(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) notation "hvbox( ⦃ L1, break T1 ⦄ > break ⦃ L2 , break T2 ⦄ )" non associative with precedence 45 for @{ 'SupTerm $L1 $T1 $L2 $T2 }. include "basic_2/substitution/ldrop.ma". (* SUPCLOSURE ***************************************************************) inductive csup: bi_relation lenv term ≝ | csup_lref : ∀I,L,K,V,i. ⇩[0, i] L ≡ K.ⓑ{I}V → csup L (#i) K V | csup_bind_sn: ∀a,I,L,V,T. csup L (ⓑ{a,I}V.T) L V | csup_bind_dx: ∀a,I,L,V,T. csup L (ⓑ{a,I}V.T) (L.ⓑ{I}V) T | csup_flat_sn: ∀I,L,V,T. csup L (ⓕ{I}V.T) L V | csup_flat_dx: ∀I,L,V,T. csup L (ⓕ{I}V.T) L T . interpretation "structural predecessor (closure)" 'SupTerm L1 T1 L2 T2 = (csup L1 T1 L2 T2). (* Basic inversion lemmas ***************************************************) fact csup_inv_atom1_aux: ∀L1,L2,T1,T2. ⦃L1, T1⦄ > ⦃L2, T2⦄ → ∀J. T1 = ⓪{J} → ∃∃I,i. ⇩[0, i] L1 ≡ L2.ⓑ{I}T2 & J = LRef i. #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2 [ #I #L #K #V #i #HLK #J #H destruct /2 width=4/ | #a #I #L #V #T #J #H destruct | #a #I #L #V #T #J #H destruct | #I #L #V #T #J #H destruct | #I #L #V #T #J #H destruct ] qed-. lemma csup_inv_atom1: ∀J,L1,L2,T2. ⦃L1, ⓪{J}⦄ > ⦃L2, T2⦄ → ∃∃I,i. ⇩[0, i] L1 ≡ L2.ⓑ{I}T2 & J = LRef i. /2 width=3 by csup_inv_atom1_aux/ qed-. fact csup_inv_bind1_aux: ∀L1,L2,T1,T2. ⦃L1, T1⦄ > ⦃L2, T2⦄ → ∀b,J,W,U. T1 = ⓑ{b,J}W.U → (L2 = L1 ∧ T2 = W) ∨ (L2 = L1.ⓑ{J}W ∧ T2 = U). #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2 [ #I #L #K #V #i #_ #b #J #W #U #H destruct | #a #I #L #V #T #b #J #W #U #H destruct /3 width=1/ | #a #I #L #V #T #b #J #W #U #H destruct /3 width=1/ | #I #L #V #T #b #J #W #U #H destruct | #I #L #V #T #b #J #W #U #H destruct ] qed-. lemma csup_inv_bind1: ∀b,J,L1,L2,W,U,T2. ⦃L1, ⓑ{b,J}W.U⦄ > ⦃L2, T2⦄ → (L2 = L1 ∧ T2 = W) ∨ (L2 = L1.ⓑ{J}W ∧ T2 = U). /2 width=4 by csup_inv_bind1_aux/ qed-. fact csup_inv_flat1_aux: ∀L1,L2,T1,T2. ⦃L1, T1⦄ > ⦃L2, T2⦄ → ∀J,W,U. T1 = ⓕ{J}W.U → L2 = L1 ∧ (T2 = W ∨ T2 = U). #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2 [ #I #L #K #V #i #_ #J #W #U #H destruct | #a #I #L #V #T #J #W #U #H destruct | #a #I #L #V #T #J #W #U #H destruct | #I #L #V #T #J #W #U #H destruct /3 width=1/ | #I #L #V #T #J #W #U #H destruct /3 width=1/ ] qed-. lemma csup_inv_flat1: ∀J,L1,L2,W,U,T2. ⦃L1, ⓕ{J}W.U⦄ > ⦃L2, T2⦄ → L2 = L1 ∧ (T2 = W ∨ T2 = U). /2 width=4 by csup_inv_flat1_aux/ qed-. (* Basic forward lemmas *****************************************************) lemma csup_fwd_cw: ∀L1,L2,T1,T2. ⦃L1, T1⦄ > ⦃L2, T2⦄ → #{L2, T2} < #{L1, T1}. #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2 /width=1/ /2 width=4 by ldrop_pair2_fwd_cw/ qed-. lemma csup_fwd_ldrop: ∀L1,L2,T1,T2. ⦃L1, T1⦄ > ⦃L2, T2⦄ → ∃i. ⇩[0, i] L1 ≡ L2 ∨ ⇩[0, i] L2 ≡ L1. #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2 /3 width=2/ /4 width=2/ #I #L1 #K1 #V1 #i #HLK1 lapply (ldrop_fwd_ldrop2 … HLK1) -HLK1 /3 width=2/ qed-. (* Advanced forward lemmas **************************************************) lemma lift_csup_trans_eq: ∀T1,U1,d,e. ⇧[d, e] T1 ≡ U1 → ∀L,U2. ⦃L, U1⦄ > ⦃L, U2⦄ → ∃T2. ⇧[d, e] T2 ≡ U2. #T1 #U1 #d #e * -T1 -U1 -d -e [5: #a #I #V1 #W1 #T1 #U1 #d #e #HVW1 #_ #L #X #H elim (csup_inv_bind1 … H) -H * [ #_ #H destruct /2 width=2/ | #H elim (discr_lpair_x_xy … H) ] |6: #I #V1 #W1 #T1 #U1 #d #e #HVW1 #HUT1 #L #X #H elim (csup_inv_flat1 … H) -H #_ * #H destruct /2 width=2/ ] #i #d #e [2,3: #_ ] #L #X #H elim (csup_inv_atom1 … H) -H #I #j #HL #H destruct lapply (ldrop_pair2_fwd_cw … HL X) -HL #H elim (lt_refl_false … H) qed-. (* lemma lift_csup_trans_gt: ∀L1,L2,U1,U2. ⦃L1, U1⦄ > ⦃L2, U2⦄ → ⇩[0, 1] L2 ≡ L1 → ∀T1,d,e. ⇧[d, e] T1 ≡ U1 → ∃T2. ⇧[d + 1, e] T2 ≡ U2. #L1 #L2 #U1 #U2 * -L1 -L2 -U1 -U2 [ #I #L1 #K1 #V #i #HLK1 #HKL1 lapply (ldrop_fwd_lw … HLK1) -HLK1 #HLK1 lapply (ldrop_fwd_lw … HKL1) -HKL1 #HKL1 lapply (transitive_le … HLK1 HKL1) -L1 normalize #H | #a | #a ] #I #L1 #W1 #U1 #HL1 #X #d #e #H lapply (ldrop_inv_refl … HL1) -HL1 | #a #I #L1 #W1 #U1 #j #HL1 #X #d #e #H lapply (ldrop_inv_ldrop1 … HL1) elim (lift_inv_bind2 … H) -H #W2 #U2 #HW21 #HU21 #H destruct /3 width=2/ /4 width=2/ *) (* Advanced inversion lemmas ************************************************) lemma csup_inv_lref2_be: ∀L,U,i. ⦃L, U⦄ > ⦃L, #i⦄ → ∀T,d,e. ⇧[d, e] T ≡ U → d ≤ i → i < d + e → ⊥. #L #U #i #H #T #d #e #HTU #Hdi #Hide elim (lift_csup_trans_eq … HTU … H) -H -T #T #H elim (lift_inv_lref2_be … H ? ?) // qed-.