(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2/notation/relations/lrsubeqv_5.ma". include "basic_2/dynamic/shnv.ma". (* LOCAL ENVIRONMENT REFINEMENT FOR STRATIFIED NATIVE VALIDITY **************) (* Note: this is not transitive *) inductive lsubsv (h) (o) (G): relation lenv ≝ | lsubsv_atom: lsubsv h o G (⋆) (⋆) | lsubsv_pair: ∀I,L1,L2,V. lsubsv h o G L1 L2 → lsubsv h o G (L1.ⓑ{I}V) (L2.ⓑ{I}V) | lsubsv_beta: ∀L1,L2,W,V,d1. ⦃G, L1⦄ ⊢ ⓝW.V ¡[h, o, d1] → ⦃G, L2⦄ ⊢ W ¡[h, o] → ⦃G, L1⦄ ⊢ V ▪[h, o] d1+1 → ⦃G, L2⦄ ⊢ W ▪[h, o] d1 → lsubsv h o G L1 L2 → lsubsv h o G (L1.ⓓⓝW.V) (L2.ⓛW) . interpretation "local environment refinement (stratified native validity)" 'LRSubEqV h o G L1 L2 = (lsubsv h o G L1 L2). (* Basic inversion lemmas ***************************************************) fact lsubsv_inv_atom1_aux: ∀h,o,G,L1,L2. G ⊢ L1 ⫃¡[h, o] L2 → L1 = ⋆ → L2 = ⋆. #h #o #G #L1 #L2 * -L1 -L2 [ // | #I #L1 #L2 #V #_ #H destruct | #L1 #L2 #W #V #d1 #_ #_ #_ #_ #_ #H destruct ] qed-. lemma lsubsv_inv_atom1: ∀h,o,G,L2. G ⊢ ⋆ ⫃¡[h, o] L2 → L2 = ⋆. /2 width=6 by lsubsv_inv_atom1_aux/ qed-. fact lsubsv_inv_pair1_aux: ∀h,o,G,L1,L2. G ⊢ L1 ⫃¡[h, o] L2 → ∀I,K1,X. L1 = K1.ⓑ{I}X → (∃∃K2. G ⊢ K1 ⫃¡[h, o] K2 & L2 = K2.ⓑ{I}X) ∨ ∃∃K2,W,V,d1. ⦃G, K1⦄ ⊢ ⓝW.V ¡[h, o, d1] & ⦃G, K2⦄ ⊢ W ¡[h, o] & ⦃G, K1⦄ ⊢ V ▪[h, o] d1+1 & ⦃G, K2⦄ ⊢ W ▪[h, o] d1 & G ⊢ K1 ⫃¡[h, o] K2 & I = Abbr & L2 = K2.ⓛW & X = ⓝW.V. #h #o #G #L1 #L2 * -L1 -L2 [ #J #K1 #X #H destruct | #I #L1 #L2 #V #HL12 #J #K1 #X #H destruct /3 width=3 by ex2_intro, or_introl/ | #L1 #L2 #W #V #d1 #HWV #HW #HVd1 #HWd1 #HL12 #J #K1 #X #H destruct /3 width=11 by or_intror, ex8_4_intro/ ] qed-. lemma lsubsv_inv_pair1: ∀h,o,I,G,K1,L2,X. G ⊢ K1.ⓑ{I}X ⫃¡[h, o] L2 → (∃∃K2. G ⊢ K1 ⫃¡[h, o] K2 & L2 = K2.ⓑ{I}X) ∨ ∃∃K2,W,V,d1. ⦃G, K1⦄ ⊢ ⓝW.V ¡[h, o, d1] & ⦃G, K2⦄ ⊢ W ¡[h, o] & ⦃G, K1⦄ ⊢ V ▪[h, o] d1+1 & ⦃G, K2⦄ ⊢ W ▪[h, o] d1 & G ⊢ K1 ⫃¡[h, o] K2 & I = Abbr & L2 = K2.ⓛW & X = ⓝW.V. /2 width=3 by lsubsv_inv_pair1_aux/ qed-. fact lsubsv_inv_atom2_aux: ∀h,o,G,L1,L2. G ⊢ L1 ⫃¡[h, o] L2 → L2 = ⋆ → L1 = ⋆. #h #o #G #L1 #L2 * -L1 -L2 [ // | #I #L1 #L2 #V #_ #H destruct | #L1 #L2 #W #V #d1 #_ #_ #_ #_ #_ #H destruct ] qed-. lemma lsubsv_inv_atom2: ∀h,o,G,L1. G ⊢ L1 ⫃¡[h, o] ⋆ → L1 = ⋆. /2 width=6 by lsubsv_inv_atom2_aux/ qed-. fact lsubsv_inv_pair2_aux: ∀h,o,G,L1,L2. G ⊢ L1 ⫃¡[h, o] L2 → ∀I,K2,W. L2 = K2.ⓑ{I}W → (∃∃K1. G ⊢ K1 ⫃¡[h, o] K2 & L1 = K1.ⓑ{I}W) ∨ ∃∃K1,V,d1. ⦃G, K1⦄ ⊢ ⓝW.V ¡[h, o, d1] & ⦃G, K2⦄ ⊢ W ¡[h, o] & ⦃G, K1⦄ ⊢ V ▪[h, o] d1+1 & ⦃G, K2⦄ ⊢ W ▪[h, o] d1 & G ⊢ K1 ⫃¡[h, o] K2 & I = Abst & L1 = K1.ⓓⓝW.V. #h #o #G #L1 #L2 * -L1 -L2 [ #J #K2 #U #H destruct | #I #L1 #L2 #V #HL12 #J #K2 #U #H destruct /3 width=3 by ex2_intro, or_introl/ | #L1 #L2 #W #V #d1 #HWV #HW #HVd1 #HWd1 #HL12 #J #K2 #U #H destruct /3 width=8 by or_intror, ex7_3_intro/ ] qed-. lemma lsubsv_inv_pair2: ∀h,o,I,G,L1,K2,W. G ⊢ L1 ⫃¡[h, o] K2.ⓑ{I}W → (∃∃K1. G ⊢ K1 ⫃¡[h, o] K2 & L1 = K1.ⓑ{I}W) ∨ ∃∃K1,V,d1. ⦃G, K1⦄ ⊢ ⓝW.V ¡[h, o, d1] & ⦃G, K2⦄ ⊢ W ¡[h, o] & ⦃G, K1⦄ ⊢ V ▪[h, o] d1+1 & ⦃G, K2⦄ ⊢ W ▪[h, o] d1 & G ⊢ K1 ⫃¡[h, o] K2 & I = Abst & L1 = K1.ⓓⓝW.V. /2 width=3 by lsubsv_inv_pair2_aux/ qed-. (* Basic forward lemmas *****************************************************) lemma lsubsv_fwd_lsubr: ∀h,o,G,L1,L2. G ⊢ L1 ⫃¡[h, o] L2 → L1 ⫃ L2. #h #o #G #L1 #L2 #H elim H -L1 -L2 /2 width=1 by lsubr_pair, lsubr_beta/ qed-. (* Basic properties *********************************************************) lemma lsubsv_refl: ∀h,o,G,L. G ⊢ L ⫃¡[h, o] L. #h #o #G #L elim L -L /2 width=1 by lsubsv_pair/ qed. lemma lsubsv_cprs_trans: ∀h,o,G,L1,L2. G ⊢ L1 ⫃¡[h, o] L2 → ∀T1,T2. ⦃G, L2⦄ ⊢ T1 ➡* T2 → ⦃G, L1⦄ ⊢ T1 ➡* T2. /3 width=6 by lsubsv_fwd_lsubr, lsubr_cprs_trans/ qed-. (* Note: the constant 0 cannot be generalized *) lemma lsubsv_drop_O1_conf: ∀h,o,G,L1,L2. G ⊢ L1 ⫃¡[h, o] L2 → ∀K1,b,k. ⬇[b, 0, k] L1 ≘ K1 → ∃∃K2. G ⊢ K1 ⫃¡[h, o] K2 & ⬇[b, 0, k] L2 ≘ K2. #h #o #G #L1 #L2 #H elim H -L1 -L2 [ /2 width=3 by ex2_intro/ | #I #L1 #L2 #V #_ #IHL12 #K1 #b #k #H elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK1 [ destruct elim (IHL12 L1 b 0) -IHL12 // #X #HL12 #H <(drop_inv_O2 … H) in HL12; -H /3 width=3 by lsubsv_pair, drop_pair, ex2_intro/ | elim (IHL12 … HLK1) -L1 /3 width=3 by drop_drop_lt, ex2_intro/ ] | #L1 #L2 #W #V #d1 #HWV #HW #HVd1 #HWd1 #_ #IHL12 #K1 #b #k #H elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK1 [ destruct elim (IHL12 L1 b 0) -IHL12 // #X #HL12 #H <(drop_inv_O2 … H) in HL12; -H /3 width=4 by lsubsv_beta, drop_pair, ex2_intro/ | elim (IHL12 … HLK1) -L1 /3 width=3 by drop_drop_lt, ex2_intro/ ] ] qed-. (* Note: the constant 0 cannot be generalized *) lemma lsubsv_drop_O1_trans: ∀h,o,G,L1,L2. G ⊢ L1 ⫃¡[h, o] L2 → ∀K2,b, k. ⬇[b, 0, k] L2 ≘ K2 → ∃∃K1. G ⊢ K1 ⫃¡[h, o] K2 & ⬇[b, 0, k] L1 ≘ K1. #h #o #G #L1 #L2 #H elim H -L1 -L2 [ /2 width=3 by ex2_intro/ | #I #L1 #L2 #V #_ #IHL12 #K2 #b #k #H elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK2 [ destruct elim (IHL12 L2 b 0) -IHL12 // #X #HL12 #H <(drop_inv_O2 … H) in HL12; -H /3 width=3 by lsubsv_pair, drop_pair, ex2_intro/ | elim (IHL12 … HLK2) -L2 /3 width=3 by drop_drop_lt, ex2_intro/ ] | #L1 #L2 #W #V #d1 #HWV #HW #HVd1 #HWd1 #_ #IHL12 #K2 #b #k #H elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK2 [ destruct elim (IHL12 L2 b 0) -IHL12 // #X #HL12 #H <(drop_inv_O2 … H) in HL12; -H /3 width=4 by lsubsv_beta, drop_pair, ex2_intro/ | elim (IHL12 … HLK2) -L2 /3 width=3 by drop_drop_lt, ex2_intro/ ] ] qed-.