(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "ground_2/relocation/rtmap_id.ma". include "basic_2/notation/relations/relationstar_4.ma". include "basic_2/relocation/lexs.ma". include "basic_2/static/frees.ma". (* GENERIC EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ****) definition lfxs (R) (T): relation lenv ≝ λL1,L2. ∃∃f. L1 ⊢ 𝐅*⦃T⦄ ≡ f & L1 ⦻*[R, cfull, f] L2. interpretation "generic extension on referred entries (local environment)" 'RelationStar R T L1 L2 = (lfxs R T L1 L2). definition R_frees_confluent: predicate (relation3 lenv term term) ≝ λRN. ∀f1,L,T1. L ⊢ 𝐅*⦃T1⦄ ≡ f1 → ∀T2. RN L T1 T2 → ∃∃f2. L ⊢ 𝐅*⦃T2⦄ ≡ f2 & f2 ⊆ f1. definition lexs_frees_confluent: relation (relation3 lenv term term) ≝ λRN,RP. ∀f1,L1,T. L1 ⊢ 𝐅*⦃T⦄ ≡ f1 → ∀L2. L1 ⦻*[RN, RP, f1] L2 → ∃∃f2. L2 ⊢ 𝐅*⦃T⦄ ≡ f2 & f2 ⊆ f1. definition R_confluent2_lfxs: relation4 (relation3 lenv term term) (relation3 lenv term term) … ≝ λR1,R2,RP1,RP2. ∀L0,T0,T1. R1 L0 T0 T1 → ∀T2. R2 L0 T0 T2 → ∀L1. L0 ⦻*[RP1, T0] L1 → ∀L2. L0 ⦻*[RP2, T0] L2 → ∃∃T. R2 L1 T1 T & R1 L2 T2 T. (* Basic properties ***********************************************************) lemma lfxs_atom: ∀R,I. ⋆ ⦻*[R, ⓪{I}] ⋆. /3 width=3 by lexs_atom, frees_atom, ex2_intro/ qed. lemma lfxs_sort: ∀R,I,L1,L2,V1,V2,s. L1 ⦻*[R, ⋆s] L2 → L1.ⓑ{I}V1 ⦻*[R, ⋆s] L2.ⓑ{I}V2. #R #I #L1 #L2 #V1 #V2 #s * /3 width=3 by lexs_push, frees_sort, ex2_intro/ qed. lemma lfxs_zero: ∀R,I,L1,L2,V1,V2. L1 ⦻*[R, V1] L2 → R L1 V1 V2 → L1.ⓑ{I}V1 ⦻*[R, #0] L2.ⓑ{I}V2. #R #I #L1 #L2 #V1 #V2 * /3 width=3 by lexs_next, frees_zero, ex2_intro/ qed. lemma lfxs_lref: ∀R,I,L1,L2,V1,V2,i. L1 ⦻*[R, #i] L2 → L1.ⓑ{I}V1 ⦻*[R, #⫯i] L2.ⓑ{I}V2. #R #I #L1 #L2 #V1 #V2 #i * /3 width=3 by lexs_push, frees_lref, ex2_intro/ qed. lemma lfxs_gref: ∀R,I,L1,L2,V1,V2,l. L1 ⦻*[R, §l] L2 → L1.ⓑ{I}V1 ⦻*[R, §l] L2.ⓑ{I}V2. #R #I #L1 #L2 #V1 #V2 #l * /3 width=3 by lexs_push, frees_gref, ex2_intro/ qed. lemma lfxs_pair_repl_dx: ∀R,I,L1,L2,T,V,V1. L1.ⓑ{I}V ⦻*[R, T] L2.ⓑ{I}V1 → ∀V2. R L1 V V2 → L1.ⓑ{I}V ⦻*[R, T] L2.ⓑ{I}V2. #R #I #L1 #L2 #T #V #V1 * #f #Hf #HL12 #V2 #HR /3 width=5 by lexs_pair_repl, ex2_intro/ qed-. lemma lfxs_sym: ∀R. lexs_frees_confluent R cfull → (∀L1,L2,T1,T2. R L1 T1 T2 → R L2 T2 T1) → ∀T. symmetric … (lfxs R T). #R #H1R #H2R #T #L1 #L2 * #f1 #Hf1 #HL12 elim (H1R … Hf1 … HL12) -Hf1 /4 width=5 by sle_lexs_trans, lexs_sym, ex2_intro/ qed-. lemma lfxs_co: ∀R1,R2. (∀L,T1,T2. R1 L T1 T2 → R2 L T1 T2) → ∀L1,L2,T. L1 ⦻*[R1, T] L2 → L1 ⦻*[R2, T] L2. #R1 #R2 #HR #L1 #L2 #T * /4 width=7 by lexs_co, ex2_intro/ qed-. (* Basic inversion lemmas ***************************************************) lemma lfxs_inv_atom_sn: ∀R,I,Y2. ⋆ ⦻*[R, ⓪{I}] Y2 → Y2 = ⋆. #R #I #Y2 * /2 width=4 by lexs_inv_atom1/ qed-. lemma lfxs_inv_atom_dx: ∀R,I,Y1. Y1 ⦻*[R, ⓪{I}] ⋆ → Y1 = ⋆. #R #I #Y1 * /2 width=4 by lexs_inv_atom2/ qed-. lemma lfxs_inv_sort: ∀R,Y1,Y2,s. Y1 ⦻*[R, ⋆s] Y2 → (Y1 = ⋆ ∧ Y2 = ⋆) ∨ ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, ⋆s] L2 & Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2. #R * [ | #Y1 #I #V1 ] #Y2 #s * #f #H1 #H2 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/ | lapply (frees_inv_sort … H1) -H1 #Hf elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #H12 #_ #H destruct /5 width=8 by frees_sort_gen, ex3_5_intro, ex2_intro, or_intror/ ] qed-. lemma lfxs_inv_zero: ∀R,Y1,Y2. Y1 ⦻*[R, #0] Y2 → (Y1 = ⋆ ∧ Y2 = ⋆) ∨ ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, V1] L2 & R L1 V1 V2 & Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2. #R #Y1 #Y2 * #f #H1 #H2 elim (frees_inv_zero … H1) -H1 * [ #H #_ lapply (lexs_inv_atom1_aux … H2 H) -H2 /3 width=1 by or_introl, conj/ | #I1 #L1 #V1 #g #HV1 #HY1 #Hg elim (lexs_inv_next1_aux … H2 … HY1 Hg) -H2 -Hg /4 width=9 by ex4_5_intro, ex2_intro, or_intror/ ] qed-. lemma lfxs_inv_lref: ∀R,Y1,Y2,i. Y1 ⦻*[R, #⫯i] Y2 → (Y1 = ⋆ ∧ Y2 = ⋆) ∨ ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, #i] L2 & Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2. #R #Y1 #Y2 #i * #f #H1 #H2 elim (frees_inv_lref … H1) -H1 * [ #H #_ lapply (lexs_inv_atom1_aux … H2 H) -H2 /3 width=1 by or_introl, conj/ | #I1 #L1 #V1 #g #HV1 #HY1 #Hg elim (lexs_inv_push1_aux … H2 … HY1 Hg) -H2 -Hg /4 width=8 by ex3_5_intro, ex2_intro, or_intror/ ] qed-. lemma lfxs_inv_gref: ∀R,Y1,Y2,l. Y1 ⦻*[R, §l] Y2 → (Y1 = ⋆ ∧ Y2 = ⋆) ∨ ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, §l] L2 & Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2. #R * [ | #Y1 #I #V1 ] #Y2 #l * #f #H1 #H2 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/ | lapply (frees_inv_gref … H1) -H1 #Hf elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #H12 #_ #H destruct /5 width=8 by frees_gref_gen, ex3_5_intro, ex2_intro, or_intror/ ] qed-. lemma lfxs_inv_bind: ∀R,p,I,L1,L2,V1,V2,T. L1 ⦻*[R, ⓑ{p,I}V1.T] L2 → R L1 V1 V2 → L1 ⦻*[R, V1] L2 ∧ L1.ⓑ{I}V1 ⦻*[R, T] L2.ⓑ{I}V2. #R #p #I #L1 #L2 #V1 #V2 #T * #f #Hf #HL #HV elim (frees_inv_bind … Hf) -Hf /6 width=6 by sle_lexs_trans, lexs_inv_tl, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/ qed-. lemma lfxs_inv_flat: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 → L1 ⦻*[R, V] L2 ∧ L1 ⦻*[R, T] L2. #R #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_flat … Hf) -Hf /5 width=6 by sle_lexs_trans, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/ qed-. (* Advanced inversion lemmas ************************************************) lemma lfxs_inv_sort_pair_sn: ∀R,I,Y2,L1,V1,s. L1.ⓑ{I}V1 ⦻*[R, ⋆s] Y2 → ∃∃L2,V2. L1 ⦻*[R, ⋆s] L2 & Y2 = L2.ⓑ{I}V2. #R #I #Y2 #L1 #V1 #s #H elim (lfxs_inv_sort … H) -H * [ #H destruct | #J #Y1 #L2 #X1 #V2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/ ] qed-. lemma lfxs_inv_sort_pair_dx: ∀R,I,Y1,L2,V2,s. Y1 ⦻*[R, ⋆s] L2.ⓑ{I}V2 → ∃∃L1,V1. L1 ⦻*[R, ⋆s] L2 & Y1 = L1.ⓑ{I}V1. #R #I #Y1 #L2 #V2 #s #H elim (lfxs_inv_sort … H) -H * [ #_ #H destruct | #J #L1 #Y2 #V1 #X2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/ ] qed-. lemma lfxs_inv_zero_pair_sn: ∀R,I,Y2,L1,V1. L1.ⓑ{I}V1 ⦻*[R, #0] Y2 → ∃∃L2,V2. L1 ⦻*[R, V1] L2 & R L1 V1 V2 & Y2 = L2.ⓑ{I}V2. #R #I #Y2 #L1 #V1 #H elim (lfxs_inv_zero … H) -H * [ #H destruct | #J #Y1 #L2 #X1 #V2 #HV1 #HV12 #H1 #H2 destruct /2 width=5 by ex3_2_intro/ ] qed-. lemma lfxs_inv_zero_pair_dx: ∀R,I,Y1,L2,V2. Y1 ⦻*[R, #0] L2.ⓑ{I}V2 → ∃∃L1,V1. L1 ⦻*[R, V1] L2 & R L1 V1 V2 & Y1 = L1.ⓑ{I}V1. #R #I #Y1 #L2 #V2 #H elim (lfxs_inv_zero … H) -H * [ #_ #H destruct | #J #L1 #Y2 #V1 #X2 #HV1 #HV12 #H1 #H2 destruct /2 width=5 by ex3_2_intro/ ] qed-. lemma lfxs_inv_lref_pair_sn: ∀R,I,Y2,L1,V1,i. L1.ⓑ{I}V1 ⦻*[R, #⫯i] Y2 → ∃∃L2,V2. L1 ⦻*[R, #i] L2 & Y2 = L2.ⓑ{I}V2. #R #I #Y2 #L1 #V1 #i #H elim (lfxs_inv_lref … H) -H * [ #H destruct | #J #Y1 #L2 #X1 #V2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/ ] qed-. lemma lfxs_inv_lref_pair_dx: ∀R,I,Y1,L2,V2,i. Y1 ⦻*[R, #⫯i] L2.ⓑ{I}V2 → ∃∃L1,V1. L1 ⦻*[R, #i] L2 & Y1 = L1.ⓑ{I}V1. #R #I #Y1 #L2 #V2 #i #H elim (lfxs_inv_lref … H) -H * [ #_ #H destruct | #J #L1 #Y2 #V1 #X2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/ ] qed-. lemma lfxs_inv_gref_pair_sn: ∀R,I,Y2,L1,V1,l. L1.ⓑ{I}V1 ⦻*[R, §l] Y2 → ∃∃L2,V2. L1 ⦻*[R, §l] L2 & Y2 = L2.ⓑ{I}V2. #R #I #Y2 #L1 #V1 #l #H elim (lfxs_inv_gref … H) -H * [ #H destruct | #J #Y1 #L2 #X1 #V2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/ ] qed-. lemma lfxs_inv_gref_pair_dx: ∀R,I,Y1,L2,V2,l. Y1 ⦻*[R, §l] L2.ⓑ{I}V2 → ∃∃L1,V1. L1 ⦻*[R, §l] L2 & Y1 = L1.ⓑ{I}V1. #R #I #Y1 #L2 #V2 #l #H elim (lfxs_inv_gref … H) -H * [ #_ #H destruct | #J #L1 #Y2 #V1 #X2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/ ] qed-. (* Basic forward lemmas *****************************************************) lemma lfxs_fwd_bind_sn: ∀R,p,I,L1,L2,V,T. L1 ⦻*[R, ⓑ{p,I}V.T] L2 → L1 ⦻*[R, V] L2. #R #p #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_bind … Hf) -Hf /4 width=6 by sle_lexs_trans, sor_inv_sle_sn, ex2_intro/ qed-. lemma lfxs_fwd_bind_dx: ∀R,p,I,L1,L2,V1,V2,T. L1 ⦻*[R, ⓑ{p,I}V1.T] L2 → R L1 V1 V2 → L1.ⓑ{I}V1 ⦻*[R, T] L2.ⓑ{I}V2. #R #p #I #L1 #L2 #V1 #V2 #T #H #HV elim (lfxs_inv_bind … H HV) -H -HV // qed-. lemma lfxs_fwd_flat_sn: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 → L1 ⦻*[R, V] L2. #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H // qed-. lemma lfxs_fwd_flat_dx: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 → L1 ⦻*[R, T] L2. #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H // qed-. lemma lfxs_fwd_pair_sn: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ②{I}V.T] L2 → L1 ⦻*[R, V] L2. #R * /2 width=4 by lfxs_fwd_flat_sn, lfxs_fwd_bind_sn/ qed-. (* Basic_2A1: removed theorems 24: llpx_sn_sort llpx_sn_skip llpx_sn_lref llpx_sn_free llpx_sn_gref llpx_sn_bind llpx_sn_flat llpx_sn_inv_bind llpx_sn_inv_flat llpx_sn_fwd_lref llpx_sn_fwd_pair_sn llpx_sn_fwd_length llpx_sn_fwd_bind_sn llpx_sn_fwd_bind_dx llpx_sn_fwd_flat_sn llpx_sn_fwd_flat_dx llpx_sn_refl llpx_sn_Y llpx_sn_bind_O llpx_sn_ge_up llpx_sn_ge llpx_sn_co llpx_sn_fwd_drop_sn llpx_sn_fwd_drop_dx *)