(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "ground_2/xoa/xoa2.ma". include "basic_2/notation/relations/lazyor_4.ma". include "basic_2/relocation/lpx_sn_alt.ma". (* POINTWISE UNION FOR LOCAL ENVIRONMENTS ***********************************) inductive clor (T) (L2) (K1) (V1): predicate term ≝ | clor_sn: ∀U. |K1| < |L2| → ⇧[|L2|-|K1|-1, 1] U ≡ T → clor T L2 K1 V1 V1 | clor_dx: ∀I,K2,V2. |K1| < |L2| → (∀U. ⇧[|L2|-|K1|-1, 1] U ≡ T → ⊥) → ⇩[|L2|-|K1|-1] L2 ≡ K2.ⓑ{I}V2 → clor T L2 K1 V1 V2 . definition llor: relation4 term lenv lenv lenv ≝ λT,L2. lpx_sn (clor T L2). interpretation "lazy union (local environment)" 'LazyOr L1 T L2 L = (llor T L2 L1 L). (* Basic properties *********************************************************) lemma llor_pair_sn: ∀I,L1,L2,L,V,T,U. L1 ⩖[T] L2 ≡ L → |L1| < |L2| → ⇧[|L2|-|L1|-1, 1] U ≡ T → L1.ⓑ{I}V ⩖[T] L2 ≡ L.ⓑ{I}V. /3 width=2 by clor_sn, lpx_sn_pair/ qed. lemma llor_pair_dx: ∀I,J,L1,L2,L,K2,V1,V2,T. L1 ⩖[T] L2 ≡ L → |L1| < |L2| → (∀U. ⇧[|L2|-|L1|-1, 1] U ≡ T → ⊥) → ⇩[|L2|-|L1|-1] L2 ≡ K2.ⓑ{J}V2 → L1.ⓑ{I}V1 ⩖[T] L2 ≡ L.ⓑ{I}V2. /4 width=3 by clor_dx, lpx_sn_pair/ qed. lemma llor_total: ∀T,L2,L1. |L1| ≤ |L2| → ∃L. L1 ⩖[T] L2 ≡ L. #T #L2 #L1 elim L1 -L1 /2 width=2 by ex_intro/ #L1 #I1 #V1 #IHL1 normalize #H elim IHL1 -IHL1 /2 width=3 by transitive_le/ #L #HT elim (is_lift_dec T (|L2|-|L1|-1) 1) [ * /3 width=2 by llor_pair_sn, ex_intro/ | elim (ldrop_O1_lt L2 (|L2|-|L1|-1)) /5 width=4 by llor_pair_dx, monotonic_lt_minus_l, ex_intro/ ] qed-. (* Alternative definition ***************************************************) (* Note: uses minus_minus_comm, minus_plus_m_m, commutative_plus, plus_minus *) lemma plus_minus_minus_be: ∀x,y,z. y ≤ z → z ≤ x → (x - z) + (z - y) = x - y. #x #z #y #Hzy #Hyx >plus_minus // >commutative_plus >plus_minus // qed-. fact plus_minus_minus_be_aux: ∀i,x,y,z. y ≤ z → z ≤ x → i = z - y → x - z + i = x - y. /2 width=1 by plus_minus_minus_be/ qed-. lemma llor_intro_alt: ∀T,L2,L1,L. |L1| ≤ |L2| → |L1| = |L| → (∀I1,I,K1,K,V1,V,i. ⇩[i] L1 ≡ K1.ⓑ{I1}V1 → ⇩[i] L ≡ K.ⓑ{I}V → (∀U. ⇧[|L2|-|L1|+i, 1] U ≡ T → ∧∧ I1 = I & V1 = V & K1 ⩖[T] L2 ≡ K ) ∧ (∀I2,K2,V2. (∀U. ⇧[|L2|-|L1|+i, 1] U ≡ T → ⊥) → ⇩[|L2|-|L1|+i] L2 ≡ K2.ⓑ{I2}V2 → ∧∧ I1 = I & V2 = V & K1 ⩖[T] L2 ≡ K ) ) → L1 ⩖[T] L2 ≡ L. #T #L2 #L1 #L #HL12 #HL1 #IH @lpx_sn_intro_alt // -HL1 #I1 #I #K1 #K #V1 #V #i #HLK1 #HLK lapply (ldrop_fwd_length_minus4 … HLK1) lapply (ldrop_fwd_length_le4 … HLK1) normalize #HKL1 #H1i lapply (plus_minus_minus_be_aux … HL12 H1i) // #H2i lapply (transitive_le … HKL1 HL12) -HKL1 -HL12 #HKL1 elim (IH … HLK1 HLK) -IH -HLK1 -HLK #IH1 #IH2 elim (is_lift_dec T (|L2|-|L1|+i) 1) [ -IH2 * #U #HUT elim (IH1 … HUT) -IH1 /3 width=2 by clor_sn, and3_intro/ | -IH1 #H elim (ldrop_O1_lt L2 (|L2|-|L1|+i)) /2 width=1 by monotonic_lt_minus_l/ #I2 #K2 #V2 #HLK2 elim (IH2 … HLK2) -IH2 /5 width=3 by clor_dx, ex_intro, and3_intro/ ] qed. lemma llor_ind_alt: ∀T,L2. ∀S:relation lenv. ( ∀L1,L. |L1| = |L| → ( ∀I1,I,K1,K,V1,V,i. ⇩[i] L1 ≡ K1.ⓑ{I1}V1 → ⇩[i] L ≡ K.ⓑ{I}V → (∃∃U. ⇧[|L2|-|L1|+i, 1] U ≡ T & I1 = I & V1 = V & K1 ⩖[T] L2 ≡ K & S K1 K ) ∨ (∃∃I2,K2,V2. (∀U. ⇧[|L2|-|L1|+i, 1] U ≡ T → ⊥) & ⇩[|L2|-|L1|+i] L2 ≡ K2.ⓑ{I2}V2 & I1 = I & V2 = V & K1 ⩖[T] L2 ≡ K & S K1 K ) ) → |L1| ≤ |L2| → S L1 L ) → ∀L1,L. L1 ⩖[T] L2 ≡ L → |L1| ≤ |L2| → S L1 L. #T #L2 #S #IH1 #L1 #L #H @(lpx_sn_ind_alt … H) -L1 -L #L1 #L #HL1 #IH2 #HL12 @IH1 // -IH1 -HL1 #I1 #I #K1 #K #V1 #V #i #HLK1 #HLK lapply (ldrop_fwd_length_minus4 … HLK1) lapply (ldrop_fwd_length_le4 … HLK1) normalize #HKL1 #H1i lapply (plus_minus_minus_be_aux … HL12 H1i) // lapply (transitive_le … HKL1 HL12) -HKL1 -HL12 elim (IH2 … HLK1 HLK) -IH2 #H * /5 width=5 by lt_to_le, ex6_3_intro, ex5_intro, or_intror, or_introl/ qed-. lemma llor_inv_alt: ∀T,L2,L1,L. L1 ⩖[T] L2 ≡ L → |L1| ≤ |L2| → |L1| = |L| ∧ (∀I1,I,K1,K,V1,V,i. ⇩[i] L1 ≡ K1.ⓑ{I1}V1 → ⇩[i] L ≡ K.ⓑ{I}V → (∃∃U. ⇧[|L2|-|L1|+i, 1] U ≡ T & I1 = I & V1 = V & K1 ⩖[T] L2 ≡ K ) ∨ (∃∃I2,K2,V2. (∀U. ⇧[|L2|-|L1|+i, 1] U ≡ T → ⊥) & ⇩[|L2|-|L1|+i] L2 ≡ K2.ⓑ{I2}V2 & I1 = I & V2 = V & K1 ⩖[T] L2 ≡ K ) ). #T #L2 #L1 #L #H #HL12 elim (lpx_sn_inv_alt … H) -H #HL1 #IH @conj // -HL1 #I1 #I #K1 #K #V1 #V #i #HLK1 #HLK lapply (ldrop_fwd_length_minus4 … HLK1) lapply (ldrop_fwd_length_le4 … HLK1) normalize #HKL1 #H1i lapply (plus_minus_minus_be_aux … HL12 H1i) // lapply (transitive_le … HKL1 HL12) -HKL1 -HL12 elim (IH … HLK1 HLK) -IH #H * /4 width=5 by ex5_3_intro, ex4_intro, or_intror, or_introl/ qed-.