(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2/substitution/lift_neg.ma". include "basic_2/substitution/drop_drop.ma". include "basic_2/multiple/llpx_sn.ma". (* LAZY SN POINTWISE EXTENSION OF A CONTEXT-SENSITIVE REALTION FOR TERMS ****) (* alternative definition of llpx_sn (recursive) *) inductive llpx_sn_alt_r (R:relation3 lenv term term): relation4 ynat term lenv lenv ≝ | llpx_sn_alt_r_intro: ∀L1,L2,T,l. (∀I1,I2,K1,K2,V1,V2,i. l ≤ yinj i → (∀U. ⬆[i, 1] U ≡ T → ⊥) → ⬇[i] L1 ≡ K1.ⓑ{I1}V1 → ⬇[i] L2 ≡ K2.ⓑ{I2}V2 → I1 = I2 ∧ R K1 V1 V2 ) → (∀I1,I2,K1,K2,V1,V2,i. l ≤ yinj i → (∀U. ⬆[i, 1] U ≡ T → ⊥) → ⬇[i] L1 ≡ K1.ⓑ{I1}V1 → ⬇[i] L2 ≡ K2.ⓑ{I2}V2 → llpx_sn_alt_r R 0 V1 K1 K2 ) → |L1| = |L2| → llpx_sn_alt_r R l T L1 L2 . (* Compact definition of llpx_sn_alt_r **************************************) lemma llpx_sn_alt_r_intro_alt: ∀R,L1,L2,T,l. |L1| = |L2| → (∀I1,I2,K1,K2,V1,V2,i. l ≤ yinj i → (∀U. ⬆[i, 1] U ≡ T → ⊥) → ⬇[i] L1 ≡ K1.ⓑ{I1}V1 → ⬇[i] L2 ≡ K2.ⓑ{I2}V2 → ∧∧ I1 = I2 & R K1 V1 V2 & llpx_sn_alt_r R 0 V1 K1 K2 ) → llpx_sn_alt_r R l T L1 L2. #R #L1 #L2 #T #l #HL12 #IH @llpx_sn_alt_r_intro // -HL12 #I1 #I2 #K1 #K2 #V1 #V2 #i #Hil #HnT #HLK1 #HLK2 elim (IH … HnT HLK1 HLK2) -IH -HnT -HLK1 -HLK2 /2 width=1 by conj/ qed. lemma llpx_sn_alt_r_ind_alt: ∀R. ∀S:relation4 ynat term lenv lenv. (∀L1,L2,T,l. |L1| = |L2| → ( ∀I1,I2,K1,K2,V1,V2,i. l ≤ yinj i → (∀U. ⬆[i, 1] U ≡ T → ⊥) → ⬇[i] L1 ≡ K1.ⓑ{I1}V1 → ⬇[i] L2 ≡ K2.ⓑ{I2}V2 → ∧∧ I1 = I2 & R K1 V1 V2 & llpx_sn_alt_r R 0 V1 K1 K2 & S 0 V1 K1 K2 ) → S l T L1 L2) → ∀L1,L2,T,l. llpx_sn_alt_r R l T L1 L2 → S l T L1 L2. #R #S #IH #L1 #L2 #T #l #H elim H -L1 -L2 -T -l #L1 #L2 #T #l #H1 #H2 #HL12 #IH2 @IH -IH // -HL12 #I1 #I2 #K1 #K2 #V1 #V2 #i #Hil #HnT #HLK1 #HLK2 elim (H1 … HnT HLK1 HLK2) -H1 /4 width=8 by and4_intro/ qed-. lemma llpx_sn_alt_r_inv_alt: ∀R,L1,L2,T,l. llpx_sn_alt_r R l T L1 L2 → |L1| = |L2| ∧ ∀I1,I2,K1,K2,V1,V2,i. l ≤ yinj i → (∀U. ⬆[i, 1] U ≡ T → ⊥) → ⬇[i] L1 ≡ K1.ⓑ{I1}V1 → ⬇[i] L2 ≡ K2.ⓑ{I2}V2 → ∧∧ I1 = I2 & R K1 V1 V2 & llpx_sn_alt_r R 0 V1 K1 K2. #R #L1 #L2 #T #l #H @(llpx_sn_alt_r_ind_alt … H) -L1 -L2 -T -l #L1 #L2 #T #l #HL12 #IH @conj // -HL12 #I1 #I2 #K1 #K2 #V1 #V2 #i #Hil #HnT #HLK1 #HLK2 elim (IH … HnT HLK1 HLK2) -IH -HnT -HLK1 -HLK2 /2 width=1 by and3_intro/ qed-. (* Basic inversion lemmas ***************************************************) lemma llpx_sn_alt_r_inv_flat: ∀R,I,L1,L2,V,T,l. llpx_sn_alt_r R l (ⓕ{I}V.T) L1 L2 → llpx_sn_alt_r R l V L1 L2 ∧ llpx_sn_alt_r R l T L1 L2. #R #I #L1 #L2 #V #T #l #H elim (llpx_sn_alt_r_inv_alt … H) -H #HL12 #IH @conj @llpx_sn_alt_r_intro_alt // -HL12 #I1 #I2 #K1 #K2 #V1 #V2 #i #Hli #H #HLK1 #HLK2 elim (IH … HLK1 HLK2) -IH -HLK1 -HLK2 // /3 width=8 by nlift_flat_sn, nlift_flat_dx, and3_intro/ qed-. lemma llpx_sn_alt_r_inv_bind: ∀R,a,I,L1,L2,V,T,l. llpx_sn_alt_r R l (ⓑ{a,I}V.T) L1 L2 → llpx_sn_alt_r R l V L1 L2 ∧ llpx_sn_alt_r R (⫯l) T (L1.ⓑ{I}V) (L2.ⓑ{I}V). #R #a #I #L1 #L2 #V #T #l #H elim (llpx_sn_alt_r_inv_alt … H) -H #HL12 #IH @conj @llpx_sn_alt_r_intro_alt [1,3: normalize // ] -HL12 #I1 #I2 #K1 #K2 #V1 #V2 #i #Hli #H #HLK1 #HLK2 [ elim (IH … HLK1 HLK2) -IH -HLK1 -HLK2 /3 width=9 by nlift_bind_sn, and3_intro/ | lapply (yle_inv_succ1 … Hli) -Hli * #Hli #Hi