include "basic_2/grammar/cl_shift.ma". include "basic_2/relocation/ldrop_append.ma". lemma cpr_append: ∀G. l_appendable_sn … (cpr G). #G #K #T1 #T2 #H elim H -G -K -T1 -T2 /2 width=3 by cpr_bind, cpr_flat, cpr_zeta, cpr_tau, cpr_beta, cpr_theta/ #G #K #K0 #V1 #V2 #W2 #i #HK0 #_ #HVW2 #IHV12 #L lapply (ldrop_fwd_length_lt2 … HK0) #H @(cpr_delta … (L@@K0) V1 … HVW2) // @(ldrop_O1_append_sn_le … HK0) /2 width=2 by lt_to_le/ (**) (* /3/ does not work *) qed. lemma cpr_fwd_shift1: ∀G,L1,L,T1,T. ⦃G, L⦄ ⊢ L1 @@ T1 ➡ T → ∃∃L2,T2. |L1| = |L2| & T = L2 @@ T2. #G #L1 @(lenv_ind_dx … L1) -L1 normalize [ #L #T1 #T #HT1 @(ex2_2_intro … (⋆)) // (**) (* explicit constructor *) | #I #L1 #V1 #IH #L #T1 #X >shift_append_assoc normalize #H elim (cpr_inv_bind1 … H) -H * [ #V0 #T0 #_ #HT10 #H destruct elim (IH … HT10) -IH -HT10 #L2 #T2 #HL12 #H destruct >append_length >HL12 -HL12 @(ex2_2_intro … (⋆.ⓑ{I}V0@@L2) T2) [ >append_length ] /2 width=3 by trans_eq/ (**) (* explicit constructor *) | #T #_ #_ #H destruct ] ] qed-.