(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2/notation/relations/rdrop_3.ma". include "basic_2/grammar/genv.ma". (* GLOBAL ENVIRONMENT READING ***********************************************) inductive gget (m:nat): relation genv ≝ | gget_gt: ∀G. |G| ≤ m → gget m G (⋆) | gget_eq: ∀G. |G| = m + 1 → gget m G G | gget_lt: ∀I,G1,G2,V. m < |G1| → gget m G1 G2 → gget m (G1. ⓑ{I} V) G2 . interpretation "global reading" 'RDrop m G1 G2 = (gget m G1 G2). (* basic inversion lemmas ***************************************************) lemma gget_inv_gt: ∀G1,G2,m. ⬇[m] G1 ≡ G2 → |G1| ≤ m → G2 = ⋆. #G1 #G2 #m * -G1 -G2 // [ #G #H >H -H >commutative_plus #H (**) (* lemma needed here *) lapply (le_plus_to_le_r … 0 H) -H #H lapply (le_n_O_to_eq … H) -H #H destruct | #I #G1 #G2 #V #H1 #_ #H2 lapply (le_to_lt_to_lt … H2 H1) -H2 -H1 normalize in ⊢ (? % ? → ?); >commutative_plus #H lapply (lt_plus_to_lt_l … 0 H) -H #H elim (lt_zero_false … H) ] qed-. lemma gget_inv_eq: ∀G1,G2,m. ⬇[m] G1 ≡ G2 → |G1| = m + 1 → G1 = G2. #G1 #G2 #m * -G1 -G2 // [ #G #H1 #H2 >H2 in H1; -H2 >commutative_plus #H (**) (* lemma needed here *) lapply (le_plus_to_le_r … 0 H) -H #H lapply (le_n_O_to_eq … H) -H #H destruct | #I #G1 #G2 #V #H1 #_ normalize #H2 <(injective_plus_l … H2) in H1; -H2 #H elim (lt_refl_false … H) ] qed-. fact gget_inv_lt_aux: ∀I,G,G1,G2,V,m. ⬇[m] G ≡ G2 → G = G1. ⓑ{I} V → m < |G1| → ⬇[m] G1 ≡ G2. #I #G #G1 #G2 #V #m * -G -G2 [ #G #H1 #H destruct #H2 lapply (le_to_lt_to_lt … H1 H2) -H1 -H2 normalize in ⊢ (? % ? → ?); >commutative_plus #H lapply (lt_plus_to_lt_l … 0 H) -H #H elim (lt_zero_false … H) | #G #H1 #H2 destruct >(injective_plus_l … H1) -H1 #H elim (lt_refl_false … H) | #J #G #G2 #W #_ #HG2 #H destruct // ] qed-. lemma gget_inv_lt: ∀I,G1,G2,V,m. ⬇[m] G1. ⓑ{I} V ≡ G2 → m < |G1| → ⬇[m] G1 ≡ G2. /2 width=5 by gget_inv_lt_aux/ qed-. (* Basic properties *********************************************************) lemma gget_total: ∀m,G1. ∃G2. ⬇[m] G1 ≡ G2. #m #G1 elim G1 -G1 /3 width=2 by gget_gt, ex_intro/ #I #V #G1 * #G2 #HG12 elim (lt_or_eq_or_gt m (|G1|)) #Hm [ /3 width=2 by gget_lt, ex_intro/ | destruct /3 width=2 by gget_eq, ex_intro/ | @ex_intro [2: @gget_gt normalize /2 width=1 by/ | skip ] (**) (* explicit constructor *) ] qed-.