(* ||M|| This file is part of HELM, an Hypertextual, Electronic ||A|| Library of Mathematics, developed at the Computer Science ||T|| Department, University of Bologna, Italy. ||I|| ||T|| HELM is free software; you can redistribute it and/or ||A|| modify it under the terms of the GNU General Public License \ / version 2 or (at your option) any later version. \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) (* $Id$ *) type aux_comparison = XEQ | XLE | XGE | XLT | XGT | XINCOMPARABLE | XINVERTIBLE module type Blob = sig include Terms.Blob (* This order relation should be: * - stable for instantiation * - total on ground terms * *) val compare_terms : t Terms.foterm -> t Terms.foterm -> Terms.comparison val compute_unit_clause_weight : 't Terms.unit_clause -> int val compute_goal_weight : 't Terms.unit_clause -> int val name : string end type weight = int * (int * int) list;; let rec eq_foterm f x y = x == y || match x, y with | Terms.Leaf t1, Terms.Leaf t2 -> f t1 t2 | Terms.Var i, Terms.Var j -> i = j | Terms.Node l1, Terms.Node l2 -> List.for_all2 (eq_foterm f) l1 l2 | _ -> false ;; let string_of_weight (cw, mw) = let s = String.concat ", " (List.map (function (m, w) -> Printf.sprintf "(%d,%d)" m w) mw) in Printf.sprintf "[%d; %s]" cw s ;; let weight_of_term term = let vars_dict = Hashtbl.create 5 in let rec aux = function | Terms.Var i -> (try let oldw = Hashtbl.find vars_dict i in Hashtbl.replace vars_dict i (oldw+1) with Not_found -> Hashtbl.add vars_dict i 1); 0 | Terms.Leaf _ -> 1 | Terms.Node l -> List.fold_left (+) 0 (List.map aux l) in let w = aux term in let l = Hashtbl.fold (fun meta metaw resw -> (meta, metaw)::resw) vars_dict [] in let compare w1 w2 = match w1, w2 with | (m1, _), (m2, _) -> m1 - m2 in (w, List.sort compare l) (* from the smallest meta to the bigest *) ;; let compute_unit_clause_weight (_,l, _, _) = let weight_of_polynomial w m = let factor = 2 in w + factor * List.fold_left (fun acc (_,occ) -> acc+occ) 0 m in match l with | Terms.Predicate t -> let w, m = weight_of_term t in weight_of_polynomial w m | Terms.Equation (_,x,_,Terms.Lt) | Terms.Equation (x,_,_,Terms.Gt) -> let w, m = weight_of_term x in weight_of_polynomial w m | Terms.Equation (l,r,_,Terms.Eq) | Terms.Equation (l,r,_,Terms.Incomparable) | Terms.Equation (l,r,_,Terms.Invertible) -> let wl, ml = weight_of_term l in let wr, mr = weight_of_term r in weight_of_polynomial (wl+wr) (ml@mr) ;; (* UNUSED for now *) let compute_goal_weight (_,l, _, _) = let weight_of_polynomial w m = let factor = 2 in w + factor * List.fold_left (fun acc (_,occ) -> acc+occ) 0 m in match l with | Terms.Predicate t -> let w, m = weight_of_term t in weight_of_polynomial w m | Terms.Equation (l,r,_,_) -> let wl, ml = weight_of_term l in let wr, mr = weight_of_term r in let wl = weight_of_polynomial wl ml in let wr = weight_of_polynomial wr mr in - (abs (wl-wr)) ;; let compute_goal_weight = compute_unit_clause_weight;; (* Riazanov: 3.1.5 pag 38 *) (* Compare weights normalized in a new way : * Variables should be sorted from the lowest index to the highest * Variables which do not occur in the term should not be present * in the normalized polynomial *) let compare_weights (h1, w1) (h2, w2) = let rec aux hdiff (lt, gt) diffs w1 w2 = match w1, w2 with | ((var1, w1)::tl1) as l1, (((var2, w2)::tl2) as l2) -> if var1 = var2 then let diffs = (w1 - w2) + diffs in let r = Pervasives.compare w1 w2 in let lt = lt or (r < 0) in let gt = gt or (r > 0) in if lt && gt then XINCOMPARABLE else aux hdiff (lt, gt) diffs tl1 tl2 else if var1 < var2 then if lt then XINCOMPARABLE else aux hdiff (false,true) (diffs+w1) tl1 l2 else if gt then XINCOMPARABLE else aux hdiff (true,false) (diffs-w2) l1 tl2 | [], (_,w2)::tl2 -> if gt then XINCOMPARABLE else aux hdiff (true,false) (diffs-w2) [] tl2 | (_,w1)::tl1, [] -> if lt then XINCOMPARABLE else aux hdiff (false,true) (diffs+w1) tl1 [] | [], [] -> if lt then if hdiff <= 0 then XLT else if (- diffs) >= hdiff then XLE else XINCOMPARABLE else if gt then if hdiff >= 0 then XGT else if diffs >= (- hdiff) then XGE else XINCOMPARABLE else if hdiff < 0 then XLT else if hdiff > 0 then XGT else XEQ in aux (h1-h2) (false,false) 0 w1 w2 ;; (* Riazanov: p. 40, relation >>> * if head_only=true then it is not >>> but helps case 2 of 3.14 p 39 *) let rec aux_ordering b_compare ?(head_only=false) t1 t2 = match t1, t2 with (* We want to discard any identity equality. * * If we give back XEQ, no inference rule * * will be applied on this equality *) | Terms.Var i, Terms.Var j when i = j -> XEQ (* 1. *) | Terms.Var _, _ | _, Terms.Var _ -> XINCOMPARABLE (* 2.a *) | Terms.Leaf a1, Terms.Leaf a2 -> let cmp = b_compare a1 a2 in if cmp = 0 then XEQ else if cmp < 0 then XLT else XGT | Terms.Leaf _, Terms.Node _ -> XLT | Terms.Node _, Terms.Leaf _ -> XGT (* 2.b *) | Terms.Node l1, Terms.Node l2 -> let rec cmp t1 t2 = match t1, t2 with | [], [] -> XEQ | _, [] -> (* XGT *) assert false (* hd symbols were eq *) | [], _ -> (* XLT *) assert false (* hd symbols were eq *) | hd1::tl1, hd2::tl2 -> let o = aux_ordering b_compare ~head_only hd1 hd2 in if o = XEQ && not head_only then cmp tl1 tl2 else o in cmp l1 l2 ;; let compare_terms o x y = match o x y with | XINCOMPARABLE -> Terms.Incomparable | XGT -> Terms.Gt | XLT -> Terms.Lt | XEQ -> Terms.Eq | XINVERTIBLE -> Terms.Invertible | _ -> assert false ;; module NRKBO (B : Terms.Blob) = struct let name = "nrkbo" include B module Pp = Pp.Pp(B) let eq_foterm = eq_foterm B.eq;; exception UnificationFailure of string Lazy.t;; (* DUPLICATE CODE FOR TESTS (see FoUnif) *) let alpha_eq s t = let rec equiv subst s t = let s = match s with Terms.Var i -> FoSubst.lookup i subst | _ -> s and t = match t with Terms.Var i -> FoSubst.lookup i subst | _ -> t in match s, t with | s, t when eq_foterm s t -> subst | Terms.Var i, Terms.Var j when (not (List.exists (fun (_,k) -> k=t) subst)) -> let subst = FoSubst.build_subst i t subst in subst | Terms.Node l1, Terms.Node l2 -> ( try List.fold_left2 (fun subst' s t -> equiv subst' s t) subst l1 l2 with Invalid_argument _ -> raise (UnificationFailure (lazy "Inference.unification.unif")) ) | _, _ -> raise (UnificationFailure (lazy "Inference.unification.unif")) in equiv FoSubst.id_subst s t ;; let relocate maxvar varlist subst = List.fold_right (fun i (maxvar, varlist, s) -> maxvar+1, maxvar::varlist, FoSubst.build_subst i (Terms.Var maxvar) s) varlist (maxvar+1, [], subst) ;; let are_invertible l r = let varlist = (Terms.vars_of_term l)@(Terms.vars_of_term r) in let maxvar = List.fold_left max 0 varlist in let _,_,subst = relocate maxvar varlist FoSubst.id_subst in let newl = FoSubst.apply_subst subst l in let newr = FoSubst.apply_subst subst r in try (let subst = alpha_eq l newr in eq_foterm newl (FoSubst.apply_subst subst r)) with UnificationFailure _ -> false ;; let compute_unit_clause_weight = compute_unit_clause_weight;; let compute_goal_weight = compute_goal_weight;; (* Riazanov: p. 40, relation >_n *) let nonrec_kbo t1 t2 = let w1 = weight_of_term t1 in let w2 = weight_of_term t2 in match compare_weights w1 w2 with | XLE -> (* this is .> *) if aux_ordering B.compare t1 t2 = XLT then XLT else XINCOMPARABLE | XGE -> if aux_ordering B.compare t1 t2 = XGT then XGT else XINCOMPARABLE | XEQ -> let res = aux_ordering B.compare t1 t2 in if res = XINCOMPARABLE && are_invertible t1 t2 then XINVERTIBLE else res | res -> res ;; let compare_terms = compare_terms nonrec_kbo;; let profiler = HExtlib.profile ~enable:true "compare_terms(nrkbo)";; let compare_terms x y = profiler.HExtlib.profile (compare_terms x) y ;; end module KBO (B : Terms.Blob) = struct let name = "kbo" include B module Pp = Pp.Pp(B) let eq_foterm = eq_foterm B.eq;; let compute_unit_clause_weight = compute_unit_clause_weight;; let compute_goal_weight = compute_goal_weight;; (* Riazanov: p. 38, relation > *) let rec kbo t1 t2 = let aux = aux_ordering B.compare ~head_only:true in let rec cmp t1 t2 = match t1, t2 with | [], [] -> XEQ | _, [] -> XGT | [], _ -> XLT | hd1::tl1, hd2::tl2 -> let o = kbo hd1 hd2 in if o = XEQ then cmp tl1 tl2 else o in let w1 = weight_of_term t1 in let w2 = weight_of_term t2 in let comparison = compare_weights w1 w2 in match comparison with | XLE -> let r = aux t1 t2 in if r = XLT then XLT else if r = XEQ then ( match t1, t2 with | Terms.Node (_::tl1), Terms.Node (_::tl2) -> if cmp tl1 tl2 = XLT then XLT else XINCOMPARABLE | _, _ -> assert false ) else XINCOMPARABLE | XGE -> let r = aux t1 t2 in if r = XGT then XGT else if r = XEQ then ( match t1, t2 with | Terms.Node (_::tl1), Terms.Node (_::tl2) -> if cmp tl1 tl2 = XGT then XGT else XINCOMPARABLE | _, _ -> assert false ) else XINCOMPARABLE | XEQ -> let r = aux t1 t2 in if r = XEQ then ( match t1, t2 with | Terms.Var i, Terms.Var j when i=j -> XEQ | Terms.Node (_::tl1), Terms.Node (_::tl2) -> cmp tl1 tl2 | _, _ -> XINCOMPARABLE ) else r | res -> res ;; let compare_terms = compare_terms kbo;; let profiler = HExtlib.profile ~enable:true "compare_terms(kbo)";; let compare_terms x y = profiler.HExtlib.profile (compare_terms x) y ;; end module LPO (B : Terms.Blob) = struct let name = "lpo" include B module Pp = Pp.Pp(B) let eq_foterm = eq_foterm B.eq;; let compute_unit_clause_weight = compute_unit_clause_weight;; let compute_goal_weight = compute_goal_weight;; let rec lpo s t = match s,t with | s, t when eq_foterm s t -> XEQ | Terms.Var _, Terms.Var _ -> XINCOMPARABLE | _, Terms.Var i -> if (List.mem i (Terms.vars_of_term s)) then XGT else XINCOMPARABLE | Terms.Var i,_ -> if (List.mem i (Terms.vars_of_term t)) then XLT else XINCOMPARABLE | Terms.Node (hd1::tl1), Terms.Node (hd2::tl2) -> let rec ge_subterm t ol = function | [] -> (false, ol) | x::tl -> let res = lpo x t in match res with | XGT | XEQ -> (true,res::ol) | o -> ge_subterm t (o::ol) tl in let (res, l_ol) = ge_subterm t [] tl1 in if res then XGT else let (res, r_ol) = ge_subterm s [] tl2 in if res then XLT else begin let rec check_subterms t = function | _,[] -> true | o::ol,_::tl -> if o = XLT then check_subterms t (ol,tl) else false | [], x::tl -> if lpo x t = XLT then check_subterms t ([],tl) else false in match aux_ordering B.compare hd1 hd2 with | XGT -> if check_subterms s (r_ol,tl2) then XGT else XINCOMPARABLE | XLT -> if check_subterms t (l_ol,tl1) then XLT else XINCOMPARABLE | XEQ -> (try let lex = List.fold_left2 (fun acc si ti -> if acc = XEQ then lpo si ti else acc) XEQ tl1 tl2 in (match lex with | XGT -> if List.for_all (fun x -> lpo s x = XGT) tl2 then XGT else XINCOMPARABLE | XLT -> if List.for_all (fun x -> lpo x t = XLT) tl1 then XLT else XINCOMPARABLE | o -> o) with Invalid_argument _ -> (* assert false *) XINCOMPARABLE) | XINCOMPARABLE -> XINCOMPARABLE | _ -> assert false end | _,_ -> aux_ordering B.compare s t ;; let compare_terms = compare_terms lpo;; let profiler = HExtlib.profile ~enable:true "compare_terms(lpo)";; let compare_terms x y = profiler.HExtlib.profile (compare_terms x) y ;; end