(* ||M|| This file is part of HELM, an Hypertextual, Electronic ||A|| Library of Mathematics, developed at the Computer Science ||T|| Department, University of Bologna, Italy. ||I|| ||T|| HELM is free software; you can redistribute it and/or ||A|| modify it under the terms of the GNU General Public License \ / version 2 or (at your option) any later version. \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) (* $Id$ *) module C = NCic module Ref = NReference module R = NCicReduction module S = NCicSubstitution module U = NCicUtils module E = NCicEnvironment exception TypeCheckerFailure of string Lazy.t exception AssertFailure of string Lazy.t (* let raise = function | TypeCheckerFailure s as e -> prerr_endline (Lazy.force s); raise e | e -> raise e ;; *) type recf_entry = | Evil of int (* rno *) | UnfFix of bool list (* fixed arguments *) | Safe ;; let is_dangerous i l = List.exists (function (j,Evil _) when j=i -> true | _ -> false) l ;; let is_unfolded i l = List.exists (function (j,UnfFix _) when j=i -> true | _ -> false) l ;; let is_safe i l = List.exists (function (j,Safe) when j=i -> true | _ -> false) l ;; let get_recno i l = try match List.assoc i l with Evil rno -> rno | _ -> assert false with Not_found -> assert false ;; let get_fixed_args i l = try match List.assoc i l with UnfFix fa -> fa | _ -> assert false with Not_found -> assert false ;; let shift_k e (c,rf,x) = e::c,List.map (fun (k,v) -> k+1,v) rf,x+1;; (* for debugging only let string_of_recfuns ~subst ~metasenv ~context l = let pp = status#ppterm ~subst ~metasenv ~context in let safe, rest = List.partition (function (_,Safe) -> true | _ -> false) l in let dang,unf = List.partition (function (_,UnfFix _)-> false | _->true)rest in "\n\tsafes: "^String.concat "," (List.map (fun (i,_)->pp (C.Rel i)) safe) ^ "\n\tfix : "^String.concat "," (List.map (function (i,UnfFix l)-> pp(C.Rel i)^"/"^String.concat "," (List.map string_of_bool l) | _ ->assert false) unf) ^ "\n\trec : "^String.concat "," (List.map (function (i,Evil rno)->pp(C.Rel i)^"/"^string_of_int rno | _ -> assert false) dang) ;; *) let fixed_args bos j n nn = let rec aux k acc = function | C.Appl (C.Rel i::args) when i-k > n && i-k <= nn -> let rec combine l1 l2 = match l1,l2 with [],[] -> [] | he1::tl1, he2::tl2 -> (he1,he2)::combine tl1 tl2 | _::tl, [] -> (false,C.Rel ~-1)::combine tl [] (* dummy term *) | [],_::_ -> assert false in let lefts, _ = HExtlib.split_nth (min j (List.length args)) args in List.map (fun ((b,x),i) -> b && x = C.Rel (k-i)) (HExtlib.list_mapi (fun x i -> x,i) (combine acc lefts)) | t -> U.fold (fun _ k -> k+1) k aux acc t in List.fold_left (aux 0) (let rec f = function 0 -> [] | n -> true :: f (n-1) in f j) bos ;; let debruijn status uri number_of_types ~subst context = (* manca la subst! *) let rec aux k t = match t with | C.Meta (i,(s,l)) -> (try let _,_,term,_ = U.lookup_subst i subst in let ts = S.subst_meta status (0,l) term in let ts' = aux (k-s) ts in if ts == ts' then t else ts' with U.Subst_not_found _ -> match l with C.Ctx l -> let l1 = HExtlib.sharing_map (aux (k-s)) l in if l1 == l then t else C.Meta (i,(s,C.Ctx l1)) | _ -> t) | C.Const (Ref.Ref (uri1,(Ref.Fix (no,_,_) | Ref.CoFix no))) | C.Const (Ref.Ref (uri1,Ref.Ind (_,no,_))) when NUri.eq uri uri1 -> C.Rel (k + number_of_types - no) | t -> U.map status (fun _ k -> k+1) k aux t in aux (List.length context) ;; let sort_of_prod (status:#NCic.status) ~metasenv ~subst context (name,s) t (t1, t2) = let t1 = R.whd status ~subst context t1 in let t2 = R.whd status ~subst ((name,C.Decl s)::context) t2 in match t1, t2 with | C.Sort _, C.Sort C.Prop -> t2 | C.Sort (C.Type u1), C.Sort (C.Type u2) -> C.Sort (C.Type (NCicEnvironment.max u1 u2)) | C.Sort C.Prop,C.Sort (C.Type _) -> t2 | C.Meta (_,(_,(C.Irl 0 | C.Ctx []))), C.Sort _ -> t2 | C.Meta (_,(_,(C.Irl 0 | C.Ctx []))), C.Meta (i,(_,(C.Irl 0 | C.Ctx []))) | C.Sort _, C.Meta (i,(_,(C.Irl 0 | C.Ctx []))) -> NCic.Meta (i,(0, C.Irl 0)) | x, (C.Sort _ | C.Meta (_,(_,(C.Irl 0 | C.Ctx [])))) | _, x -> let y, context = if x == t1 then s, context else t, ((name,C.Decl s)::context) in raise (TypeCheckerFailure (lazy (Printf.sprintf "%s is expected to be a type, but its type is %s that is not a sort" (status#ppterm ~subst ~metasenv ~context y) (status#ppterm ~subst ~metasenv ~context x)))) ;; (* instantiate_parameters ps (x1:T1)...(xn:Tn)C *) (* returns ((x_|ps|:T_|ps|)...(xn:Tn)C){ps_1 / x1 ; ... ; ps_|ps| / x_|ps|} *) let rec instantiate_parameters status params c = match c, params with | c,[] -> c | C.Prod (_,_,ta), he::tl -> instantiate_parameters status tl (S.subst status he ta) | _,_ -> raise (AssertFailure (lazy "1")) ;; let specialize_inductive_type_constrs status ~subst context ty_term = match R.whd status ~subst context ty_term with | C.Const (Ref.Ref (_,Ref.Ind _) as ref) | C.Appl (C.Const (Ref.Ref (_,Ref.Ind _) as ref) :: _ ) as ty -> let args = match ty with C.Appl (_::tl) -> tl | _ -> [] in let _, leftno, itl, _, i = E.get_checked_indtys status ref in let left_args,_ = HExtlib.split_nth leftno args in let _,_,_,cl = List.nth itl i in List.map (fun (rel,name,ty) -> rel, name, instantiate_parameters status left_args ty) cl | _ -> assert false ;; let specialize_and_abstract_constrs status ~subst r_uri r_len context ty_term = let cl = specialize_inductive_type_constrs status ~subst context ty_term in let len = List.length context in let context_dcl = match E.get_checked_obj status r_uri with | _,_,_,_, C.Inductive (_,_,tys,_) -> context @ List.map (fun (_,name,arity,_) -> name,C.Decl arity) tys | _ -> assert false in context_dcl, List.map (fun (_,id,ty) -> id, debruijn status r_uri r_len ~subst context ty) cl, len, len + r_len ;; exception DoesOccur;; let does_not_occur status ~subst context n nn t = let rec aux k _ = function | C.Rel m when m > n+k && m <= nn+k -> raise DoesOccur | C.Rel m when m <= k || m > nn+k -> () | C.Rel m -> (try match List.nth context (m-1-k) with | _,C.Def (bo,_) -> aux 0 () (S.lift status (m-k) bo) | _ -> () with Failure _ -> assert false) | C.Meta (_,(_,(C.Irl 0 | C.Ctx []))) -> (* closed meta *) () | C.Meta (mno,(s,l)) -> (try (* possible optimization here: try does_not_occur on l and perform substitution only if DoesOccur is raised *) let _,_,term,_ = U.lookup_subst mno subst in aux (k-s) () (S.subst_meta status (0,l) term) with U.Subst_not_found _ -> () (*match l with | C.Irl len -> if not (n+k >= s+len || s > nn+k) then raise DoesOccur | C.Ctx lc -> List.iter (aux (k-s) ()) lc*)) | t -> U.fold (fun _ k -> k + 1) k aux () t in try aux 0 () t; true with DoesOccur -> false ;; let rec eat_lambdas (status:#NCic.status) ~subst ~metasenv context n te = match (n, R.whd status ~subst context te) with | (0, _) -> (te, context) | (n, C.Lambda (name,so,ta)) when n > 0 -> eat_lambdas status ~subst ~metasenv ((name,(C.Decl so))::context) (n - 1) ta | (n, te) -> raise (AssertFailure (lazy (Printf.sprintf "eat_lambdas (%d, %s)" n (status#ppterm ~subst ~metasenv ~context te)))) ;; let rec eat_or_subst_lambdas status ~subst ~metasenv n te to_be_subst args (context,_,_ as k) = match n, R.whd status ~subst context te, to_be_subst, args with | (n, C.Lambda (_,_,ta),true::to_be_subst,arg::args) when n > 0 -> eat_or_subst_lambdas status ~subst ~metasenv (n - 1) (S.subst status arg ta) to_be_subst args k | (n, C.Lambda (name,so,ta),false::to_be_subst,_::args) when n > 0 -> eat_or_subst_lambdas status ~subst ~metasenv (n - 1) ta to_be_subst args (shift_k (name,(C.Decl so)) k) | (_, te, _, _) -> te, k ;; let check_homogeneous_call (status:#NCic.status) ~subst context indparamsno n uri reduct tl = let last = List.fold_left (fun k x -> if k = 0 then 0 else match R.whd status ~subst context x with | C.Rel m when m = n - (indparamsno - k) -> k - 1 | _ -> raise (TypeCheckerFailure (lazy ("Argument "^string_of_int (indparamsno - k + 1) ^ " (of " ^ string_of_int indparamsno ^ " fixed) is not homogeneous in "^ "appl:\n"^ status#ppterm ~context ~subst ~metasenv:[] reduct)))) indparamsno tl in if last <> 0 then raise (TypeCheckerFailure (lazy ("Non-positive occurence in mutual inductive definition(s) [2]"^ NUri.string_of_uri uri))) ;; (* Inductive types being checked for positivity have *) (* indexes x s.t. n < x <= nn. *) let rec weakly_positive status ~subst context n nn uri indparamsno posuri te = (*CSC: Not very nice. *) let dummy = C.Sort C.Prop in (*CSC: to be moved in cicSubstitution? *) let rec subst_inductive_type_with_dummy _ = function | C.Meta (_,(_,C.Irl _)) as x -> x | C.Meta (i,(lift,C.Ctx ls)) -> C.Meta (i,(lift,C.Ctx (List.map (subst_inductive_type_with_dummy ()) ls))) | C.Const (Ref.Ref (uri',Ref.Ind (true,0,_))) when NUri.eq uri' uri -> dummy | C.Appl ((C.Const (Ref.Ref (uri',Ref.Ind (true,0,lno))))::tl) when NUri.eq uri' uri -> let _, rargs = HExtlib.split_nth lno tl in if rargs = [] then dummy else C.Appl (dummy :: rargs) | t -> U.map status (fun _ x->x) () subst_inductive_type_with_dummy t in (* this function has the same semantics of are_all_occurrences_positive but the i-th context entry role is played by dummy and some checks are skipped because we already know that are_all_occurrences_positive of uri in te. *) let rec aux context n nn te = match R.whd status ~subst context te with | t when t = dummy -> true | C.Meta (i,lc) -> (try let _,_,term,_ = U.lookup_subst i subst in let t = S.subst_meta status lc term in weakly_positive status ~subst context n nn uri indparamsno posuri t with U.Subst_not_found _ -> true) | C.Appl (te::rargs) when te = dummy -> List.for_all (does_not_occur status ~subst context n nn) rargs | C.Prod (name,source,dest) when does_not_occur status ~subst ((name,C.Decl source)::context) 0 1 dest -> (* dummy abstraction, so we behave as in the anonimous case *) strictly_positive status ~subst context n nn indparamsno posuri source && aux ((name,C.Decl source)::context) (n + 1) (nn + 1) dest | C.Prod (name,source,dest) -> does_not_occur status ~subst context n nn source && aux ((name,C.Decl source)::context) (n + 1) (nn + 1) dest | _ -> raise (TypeCheckerFailure (lazy "Malformed inductive constructor type")) in aux context n nn (subst_inductive_type_with_dummy () te) and strictly_positive status ~subst context n nn indparamsno posuri te = match R.whd status ~subst context te with | t when does_not_occur status ~subst context n nn t -> true | C.Meta (i,lc) -> (try let _,_,term,_ = U.lookup_subst i subst in let t = S.subst_meta status lc term in strictly_positive status ~subst context n nn indparamsno posuri t with U.Subst_not_found _ -> true) | C.Rel _ when indparamsno = 0 -> true | C.Appl ((C.Rel m)::tl) as reduct when m > n && m <= nn -> check_homogeneous_call status ~subst context indparamsno n posuri reduct tl; List.for_all (does_not_occur status ~subst context n nn) tl | C.Prod (name,so,ta) -> does_not_occur status ~subst context n nn so && strictly_positive status ~subst ((name,C.Decl so)::context) (n+1) (nn+1) indparamsno posuri ta | C.Appl (C.Const (Ref.Ref (uri,Ref.Ind _) as r)::tl) -> let _,paramsno,tyl,_,i = E.get_checked_indtys status r in let _,name,ity,cl = List.nth tyl i in let ok = List.length tyl = 1 in let params, arguments = HExtlib.split_nth paramsno tl in let lifted_params = List.map (S.lift status 1) params in let cl = List.map (fun (_,_,te) -> instantiate_parameters status lifted_params te) cl in ok && List.for_all (does_not_occur status ~subst context n nn) arguments && List.for_all (weakly_positive status ~subst ((name,C.Decl ity)::context) (n+1) (nn+1) uri indparamsno posuri) cl | _ -> false (* the inductive type indexes are s.t. n < x <= nn *) and are_all_occurrences_positive (status:#NCic.status) ~subst context uri indparamsno i n nn te = match R.whd status ~subst context te with | C.Appl ((C.Rel m)::tl) as reduct when m = i -> check_homogeneous_call status ~subst context indparamsno n uri reduct tl; List.for_all (does_not_occur status ~subst context n nn) tl | C.Rel m when m = i -> if indparamsno = 0 then true else raise (TypeCheckerFailure (lazy ("Non-positive occurence in mutual inductive definition(s) [3]"^ NUri.string_of_uri uri))) | C.Prod (name,source,dest) when does_not_occur status ~subst ((name,C.Decl source)::context) 0 1 dest -> strictly_positive status ~subst context n nn indparamsno uri source && are_all_occurrences_positive status ~subst ((name,C.Decl source)::context) uri indparamsno (i+1) (n + 1) (nn + 1) dest | C.Prod (name,source,dest) -> if not (does_not_occur status ~subst context n nn source) then raise (TypeCheckerFailure (lazy ("Non-positive occurrence in "^ status#ppterm ~context ~metasenv:[] ~subst te))); are_all_occurrences_positive status ~subst ((name,C.Decl source)::context) uri indparamsno (i+1) (n + 1) (nn + 1) dest | _ -> raise (TypeCheckerFailure (lazy ("Malformed inductive constructor type " ^ (NUri.string_of_uri uri)))) ;; exception NotGuarded of string Lazy.t;; let type_of_branch (status:#NCic.status) ~subst context leftno outty cons tycons = let rec aux liftno context cons tycons = match R.whd status ~subst context tycons with | C.Const (Ref.Ref (_,Ref.Ind _)) -> C.Appl [S.lift status liftno outty ; cons] | C.Appl (C.Const (Ref.Ref (_,Ref.Ind _))::tl) -> let _,arguments = HExtlib.split_nth leftno tl in C.Appl (S.lift status liftno outty::arguments@[cons]) | C.Prod (name,so,de) -> let cons = match S.lift status 1 cons with | C.Appl l -> C.Appl (l@[C.Rel 1]) | t -> C.Appl [t ; C.Rel 1] in C.Prod (name,so, aux (liftno+1) ((name,(C.Decl so))::context) cons de) | t -> raise (AssertFailure (lazy ("type_of_branch, the contructor has type: " ^ status#ppterm ~metasenv:[] ~context:[] ~subst:[] t))) in aux 0 context cons tycons ;; let rec typeof (status:#NCic.status) ~subst ~metasenv context term = let rec typeof_aux context = fun t -> (*prerr_endline (status#ppterm ~metasenv ~subst ~context t);*) match t with | C.Rel n -> (try match List.nth context (n - 1) with | (_,C.Decl ty) -> S.lift status n ty | (_,C.Def (_,ty)) -> S.lift status n ty with Failure _ | Invalid_argument _ -> raise (TypeCheckerFailure (lazy ("unbound variable " ^ string_of_int n ^" under: " ^ status#ppcontext ~metasenv ~subst context)))) | C.Sort s -> (try C.Sort (NCicEnvironment.typeof_sort s) with | NCicEnvironment.UntypableSort msg -> raise (TypeCheckerFailure msg) | NCicEnvironment.AssertFailure msg -> raise (AssertFailure msg)) | C.Implicit _ -> raise (AssertFailure (lazy "Implicit found")) | C.Meta (n,l) as t -> let canonical_ctx,ty = try let _,c,_,ty = U.lookup_subst n subst in c,ty with U.Subst_not_found _ -> try let _,c,ty = U.lookup_meta n metasenv in c, ty (* match ty with C.Implicit _ -> assert false | _ -> c,ty *) with U.Meta_not_found _ -> raise (AssertFailure (lazy (Printf.sprintf "%s not found in:\n%s" (status#ppterm ~subst ~metasenv ~context t) (status#ppmetasenv ~subst metasenv) ))) in check_metasenv_consistency t ~subst ~metasenv context canonical_ctx l; S.subst_meta status l ty | C.Const ref -> type_of_constant status ref | C.Prod (name,s,t) -> let sort1 = typeof_aux context s in let sort2 = typeof_aux ((name,(C.Decl s))::context) t in sort_of_prod status ~metasenv ~subst context (name,s) t (sort1,sort2) | C.Lambda (n,s,t) -> let sort = typeof_aux context s in (match R.whd status ~subst context sort with | C.Meta _ | C.Sort _ -> () | _ -> raise (TypeCheckerFailure (lazy (Printf.sprintf ("Not well-typed lambda-abstraction: " ^^ "the source %s should be a type; instead it is a term " ^^ "of type %s") (status#ppterm ~subst ~metasenv ~context s) (status#ppterm ~subst ~metasenv ~context sort))))); let ty = typeof_aux ((n,(C.Decl s))::context) t in C.Prod (n,s,ty) | C.LetIn (n,ty,t,bo) -> let ty_t = typeof_aux context t in let _ = typeof_aux context ty in if not (R.are_convertible status ~metasenv ~subst context ty_t ty) then raise (TypeCheckerFailure (lazy (Printf.sprintf "The type of %s is %s but it is expected to be %s" (status#ppterm ~subst ~metasenv ~context t) (status#ppterm ~subst ~metasenv ~context ty_t) (status#ppterm ~subst ~metasenv ~context ty)))) else let ty_bo = typeof_aux ((n,C.Def (t,ty))::context) bo in S.subst status ~avoid_beta_redexes:true t ty_bo | C.Appl (he::(_::_ as args)) -> let ty_he = typeof_aux context he in let args_with_ty = List.map (fun t -> t, typeof_aux context t) args in eat_prods status ~subst ~metasenv context he ty_he args_with_ty | C.Appl _ -> raise (AssertFailure (lazy "Appl of length < 2")) | C.Match (Ref.Ref (_,Ref.Ind (_,tyno,_)) as r,outtype,term,pl) -> let outsort = typeof_aux context outtype in let _,leftno,itl,_,_ = E.get_checked_indtys status r in let constructorsno = let _,_,_,cl = List.nth itl tyno in List.length cl in let parameters, arguments = let ty = R.whd status ~subst context (typeof_aux context term) in let r',tl = match ty with C.Const (Ref.Ref (_,Ref.Ind _) as r') -> r',[] | C.Appl (C.Const (Ref.Ref (_,Ref.Ind _) as r') :: tl) -> r',tl | _ -> raise (TypeCheckerFailure (lazy (Printf.sprintf "Case analysis: analysed term %s is not an inductive one" (status#ppterm ~subst ~metasenv ~context term)))) in if not (Ref.eq r r') then raise (TypeCheckerFailure (lazy (Printf.sprintf ("Case analysys: analysed term type is %s, but is expected " ^^ "to be (an application of) %s") (status#ppterm ~subst ~metasenv ~context ty) (status#ppterm ~subst ~metasenv ~context (C.Const r'))))) else try HExtlib.split_nth leftno tl with Failure _ -> raise (TypeCheckerFailure (lazy (Printf.sprintf "%s is partially applied" (status#ppterm ~subst ~metasenv ~context ty)))) in (* let's control if the sort elimination is allowed: [(I q1 ... qr)|B] *) let sort_of_ind_type = if parameters = [] then C.Const r else C.Appl ((C.Const r)::parameters) in let type_of_sort_of_ind_ty = typeof_aux context sort_of_ind_type in check_allowed_sort_elimination status ~subst ~metasenv r context sort_of_ind_type type_of_sort_of_ind_ty outsort; (* let's check if the type of branches are right *) if List.length pl <> constructorsno then raise (TypeCheckerFailure (lazy ("Wrong number of cases in a match"))); let j,branches_ok,p_ty, exp_p_ty = List.fold_left (fun (j,b,old_p_ty,old_exp_p_ty) p -> if b then let cons = let cons = Ref.mk_constructor j r in if parameters = [] then C.Const cons else C.Appl (C.Const cons::parameters) in let ty_p = typeof_aux context p in let ty_cons = typeof_aux context cons in let ty_branch = type_of_branch status ~subst context leftno outtype cons ty_cons in j+1, R.are_convertible status ~metasenv ~subst context ty_p ty_branch, ty_p, ty_branch else j,false,old_p_ty,old_exp_p_ty ) (1,true,C.Sort C.Prop,C.Sort C.Prop) pl in if not branches_ok then raise (TypeCheckerFailure (lazy (Printf.sprintf ("Branch for constructor %s :=\n%s\n"^^ "has type %s\nnot convertible with %s") (status#ppterm ~subst ~metasenv ~context (C.Const (Ref.mk_constructor (j-1) r))) (status#ppterm ~metasenv ~subst ~context (List.nth pl (j-2))) (status#ppterm ~metasenv ~subst ~context p_ty) (status#ppterm ~metasenv ~subst ~context exp_p_ty)))); let res = outtype::arguments@[term] in R.head_beta_reduce status (C.Appl res) | C.Match _ -> assert false (* check_metasenv_consistency checks that the "canonical" context of a metavariable is consitent - up to relocation via the relocation list l - with the actual context *) and check_metasenv_consistency ~subst ~metasenv term context canonical_context l = match l with | shift, C.Irl n -> let context = snd (HExtlib.split_nth shift context) in let rec compare = function | 0,_,[] -> () | 0,_,_::_ | _,_,[] -> raise (AssertFailure (lazy (Printf.sprintf "(2) Local and canonical context %s have different lengths" (status#ppterm ~subst ~context ~metasenv term)))) | m,[],_::_ -> raise (TypeCheckerFailure (lazy (Printf.sprintf "Unbound variable -%d in %s" m (status#ppterm ~subst ~metasenv ~context term)))) | m,t::tl,ct::ctl -> (match t,ct with (_,C.Decl t1), (_,C.Decl t2) | (_,C.Def (t1,_)), (_,C.Def (t2,_)) | (_,C.Def (_,t1)), (_,C.Decl t2) -> if not (R.are_convertible status ~metasenv ~subst tl t1 t2) then raise (TypeCheckerFailure (lazy (Printf.sprintf ("Not well typed metavariable local context for %s: " ^^ "%s expected, which is not convertible with %s") (status#ppterm ~subst ~metasenv ~context term) (status#ppterm ~subst ~metasenv ~context t2) (status#ppterm ~subst ~metasenv ~context t1)))) | _,_ -> raise (TypeCheckerFailure (lazy (Printf.sprintf ("Not well typed metavariable local context for %s: " ^^ "a definition expected, but a declaration found") (status#ppterm ~subst ~metasenv ~context term))))); compare (m - 1,tl,ctl) in compare (n,context,canonical_context) | shift, lc_kind -> (* we avoid useless lifting by shortening the context*) let l,context = (0,lc_kind), snd (HExtlib.split_nth shift context) in let lifted_canonical_context = let rec lift_metas i = function | [] -> [] | (n,C.Decl t)::tl -> (n,C.Decl (S.subst_meta status l (S.lift status i t)))::(lift_metas (i+1) tl) | (n,C.Def (t,ty))::tl -> (n,C.Def ((S.subst_meta status l (S.lift status i t)), S.subst_meta status l (S.lift status i ty)))::(lift_metas (i+1) tl) in lift_metas 1 canonical_context in let l = U.expand_local_context lc_kind in try List.iter2 (fun t ct -> match (t,ct) with | t, (_,C.Def (ct,_)) -> (*CSC: the following optimization is to avoid a possibly expensive reduction that can be easily avoided and that is quite frequent. However, this is better handled using levels to control reduction *) let optimized_t = match t with | C.Rel n -> (try match List.nth context (n - 1) with | (_,C.Def (te,_)) -> S.lift status n te | _ -> t with Failure _ -> t) | _ -> t in if not (R.are_convertible status ~metasenv ~subst context optimized_t ct) then raise (TypeCheckerFailure (lazy (Printf.sprintf ("Not well typed metavariable local context: " ^^ "expected a term convertible with %s, found %s") (status#ppterm ~subst ~metasenv ~context ct) (status#ppterm ~subst ~metasenv ~context t)))) | t, (_,C.Decl ct) -> let type_t = typeof_aux context t in if not (R.are_convertible status ~metasenv ~subst context type_t ct) then raise (TypeCheckerFailure (lazy (Printf.sprintf ("Not well typed metavariable local context: "^^ "expected a term of type %s, found %s of type %s") (status#ppterm ~subst ~metasenv ~context ct) (status#ppterm ~subst ~metasenv ~context t) (status#ppterm ~subst ~metasenv ~context type_t)))) ) l lifted_canonical_context with | Invalid_argument "List.iter2" -> raise (AssertFailure (lazy (Printf.sprintf "(1) Local and canonical context %s have different lengths" (status#ppterm ~subst ~metasenv ~context term)))) in typeof_aux context term and check_allowed_sort_elimination status ~subst ~metasenv r = let mkapp he arg = match he with | C.Appl l -> C.Appl (l @ [arg]) | t -> C.Appl [t;arg] in let rec aux context ind arity1 arity2 = let arity1 = R.whd status ~subst context arity1 in let arity2 = R.whd status ~subst context arity2 in match arity1,arity2 with | C.Prod (name,so1,de1), C.Prod (_,so2,de2) -> if not (R.are_convertible status ~metasenv ~subst context so1 so2) then raise (TypeCheckerFailure (lazy (Printf.sprintf "In outtype: expected %s, found %s" (status#ppterm ~subst ~metasenv ~context so1) (status#ppterm ~subst ~metasenv ~context so2) ))); aux ((name, C.Decl so1)::context) (mkapp (S.lift status 1 ind) (C.Rel 1)) de1 de2 | C.Sort _, C.Prod (name,so,ta) -> if not (R.are_convertible status ~metasenv ~subst context so ind) then raise (TypeCheckerFailure (lazy (Printf.sprintf "In outtype: expected %s, found %s" (status#ppterm ~subst ~metasenv ~context ind) (status#ppterm ~subst ~metasenv ~context so) ))); (match arity1, R.whd status ~subst ((name,C.Decl so)::context) ta with | C.Sort s1, (C.Sort s2 as arity2) -> (match NCicEnvironment.allowed_sort_elimination s1 s2 with | `Yes -> () | `UnitOnly -> (* TODO: we should pass all these parameters since we * have them already *) let _,leftno,itl,_,i = E.get_checked_indtys status r in let itl_len = List.length itl in let _,itname,ittype,cl = List.nth itl i in let cl_len = List.length cl in (* is it a singleton, non recursive and non informative definition or an empty one? *) if not (cl_len = 0 || (itl_len = 1 && cl_len = 1 && let _,_,constrty = List.hd cl in is_non_recursive_singleton status ~subst r itname ittype constrty && is_non_informative status ~metasenv ~subst leftno constrty)) then raise (TypeCheckerFailure (lazy ("Sort elimination not allowed: " ^ status#ppterm ~metasenv ~subst ~context arity1 ^ " towards "^ status#ppterm ~metasenv ~subst ~context arity2 )))) | _ -> ()) | _,_ -> () in aux and eat_prods status ~subst ~metasenv context he ty_he args_with_ty = let rec aux ty_he = function | [] -> ty_he | (arg, ty_arg)::tl -> match R.whd status ~subst context ty_he with | C.Prod (_,s,t) -> if R.are_convertible status ~metasenv ~subst context ty_arg s then aux (S.subst status ~avoid_beta_redexes:true arg t) tl else let indent s = " " ^ (Str.global_replace (Str.regexp "\n") "\n " s) in raise (TypeCheckerFailure (lazy (Printf.sprintf ("Appl: wrong application of\n%s\nThe argument\n%s\nhas type"^^ "\n%s\nbut it should have type \n%s\nContext:\n%s\n") (indent (status#ppterm ~subst ~metasenv ~context he)) (indent (status#ppterm ~subst ~metasenv ~context arg)) (indent (status#ppterm ~subst ~metasenv ~context ty_arg)) (indent (status#ppterm ~subst ~metasenv ~context s)) (status#ppcontext ~subst ~metasenv context)))) | _ -> raise (TypeCheckerFailure (lazy (Printf.sprintf "Appl: %s is not a function, it cannot be applied" (status#ppterm ~subst ~metasenv ~context (let res = List.length tl in let eaten = List.length args_with_ty - res in (C.Appl (he::List.map fst (fst (HExtlib.split_nth eaten args_with_ty))))))))) in aux ty_he args_with_ty and is_non_recursive_singleton status ~subst (Ref.Ref (uri,_)) iname ity cty = let ctx = [iname, C.Decl ity] in let cty = debruijn status uri 1 [] ~subst cty in let len = List.length ctx in let rec aux ctx n nn t = match R.whd status ~subst ctx t with | C.Prod (name, src, tgt) -> does_not_occur status ~subst ctx n nn src && aux ((name, C.Decl src) :: ctx) (n+1) (nn+1) tgt | C.Rel k | C.Appl (C.Rel k :: _) when k = nn -> true | _ -> assert false in aux ctx (len-1) len cty and is_non_informative status ~metasenv ~subst paramsno c = let rec aux context c = match R.whd status ~subst context c with | C.Prod (n,so,de) -> let s = typeof status ~metasenv ~subst context so in (s = C.Sort C.Prop || match s with C.Sort (C.Type ((`CProp,_)::_)) -> true | _ -> false) && aux ((n,(C.Decl so))::context) de | _ -> true in let context',dx = NCicReduction.split_prods status ~subst [] paramsno c in aux context' dx and check_mutual_inductive_defs status uri ~metasenv ~subst leftno tyl = (* let's check if the arity of the inductive types are well formed *) List.iter (fun (_,_,x,_) -> ignore (typeof status ~subst ~metasenv [] x)) tyl; (* let's check if the types of the inductive constructors are well formed. *) let len = List.length tyl in let tys = List.rev_map (fun (_,n,ty,_) -> (n,(C.Decl ty))) tyl in ignore (List.fold_right (fun (it_relev,_,ty,cl) i -> let context,ty_sort = NCicReduction.split_prods status ~subst [] ~-1 ty in let sx_context_ty_rev,_ = HExtlib.split_nth leftno (List.rev context) in List.iter (fun (k_relev,_,te) -> let k_relev = try snd (HExtlib.split_nth leftno k_relev) with Failure _ -> k_relev in let te = debruijn status uri len [] ~subst te in let context,te = NCicReduction.split_prods status ~subst tys leftno te in let _,chopped_context_rev = HExtlib.split_nth (List.length tys) (List.rev context) in let sx_context_te_rev,_ = HExtlib.split_nth leftno chopped_context_rev in (try ignore (List.fold_left2 (fun context item1 item2 -> let convertible = match item1,item2 with (_,C.Decl ty1),(_,C.Decl ty2) -> R.are_convertible status ~metasenv ~subst context ty1 ty2 | (_,C.Def (bo1,ty1)),(_,C.Def (bo2,ty2)) -> R.are_convertible status ~metasenv ~subst context ty1 ty2 && R.are_convertible status ~metasenv ~subst context bo1 bo2 | _,_ -> false in if not convertible then raise (TypeCheckerFailure (lazy ("Mismatch between the left parameters of the constructor " ^ "and those of its inductive type"))) else item1::context ) [] sx_context_ty_rev sx_context_te_rev) with Invalid_argument "List.fold_left2" -> assert false); let con_sort = typeof status ~subst ~metasenv context te in (match R.whd status ~subst context con_sort, R.whd status ~subst [] ty_sort with (C.Sort (C.Type u1) as s1), (C.Sort (C.Type u2) as s2) -> if not (E.universe_leq u1 u2) then raise (TypeCheckerFailure (lazy ("The type " ^ status#ppterm ~metasenv ~subst ~context s1^ " of the constructor is not included in the inductive" ^ " type sort " ^ status#ppterm ~metasenv ~subst ~context s2))) | C.Sort _, C.Sort C.Prop | C.Sort _, C.Sort C.Type _ -> () | _, _ -> raise (TypeCheckerFailure (lazy ("Wrong constructor or inductive arity shape")))); (* let's check also the positivity conditions *) if not (are_all_occurrences_positive status ~subst context uri leftno (i+leftno) leftno (len+leftno) te) then raise (TypeCheckerFailure (lazy ("Non positive occurence in "^NUri.string_of_uri uri))) else check_relevance status ~subst ~metasenv context k_relev te) cl; check_relevance status ~subst ~metasenv [] it_relev ty; i+1) tyl 1) and check_relevance status ~subst ~metasenv context relevance ty = let error context ty = raise (TypeCheckerFailure (lazy ("Wrong relevance declaration: " ^ String.concat "," (List.map string_of_bool relevance)^ "\nfor type: "^status#ppterm ~metasenv ~subst ~context ty))) in let rec aux context relevance ty = match R.whd status ~subst context ty with | C.Prod (name,so,de) -> let sort = typeof status ~subst ~metasenv context so in (match (relevance,R.whd status ~subst context sort) with | [],_ -> () | false::tl,C.Sort C.Prop -> aux ((name,(C.Decl so))::context) tl de | true::_,C.Sort C.Prop | false::_,C.Sort _ | false::_,C.Meta _ -> error context ty | true::tl,C.Sort _ | true::tl,C.Meta _ -> aux ((name,(C.Decl so))::context) tl de | _ -> raise (AssertFailure (lazy (Printf.sprintf "Prod: the type %s of the source of %s is not a sort" (status#ppterm ~subst ~metasenv ~context sort) (status#ppterm ~subst ~metasenv ~context so))))) | _ -> (match relevance with | [] -> () | _::_ -> error context ty) in aux context relevance ty and guarded_by_destructors (status:#NCic.status) r_uri r_len ~subst ~metasenv context recfuns t = let recursor f k t = U.fold shift_k k (fun k () -> f k) () t in let rec aux (context, recfuns, x as k) t = (* prerr_endline ("GB:\n" ^ status#ppcontext ~subst ~metasenv context^ status#ppterm ~metasenv ~subst ~context t^ string_of_recfuns ~subst ~metasenv ~context recfuns); *) try match t with | C.Rel m as t when is_dangerous m recfuns -> raise (NotGuarded (lazy (status#ppterm ~subst ~metasenv ~context t ^ " is a partial application of a fix"))) | C.Appl ((C.Rel m)::tl) as t when is_dangerous m recfuns -> let rec_no = get_recno m recfuns in if not (List.length tl > rec_no) then raise (NotGuarded (lazy (status#ppterm ~context ~subst ~metasenv t ^ " is a partial application of a fix"))) else let rec_arg = List.nth tl rec_no in if not (is_really_smaller status r_uri r_len ~subst ~metasenv k rec_arg) then raise (NotGuarded (lazy (Printf.sprintf ("Recursive call %s, %s is not" ^^ " smaller.\ncontext:\n%s") (status#ppterm ~context ~subst ~metasenv t) (status#ppterm ~context ~subst ~metasenv rec_arg) (status#ppcontext ~subst ~metasenv context)))); List.iter (aux k) tl | C.Appl ((C.Rel m)::tl) when is_unfolded m recfuns -> let fixed_args = get_fixed_args m recfuns in HExtlib.list_iter_default2 (fun x b -> if not b then aux k x) tl false fixed_args | C.Rel m -> (match List.nth context (m-1) with | _,C.Decl _ -> () | _,C.Def (bo,_) -> aux k (S.lift status m bo)) | C.Meta _ -> () | C.Appl (C.Const ((Ref.Ref (uri,Ref.Fix (i,recno,_))) as r)::args) -> if List.exists (fun t -> try aux k t;false with NotGuarded _ -> true) args then let fl,_,_ = E.get_checked_fixes_or_cofixes status r in let ctx_tys, bos = List.split (List.map (fun (_,name,_,ty,bo) -> (name, C.Decl ty), bo) fl) in let fl_len = List.length fl in let bos = List.map (debruijn status uri fl_len context ~subst) bos in let j = List.fold_left min max_int (List.map (fun (_,_,i,_,_)->i) fl) in let ctx_len = List.length context in (* we may look for fixed params not only up to j ... *) let fa = fixed_args bos j ctx_len (ctx_len + fl_len) in HExtlib.list_iter_default2 (fun x b -> if not b then aux k x) args false fa; let context = context@ctx_tys in let ctx_len = List.length context in let extra_recfuns = HExtlib.list_mapi (fun _ i -> ctx_len - i, UnfFix fa) ctx_tys in let new_k = context, extra_recfuns@recfuns, x in let bos_and_ks = HExtlib.list_mapi (fun bo fno -> let bo_and_k = eat_or_subst_lambdas status ~subst ~metasenv j bo fa args new_k in if fno = i && List.length args > recno && (*case where the recursive argument is already really_smaller *) is_really_smaller status r_uri r_len ~subst ~metasenv k (List.nth args recno) then let bo,(context, _, _ as new_k) = bo_and_k in let bo, context' = eat_lambdas status ~subst ~metasenv context (recno + 1 - j) bo in let new_context_part,_ = HExtlib.split_nth (List.length context' - List.length context) context' in let k = List.fold_right shift_k new_context_part new_k in let context, recfuns, x = k in let k = context, (1,Safe)::recfuns, x in bo,k else bo_and_k ) bos in List.iter (fun (bo,k) -> aux k bo) bos_and_ks | C.Match (Ref.Ref (_,Ref.Ind (true,_,_)),outtype,term,pl) as t -> (match R.whd status ~subst context term with | C.Rel m | C.Appl (C.Rel m :: _ ) as t when is_safe m recfuns || m = x -> let ty = typeof status ~subst ~metasenv context term in let dc_ctx, dcl, start, stop = specialize_and_abstract_constrs status ~subst r_uri r_len context ty in let args = match t with C.Appl (_::tl) -> tl | _ -> [] in aux k outtype; List.iter (aux k) args; List.iter2 (fun p (_,dc) -> let rl = recursive_args status ~subst ~metasenv dc_ctx start stop dc in let p, k = get_new_safes status ~subst k p rl in aux k p) pl dcl | _ -> recursor aux k t) | t -> recursor aux k t with NotGuarded _ as exc -> let t' = R.whd status ~delta:0 ~subst context t in if t = t' then raise exc else aux k t' in try aux (context, recfuns, 1) t with NotGuarded s -> raise (TypeCheckerFailure s) and guarded_by_constructors status ~subst ~metasenv context t indURI indlen nn = let rec aux context n nn h te = match R.whd status ~subst context te with | C.Rel m when m > n && m <= nn -> h | C.Rel _ | C.Meta _ -> true | C.Sort _ | C.Implicit _ | C.Prod _ | C.Const (Ref.Ref (_,Ref.Ind _)) | C.LetIn _ -> raise (AssertFailure (lazy "17")) | C.Lambda (name,so,de) -> does_not_occur status ~subst context n nn so && aux ((name,C.Decl so)::context) (n + 1) (nn + 1) h de | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> h && List.for_all (does_not_occur status ~subst context n nn) tl | C.Const (Ref.Ref (_,Ref.Con _)) -> true | C.Appl (C.Const (Ref.Ref (_, Ref.Con (_,j,paramsno))) :: tl) as t -> let ty_t = typeof status ~subst ~metasenv context t in let dc_ctx, dcl, start, stop = specialize_and_abstract_constrs status ~subst indURI indlen context ty_t in let _, dc = List.nth dcl (j-1) in (* prerr_endline (status#ppterm ~subst ~metasenv ~context:dc_ctx dc); prerr_endline (status#ppcontext ~subst ~metasenv dc_ctx); *) let rec_params = recursive_args status ~subst ~metasenv dc_ctx start stop dc in let rec analyse_instantiated_type rec_spec args = match rec_spec, args with | h::rec_spec, he::args -> aux context n nn h he && analyse_instantiated_type rec_spec args | _,[] -> true | _ -> raise (AssertFailure (lazy ("Too many args for constructor: " ^ String.concat " " (List.map (fun x-> status#ppterm ~subst ~metasenv ~context x) args)))) in let _, args = HExtlib.split_nth paramsno tl in analyse_instantiated_type rec_params args | C.Appl ((C.Match (_,out,te,pl))::_) | C.Match (_,out,te,pl) as t -> let tl = match t with C.Appl (_::tl) -> tl | _ -> [] in List.for_all (does_not_occur status ~subst context n nn) tl && does_not_occur status ~subst context n nn out && does_not_occur status ~subst context n nn te && List.for_all (aux context n nn h) pl (* IMPOSSIBLE unsless we allow to pass cofix to other fix/cofix as we do for higher order fix in g_b_destructors. | C.Const (Ref.Ref (u,(Ref.Fix _| Ref.CoFix _)) as ref) | C.Appl(C.Const (Ref.Ref(u,(Ref.Fix _| Ref.CoFix _)) as ref) :: _) as t -> let tl = match t with C.Appl (_::tl) -> tl | _ -> [] in let fl,_,_ = E.get_checked_fixes_or_cofixes ref in let len = List.length fl in let tys = List.map (fun (_,n,_,ty,_) -> n, C.Decl ty) fl in List.for_all (does_not_occur status ~subst context n nn) tl && List.for_all (fun (_,_,_,_,bo) -> aux (context@tys) n nn h (debruijn status u len context bo)) fl *) | C.Const _ | C.Appl _ as t -> does_not_occur status ~subst context n nn t in aux context 0 nn false t and recursive_args status ~subst ~metasenv context n nn te = match R.whd status ~subst context te with | C.Rel _ | C.Appl _ | C.Const _ -> [] | C.Prod (name,so,de) -> (not (does_not_occur status ~subst context n nn so)) :: (recursive_args status ~subst ~metasenv ((name,(C.Decl so))::context) (n+1) (nn + 1) de) | t -> raise (AssertFailure (lazy ("recursive_args:" ^ status#ppterm ~subst ~metasenv ~context:[] t))) and get_new_safes status ~subst (context, recfuns, x as k) p rl = match R.whd status ~subst context p, rl with | C.Lambda (name,so,ta), b::tl -> let recfuns = (if b then [0,Safe] else []) @ recfuns in get_new_safes status ~subst (shift_k (name,(C.Decl so)) (context, recfuns, x)) ta tl | C.Meta _ as e, _ | e, [] -> e, k | _ -> raise (AssertFailure (lazy "Ill formed pattern")) and is_really_smaller status r_uri r_len ~subst ~metasenv (context, recfuns, x as k) te = match R.whd status ~subst context te with | C.Rel m when is_safe m recfuns -> true | C.Lambda (name, s, t) -> is_really_smaller status r_uri r_len ~subst ~metasenv (shift_k (name,C.Decl s) k) t | C.Appl (he::_) -> is_really_smaller status r_uri r_len ~subst ~metasenv k he | C.Appl [] | C.Implicit _ -> assert false | C.Meta _ -> true | C.Match (Ref.Ref (_,Ref.Ind (isinductive,_,_)),_,term,pl) -> (match term with | C.Rel m | C.Appl (C.Rel m :: _ ) when is_safe m recfuns || m = x -> if not isinductive then List.for_all (is_really_smaller status r_uri r_len ~subst ~metasenv k) pl else let ty = typeof status ~subst ~metasenv context term in let dc_ctx, dcl, start, stop = specialize_and_abstract_constrs status ~subst r_uri r_len context ty in List.for_all2 (fun p (_,dc) -> let rl = recursive_args status ~subst ~metasenv dc_ctx start stop dc in let e, k = get_new_safes status ~subst k p rl in is_really_smaller status r_uri r_len ~subst ~metasenv k e) pl dcl | _ -> List.for_all (is_really_smaller status r_uri r_len ~subst ~metasenv k) pl) | _ -> false and returns_a_coinductive status ~subst context ty = match R.whd status ~subst context ty with | C.Const (Ref.Ref (uri,Ref.Ind (false,_,_)) as ref) | C.Appl (C.Const (Ref.Ref (uri,Ref.Ind (false,_,_)) as ref)::_) -> let _, _, itl, _, _ = E.get_checked_indtys status ref in Some (uri,List.length itl) | C.Prod (n,so,de) -> returns_a_coinductive status ~subst ((n,C.Decl so)::context) de | _ -> None and type_of_constant status ((Ref.Ref (uri,_)) as ref) = let error () = raise (TypeCheckerFailure (lazy "Inconsistent cached infos in reference")) in match E.get_checked_obj status uri, ref with | (_,_,_,_,C.Inductive(isind1,lno1,tl,_)),Ref.Ref(_,Ref.Ind (isind2,i,lno2))-> if isind1 <> isind2 || lno1 <> lno2 then error (); let _,_,arity,_ = List.nth tl i in arity | (_,_,_,_,C.Inductive (_,lno1,tl,_)), Ref.Ref (_,Ref.Con (i,j,lno2)) -> if lno1 <> lno2 then error (); let _,_,_,cl = List.nth tl i in let _,_,arity = List.nth cl (j-1) in arity | (_,_,_,_,C.Fixpoint (false,fl,_)), Ref.Ref (_,Ref.CoFix i) -> let _,_,_,arity,_ = List.nth fl i in arity | (_,h1,_,_,C.Fixpoint (true,fl,_)), Ref.Ref (_,Ref.Fix (i,recno2,h2)) -> let _,_,recno1,arity,_ = List.nth fl i in if h1 <> h2 || recno1 <> recno2 then error (); arity | (_,_,_,_,C.Constant (_,_,None,ty,_)), Ref.Ref (_,Ref.Decl) -> ty | (_,h1,_,_,C.Constant (_,_,Some _,ty,_)), Ref.Ref (_,Ref.Def h2) -> if h1 <> h2 then error (); ty | _ -> raise (AssertFailure (lazy ("type_of_constant: environment/reference: " ^ Ref.string_of_reference ref))) and get_relevance status ~metasenv ~subst context t args = let ty = typeof status ~subst ~metasenv context t in let rec aux context ty = function | [] -> [] | arg::tl -> match R.whd status ~subst context ty with | C.Prod (_,so,de) -> let sort = typeof status ~subst ~metasenv context so in let new_ty = S.subst status ~avoid_beta_redexes:true arg de in (*prerr_endline ("so: " ^ status#ppterm ~subst ~metasenv:[] ~context so); prerr_endline ("sort: " ^ status#ppterm ~subst ~metasenv:[] ~context sort);*) (match R.whd status ~subst context sort with | C.Sort C.Prop -> false::(aux context new_ty tl) | C.Sort _ | C.Meta _ -> true::(aux context new_ty tl) | _ -> raise (TypeCheckerFailure (lazy (Printf.sprintf "Prod: the type %s of the source of %s is not a sort" (status#ppterm ~subst ~metasenv ~context sort) (status#ppterm ~subst ~metasenv ~context so))))) | _ -> raise (TypeCheckerFailure (lazy (Printf.sprintf "Appl: %s is not a function, it cannot be applied" (status#ppterm ~subst ~metasenv ~context (let res = List.length tl in let eaten = List.length args - res in (C.Appl (t::fst (HExtlib.split_nth eaten args)))))))) in aux context ty args ;; let typecheck_context status ~metasenv ~subst context = ignore (List.fold_right (fun d context -> begin match d with _,C.Decl t -> ignore (typeof status ~metasenv ~subst:[] context t) | name,C.Def (te,ty) -> ignore (typeof status ~metasenv ~subst:[] context ty); let ty' = typeof status ~metasenv ~subst:[] context te in if not (R.are_convertible status ~metasenv ~subst context ty' ty) then raise (AssertFailure (lazy (Printf.sprintf ( "the type of the definiens for %s in the context is not "^^ "convertible with the declared one.\n"^^ "inferred type:\n%s\nexpected type:\n%s") name (status#ppterm ~subst ~metasenv ~context ty') (status#ppterm ~subst ~metasenv ~context ty)))) end; d::context ) context []) ;; let typecheck_metasenv status metasenv = ignore (List.fold_left (fun metasenv (i,(_,context,ty) as conj) -> if List.mem_assoc i metasenv then raise (TypeCheckerFailure (lazy ("duplicate meta " ^ string_of_int i ^ " in metasenv"))); typecheck_context status ~metasenv ~subst:[] context; ignore (typeof status ~metasenv ~subst:[] context ty); metasenv @ [conj] ) [] metasenv) ;; let typecheck_subst status ~metasenv subst = ignore (List.fold_left (fun subst (i,(_,context,ty,bo) as conj) -> if List.mem_assoc i subst then raise (AssertFailure (lazy ("duplicate meta " ^ string_of_int i ^ " in substitution"))); if List.mem_assoc i metasenv then raise (AssertFailure (lazy ("meta " ^ string_of_int i ^ " is both in the metasenv and in the substitution"))); typecheck_context status ~metasenv ~subst context; ignore (typeof status ~metasenv ~subst context ty); let ty' = typeof status ~metasenv ~subst context bo in if not (R.are_convertible status ~metasenv ~subst context ty' ty) then raise (AssertFailure (lazy (Printf.sprintf ( "the type of the definiens for %d in the substitution is not "^^ "convertible with the declared one.\n"^^ "inferred type:\n%s\nexpected type:\n%s") i (status#ppterm ~subst ~metasenv ~context ty') (status#ppterm ~subst ~metasenv ~context ty)))); subst @ [conj] ) [] subst) ;; let height_of_term status tl = let h = ref 0 in let get_height (NReference.Ref (uri,_)) = let _,height,_,_,_ = NCicEnvironment.get_checked_obj status uri in height in let rec aux = function NCic.Meta (_,(_,NCic.Ctx l)) -> List.iter aux l | NCic.Meta _ -> () | NCic.Rel _ | NCic.Sort _ -> () | NCic.Implicit _ -> assert false | NCic.Const nref -> h := max !h (get_height nref) | NCic.Prod (_,t1,t2) | NCic.Lambda (_,t1,t2) -> aux t1; aux t2 | NCic.LetIn (_,s,ty,t) -> aux s; aux ty; aux t | NCic.Appl l -> List.iter aux l | NCic.Match (_,outty,t,pl) -> aux outty; aux t; List.iter aux pl in List.iter aux tl; 1 + !h ;; let height_of_obj_kind status uri ~subst = function NCic.Inductive _ | NCic.Constant (_,_,None,_,_) | NCic.Fixpoint (false,_,_) -> 0 | NCic.Fixpoint (true,ifl,_) -> let iflno = List.length ifl in height_of_term status (List.fold_left (fun l (_,_,_,ty,bo) -> let bo = debruijn status uri iflno [] ~subst bo in ty::bo::l ) [] ifl) | NCic.Constant (_,_,Some bo,ty,_) -> height_of_term status [bo;ty] ;; let typecheck_obj status (uri,height,metasenv,subst,kind) = (*height must be checked since it is not only an optimization during reduction*) let iheight = height_of_obj_kind status uri ~subst kind in if height <> iheight then raise (TypeCheckerFailure (lazy (Printf.sprintf "the declared object height (%d) is not the inferred one (%d)" height iheight))); typecheck_metasenv status metasenv; typecheck_subst status ~metasenv subst; match kind with | C.Constant (relevance,_,Some te,ty,_) -> let _ = typeof status ~subst ~metasenv [] ty in let ty_te = typeof status ~subst ~metasenv [] te in if not (R.are_convertible status ~metasenv ~subst [] ty_te ty) then raise (TypeCheckerFailure (lazy (Printf.sprintf ( "the type of the body is not convertible with the declared one.\n"^^ "inferred type:\n%s\nexpected type:\n%s") (status#ppterm ~subst ~metasenv ~context:[] ty_te) (status#ppterm ~subst ~metasenv ~context:[] ty)))); check_relevance status ~subst ~metasenv [] relevance ty (*check_relevance status ~in_type:false ~subst ~metasenv relevance te*) | C.Constant (relevance,_,None,ty,_) -> ignore (typeof status ~subst ~metasenv [] ty); check_relevance status ~subst ~metasenv [] relevance ty | C.Inductive (_, leftno, tyl, _) -> check_mutual_inductive_defs status uri ~metasenv ~subst leftno tyl | C.Fixpoint (inductive,fl,_) -> let types, kl = List.fold_left (fun (types,kl) (relevance,name,k,ty,_) -> let _ = typeof status ~subst ~metasenv [] ty in check_relevance status ~subst ~metasenv [] relevance ty; ((name,C.Decl ty)::types, k::kl) ) ([],[]) fl in let len = List.length types in let dfl, kl = List.split (List.map2 (fun (_,_,_,_,bo) rno -> let dbo = debruijn status uri len [] ~subst bo in dbo, Evil rno) fl kl) in List.iter2 (fun (_,_,x,ty,_) bo -> let ty_bo = typeof status ~subst ~metasenv types bo in if not (R.are_convertible status ~metasenv ~subst types ty_bo ty) then raise (TypeCheckerFailure (lazy ("(Co)Fix: ill-typed bodies"))) else if inductive then begin let m, context = eat_lambdas status ~subst ~metasenv types (x + 1) bo in let r_uri, r_len = let he = match List.hd context with _,C.Decl t -> t | _ -> assert false in match R.whd status ~subst (List.tl context) he with | C.Const (Ref.Ref (uri,Ref.Ind _) as ref) | C.Appl (C.Const (Ref.Ref (uri,Ref.Ind _) as ref) :: _) -> let _,_,itl,_,_ = E.get_checked_indtys status ref in uri, List.length itl | _ -> raise (TypeCheckerFailure (lazy "Fix: the recursive argument is not inductive")) in (* guarded by destructors conditions D{f,k,x,M} *) let rec enum_from k = function [] -> [] | v::tl -> (k,v)::enum_from (k+1) tl in guarded_by_destructors status r_uri r_len ~subst ~metasenv context (enum_from (x+2) kl) m end else match returns_a_coinductive status ~subst [] ty with | None -> raise (TypeCheckerFailure (lazy "CoFix: does not return a coinductive type")) | Some (r_uri, r_len) -> (* guarded by constructors conditions C{f,M} *) if not (guarded_by_constructors status ~subst ~metasenv types bo r_uri r_len len) then raise (TypeCheckerFailure (lazy ("CoFix: not guarded by constructors: " ^ status#ppobj (uri,height,metasenv,subst,kind)))) ) fl dfl ;; (* trust *) let trust = ref (fun _ -> false);; let set_trust f = trust := f let trust_obj obj = !trust obj (* web interface stuff *) let logger = ref (function (`Start_type_checking _|`Type_checking_completed _|`Type_checking_interrupted _|`Type_checking_failed _|`Trust_obj _) -> ()) ;; let set_logger f = logger := f;; let typecheck_obj status obj = let u,_,_,_,_ = obj in try !logger (`Start_type_checking u); typecheck_obj status obj; !logger (`Type_checking_completed u) with Sys.Break as e -> !logger (`Type_checking_interrupted u); raise e | e -> !logger (`Type_checking_failed u); raise e ;; E.set_typecheck_obj (fun status obj -> if trust_obj obj then let u,_,_,_,_ = obj in !logger (`Trust_obj u) else typecheck_obj status obj) ;; let _ = NCicReduction.set_get_relevance get_relevance;; let indent = ref 0;; let debug = true;; let logger = let do_indent () = String.make !indent ' ' in (function | `Start_type_checking s -> if debug then prerr_endline (do_indent () ^ "Start: " ^ NUri.string_of_uri s); incr indent | `Type_checking_completed s -> decr indent; if debug then prerr_endline (do_indent () ^ "End: " ^ NUri.string_of_uri s) | `Type_checking_interrupted s -> decr indent; if debug then prerr_endline (do_indent () ^ "Break: " ^ NUri.string_of_uri s) | `Type_checking_failed s -> decr indent; if debug then prerr_endline (do_indent () ^ "Fail: " ^ NUri.string_of_uri s) | `Trust_obj s -> if debug then prerr_endline (do_indent () ^ "Trust: " ^ NUri.string_of_uri s)) ;; (* let _ = set_logger logger ;; *) (* EOF *)