(* ||M|| This file is part of HELM, an Hypertextual, Electronic ||A|| Library of Mathematics, developed at the Computer Science ||T|| Department, University of Bologna, Italy. ||I|| ||T|| HELM is free software; you can redistribute it and/or ||A|| modify it under the terms of the GNU General Public License \ / version 2 or (at your option) any later version. \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) (* $Id$ *) module C = NCic module Ref = NReference module E = NCicEnvironment exception AssertFailure of string Lazy.t;; let debug = ref false;; (*let pp m = if !debug then prerr_endline (Lazy.force m) else ();;*) module type Strategy = sig type stack_term type env_term type config = int * env_term list * C.term * stack_term list val to_env : reduce: (delta:int -> config -> config * bool) -> unwind: (config -> C.term) -> config -> env_term val from_stack : delta:int -> stack_term -> config val from_stack_list_for_unwind : unwind: (config -> C.term) -> stack_term list -> C.term list val from_env : delta:int -> env_term -> config val from_env_for_unwind : unwind: (config -> C.term) -> env_term -> C.term val stack_to_env : reduce: (delta:int -> config -> config * bool) -> unwind: (config -> C.term) -> stack_term -> env_term val compute_to_env : reduce: (delta:int -> config -> config * bool) -> unwind: (config -> C.term) -> int -> env_term list -> C.term -> env_term val compute_to_stack : reduce: (delta:int -> config -> config * bool) -> unwind: (config -> C.term) -> config -> stack_term end ;; module CallByValueByNameForUnwind' : Strategy = struct type config = int * env_term list * C.term * stack_term list and stack_term = config Lazy.t * (int -> config) * C.term Lazy.t and env_term = config Lazy.t (* cbneed ~delta:0 *) * (int -> config) (* cbvalue ~delta *) * C.term Lazy.t (* cbname ~delta:max_int *) let to_env ~reduce ~unwind c = lazy (fst (reduce ~delta:0 c)), (fun delta -> fst (reduce ~delta c)), lazy (unwind c) let from_stack ~delta (c0,c,_) = if delta = 0 then Lazy.force c0 else c delta let from_stack_list_for_unwind ~unwind:_ l = List.map (fun (_,_,c) -> Lazy.force c) l let from_env ~delta (c0,c,_) = if delta = 0 then Lazy.force c0 else c delta let from_env_for_unwind ~unwind:_ (_,_,c) = Lazy.force c let stack_to_env ~reduce:_ ~unwind:_ config = config let compute_to_env ~reduce ~unwind k e t = lazy (fst (reduce ~delta:0 (k,e,t,[]))), (fun delta -> fst (reduce ~delta (k,e,t,[]))), lazy (unwind (k,e,t,[])) let compute_to_stack ~reduce ~unwind config = lazy (fst (reduce ~delta:0 config)), (fun delta -> fst (reduce ~delta config)), lazy (unwind config) end ;; module Reduction(RS : Strategy) = struct type env = RS.env_term list type stack = RS.stack_term list type config = int * env * C.term * stack let rec unwind status (k,e,t,s) = let t = if k = 0 then t else NCicSubstitution.psubst status ~avoid_beta_redexes:true (RS.from_env_for_unwind ~unwind:(unwind status)) e t in if s = [] then t else C.Appl(t::(RS.from_stack_list_for_unwind ~unwind:(unwind status) s)) ;; let list_nth l n = try List.nth l n with Failure _ -> assert false;; let rec replace i s t = match i,s with | 0,_::tl -> t::tl | n,he::tl -> he::(replace (n - 1) tl t) | _,_ -> assert false ;; let rec reduce status ~delta ?(subst = []) context : config -> config * bool = let rec aux = function | k, e, C.Rel n, s when n <= k -> let k',e',t',s' = RS.from_env ~delta (list_nth e (n-1)) in aux (k',e',t',s'@s) | k, _, C.Rel n, s as config (* when n > k *) -> let x= try Some (List.nth context (n - 1 - k)) with Failure _ -> None in (match x with | Some(_,C.Def(x,_)) -> aux (0,[],NCicSubstitution.lift status (n - k) x,s) | _ -> config, true) | (k, e, C.Meta (n,l), s) as config -> (try let _,_, term,_ = NCicUtils.lookup_subst n subst in aux (k, e, NCicSubstitution.subst_meta status l term,s) with NCicUtils.Subst_not_found _ -> config, true) | (_, _, C.Implicit _, _) -> assert false | (_, _, C.Sort _, _) | (_, _, C.Prod _, _) | (_, _, C.Lambda _, []) as config -> config, true | (k, e, C.Lambda (_,_,t), p::s) -> aux (k+1, (RS.stack_to_env ~reduce:(reduce status ~subst context) ~unwind:(unwind status) p)::e, t,s) | (k, e, C.LetIn (_,_,m,t), s) -> let m' = RS.compute_to_env ~reduce:(reduce status ~subst context) ~unwind:(unwind status) k e m in aux (k+1, m'::e, t, s) | (_, _, C.Appl ([]|[_]), _) -> assert false | (k, e, C.Appl (he::tl), s) -> let tl' = List.map (fun t->RS.compute_to_stack ~reduce:(reduce status ~subst context) ~unwind:(unwind status) (k,e,t,[])) tl in aux (k, e, he, tl' @ s) | (_, _, C.Const (Ref.Ref (_,Ref.Def height) as refer), s) as config -> if delta >= height then config, false else let _,_,body,_,_,_ = NCicEnvironment.get_checked_def status refer in aux (0, [], body, s) | (_, _, C.Const (Ref.Ref (_, (Ref.Decl|Ref.Ind _|Ref.Con _|Ref.CoFix _))), _) as config -> config, true | (_, _, (C.Const (Ref.Ref (_,Ref.Fix (fixno,recindex,height)) as refer)),s) as config -> (let arg = try Some (List.nth s recindex) with Failure _ -> None in match arg with None -> config, true | Some arg -> let fixes,(_,_,pragma),_ = NCicEnvironment.get_checked_fixes_or_cofixes status refer in if delta >= height then match pragma with | `Projection -> (match RS.from_stack ~delta:max_int arg with | _,_,C.Const(Ref.Ref(_,Ref.Con _)),_::_ -> let _,_,_,_,body = List.nth fixes fixno in aux (0, [], body, s) | _ -> config,false) | _ -> config,false else match RS.from_stack ~delta:0 arg with | (_,_,C.Const (Ref.Ref (_,Ref.Con _)), _) as c -> let new_s = replace recindex s (RS.compute_to_stack ~reduce:(reduce status ~subst context) ~unwind:(unwind status) c) in let _,_,_,_,body = List.nth fixes fixno in aux (0, [], body, new_s) | _ -> config, true) | (k, e, C.Match (_,_,term,pl),s) as config -> let decofix = function | (_,_,C.Const(Ref.Ref(_,Ref.CoFix c)as refer),s)-> let cofixes,_,_ = NCicEnvironment.get_checked_fixes_or_cofixes status refer in let _,_,_,_,body = List.nth cofixes c in let c,_ = reduce status ~delta:0 ~subst context (0,[],body,s) in c | config -> config in let match_head = k,e,term,[] in let reduced,_ = reduce status ~delta:0 ~subst context match_head in (match decofix reduced with | (_, _, C.Const (Ref.Ref (_,Ref.Con (_,j,_))),[]) -> aux (k, e, List.nth pl (j-1), s) | (_, _, C.Const (Ref.Ref (_,Ref.Con (_,j,lno))), s')-> let _,params = HExtlib.split_nth lno s' in aux (k, e, List.nth pl (j-1), params@s) | _ -> config, true) in aux ;; let whd status ?(delta=0) ~subst context t = unwind status (fst (reduce status ~delta ~subst context (0, [], t, []))) ;; end ;; module RS = CallByValueByNameForUnwind';; module R = Reduction(RS);; let whd = R.whd let (===) x y = Pervasives.compare x y = 0 ;; let get_relevance = ref (fun _ ~metasenv:_ ~subst:_ _ _ -> assert false);; let set_get_relevance = (:=) get_relevance;; let alpha_eq (status:#NCic.status) ~test_lambda_source aux test_eq_only metasenv subst context t1 t2 = if t1 === t2 then true else match (t1,t2) with | C.Sort s1, C.Sort s2 -> NCicEnvironment.are_sorts_convertible ~test_eq_only s1 s2 | (C.Prod (name1,s1,t1), C.Prod(_,s2,t2)) -> aux true context s1 s2 && aux test_eq_only ((name1, C.Decl s1)::context) t1 t2 | (C.Lambda (name1,s1,t1), C.Lambda(_,_,t2)) -> if test_lambda_source then aux test_eq_only context t1 t2 else (* thanks to inversion of well typedness, the source * of these lambdas must be already convertible *) aux test_eq_only ((name1, C.Decl s1)::context) t1 t2 | (C.LetIn (name1,ty1,s1,t1), C.LetIn(_,ty2,s2,t2)) -> aux test_eq_only context ty1 ty2 && aux test_eq_only context s1 s2 && aux test_eq_only ((name1, C.Def (s1,ty1))::context) t1 t2 | (C.Meta (n1,(s1, C.Irl _)), C.Meta (n2,(s2, C.Irl _))) when n1 = n2 && s1 = s2 -> true | (C.Meta (n1,(s1, l1)), C.Meta (n2,(s2, l2))) when n1 = n2 && let l1 = NCicUtils.expand_local_context l1 in let l2 = NCicUtils.expand_local_context l2 in (try List.for_all2 (fun t1 t2 -> aux test_eq_only context (NCicSubstitution.lift status s1 t1) (NCicSubstitution.lift status s2 t2)) l1 l2 with Invalid_argument "List.for_all2" -> prerr_endline ("Meta " ^ string_of_int n1 ^ " occurrs with local contexts of different lenght\n"^ status#ppterm ~metasenv ~subst ~context t1 ^ " === " ^ status#ppterm ~metasenv ~subst ~context t2); assert false) -> true | C.Meta (n1,l1), _ -> (try let _,_,term,_ = NCicUtils.lookup_subst n1 subst in let term = NCicSubstitution.subst_meta status l1 term in aux test_eq_only context term t2 with NCicUtils.Subst_not_found _ -> false) | _, C.Meta (n2,l2) -> (try let _,_,term,_ = NCicUtils.lookup_subst n2 subst in let term = NCicSubstitution.subst_meta status l2 term in aux test_eq_only context t1 term with NCicUtils.Subst_not_found _ -> false) | (C.Appl ((C.Const r1) as hd1::tl1), C.Appl (C.Const r2::tl2)) when (Ref.eq r1 r2 && List.length (E.get_relevance status r1) >= List.length tl1) -> let relevance = E.get_relevance status r1 in (* if the types were convertible the following optimization is sound let relevance = match r1 with | Ref.Ref (_,Ref.Con (_,_,lno)) -> let _,relevance = HExtlib.split_nth lno relevance in HExtlib.mk_list false lno @ relevance | _ -> relevance in *) (try HExtlib.list_forall_default3_var (fun t1 t2 b -> not b || aux true context t1 t2 ) tl1 tl2 true relevance with Invalid_argument _ -> false | HExtlib.FailureAt fail -> let relevance = !get_relevance (status :> NCic.status) ~metasenv ~subst context hd1 tl1 in let _,relevance = HExtlib.split_nth fail relevance in let b,relevance = (match relevance with | [] -> assert false | b::tl -> b,tl) in if (not b) then let _,tl1 = HExtlib.split_nth (fail+1) tl1 in let _,tl2 = HExtlib.split_nth (fail+1) tl2 in try HExtlib.list_forall_default3 (fun t1 t2 b -> not b || aux true context t1 t2) tl1 tl2 true relevance with Invalid_argument _ -> false else false) | (C.Appl (hd1::tl1), C.Appl (hd2::tl2)) -> aux test_eq_only context hd1 hd2 && let relevance = !get_relevance (status :> NCic.status) ~metasenv ~subst context hd1 tl1 in (try HExtlib.list_forall_default3 (fun t1 t2 b -> not b || aux true context t1 t2) tl1 tl2 true relevance with Invalid_argument _ -> false) | (C.Match (Ref.Ref (_,Ref.Ind (_,tyno,_)) as ref1,outtype1,term1,pl1), C.Match (ref2,outtype2,term2,pl2)) -> let _,_,itl,_,_ = E.get_checked_indtys status ref1 in let _,_,ty,_ = List.nth itl tyno in let rec remove_prods ~subst context ty = let ty = whd status ~subst context ty in match ty with | C.Sort _ -> ty | C.Prod (name,so,ta) -> remove_prods ~subst ((name,(C.Decl so))::context) ta | _ -> assert false in let is_prop = match remove_prods ~subst [] ty with | C.Sort C.Prop -> true | _ -> false in Ref.eq ref1 ref2 && aux test_eq_only context outtype1 outtype2 && (is_prop || aux test_eq_only context term1 term2) && (try List.for_all2 (aux test_eq_only context) pl1 pl2 with Invalid_argument _ -> false) | (C.Implicit _, _) | (_, C.Implicit _) -> true (* CSC: was assert false, but it happens when looking for coercions during pretty printing of terms yet to be refined *) | (_,_) -> false ;; (* t1, t2 must be well-typed *) let are_convertible status ~metasenv ~subst = let rec aux test_eq_only context t1 t2 = let alpha_eq status test_eq_only = alpha_eq status ~test_lambda_source:false aux test_eq_only metasenv subst context in if alpha_eq status test_eq_only t1 t2 then true else let height_of = function | C.Const (Ref.Ref (_,Ref.Def h)) | C.Const (Ref.Ref (_,Ref.Fix (_,_,h))) | C.Appl(C.Const(Ref.Ref(_,Ref.Def h))::_) | C.Appl(C.Const(Ref.Ref(_,Ref.Fix (_,_,h)))::_) -> h | _ -> 0 in let put_in_whd m1 m2 = R.reduce status ~delta:max_int ~subst context m1, R.reduce status ~delta:max_int ~subst context m2 in let small_delta_step ((_,_,t1,_ as m1), norm1 as x1) ((_,_,t2,_ as m2), norm2 as x2) = assert(not (norm1 && norm2)); if norm1 then x1, R.reduce status ~delta:(height_of t2 -1) ~subst context m2 else if norm2 then R.reduce status ~delta:(height_of t1 -1) ~subst context m1, x2 else let h1 = height_of t1 in let h2 = height_of t2 in let delta = if h1 = h2 then max 0 (h1 -1) else min h1 h2 in R.reduce status ~delta ~subst context m1, R.reduce status ~delta ~subst context m2 in let rec convert_machines test_eq_only ((k1,e1,t1,s1),norm1 as m1),((k2,e2,t2,s2), norm2 as m2) = (alpha_eq status test_eq_only (R.unwind status (k1,e1,t1,[])) (R.unwind status (k2,e2,t2,[])) && let relevance = match t1 with C.Const r -> NCicEnvironment.get_relevance status r | _ -> [] in try HExtlib.list_forall_default3 (fun t1 t2 b -> not b || let t1 = RS.from_stack ~delta:max_int t1 in let t2 = RS.from_stack ~delta:max_int t2 in convert_machines true (put_in_whd t1 t2)) s1 s2 true relevance with Invalid_argument _ -> false) || (not (norm1 && norm2) && convert_machines test_eq_only (small_delta_step m1 m2)) in convert_machines test_eq_only (put_in_whd (0,[],t1,[]) (0,[],t2,[])) in aux false ;; let alpha_eq status metasenv subst = let rec aux test_lambda_source context t1 t2 = alpha_eq status ~test_lambda_source aux true metasenv subst context t1 t2 in aux true ;; let rec head_beta_reduce status ~delta ~upto ~subst t l = match upto, t, l with | 0, C.Appl l1, _ -> C.Appl (l1 @ l) | 0, t, [] -> t | 0, t, _ -> C.Appl (t::l) | _, C.Meta (n,ctx), _ -> (try let _,_, term,_ = NCicUtils.lookup_subst n subst in head_beta_reduce status ~delta ~upto ~subst (NCicSubstitution.subst_meta status ctx term) l with NCicUtils.Subst_not_found _ -> if l = [] then t else C.Appl (t::l)) | _, C.Appl (hd::tl), _ -> head_beta_reduce status ~delta ~upto ~subst hd (tl @ l) | _, C.Lambda(_,_,bo), arg::tl -> let bo = NCicSubstitution.subst status arg bo in head_beta_reduce status ~delta ~upto:(upto - 1) ~subst bo tl | _, C.Const (Ref.Ref (_, Ref.Def height) as re), _ when delta <= height -> let _, _, bo, _, _, _ = NCicEnvironment.get_checked_def status re in head_beta_reduce status ~upto ~delta ~subst bo l | _, t, [] -> t | _, t, _ -> C.Appl (t::l) ;; let head_beta_reduce status ?(delta=max_int) ?(upto= -1) ?(subst=[]) t = head_beta_reduce status ~delta ~upto ~subst t [] ;; type stack_item = RS.stack_term type environment_item = RS.env_term type machine = int * environment_item list * NCic.term * stack_item list let reduce_machine = R.reduce let from_stack = RS.from_stack let from_env = RS.from_env let unwind = R.unwind let _ = NCicUtils.set_head_beta_reduce (fun status ~upto t -> head_beta_reduce status ~upto t); ;; (* if n < 0, then splits all prods from an arity, returning a sort *) let rec split_prods status ~subst context n te = match (n, R.whd status ~subst context te) with | (0, _) -> context,te | (n, C.Sort _) when n <= 0 -> context,te | (n, C.Prod (name,so,ta)) -> split_prods status ~subst ((name,(C.Decl so))::context) (n - 1) ta | (_, _) -> raise (AssertFailure (lazy "split_prods")) ;; (* vim:set foldmethod=marker: *)