(* ||M|| This file is part of HELM, an Hypertextual, Electronic ||A|| Library of Mathematics, developed at the Computer Science ||T|| Department, University of Bologna, Italy. ||I|| ||T|| HELM is free software; you can redistribute it and/or ||A|| modify it under the terms of the GNU General Public License \ / version 2 or (at your option) any later version. \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) (* $Id: orderings.ml 9869 2009-06-11 22:52:38Z denes $ *) let print s = prerr_endline (Lazy.force s) ;; let noprint s = ();; let debug = noprint;; let monster = 100;; module type Paramod = sig type t type input type szsontology = | Unsatisfiable of (t Terms.bag * int * t Terms.substitution * int list) list | GaveUp | Error of string | Timeout of int * t Terms.bag type bag = t Terms.bag * int type state val empty_state : state val bag_of_state : state -> bag val replace_bag: state -> bag -> state val mk_passive : bag -> input * input -> bag * t Terms.unit_clause val mk_goal : bag -> input * input -> bag * t Terms.unit_clause val forward_infer_step : state -> t Terms.unit_clause -> int -> state val goal_narrowing : int -> int -> float option -> state -> state val paramod : useage:bool -> max_steps:int -> ?timeout:float -> bag -> g_passives:t Terms.unit_clause list -> passives:t Terms.unit_clause list -> szsontology val demod : state -> input* input -> szsontology val fast_eq_check : state -> input* input -> szsontology val nparamod : useage:bool -> max_steps:int -> ?timeout:float -> state -> input* input -> szsontology end module Paramod (B : Orderings.Blob) = struct module Pp = Pp.Pp (B) module FU = FoUnif.Founif(B) module IDX = Index.Index(B) module Sup = Superposition.Superposition(B) module Utils = FoUtils.Utils(B) module Order = B module WeightOrderedPassives = struct type t = B.t Terms.passive_clause let compare = Utils.compare_passive_clauses_weight end module AgeOrderedPassives = struct type t = B.t Terms.passive_clause let compare = Utils.compare_passive_clauses_age end module WeightPassiveSet = Set.Make(WeightOrderedPassives) module AgePassiveSet = Set.Make(AgeOrderedPassives) type t = B.t type input = B.input type bag = B.t Terms.bag * int type szsontology = | Unsatisfiable of (B.t Terms.bag * int * B.t Terms.substitution * int list) list | GaveUp | Error of string | Timeout of int * B.t Terms.bag exception Stop of szsontology type state = t Terms.bag * int * Index.Index(B).active_set * (IDX.DT.t * WeightPassiveSet.t * AgePassiveSet.t) * B.t Terms.unit_clause list * (WeightPassiveSet.t * AgePassiveSet.t) let empty_state = Terms.empty_bag, 0, ([],IDX.DT.empty), (IDX.DT.empty,WeightPassiveSet.empty,AgePassiveSet.empty), [], (WeightPassiveSet.empty,AgePassiveSet.empty) ;; let bag_of_state (bag,n,_,_,_,_) = bag,n ;; let replace_bag (_,_,a,b,c,d) (bag,n) = bag,n,a,b,c,d ;; let add_passive_clause ?(no_weight=false) (passive_t,passives_w,passives_a) cl = let pcl = if no_weight then (0,cl) else Utils.mk_passive_clause cl in IDX.index_unit_clause passive_t cl, WeightPassiveSet.add pcl passives_w, AgePassiveSet.add pcl passives_a ;; let add_passive_goal ?(no_weight=false) (passives_w,passives_a) g = let g = if no_weight then (0,g) else Utils.mk_passive_goal g in WeightPassiveSet.add g passives_w, AgePassiveSet.add g passives_a ;; let remove_passive_clause (passive_t,passives_w,passives_a) cl = let passive_t = IDX.remove_unit_clause passive_t (snd cl) in let passives_w = WeightPassiveSet.remove cl passives_w in let passives_a = AgePassiveSet.remove cl passives_a in passive_t,passives_w,passives_a ;; let add_passive_clauses ?(no_weight=false) = List.fold_left (add_passive_clause ~no_weight) ;; let add_passive_goals ?(no_weight=false) (passives_w,passives_a) new_clauses = let new_clauses_w,new_clauses_a = List.fold_left (add_passive_goal ~no_weight) (WeightPassiveSet.empty,AgePassiveSet.empty) new_clauses in (WeightPassiveSet.union new_clauses_w passives_w, AgePassiveSet.union new_clauses_a passives_a) ;; let remove_passive_goal (passives_w,passives_a) cl = let passives_w = WeightPassiveSet.remove cl passives_w in let passives_a = AgePassiveSet.remove cl passives_a in passives_w,passives_a ;; let is_passive_set_empty (_,passives_w,passives_a) = if (WeightPassiveSet.is_empty passives_w) then begin assert (AgePassiveSet.is_empty passives_a); true end else begin assert (not (AgePassiveSet.is_empty passives_a)); false end ;; let is_passive_g_set_empty (passives_w,passives_a) = if (WeightPassiveSet.is_empty passives_w) then begin assert (AgePassiveSet.is_empty passives_a); true end else begin assert (not (AgePassiveSet.is_empty passives_a)); false end ;; let passive_set_cardinal (_,passives_w,_) = WeightPassiveSet.cardinal passives_w ;; let g_passive_set_cardinal (passives_w,_) = WeightPassiveSet.cardinal passives_w ;; let passive_empty_set = (IDX.DT.empty,WeightPassiveSet.empty,AgePassiveSet.empty) ;; let g_passive_empty_set = (WeightPassiveSet.empty,AgePassiveSet.empty) ;; let pick_min_passive ~use_age (_,passives_w,passives_a) = if use_age then AgePassiveSet.min_elt passives_a else WeightPassiveSet.min_elt passives_w ;; let pick_min_g_passive ~use_age (passives_w,passives_a) = if use_age then AgePassiveSet.min_elt passives_a else WeightPassiveSet.min_elt passives_w ;; let mk_unit_clause bag maxvar (t,ty) = let c, maxvar = Utils.mk_unit_clause maxvar (B.embed ty) (B.embed t) in let bag, c = Terms.add_to_bag c bag in (bag, maxvar), c ;; let mk_clause bag maxvar (t,ty) = let (proof,ty) = B.saturate t ty in let c, maxvar = Utils.mk_unit_clause maxvar ty proof in let bag, c = Terms.add_to_bag c bag in (bag, maxvar), c ;; let mk_passive (bag,maxvar) = mk_clause bag maxvar;; let mk_goal (bag,maxvar) = mk_clause bag maxvar;; let initialize_goal (bag,maxvar,actives,passives,_,_) t = let (bag,maxvar), g = mk_unit_clause bag maxvar t in let g_passives = g_passive_empty_set in (* if the goal is not an equation we returns an empty passive set *) let g_passives = if Terms.is_eq_clause g then add_passive_goal g_passives g else g_passives in (bag,maxvar,actives,passives,[],g_passives) (* TODO : global age over facts and goals (without comparing weights) *) let select ~use_age passives g_passives = if is_passive_set_empty passives then begin if (is_passive_g_set_empty g_passives) then raise (Stop GaveUp) (* we say we are incomplete *) else let g_cl = pick_min_g_passive ~use_age:use_age g_passives in (true,g_cl,passives,remove_passive_goal g_passives g_cl) end else let cl = pick_min_passive ~use_age:use_age passives in if is_passive_g_set_empty g_passives then (false,cl,remove_passive_clause passives cl,g_passives) else let g_cl = pick_min_g_passive ~use_age:use_age g_passives in let (id1,_,_,_),(id2,_,_,_) = snd cl, snd g_cl in let cmp = if use_age then id1 <= id2 else fst cl <= fst g_cl in if cmp then (false,cl,remove_passive_clause passives cl,g_passives) else (true,g_cl,passives,remove_passive_goal g_passives g_cl) ;; let backward_infer_step bag maxvar actives passives g_actives g_passives g_current iterno = (* superposition left, simplifications on goals *) debug (lazy "infer_left step..."); let bag, maxvar, new_goals = Sup.infer_left bag maxvar g_current actives in debug (lazy "Performed infer_left step"); let bag = Terms.replace_in_bag (g_current,false,iterno) bag in bag, maxvar, actives, passives, g_current::g_actives, (add_passive_goals g_passives new_goals) ;; let pp_clauses actives passives = let actives_l, _ = actives in let passive_t,_,_ = passives in let wset = IDX.elems passive_t in ("Actives :" ^ (String.concat ";\n" (List.map Pp.pp_unit_clause actives_l))) ^ ("Passives:" ^(String.concat ";\n" (List.map (fun (_,cl) -> Pp.pp_unit_clause cl) (IDX.ClauseSet.elements wset)))) ;; let forward_infer_step ((bag,maxvar,actives,passives,g_actives,g_passives) as s) current iterno = (* forward step *) (* e = select P * * e' = demod A e * * A' = demod [e'] A * * A'' = A' + e' * * e'' = fresh e' * * new = supright e'' A'' * * new'= demod A'' new * * P' = P + new' *) debug (lazy ("Forward infer step for "^ (Pp.pp_unit_clause current))); debug (lazy("Number of actives : " ^ (string_of_int (List.length (fst actives))))); noprint (lazy (pp_clauses actives passives)); let _ = noprint (lazy ("Actives before simplification:" ^ (String.concat ";\n" (List.map Pp.pp_unit_clause (fst actives))))) in match Sup.keep_simplified current actives bag maxvar with | _,None -> debug(lazy("None")); s | bag,Some (current,actives) -> debug (lazy ("simplified to " ^ (Pp.pp_unit_clause current))); let _ = noprint (lazy ("Actives after simplification:" ^ (String.concat ";\n" (List.map Pp.pp_unit_clause (fst actives))))) in let bag, maxvar, actives, new_clauses = Sup.infer_right bag maxvar current actives in debug (lazy ("New clauses :" ^ (String.concat ";\n" (List.map Pp.pp_unit_clause new_clauses)))); debug (lazy "Demodulating goals with actives..."); (* keep goals demodulated w.r.t. actives and check if solved *) let bag, g_actives = List.fold_left (fun (bag,acc) c -> match Sup.simplify_goal ~no_demod:false maxvar (snd actives) bag acc c with | None -> bag, acc | Some (bag,c1) -> bag,if c==c1 then c::acc else c::c1::acc) (bag,[]) g_actives in let ctable = IDX.index_unit_clause IDX.DT.empty current in let bag, maxvar, new_goals = List.fold_left (fun (bag,m,acc) g -> let bag, m, ng = Sup.infer_left bag m g ([current],ctable) in bag,m,ng@acc) (bag,maxvar,[]) g_actives in let bag = Terms.replace_in_bag (current,false,iterno) bag in (* prerr_endline (Pp.pp_bag bag); *) bag, maxvar, actives, add_passive_clauses passives new_clauses, g_actives, add_passive_goals g_passives new_goals ;; let debug_status (_,_,actives,passives,g_actives,g_passives) = lazy ((Printf.sprintf "Number of active goals : %d\n" (List.length g_actives)) ^ (Printf.sprintf "Number of passive goals : %d\n" (g_passive_set_cardinal g_passives)) ^ (Printf.sprintf "Number of actives : %d\n" (List.length (fst actives))) ^ (Printf.sprintf "Number of passives : %d\n" (passive_set_cardinal passives))) ;; (* we just check if any of the active goals is subsumed by a passive clause, or if any of the passive goal is subsumed by an active or passive clause *) let last_chance (bag,maxvar,actives,passives,g_actives,g_passives) = debug (lazy("Last chance " ^ string_of_float (Unix.gettimeofday()))); let actives_l, active_t = actives in let passive_t,wset,_ = passives in let _ = noprint (lazy ("Actives :" ^ (String.concat ";\n" (List.map Pp.pp_unit_clause actives_l)))) in let wset = IDX.elems passive_t in let _ = noprint (lazy ("Passives:" ^(String.concat ";\n" (List.map (fun (_,cl) -> Pp.pp_unit_clause cl) (IDX.ClauseSet.elements wset))))) in let g_passives = WeightPassiveSet.fold (fun (_,x) acc -> if List.exists (Sup.are_alpha_eq x) g_actives then acc else x::acc) (fst g_passives) [] in ignore (List.iter (fun x -> ignore (debug (lazy("ckecking goal vs a: " ^ Pp.pp_unit_clause x)); Sup.simplify_goal ~no_demod:true maxvar active_t bag [] x)) g_passives); ignore (List.iter (fun x -> ignore (debug (lazy("ckecking goal vs p: " ^ Pp.pp_unit_clause x)); Sup.simplify_goal ~no_demod:true maxvar passive_t bag [] x)) (g_actives@g_passives)); raise (Stop (Timeout (maxvar,bag))) let check_timeout = function | None -> false | Some timeout -> Unix.gettimeofday () > timeout let rec given_clause ~useage bag maxvar iterno weight_picks max_steps timeout actives passives g_actives g_passives = let iterno = iterno + 1 in if iterno = max_steps || check_timeout timeout then last_chance (bag,maxvar,actives,passives,g_actives,g_passives) else let use_age = useage && (weight_picks = (iterno / 6 + 1)) in let weight_picks = if use_age then 0 else weight_picks+1 in let rec aux_select bag (passives:IDX.DT.t * WeightPassiveSet.t * AgePassiveSet.t) g_passives = let backward,(weight,current),passives,g_passives = select ~use_age passives g_passives in if use_age && weight > monster then let bag,cl = Terms.add_to_bag current bag in if backward then aux_select bag passives (add_passive_goal g_passives cl) else aux_select bag (add_passive_clause passives cl) g_passives else let bag = Terms.replace_in_bag (current,false,iterno) bag in if backward then let _ = debug (lazy("Selected goal : " ^ Pp.pp_unit_clause current)) in match Sup.simplify_goal ~no_demod:false maxvar (snd actives) bag g_actives current with | None -> aux_select bag passives g_passives | Some (bag,g_current) -> backward_infer_step bag maxvar actives passives g_actives g_passives g_current iterno else let _ = debug (lazy("Selected fact : " ^ Pp.pp_unit_clause current)) in if Sup.orphan_murder bag (fst actives) current then let _ = debug (lazy "Orphan murdered") in let bag = Terms.replace_in_bag (current,true,iterno) bag in aux_select bag passives g_passives else let s = bag,maxvar,actives,passives,g_actives,g_passives in let s1 = forward_infer_step s current iterno in if s == s1 then aux_select bag passives g_passives else s1 in (*prerr_endline "Active table :"; (List.iter (fun x -> prerr_endline (Pp.pp_unit_clause x)) (fst actives)); *) let (bag,maxvar,actives,passives,g_actives,g_passives) as status = aux_select bag passives g_passives in debug (debug_status status); given_clause ~useage bag maxvar iterno weight_picks max_steps timeout actives passives g_actives g_passives ;; let check_and_infer ~no_demod iterno status current = let bag,maxvar,actives,passives,g_actives,g_passives = status in match Sup.simplify_goal ~no_demod maxvar (snd actives) bag g_actives current with | None -> debug (lazy "None"); status | Some (bag,g_current) -> let _ = debug (lazy("Infer on goal : " ^ Pp.pp_unit_clause g_current)) in backward_infer_step bag maxvar actives passives g_actives g_passives g_current iterno (* similar to given_clause, but it merely works on goals, in parallel, at each iteration *) let rec goal_narrowing iterno max_steps timeout status = debug (debug_status status); let iterno = iterno + 1 in if iterno = max_steps || check_timeout timeout then last_chance status else let _,_,_,_,_,g_passives = status in let passive_goals = WeightPassiveSet.elements (fst g_passives) in let newstatus = List.fold_left (fun acc g -> let bag,maxvar,actives,passives,g_actives,g_passives = acc in let g_passives = remove_passive_goal g_passives g in let current = snd g in let _ = debug (lazy("Selected goal gn: " ^ Pp.pp_unit_clause current)) in (* we work both on the original goal and the demodulated one*) let acc = check_and_infer ~no_demod:false iterno acc current in check_and_infer ~no_demod:true iterno acc current) status passive_goals in goal_narrowing iterno max_steps timeout newstatus let compute_result bag i subst = let l = let rec traverse ongoal (accg,acce) i = match Terms.get_from_bag i bag with | (id,_,_,Terms.Exact _),_,_ -> if ongoal then [i],acce else if (List.mem i acce) then accg,acce else accg,acce@[i] | (_,_,_,Terms.Step (_,i1,i2,_,_,_)),_,_ -> if (not ongoal) && (List.mem i acce) then accg,acce else let accg,acce = traverse false (traverse ongoal (accg,acce) i1) i2 in if ongoal then i::accg,acce else accg,i::acce in let gsteps,esteps = traverse true ([],[]) i in (List.rev esteps)@gsteps in debug (lazy ("steps: " ^ (string_of_int (List.length l)))); let max_w = List.fold_left (fun acc i -> let (cl,_,_) = Terms.get_from_bag i bag in max acc (Order.compute_unit_clause_weight cl)) 0 l in debug (lazy ("Max weight : " ^ (string_of_int max_w))); (* List.iter (fun id -> let ((_,lit,_,proof as cl),d,it) = Terms.get_from_bag id bag in if d then prerr_endline (Printf.sprintf "Id : %d, selected at %d, weight %d,disc, by %s" id it (Order.compute_unit_clause_weight cl) (Pp.pp_proof_step proof)) else prerr_endline (Printf.sprintf "Id : %d, selected at %d, weight %d by %s" id it (Order.compute_unit_clause_weight cl) (Pp.pp_proof_step proof))) l;*) debug (lazy ("Proof:" ^ (String.concat "\n" (List.map (fun x -> let cl,_,_ = Terms.get_from_bag x bag in Pp.pp_unit_clause cl) l)))); Unsatisfiable [ bag, i, subst, l ] let paramod ~useage ~max_steps ?timeout (bag,maxvar) ~g_passives ~passives = let _initial_timestamp = Unix.gettimeofday () in let passives = add_passive_clauses ~no_weight:true passive_empty_set passives in let g_passives = add_passive_goals ~no_weight:true g_passive_empty_set g_passives in let g_actives = [] in let actives = [], IDX.DT.empty in try given_clause ~useage ~noinfer:false bag maxvar 0 0 max_steps timeout actives passives g_actives g_passives with | Sup.Success (bag, _, (i,_,_,_),subst) -> compute_result bag i subst | Stop (Unsatisfiable _) -> Error "solution found!" | Stop o -> o ;; let demod s goal = let bag,maxvar,actives,passives,g_actives,g_passives = s in let (bag,maxvar), g = mk_goal (bag,maxvar) goal in let bag, ((i,_,_,_) as g1) = Sup.demodulate bag g (snd actives) in if g1 = g then GaveUp else compute_result bag i [] (* if Terms.is_eq_clause g then else GaveUp *) let fast_eq_check s goal = let (_,_,_,_,_,g_passives) as s = initialize_goal s goal in if is_passive_g_set_empty g_passives then Error "not an equation" else try goal_narrowing 0 2 None s with | Sup.Success (bag, _, (i,_,_,_),subst) -> compute_result bag i subst | Stop (Unsatisfiable _) -> Error "solution found!" | Stop o -> o ;; let nparamod ~useage ~max_steps ?timeout s goal = let bag,maxvar,actives,passives,g_actives,g_passives = initialize_goal s goal in if is_passive_g_set_empty g_passives then Error "not an equation" else try given_clause ~useage ~noinfer:false bag maxvar 0 0 max_steps timeout actives passives g_actives g_passives with | Sup.Success (bag, _, (i,_,_,_),subst) -> compute_result bag i subst | Stop (Unsatisfiable _) -> Error "solution found!" | Stop o -> o ;; end