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1 Introduction

Lebesgue’s dominated convergence theorem represents an important milestone
for the development of measure theory and probability theory. It provides suffi-
cient conditions under which two limit processes, namely Lebesgue integration
and pointwise convergence, commute. Classically, this theorem shows the su-
periority of the Lebesgue integral over the Riemann one for many theoretical
purposes.

The most natural setting for this theorem is Lebesgue’s integration theory of
real or complex valued functions over a measure space. However, this is not
the most general setting where the core of the theorem can be proved. Nor
it is the most convenient setting to understand the role played by its side
conditions.

A more satisfactory setting is that of topological Riesz spaces [5]. A Riesz
space is an ordered vector space where the order relation is induced by a lat-
tice structure. Integrable real valued functions over measure spaces form a
Riesz space, which can be endowed with the topology induced by the integral
norm. Since in a Riesz space functions are abstracted as points, pointwise
convergence of sequences of function is abstracted by order convergence with
respect to the order relation. Thus, in this setting, the theorem provides suffi-
cient conditions under which two limit processes, namely the topological limit
and order convergence, commute. The detailed proof of this fact can be found,
for instance, in [5].

One important condition for the theorem to hold is order continuity that
ties order convergence with topological convergence in the case of monotone
sequences: an → a (according to the topology) whenever an ↑ a (an is a
given increasing sequence whose supremum is a). In the setting of integrable
real valued functions over a measure space, this condition corresponds to the
statement of the Beppo Levi theorem, whose proof is quite deep and relies on
the definition of Lebesgue’s integral. Moreover, Beppo Levi’s theorem fails for
the Riemann integral. Thus we may claim that it is Beppo Levi’s theorem,
and not Lebesgue’s, that shows the superiority of the Lebesgue integral over
the Riemann integral. Indeed, once order continuity is assumed, the proof
of Lebesgue’s dominated convergence theorem becomes very easy and almost
routine.

Hans Weber, during his studies on the generalisation of topological Riesz
spaces and topological boolean rings [8], realized that even the setting of topo-
logical Riesz spaces is not the most general one where Lebesgue’s dominated
convergence theorem can be stated and proved. Indeed, in [9] he proves the
theorem in the setting of uniform lattices, namely lattices endowed with a
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compatible uniform structure. With respect to a topological Riesz space, a
uniform lattice need not be a vector space. Moreover, Weber refines the order
continuity condition into simpler conditions (properties (σ) and exhaustiv-
ity), and superbly clarifies in this abstract setting where all conditions for the
theorem on measure spaces come from (in particular the property of being
dominated).

All the proofs and settings discussed so far are classical, but we are interested
in obtaining a constructive proof of the theorem in Bishop’s style in order to
formalise it with an interactive theorem prover, as a first step for the formali-
sation of measure theory and probability theory. Moreover, we would like our
proof to be stated in the most general setting where a constructive proof can
be given.

Lebesgue’s dominated convergence theorem has already been proved construc-
tively by many authors. Chapter 6 of [2] is a thorough study of constructive
integration theory, and it comprises a proof of the theorem in the setting of
integration spaces. An integration space is a sort of measurable space where
a measure has already been fixed in advance. This is constructively necessary
since it is not constructively true that every measurable set can be measured
by any measure. Since integration spaces (and even more measure spaces, in-
troduced at the end of the chapter) are the best constructive counterparts of
measure spaces, the proof of Bishop and Bridges is the counterpart to the clas-
sical proof in the setting of real valued functions on measure spaces. Instead,
we are interested in a more general proof.

Spitters’ PhD. thesis presents a study of integration theory in Bishop’s style
in the context of Riesz spaces. In [6,7] he proposes two different proofs of
Lebesgue’s dominated convergence theorem under slightly different assump-
tions. In particular, the proof in the second paper is especially valuable since
it avoids the axiom of choice and any impredicative construction. In principle,
these proofs should correspond to the classical proofs for Riesz spaces. How-
ever, we claim that what is called Lebesgue’s dominated convergence theorem
in Spitters’ work is actually the proof of one of its corollaries, at least classi-
cally weaker than the theorem itself. Moreover, we think that the “spirit” of
the classical proof is lost in Spitters’ analysis: he still provides sufficient condi-
tions under which two limit processes commute, but those are not topological
convergence and order convergence. Instead, he considers convergence in norm
and convergence in measure, thus avoiding any reference to order convergence
and, consequently, to order continuity. The resulting proof is thus very differ-
ent, both in spirit and technically, from Fremlin’s one.

Spitters’ proof cannot be adapted in the most general setting of uniform spaces
since it is given for an archimedean lattice vector space that is also an alge-
bra with a multiplicative unit. In fairness to him, it should be admitted that,
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at least in measure theory, all interesting models are Riesz spaces with a
rich structure. Moreover, constructively an order relation often depends on a
(pseudo-)metric or a uniformity. Finally, replacing convergence almost every-
where with convergence in measure cannot be avoided in point-free topology
(see [7], Sect. 8).

In this paper we provide a constructive proof in Bishop’s style of Lebesgue’s
dominated convergence theorem in the very general setting of ordered uniform
spaces, i.e. ordered sets equipped with a compatible uniform space structure.
Our proofs generalise their counterparts given by Weber, both in the sense
that we weaken the underlying structure, and in the sense that we use only
intuitionistic logic. They are more general than Fremlin’s (and Spitters’) ones
since we only assume an ordered uniform space. Of course, such a drastic
simplification of the underlying structure has been possible since we are only
interested in the (constructive) analysis of Lebesgue’s theorem, and not in a
thorough theory of integration.

In Section 2 we recall the basic constructive theory (in Bishop’s style) of
partial orders (mainly inspired by [1]) and uniform spaces (also investigated
in [3]). Section 3 is devoted to ordered uniform spaces and the proof of two
versions of Lebesgue’s dominated convergence theorem, respectively in the
setting of uniform spaces (with property (σ)) whose restrictions to intervals
are exhaustive, and in the setting of uniform spaces whose restrictions to
intervals are order continuous. Neither version implies the other. Thus, in
Section 5, we compare the properties (σ), order continuity and exhaustivity.
Before that, in Section 4 we show that Weber’s lattice uniformities are models
of ordered uniform spaces.

2 Preliminaries

2.1 Logic

Our proofs are carried out in Bishop’s style mathematics, that is standard
mathematics developed with intuitionistic logic [2]. Moreover, we strive to
avoid impredicative constructions. In particular, instead of working with uni-
formities defined as families of subsets satisfying the usual conditions, we
prefer to work with set indexed bases, which is equivalent in the impredicative
setting. Moreover, we restrict ourselves only to constructions that preserve set
indexing, and we avoid axioms of choice.

We refrain from adopting a completely point-free approach by substituting
formal basic entourages for set indexed basic entourages and a “forces” relation
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for membership. Moreover, we assume that the carriers of our structures form
a set. However, in many interesting models we are interested in, the carrier is
likely to be just a class. Thus, instantiating our results (as well as Spitters’)
to these models in a predicative setting may require additional work.

2.2 Ordered sets

Definition 2.1 (Ordered set) An ordered set (C,�) is a data type C to-
gether with a propositional operation 1 � (called excess [1]) such that the fol-
lowing properties hold:

(1) Co-reflexivity: ∀x : C.¬(x � x)
(2) Co-transitivity: ∀x, y, z : C.x � y ⇒ x � z ∨ z � y

As in the classical case, if � is an excess operation, the same holds for �−1.
This allows to omit dualized definitions and statements in the sequel.

Definition 2.2 (Apartness, equality, less or equal) Let (C,�) be an or-
dered set.

(1) x 6= y iff x � y ∨ y � x.
(2) x = y iff ¬(x 6= y).
(3) x ≤ y iff ¬(x � y).

(C, 6=) endowed with the equality relation induced by � is a set in Bishop’s
terminology. Moreover, the excess and less or equal propositional operations
are relations w.r.t. the equality. From the co-reflexivity and co-transitivity
properties of � it immediately follows reflexivity and transitivity of ≤ and =,
and co-reflexivity and co-transitivity of 6=.

Lemma 2.3 Let (C,�) be an ordered set and a, b, a′, b′ ∈ C such that a � b,
a ≤ a′, b′ ≤ b. Then a′ � b′.

Proof. By co-transitivity applied to the hypothesis a � b we have a � a′∨a′ �
b. Since a ≤ a′ by hypothesis, we have a′ � b. By co-transitivity once more,
we have a′ � b′ or b′ � b. The latter cannot be since b′ ≤ b. 2

Definition 2.4 (Strong supremum) Let (C,�) be an ordered set and (ai)
a sequence in C. a ∈ C is a strong supremum of (ai) if ∀i ∈ N.ai ≤ a and

1 We call C a data type and not a set since we will ignore its equality. Correspond-
ingly, we require � to be only a propositional operation, in Bishop’s sense, and not
a relation, since we are not interested in the preservation of any equivalence relation
on C. Any ordered set will turn out to be a set with an excess relation when we will
induce an equality on C starting from the excess propositional operation.
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∀b ∈ C.a � b⇒ ∃i ∈ N.ai � b.

This definition is a restriction to sequences of Baroni’s definition of strong
supremum [1]. This suffices for our aim and it also simplifies the quest for
models.

A strong supremum, when it exists, is unique. More than this, a strong supre-
mum is necessary a weak supremum, i.e. the least upper bound of the sequence:

Fact 2.5 Let (C,�) be an ordered set, (ai) a sequence in C and a ∈ C the
strong supremum of (ai). Then for all b ∈ C such that ai ≤ b for all i ∈ N, we
have a ≤ b.

We write ai ↑ a when (ai) is an increasing sequence, whose strong supremum
is a.

Lemma 2.6 Let (C,�) be an ordered set and (mn) a strictly increasing se-
quence of natural numbers. If a and (an) are in C and an ↑ a, then amn ↑ a.

Proof. Obviously, for all n we have amn ≤ a since ai ≤ a for any i. We need
to prove ∀b ∈ C.a � b ⇒ ∃i ∈ N.ami

� b. Fix b ∈ C such that a � b. Since
an ↑ a, by definition of strong supremum there exists n̄ ∈ N such that an̄ � b.
Since (an) is increasing, ∀i ≥ n̄.an̄ ≤ ai. By Lemma 2.3, ∀i ≥ n̄.ai � b. Since
(mn) is a strictly increasing sequence of natural numbers, it is easy to prove
by induction that mn̄ ≥ n̄ and therefore amn̄ � b. 2

Definition 2.7 (Order convergence) Let (C,�) be an ordered set and a
and (ai) in C. We say that (ai) order converges to a (written ai

o→ a) iff there
exist an increasing sequence (li) and a decreasing sequence (ui) in C such that
li ↑ a and ui ↓ a and for all i ∈ N the strong infimum of (ai+n)n∈N is li and
the strong supremum is ui.

Definition 2.8 (Segment) Let (C,�) be an ordered set and a, b ∈ C. The
segment [a, b] is the set {x|a ≤ x and x ≤ b}.

Clearly, the restriction of an ordered set to a segment is itself canonically
endowed with an order structure. Moreover, the following lemma shows that
strong suprema are preserved.

Lemma 2.9 Let (C,�) be an ordered set, l, u ∈ C and (ai) and a in C∩ [l, u].
If ai ↑ a in C, then ai ↑ a in C ∩ [l, u].

Proof. Obviously (ai) is increasing and a is an upper bound of a also in
C ∩ [l, u]. Let b ∈ C ∩ [l, u] such that a � b in C ∩ [l, u]. Then a � b also in C
and by definition of strong supremum in C there exists i ∈ N such that ai � b
in C. So it does also in C ∩ [l, u]. 2
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Definition 2.10 (Convex set) Let (C,�) be an ordered set. We say that a
set U ⊆ C × C is convex iff ∀(a, b) ∈ U.a ≤ b⇒ [a, b]2 ⊆ U .

Our definition of convex set is a slight restriction of the usual one (see, for
instance, [8]) on the cartesian product C × C (endowed with the product
order).

The following principle of upper locatedness for sequences always holds clas-
sically.

Definition 2.11 (Upper locatedness) Let (C,�) be an ordered set. The
sequence (ai) is upper located [1] if ∀x, y ∈ C.y � x⇒ (∃i ∈ N.ai � x)∨ (∃b ∈
C.y � b ∧ ∀i ∈ N.ai ≤ b).

Lemma 2.12 Let (C,�) be an ordered set and (ai) and a in C such that
ai ↑ a. Then (ai) is upper located in C.

Proof. Fix x, y ∈ C such that y � x. We need to prove (∃i ∈ N.ai � x)∨(∃b ∈
C.y � b ∧ ∀i ∈ N.ai ≤ b). By co-transitivity, either y � a or a � x. In the
first case, we prove the right hand side of the thesis by taking a for b. In the
second case, by definition of strong supremum, there exists i ∈ N such that
ai � x. 2

2.3 Uniform spaces

Definition 2.13 (Uniform space) A uniform space (C, 6=,Φ) is a set (C, 6=)
equipped with an inhabited family Φ (called uniformity base) of subsets of the
cartesian product C×C (called basic entourages) with the following properties:

(1) ∀U ∈ Φ.{(x, y)|¬(x 6= y) ∈ C} ⊆ U
(2) ∀U, V ∈ Φ.∃W ∈ Φ.W ⊆ U ∩ V
(3) ∀U ∈ Φ.∃V ∈ Φ.V ◦ V ⊆ U
(4) ∀U ∈ Φ.U = U−1

Some authors do not require entourages to be symmetric, replacing property
(4) above with the following: ∀U ∈ Φ.U−1 ∈ Φ. Our choice allows some tech-
nical simplifications and is adopted, for instance, by Engelking in [4].

The usual definition of uniform spaces is in terms of (not necessarily basic)
entourages. An entourage is any superset of some basic entourage. We do not
follow this approach since the family of all entourages is necessarily a proper
class in an impredicative setting. Indeed, the class Φ of all entourages is closed
w.r.t. the following property: ∀U ∈ Φ.∀V ∈ 2C×C .U ⊆ V ⇒ V ∈ Φ where the
quantification of V is on the powerset of the C×. On the contrary, to work
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in a predicative setting it is sufficient to assume that the class Φ of all basic
entourages is set indexed and that all quantifications in the definition of Φ are
on the set of indexes. In what follows, we will tacitly assume this.

In [3], Bridges and Vı̂ţă introduce a constructive version of uniform spaces
that adds to the usual definition the new condition ∀U ∈ Φ.∃V ∈ Φ.∀x ∈
C ×C.(x ∈ U ∨x 6∈ V ), always classically valid. The condition is not required
here.

Definition 2.14 (Cauchy sequence) A sequence (ai) of points of a uni-
form space (C, 6=,Φ) is Cauchy iff ∀U ∈ Φ.∃n ∈ N.∀i, j ≥ n.(ai, aj) ∈ U .

Definition 2.15 (Uniform convergence) A sequence (ai) of points of a
uniform space (C, 6=,Φ) converges to a point a ∈ C (written ai → a) if
∀U ∈ Φ.∃n ∈ N.∀i ≥ n.(a, ai) ∈ U .

Lemma 2.16 Let (C, 6=,Φ) be a uniform space and (ai) and a in C such that
ai → a. Then (ai) is Cauchy.

Proof. Fix U ∈ Φ. We need to prove ∃n ∈ N.∀i, j ≥ n.(ai, aj) ∈ U . By
property (3) of a uniform space, there exists V ∈ Φ such that V ◦ V ⊆ U .
By Definition 2.15, there exists n ∈ N such that ∀i ≥ n.(ai, a) ∈ V . Thus
∀i, j ≥ n.(ai, aj) ∈ V ◦ V −1 = V ◦ V ⊆ U . 2

An uniform space (C, 6=,Φ) is complete if every Cauchy sequence in C con-
verges to a point in C.

Definition 2.17 (Restricted uniformity) Let (C, 6=,Φ) be a uniform space
and X a subset of C. We call the family {U ∩ X × X|U ∈ Φ} the restricted
uniformity base on X.

The definition is well posed, as the properties listed in Definition 2.13 hold.

Fact 2.18 Let (C, 6= Φ) be a uniform space, X a subset of C and (ai) in X.
If (ai) is Cauchy in X, then (ai) is Cauchy in C.

3 Ordered uniform spaces and Lebesgue’s dominated convergence
theorem

3.1 Ordered uniform spaces

Definition 3.1 (Ordered uniform space) A triple (C,�,Φ) is an ordered
uniform space iff (C,�) is an ordered set, (C,Φ) is a uniform space and every
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basic entourage U ∈ Φ is convex.

Lemma 3.2 Let (C,�,Φ) be an ordered uniform space and l, u ∈ C. Let (ai)
and a in C ∩ [l, u]. If ai → a in C then ai → a in C ∩ [l, u].

Proof. By Definition 2.15, ∀U ∈ Φ.∃m ∈ N.∀i ≥ m.(ai, a) ∈ U . Since ai, a ∈
C ∩ [l, u] for each i ∈ N, the pair (ai, a) ∈ U ∩ [l, u]2. Thus ∀U ∈ Φ.∃m ∈
N.∀i ≥ m.(ai, a) ∈ U ∩ [l, u]2. 2

Theorem 3.3 (Sandwich) Let (C,�,Φ) be an ordered uniform space. Let
l ∈ C and (ai), (xi), (bi) be sequences in C such that ∀i ∈ N.ai ≤ xi ≤ bi and
ai → l and bi → l. Then xi → l.

Proof. We need to prove ∀U ∈ Φ.∃m ∈ N.∀i ≥ m.(xi, l) ∈ U . Fix U ∈ Φ and
let V ∈ Φ such that V ◦ V ⊆ U . Let W ∈ Φ such that W ◦W ⊆ V . Thus
∃m ∈ N.∀i ≥ m.(ai, l) ∈ W ∧ (bi, l) ∈ W . Therefore ∃m ∈ N.∀i ≥ m.(ai, bi) ∈
V . Since V is convex, ∃m ∈ N.∀i ≥ m.[ai, bi]

2 ⊆ V . Hence ∃m ∈ N.∀i ≥
m.(xi, ai) ∈ V ∧(ai, l) ∈ W ⊆ V . Thus ∃m ∈ N.∀i ≥ m.(xi, l) ∈ V ◦V ⊆ U . 2

Definition 3.4 (Order continuity) Let the triple (C,�,Φ) be an ordered
uniform space. We say that the uniformity is order continuous iff for all (ai)
and a in C, ai ↑ a⇒ ai → a and ai ↓ a⇒ ai → a.

Order continuity is a very natural requirement since it tightens the connection
between the order and uniform structures in ordered uniform spaces. In [8,9],
Weber shows that order continuity is better understood as a consequence of
the combination of properties (σ) and exhaustivity, to be discussed in the
following sections.

3.2 Uniformities with property (σ)

Definition 3.5 (Property (σ)) Let (C,�,Φ) be an ordered uniform space.
The uniformity satisfies property (σ) iff ∀U ∈ Φ.∃(Un).∀(an).∀a.an ↑ a ⇒
(∀n.∀i, j ≥ n.(ai, aj) ∈ Un)⇒ (a1, a) ∈ U .

Classically, for l-groups, the uniformity induced by a Riesz pseudonorm satis-
fies (σ) iff the pseudonorm is σ-subadditive ([8], Proposition 3.16). Similarly,
the uniformity induced by a submeasure on a boolean ring satisfies (σ) iff the
submeasure is σ-subadditive ([8], Proposition 3.17). Thus property (σ) cap-
tures the σ-additivity of measure spaces in a way that is more faithful than
order continuity.

Lemma 3.6 Let (C,�,Φ) be an ordered uniform space with property (σ).
Suppose (ai), a in C such that ai ↑ a. If (ai) is Cauchy, then ai → a.
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Proof. Fix U ∈ Φ. We need to prove ∃m ∈ N.∀i ≥ m.(ai, a) ∈ U . Let (Un)
as in Definition 3.5 and let (mn) in N be the sequence defined by recursion
as follows. For the base case, since (ai) is Cauchy, there exists k ∈ N such
that ∀j, j′ ≥ k.(aj, aj′) ∈ U0; take k for m0. For the inductive case, since
(ai) is Cauchy, there exists k ∈ N such that ∀j, j′ ≥ k.(aj, aj′) ∈ Un+1. Take
max{k,mn + 1} for mn+1. The sequence (mn) is strictly increasing by con-
struction. Thus amn ↑ a by Lemma 2.6. Thus, by property (σ), (am1 , a) ∈ U .
Take m1 and let i ≥ m1. Since (amn) is increasing, ai ∈ [am1 , a]. Since U is
convex and (am1 , a) ∈ U , also (ai, a) ∈ U . 2

It should be noted that the property (σ) is not hereditary, in the sense that
it is not preserved under restrictions, even to closed intervals. This is a con-
sequence of the fact that, even classically, a (strong) supremum in an ordered
set restricted to a segment is not necessarily a (strong) supremum in the whole
set.

3.3 Exhaustive order uniformities

Lemma 3.6 is not sufficient to grant that an ordered uniform space with prop-
erty (σ) is also order continuous. Classically, we also need exhaustivity : when
restricted to sequences, this is precisely the condition ensuring that any mono-
tone sequence is Cauchy.

Constructively, the classical definition of exhaustivity does not admit inter-
esting models. For instance, consider the unit interval [0, 1] endowed with the
usual complete uniformity and order structure. Classically, its order uniformity
is exhaustive. Constructively, this does not hold since it is not true that any
monotone sequence in [0, 1] has a least upper bound (otherwise: the sequence
would be Cauchy by exhaustivity; so it would converge by metric completeness
to some limit; finally, this limit would be a supremum since for any increasing
sequence (an) of real numbers, an → a implies an ↑ a).

We replace the classical definition of exhaustivity with the following one, which
is classically equivalent.

Definition 3.7 (Exhaustivity) The uniformity Φ of the ordered uniform
space (C,�,Φ) is exhaustive if any increasing sequence that is upper located,
and any decreasing sequence that is lower located, is Cauchy.

For instance, Banach lattices are constructive models of exhaustive uniformi-
ties.

Usually we are interested in subspaces of a given ordered uniform space that
are endowed with an exhaustive uniformity. The following theorem provides
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in this case sufficient conditions for a “local” version of order continuity.

Lemma 3.8 Let (C,�,Φ) be an ordered uniform space with property (σ). Let
l, u ∈ C such that the uniformity induced on C ∩ [l, u] is exhaustive. If (ai) is
a sequence in C ∩ [l, u] and a a point in C such that ai ↑C a, then a ∈ [l, u]
and ai → a in C ∩ [l, u].

Proof. To prove a ∈ [l, u], it suffices to notice that l ≤ a1 ≤ a and a ≤ u
by Fact 2.5. Thus ai ↑ a in C ∩ [l, u] by Lemma 2.9 and (ai) is upper located
in C ∩ [l, u] by Lemma 2.12. By exhaustivity of the uniformity restricted to
C ∩ [l, u], (ai) is Cauchy w.r.t. C ∩ [l, u]. By Fact 2.18, (ai) is Cauchy also
w.r.t. C. Thus, by Theorem 3.6, ai →C a. Finally, by Lemma 3.2, we conclude
ai → a in C ∩ [l, u]. 2

3.4 Lebesgue’s dominated convergence theorem

We present two versions of Lebesgue’s dominated convergence theorem. The
first deals with ordered uniform spaces (with property (σ)) whose restrictions
to intervals are exhaustive. The second deals with ordered uniform spaces
whose restrictions to intervals are order continuous. Even in spite of the
fact that order continuity is implied by property (σ) and exhaustivity (Theo-
rem 5.1), neither version implies the other. This is a consequence of property
(σ) not being hereditary, as already observed.

Theorem 3.9 (Lebesgue) Let (C,�,Φ) be an ordered uniform space with
property (σ) and such that, for all l, u ∈ C, the uniformity induced on C∩ [l, u]
is exhaustive. Let (ai) be a sequence in C and l, u ∈ C such that ∀i ∈ N.ai ∈
C∩[l, u]. Finally, let a be a point in C such that ai

o→ a in C. Then a ∈ C∩[l, u]
and ai → a in C ∩ [l, u].

Proof. The uniformity induced on C∩ [l, u] is exhaustive by hypothesis. From
ai

o→ a in C, there exist (xi) and (yi) such that xi ↑ a and yi ↓ a and for all
i ∈ N, xi ≤ ai ≤ yi. Thus, by Lemma 2.12, (xi) is upper located and (yi) is
lower located. By Lemma 3.8 we have a ∈ C ∩ [l, u] and xi → a in C ∩ [l, u]
and yi → a in C ∩ [l, u]. Since ∀i ∈ N.xi ≤ ai ≤ yi, by Theorem 3.3 we have
ai → a in C ∩ [l, u]. 2

Theorem 3.10 (Lebesgue) Let (C,�,Φ) be an ordered uniform space such
that for all l, u ∈ C the uniformity induced on C ∩ [l, u] is order continuous.
Let (ai) be a sequence in C and l, u ∈ C such that ∀i ∈ N.ai ∈ C ∩ [l, u].
Finally, let a be a point in C such that ai

o→ a in C. Then a ∈ C ∩ [l, u] and
ai → a in C ∩ [l, u].
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Proof. The uniformity induced on C∩ [l, u] is order continuous by hypothesis.
From ai

o→ a in C, there exist (xi) and (yi) such that xi ↑ a and yi ↓ a and
for all i ∈ N, xi ≤ ai ≤ yi. Thus, by definition of order continuity, xi → a in
C ∩ [l, u] and yi → a in C ∩ [l, u]. To prove a ∈ [l, u], it suffices to notice that
l ≤ a1 ≤ a and that a ≤ u by Fact 2.5. Finally, since ∀i ∈ N.xi ≤ ai ≤ yi, by
Theorem 3.3, ai → a in C ∩ [l, u]. 2

4 Ordered uniform spaces induced by lattice uniformities

4.1 Lattices

Definition 4.1 (Lattice) A lattice is a tuple (C, 6=,∨,∧) where (C, 6=) is a
set and ∨ and ∧ are strongly extensional functions of type C → C → C s.t.:

(1) ∨,∧ are idempotent, commutative and associative
(2) ∨,∧ are absorbent

Definition 4.2 (Induced excess relation) Let (C, 6=,∨,∧) be a lattice. We
write x � y for x 6= x ∧ y.

Fact 4.3 Let (C, 6=,∨,∧) be a lattice. Then (C,�) is an ordered set. More-
over, the apartness induced by � is 6=.

Fact 4.4 Let (C, 6=,∨, land) be a lattice. For all a, b, c, d ∈ C:

(1) a ≤ b and a ≤ c imply a ≤ b ∧ c
(2) b ≤ a and c ≤ a imply b ∨ c ≤ a

Fact 4.5 Let (C, 6=,∨,∧) be a lattice. For a, b ∈ C such that a ≤ b, a∧ b = a.

Definition 4.6 (Ũ) Let (C, 6=,∨,∧) be a lattice and let U ⊆ C×C. We define
Ũ as {(a, b) ∈ C × C|[a ∧ b, a ∨ b]2 ⊆ U}.

When S is a set indexed family of subsets of C ×C, the family {Ũ |U ∈ S} is
also set indexed.

Lemma 4.7 Let (C, 6=,∨,∧) be a lattice and let U ⊆ C × C. Then Ũ ⊆ U
and Ũ is convex.

Proof. Let (a, b) ∈ Ũ . Since a ∧ b ≤ a ≤ a ∨ b and a ∧ b ≤ b ≤ a ∨ b, both a
and b are in [a ∧ b, a ∨ b]. By definition of Ũ , (a, b) ∈ U and thus Ũ ⊆ U .

Let (a, b) ∈ Ũ such that a ≤ b. We need to prove [a, b]2 ⊆ Ũ . Let (a′, b′) ∈
[a, b]2. Thus a ≤ a′ ≤ b and a ≤ b′ ≤ b. We need to prove [a′ ∧ b′, a′ ∨ b′]2 ⊆ U .
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Take (c, d) ∈ [a′∧ b′, a′∨ b′]2. Thus a′∧ b′ ≤ c ≤ a′∨ b′ and a′∧ b′ ≤ d ≤ a′∨ b′.
We need to prove (c, d) ∈ U . From a ≤ a′, a ≤ b′, a′ ≤ b, b′ ≤ b and Fact 4.4
we have a ∧ b ≤ a ≤ a′ ∧ b′ ≤ c ≤ a′ ∨ b′ ≤ b ≤ a ∨ b and a ∧ b ≤ a ≤ a′ ∧ b′ ≤
d ≤ a′ ∨ b′ ∨ b ∧ a ∨ b. By definition of Ũ we have (c, d) ∈ U . 2

4.2 Product uniform spaces and uniformly continuous functions

Definition 4.8 (Uniform continuity) A function f from a uniform space
(C, 6=,Φ) to a uniform space (C ′, 6=′,Φ′) is uniformly continuous if ∀U ∈
Φ′.∃V ∈ Φ.V ⊆ f−1(U).

Fact 4.9 Any composition of uniformly continuous functions is uniformly
continuous.

Definition 4.10 (Product uniform space) Suppose we are given two uni-
form spaces (C1, 6=1,Φ1) and (C2, 6=2,Φ2).

Let 6= the relation defined on C1 × C2 by (a1, a2) 6= (b1, b2) iff a1 6= b1 or
a2 6= b2.

Let Φ be the family of subsets of (C1 × C2)2 defined by U ∈ Φ iff there exist
U1 ∈ Φ1 and U2 ∈ Φ2 such that for all a1, b1 ∈ C1 and for all a2, b2 ∈ C2

((a1, a2), (b1, b2)) ∈ U ⇐⇒ (a1, b1) ∈ U1 ∧ (a2, b2) ∈ U2

We call (C1 × C2, 6=,Φ) the product uniform space.

The previous definition is well posed in the sense that the triple (C1×C2, 6=,Φ)
is a uniform space in the sense of Definition 2.13. Moreover, when the families
of basic entourages Φ1 and Φ2 are set indexed, the family Φ is also set indexed.

Lemma 4.11 Let (C, 6=,Φ) be a uniform space and U a basic entourage of
the product uniform space C × C. Then there exists a basic entourage V ∈ Φ
s.t. {(a1, a2), (b1, b2)|(a1, b1) ∈ V ∧ (a2, b2) ∈ V } ⊆ U .

Proof. Let U be a basic entourage of the product uniform space C × C.
By definition of product uniform space, there exists V1, V2 ∈ Φ such that
U = {(a1, a2), (b1, b2)|(a1, b1) ∈ V1 ∧ (a2, b2) ∈ V2}. By property (2) of a
uniform space base, there exists V ∈ Φ such that V ⊆ V1 ∩ V2. 2
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4.3 Lattice uniformity and convex bases

Definition 4.12 (Uniform lattice) A uniform lattice (C, 6=,∨,∧,Φ) is a
lattice (C, 6=,∨,∧) such that (C, 6=,Φ) is a uniform space and ∨,∧ are uni-
formly continuous.

Theorem 4.13 (Existence of a convex base) Let (C, 6=,∨,∧,Φ) be a uni-
form lattice. ∀U ∈ Φ.∃V ∈ Φ.V ⊆ Ũ ⊆ U .

Proof. Ũ is convex by Lemma 4.7. By property (3) of a uniform space base,
let W ∈ Φ such that W ◦W ⊆ U . Consider the uniformly continuous function
f : C × C × C → C (where the product C × C × C is endowed with the
product uniformity) defined as f(x1, x2, x3) = (x1 ∧ (x2 ∨ x3)) ∨ (x2 ∧ x3).
The function f is uniformly continuous being a composition of uniformly
continuous functions (Fact 4.9). By definition of uniform continuity and by
Lemma 4.11, there exists V ∈ Φ such that ∀((x1, x

′
1), (x2, x

′
2), (x3, x

′
3)) ∈

V 3.(f(x1, x2, x3), f(x′1, x
′
2, x
′
3)) ∈ W . We prove V ⊆ Ũ . Let (a, b) ∈ V and

(x, y) ∈ [a∧b, a∨b]2. Since f(x, a, b) = x and f(x, a, a) = a by Fact 4.5, we have
(x, a) ∈ W , and similarly (y, a) ∈ W . Thus (x, y) ∈ W ◦W−1 = W ◦W ⊆ U .
We conclude (a, b) ∈ Ũ , and thus V ⊆ Ũ . 2

When the family Φ of basic entourages is set indexed, the family {Ũ |U ∈ Φ}
is also set indexed. In view of the previous theorem, we have thus proved,
constructively and predicatively, that any uniform space with a set indexed
base admits an equivalent set indexed base formed by convex basic entourages.

5 Order continuity, exhaustivity and property (σ)

In this section we show that the classical relations between order continuity,
exhaustivity and property (σ) also hold constructively.

Theorem 5.1 If the uniformity Φ of an ordered uniform space (C,�,Φ) is
exhaustive and satisfies (σ), then it is order continuous.

Proof. Assume (ai) and a in C such that ai ↑ a. By Lemma 2.12, (ai) is
upper located. Thus, by exhaustivity, (ai) is Cauchy and so ai → a by Theo-
rem 3.6. 2

Theorem 5.2 If an ordered uniform space (C,�,Φ) is order continuous, then
it satisfies (σ).

Proof. Fix U ∈ Φ and let V ∈ Φ such that V ◦ V ⊆ U . Take Un = V for
each n ∈ N. Now consider (ai) and a in C such that ai ↑ a and suppose
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∀n.∀i, j ≥ n.(ai, aj) ∈ Un. In particular, ∀i, j.(ai, aj) ∈ U0 = V . We need to
prove (a1, a) ∈ U . By order continuity and the hypothesis ai ↑ a we have ai →
a. Thus ∀n.∃m.∀i ≥ m.(ai, a) ∈ Un = V . Let m such that ∀i ≥ m.(ai, a) ∈ V .
Then (am, a) ∈ V and (a1, am) ∈ V . Thus (a1, a) ∈ V ◦ V ⊆ U . 2

Exhaustivity and property (σ) are sufficient, but not necessary, conditions for
order continuity. Indeed, order continuity fails to imply exhaustivity as the
following counter-example shows, even classically.

Example 5.3 Consider the real numbers with the complete uniformity in-
duced by the usual metric and order structures. By definition, a � b iff |a−b| =
a − b > 0 and order continuity holds. Consider now the monotone sequence
(i)i∈N. The sequence is upper located: let x, y ∈ R such that y � x; since the
reals are Archimedean, there exists n ∈ N such that in = n � x. The se-
quence is not Cauchy since it diverges. Thus, the real numbers uniformity is
not exhaustive.

Order completeness coincides with exhaustivity together with property (σ)
under the additional hypothesis of order completeness.

Definition 5.4 (Order completeness) The ordered set (C,�) is order com-
plete iff all upper located sequences have a strong supremum and all lower
located sequences have a strong infimum.

Theorem 5.5 If an order complete ordered uniform space (C,�,Φ) is order
continuous, then its uniformity is exhaustive.

Proof. Let (ai) be an increasing sequence in C that is upper located. By
order completeness, there exists a ∈ C such that (ai) ↑ a. By order continuity,
ai → a. By Lemma 2.16, (ai) is Cauchy. Since (ai) was chosen arbitrarily, the
order uniformity is exhaustive. 2.
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