRun: ---------------------------------------------------------- 31220: Facts: 31220: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 31220: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 31220: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 31220: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 31220: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 31220: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 31220: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 31220: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 31220: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 31220: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 31220: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 31220: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 31220: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 31220: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 31220: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 31220: Goal: 31220: Id : 1, {_}: add (associator (multiply x y) z w) (associator x y (commutator z w)) =>= add (multiply x (associator y z w)) (multiply (associator x z w) y) [] by prove_challenge % SZS status Timeout for RNG033-6.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG033-7.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31242 TreeLimitedRun: ---------------------------------------------------------- 31244: Facts: 31244: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 31244: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 31244: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 31244: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 31244: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 31244: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 31244: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 31244: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 31244: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 31244: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 31244: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 31244: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 31244: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 31244: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 31244: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 31244: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 31244: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 31244: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 31244: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 31244: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 31244: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 31244: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 31244: Goal: 31244: Id : 1, {_}: add (associator (multiply x y) z w) (associator x y (commutator z w)) =>= add (multiply x (associator y z w)) (multiply (associator x z w) y) [] by prove_challenge % SZS status Timeout for RNG033-7.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG033-8.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31273 TreeLimitedRun: ---------------------------------------------------------- 31275: Facts: 31275: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 31275: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 31275: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 31275: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 31275: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 31275: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 31275: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 31275: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 31275: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 31275: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 31275: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 31275: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 31275: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 31275: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 31275: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 31275: Id : 17, {_}: multiply ?44 (multiply ?45 (multiply ?46 ?45)) =?= multiply (multiply (multiply ?44 ?45) ?46) ?45 [46, 45, 44] by right_moufang ?44 ?45 ?46 31275: Goal: 31275: Id : 1, {_}: add (associator (multiply x y) z w) (associator x y (commutator z w)) =>= add (multiply x (associator y z w)) (multiply (associator x z w) y) [] by prove_challenge % SZS status Timeout for RNG033-8.p FINAL WATCH: 199.7 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG033-9.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31315 TreeLimitedRun: ---------------------------------------------------------- 31317: Facts: 31317: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 31317: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 31317: Id : 4, {_}: multiply additive_identity ?6 =>= additive_identity [6] by left_multiplicative_zero ?6 31317: Id : 5, {_}: multiply ?8 additive_identity =>= additive_identity [8] by right_multiplicative_zero ?8 31317: Id : 6, {_}: add (additive_inverse ?10) ?10 =>= additive_identity [10] by left_additive_inverse ?10 31317: Id : 7, {_}: add ?12 (additive_inverse ?12) =>= additive_identity [12] by right_additive_inverse ?12 31317: Id : 8, {_}: additive_inverse (additive_inverse ?14) =>= ?14 [14] by additive_inverse_additive_inverse ?14 31317: Id : 9, {_}: multiply ?16 (add ?17 ?18) =<= add (multiply ?16 ?17) (multiply ?16 ?18) [18, 17, 16] by distribute1 ?16 ?17 ?18 31317: Id : 10, {_}: multiply (add ?20 ?21) ?22 =<= add (multiply ?20 ?22) (multiply ?21 ?22) [22, 21, 20] by distribute2 ?20 ?21 ?22 31317: Id : 11, {_}: add ?24 ?25 =<->= add ?25 ?24 [25, 24] by commutativity_for_addition ?24 ?25 31317: Id : 12, {_}: add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 31317: Id : 13, {_}: multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) [32, 31] by right_alternative ?31 ?32 31317: Id : 14, {_}: multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) [35, 34] by left_alternative ?34 ?35 31317: Id : 15, {_}: associator ?37 ?38 ?39 =<= add (multiply (multiply ?37 ?38) ?39) (additive_inverse (multiply ?37 (multiply ?38 ?39))) [39, 38, 37] by associator ?37 ?38 ?39 31317: Id : 16, {_}: commutator ?41 ?42 =<= add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) [42, 41] by commutator ?41 ?42 31317: Id : 17, {_}: multiply (additive_inverse ?44) (additive_inverse ?45) =>= multiply ?44 ?45 [45, 44] by product_of_inverses ?44 ?45 31317: Id : 18, {_}: multiply (additive_inverse ?47) ?48 =>= additive_inverse (multiply ?47 ?48) [48, 47] by inverse_product1 ?47 ?48 31317: Id : 19, {_}: multiply ?50 (additive_inverse ?51) =>= additive_inverse (multiply ?50 ?51) [51, 50] by inverse_product2 ?50 ?51 31317: Id : 20, {_}: multiply ?53 (add ?54 (additive_inverse ?55)) =<= add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 31317: Id : 21, {_}: multiply (add ?57 (additive_inverse ?58)) ?59 =<= add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 31317: Id : 22, {_}: multiply (additive_inverse ?61) (add ?62 ?63) =<= add (additive_inverse (multiply ?61 ?62)) (additive_inverse (multiply ?61 ?63)) [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 31317: Id : 23, {_}: multiply (add ?65 ?66) (additive_inverse ?67) =<= add (additive_inverse (multiply ?65 ?67)) (additive_inverse (multiply ?66 ?67)) [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 31317: Id : 24, {_}: multiply ?69 (multiply ?70 (multiply ?71 ?70)) =?= multiply (multiply (multiply ?69 ?70) ?71) ?70 [71, 70, 69] by right_moufang ?69 ?70 ?71 31317: Goal: 31317: Id : 1, {_}: add (associator (multiply x y) z w) (associator x y (commutator z w)) =>= add (multiply x (associator y z w)) (multiply (associator x z w) y) [] by prove_challenge % SZS status Timeout for RNG033-9.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG035-7.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31337 TreeLimitedRun: ---------------------------------------------------------- 31339: Facts: 31339: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 31339: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 31339: Id : 4, {_}: add (additive_inverse ?6) ?6 =>= additive_identity [6] by left_additive_inverse ?6 31339: Id : 5, {_}: add ?8 (additive_inverse ?8) =>= additive_identity [8] by right_additive_inverse ?8 31339: Id : 6, {_}: add ?10 (add ?11 ?12) =?= add (add ?10 ?11) ?12 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12 31339: Id : 7, {_}: add ?14 ?15 =<->= add ?15 ?14 [15, 14] by commutativity_for_addition ?14 ?15 31339: Id : 8, {_}: multiply ?17 (multiply ?18 ?19) =?= multiply (multiply ?17 ?18) ?19 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19 31339: Id : 9, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 31339: Id : 10, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 31339: Id : 11, {_}: multiply ?29 (multiply ?29 (multiply ?29 ?29)) =>= ?29 [29] by x_fourthed_is_x ?29 31339: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c 31339: Goal: 31339: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity % SZS status Timeout for RNG035-7.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ RNG036-7.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31369 TreeLimitedRun: ---------------------------------------------------------- 31371: Facts: 31371: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 31371: Id : 3, {_}: add ?4 additive_identity =>= ?4 [4] by right_additive_identity ?4 31371: Id : 4, {_}: add (additive_inverse ?6) ?6 =>= additive_identity [6] by left_additive_inverse ?6 31371: Id : 5, {_}: add ?8 (additive_inverse ?8) =>= additive_identity [8] by right_additive_inverse ?8 31371: Id : 6, {_}: add ?10 (add ?11 ?12) =?= add (add ?10 ?11) ?12 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12 31371: Id : 7, {_}: add ?14 ?15 =<->= add ?15 ?14 [15, 14] by commutativity_for_addition ?14 ?15 31371: Id : 8, {_}: multiply ?17 (multiply ?18 ?19) =?= multiply (multiply ?17 ?18) ?19 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19 31371: Id : 9, {_}: multiply ?21 (add ?22 ?23) =<= add (multiply ?21 ?22) (multiply ?21 ?23) [23, 22, 21] by distribute1 ?21 ?22 ?23 31371: Id : 10, {_}: multiply (add ?25 ?26) ?27 =<= add (multiply ?25 ?27) (multiply ?26 ?27) [27, 26, 25] by distribute2 ?25 ?26 ?27 31371: Id : 11, {_}: multiply ?29 (multiply ?29 (multiply ?29 (multiply ?29 ?29))) =>= ?29 [29] by x_fifthed_is_x ?29 31371: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c 31371: Goal: 31371: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity % SZS status Timeout for RNG036-7.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ ROB001-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31400 TreeLimitedRun: ---------------------------------------------------------- 31402: Facts: 31402: Id : 2, {_}: add ?2 ?3 =<->= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 31402: Id : 3, {_}: add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 31402: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 31402: Goal: 31402: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom % SZS status Timeout for ROB001-1.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ ROB005-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31421 TreeLimitedRun: ---------------------------------------------------------- 31423: Facts: 31423: Id : 2, {_}: add ?2 ?3 =<->= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 31423: Id : 3, {_}: add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 31423: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 31423: Id : 5, {_}: add c c =>= c [] by idempotence 31423: Goal: 31423: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom % SZS status Timeout for ROB005-1.p FINAL WATCH: 199.5 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ ROB006-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31513 TreeLimitedRun: ---------------------------------------------------------- 31515: Facts: 31515: Id : 2, {_}: add ?2 ?3 =<->= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 31515: Id : 3, {_}: add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 31515: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 31515: Id : 5, {_}: add c d =>= d [] by absorbtion 31515: Goal: 31515: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom % SZS status Timeout for ROB006-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ ROB006-2.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31544 TreeLimitedRun: ---------------------------------------------------------- 31546: Facts: 31546: Id : 2, {_}: add ?3 ?4 =<->= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4 31546: Id : 3, {_}: add (add ?6 ?7) ?8 =?= add ?6 (add ?7 ?8) [8, 7, 6] by associativity_of_add ?6 ?7 ?8 31546: Id : 4, {_}: negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11)))) =>= ?10 [11, 10] by robbins_axiom ?10 ?11 31546: Id : 5, {_}: add c d =>= d [] by absorbtion 31546: Goal: 31546: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1 % SZS status Timeout for ROB006-2.p FINAL WATCH: 199.9 CPU 100.2 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ ROB007-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31588 TreeLimitedRun: ---------------------------------------------------------- 31590: Facts: 31590: Id : 2, {_}: add ?2 ?3 =<->= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 31590: Id : 3, {_}: add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 31590: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 31590: Id : 5, {_}: negate (add a b) =>= negate b [] by condition 31590: Goal: 31590: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom % SZS status Timeout for ROB007-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ ROB007-2.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31619 TreeLimitedRun: ---------------------------------------------------------- 31621: Facts: 31621: Id : 2, {_}: add ?3 ?4 =<->= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4 31621: Id : 3, {_}: add (add ?6 ?7) ?8 =?= add ?6 (add ?7 ?8) [8, 7, 6] by associativity_of_add ?6 ?7 ?8 31621: Id : 4, {_}: negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11)))) =>= ?10 [11, 10] by robbins_axiom ?10 ?11 31621: Id : 5, {_}: negate (add a b) =>= negate b [] by condition 31621: Goal: 31621: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1 % SZS status Timeout for ROB007-2.p FINAL WATCH: 200.0 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ ROB020-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31650 TreeLimitedRun: ---------------------------------------------------------- 31652: Facts: 31652: Id : 2, {_}: add ?2 ?3 =<->= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 31652: Id : 3, {_}: add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 31652: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 31652: Id : 5, {_}: negate (add a (negate b)) =>= b [] by condition1 31652: Goal: 31652: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom % SZS status Timeout for ROB020-1.p FINAL WATCH: 199.8 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ ROB020-2.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31670 TreeLimitedRun: ---------------------------------------------------------- 31672: Facts: 31672: Id : 2, {_}: add ?3 ?4 =<->= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4 31672: Id : 3, {_}: add (add ?6 ?7) ?8 =?= add ?6 (add ?7 ?8) [8, 7, 6] by associativity_of_add ?6 ?7 ?8 31672: Id : 4, {_}: negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11)))) =>= ?10 [11, 10] by robbins_axiom ?10 ?11 31672: Id : 5, {_}: negate (add a (negate b)) =>= b [] by condition1 31672: Goal: 31672: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1 % SZS status Timeout for ROB020-2.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ ROB024-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31711 TreeLimitedRun: ---------------------------------------------------------- 31713: Facts: 31713: Id : 2, {_}: add ?2 ?3 =<->= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 31713: Id : 3, {_}: add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 31713: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 31713: Id : 5, {_}: negate (add (negate (add a (add a b))) (negate (add a (negate b)))) =>= a [] by the_condition 31713: Goal: 31713: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom % SZS status Timeout for ROB024-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ ROB026-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31749 TreeLimitedRun: ---------------------------------------------------------- 31751: Facts: 31751: Id : 2, {_}: add ?2 ?3 =<->= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 31751: Id : 3, {_}: add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 31751: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 31751: Id : 5, {_}: add c d =>= c [] by identity_constant 31751: Goal: 31751: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom % SZS status Timeout for ROB026-1.p FINAL WATCH: 199.9 CPU 100.2 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ ROB027-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31773 TreeLimitedRun: ---------------------------------------------------------- 31775: Facts: 31775: Id : 2, {_}: add ?2 ?3 =<->= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 31775: Id : 3, {_}: add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) [7, 6, 5] by associativity_of_add ?5 ?6 ?7 31775: Id : 4, {_}: negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) =>= ?9 [10, 9] by robbins_axiom ?9 ?10 31775: Id : 5, {_}: negate (negate c) =>= c [] by double_negation 31775: Goal: 31775: Id : 1, {_}: add (negate (add a (negate b))) (negate (add (negate a) (negate b))) =>= b [] by prove_huntingtons_axiom % SZS status Timeout for ROB027-1.p FINAL WATCH: 199.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ ROB031-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 31804 TreeLimitedRun: ---------------------------------------------------------- 31806: Facts: 31806: Id : 2, {_}: add ?4 ?5 =<->= add ?5 ?4 [5, 4] by commutativity_of_add ?4 ?5 31806: Id : 3, {_}: add (add ?7 ?8) ?9 =?= add ?7 (add ?8 ?9) [9, 8, 7] by associativity_of_add ?7 ?8 ?9 31806: Id : 4, {_}: negate (add (negate (add ?11 ?12)) (negate (add ?11 (negate ?12)))) =>= ?11 [12, 11] by robbins_axiom ?11 ?12 31806: Goal: 31806: Id : 1, {_}: negate (add ?1 ?2) =>= negate ?2 [2, 1] by prove_absorption_within_negation ?1 ?2 % SZS status Timeout for ROB031-1.p FINAL WATCH: 197.9 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ ROB032-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 32080 TreeLimitedRun: ---------------------------------------------------------- 32082: Facts: 32082: Id : 2, {_}: add ?4 ?5 =<->= add ?5 ?4 [5, 4] by commutativity_of_add ?4 ?5 32082: Id : 3, {_}: add (add ?7 ?8) ?9 =?= add ?7 (add ?8 ?9) [9, 8, 7] by associativity_of_add ?7 ?8 ?9 32082: Id : 4, {_}: negate (add (negate (add ?11 ?12)) (negate (add ?11 (negate ?12)))) =>= ?11 [12, 11] by robbins_axiom ?11 ?12 32082: Goal: 32082: Id : 1, {_}: add ?1 ?2 =>= ?2 [2, 1] by prove_absorbtion ?1 ?2 % SZS status Timeout for ROB032-1.p FINAL WATCH: 195.4 CPU 100.3 WC TreeLimitedRun: ---------------------------------------------------------- TreeLimitedRun: ./matitaprover.native --tptppath /local1/tptp/TPTP-v3.7.0/ SYN305-1.p TreeLimitedRun: CPU time limit is 180s TreeLimitedRun: WC time limit is 360s TreeLimitedRun: PID is 354 TreeLimitedRun: ---------------------------------------------------------- 356: Facts: 356: Id : 2, {_}: f (g1 ?3) =>= ?3 [3] by clause1 ?3 356: Id : 3, {_}: f (g2 ?5) =>= ?5 [5] by clause2 ?5 356: Goal: 356: Id : 1, {_}: g1 ?1 =<= g2 ?1 [1] by clause3 ?1 % SZS status Timeout for SYN305-1.p FINAL WATCH: 0.0 CPU 0.1 WC