(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2/relocation/cpy_lift.ma". (* CONTEXT-SENSITIVE EXTENDED ORDINARY SUBSTITUTION FOR TERMS ***************) (* Main properties **********************************************************) (* Basic_1: was: subst1_confluence_eq *) theorem cpy_conf_eq: ∀G,L,T0,T1,d1,e1. ⦃G, L⦄ ⊢ T0 ▶[d1, e1] T1 → ∀T2,d2,e2. ⦃G, L⦄ ⊢ T0 ▶[d2, e2] T2 → ∃∃T. ⦃G, L⦄ ⊢ T1 ▶[d2, e2] T & ⦃G, L⦄ ⊢ T2 ▶[d1, e1] T. #G #L #T0 #T1 #d1 #e1 #H elim H -G -L -T0 -T1 -d1 -e1 [ /2 width=3 by ex2_intro/ | #I1 #G #L #K1 #V1 #T1 #i0 #d1 #e1 #Hd1 #Hde1 #HLK1 #HVT1 #T2 #d2 #e2 #H elim (cpy_inv_lref1 … H) -H [ #HX destruct /3 width=7 by cpy_subst, ex2_intro/ | -Hd1 -Hde1 * #I2 #K2 #V2 #_ #_ #HLK2 #HVT2 lapply (ldrop_mono … HLK1 … HLK2) -HLK1 -HLK2 #H destruct >(lift_mono … HVT1 … HVT2) -HVT1 -HVT2 /2 width=3 by ex2_intro/ ] | #a #I #G #L #V0 #V1 #T0 #T1 #d1 #e1 #_ #_ #IHV01 #IHT01 #X #d2 #e2 #HX elim (cpy_inv_bind1 … HX) -HX #V2 #T2 #HV02 #HT02 #HX destruct elim (IHV01 … HV02) -IHV01 -HV02 #V #HV1 #HV2 elim (IHT01 … HT02) -T0 #T #HT1 #HT2 lapply (lsuby_cpy_trans … HT1 (L.ⓑ{I}V1) ?) -HT1 /2 width=1 by lsuby_succ/ lapply (lsuby_cpy_trans … HT2 (L.ⓑ{I}V2) ?) -HT2 /3 width=5 by cpy_bind, lsuby_succ, ex2_intro/ | #I #G #L #V0 #V1 #T0 #T1 #d1 #e1 #_ #_ #IHV01 #IHT01 #X #d2 #e2 #HX elim (cpy_inv_flat1 … HX) -HX #V2 #T2 #HV02 #HT02 #HX destruct elim (IHV01 … HV02) -V0 elim (IHT01 … HT02) -T0 /3 width=5 by cpy_flat, ex2_intro/ ] qed-. (* Basic_1: was: subst1_confluence_neq *) theorem cpy_conf_neq: ∀G,L1,T0,T1,d1,e1. ⦃G, L1⦄ ⊢ T0 ▶[d1, e1] T1 → ∀L2,T2,d2,e2. ⦃G, L2⦄ ⊢ T0 ▶[d2, e2] T2 → (d1 + e1 ≤ d2 ∨ d2 + e2 ≤ d1) → ∃∃T. ⦃G, L2⦄ ⊢ T1 ▶[d2, e2] T & ⦃G, L1⦄ ⊢ T2 ▶[d1, e1] T. #G #L1 #T0 #T1 #d1 #e1 #H elim H -G -L1 -T0 -T1 -d1 -e1 [ /2 width=3 by ex2_intro/ | #I1 #G #L1 #K1 #V1 #T1 #i0 #d1 #e1 #Hd1 #Hde1 #HLK1 #HVT1 #L2 #T2 #d2 #e2 #H1 #H2 elim (cpy_inv_lref1 … H1) -H1 [ #H destruct /3 width=7 by cpy_subst, ex2_intro/ | -HLK1 -HVT1 * #I2 #K2 #V2 #Hd2 #Hde2 #_ #_ elim H2 -H2 #Hded [ -Hd1 -Hde2 | -Hd2 -Hde1 ] [ elim (ylt_yle_false … Hde1) -Hde1 /2 width=3 by yle_trans/ | elim (ylt_yle_false … Hde2) -Hde2 /2 width=3 by yle_trans/ ] ] | #a #I #G #L1 #V0 #V1 #T0 #T1 #d1 #e1 #_ #_ #IHV01 #IHT01 #L2 #X #d2 #e2 #HX #H elim (cpy_inv_bind1 … HX) -HX #V2 #T2 #HV02 #HT02 #HX destruct elim (IHV01 … HV02 H) -IHV01 -HV02 #V #HV1 #HV2 elim (IHT01 … HT02) -T0 [ -H #T #HT1 #HT2 lapply (lsuby_cpy_trans … HT1 (L2.ⓑ{I}V1) ?) -HT1 /2 width=1 by lsuby_succ/ lapply (lsuby_cpy_trans … HT2 (L1.ⓑ{I}V2) ?) -HT2 /3 width=5 by cpy_bind, lsuby_succ, ex2_intro/ | -HV1 -HV2 elim H -H /3 width=1 by yle_succ, or_introl, or_intror/ ] | #I #G #L1 #V0 #V1 #T0 #T1 #d1 #e1 #_ #_ #IHV01 #IHT01 #L2 #X #d2 #e2 #HX #H elim (cpy_inv_flat1 … HX) -HX #V2 #T2 #HV02 #HT02 #HX destruct elim (IHV01 … HV02 H) -V0 elim (IHT01 … HT02 H) -T0 -H /3 width=5 by cpy_flat, ex2_intro/ ] qed-. (* Note: the constant 1 comes from cpy_subst *) (* Basic_1: was: subst1_trans *) theorem cpy_trans_ge: ∀G,L,T1,T0,d,e. ⦃G, L⦄ ⊢ T1 ▶[d, e] T0 → ∀T2. ⦃G, L⦄ ⊢ T0 ▶[d, 1] T2 → 1 ≤ e → ⦃G, L⦄ ⊢ T1 ▶[d, e] T2. #G #L #T1 #T0 #d #e #H elim H -G -L -T1 -T0 -d -e [ #I #G #L #d #e #T2 #H #He elim (cpy_inv_atom1 … H) -H [ #H destruct // | * #J #K #V #i #Hd2i #Hide2 #HLK #HVT2 #H destruct lapply (ylt_yle_trans … (d+e) … Hide2) /2 width=5 by cpy_subst, monotonic_yle_plus_dx/ ] | #I #G #L #K #V #V2 #i #d #e #Hdi #Hide #HLK #HVW #T2 #HVT2 #He lapply (cpy_weak … HVT2 0 (i+1) ? ?) -HVT2 /3 width=1 by yle_plus_dx2_trans, yle_succ/ >yplus_inj #HVT2 <(cpy_inv_lift1_eq … HVW … HVT2) -HVT2 /2 width=5 by cpy_subst/ | #a #I #G #L #V1 #V0 #T1 #T0 #d #e #_ #_ #IHV10 #IHT10 #X #H #He elim (cpy_inv_bind1 … H) -H #V2 #T2 #HV02 #HT02 #H destruct lapply (lsuby_cpy_trans … HT02 (L.ⓑ{I}V1) ?) -HT02 /2 width=1 by lsuby_succ/ #HT02 lapply (IHT10 … HT02 He) -T0 /3 width=1 by cpy_bind/ | #I #G #L #V1 #V0 #T1 #T0 #d #e #_ #_ #IHV10 #IHT10 #X #H #He elim (cpy_inv_flat1 … H) -H #V2 #T2 #HV02 #HT02 #H destruct /3 width=1 by cpy_flat/ ] qed-. theorem cpy_trans_down: ∀G,L,T1,T0,d1,e1. ⦃G, L⦄ ⊢ T1 ▶[d1, e1] T0 → ∀T2,d2,e2. ⦃G, L⦄ ⊢ T0 ▶[d2, e2] T2 → d2 + e2 ≤ d1 → ∃∃T. ⦃G, L⦄ ⊢ T1 ▶[d2, e2] T & ⦃G, L⦄ ⊢ T ▶[d1, e1] T2. #G #L #T1 #T0 #d1 #e1 #H elim H -G -L -T1 -T0 -d1 -e1 [ /2 width=3 by ex2_intro/ | #I #G #L #K #V #W #i1 #d1 #e1 #Hdi1 #Hide1 #HLK #HVW #T2 #d2 #e2 #HWT2 #Hde2d1 lapply (yle_trans … Hde2d1 … Hdi1) -Hde2d1 #Hde2i1 lapply (cpy_weak … HWT2 0 (i1+1) ? ?) -HWT2 /3 width=1 by yle_succ, yle_pred_sn/ -Hde2i1 >yplus_inj #HWT2 <(cpy_inv_lift1_eq … HVW … HWT2) -HWT2 /3 width=9 by cpy_subst, ex2_intro/ | #a #I #G #L #V1 #V0 #T1 #T0 #d1 #e1 #_ #_ #IHV10 #IHT10 #X #d2 #e2 #HX #de2d1 elim (cpy_inv_bind1 … HX) -HX #V2 #T2 #HV02 #HT02 #HX destruct lapply (lsuby_cpy_trans … HT02 (L.ⓑ{I}V1) ?) -HT02 /2 width=1 by lsuby_succ/ #HT02 elim (IHV10 … HV02) -IHV10 -HV02 // #V elim (IHT10 … HT02) -T0 /2 width=1 by yle_succ/ #T #HT1 #HT2 lapply (lsuby_cpy_trans … HT2 (L.ⓑ{I}V) ?) -HT2 /3 width=6 by cpy_bind, lsuby_succ, ex2_intro/ | #I #G #L #V1 #V0 #T1 #T0 #d1 #e1 #_ #_ #IHV10 #IHT10 #X #d2 #e2 #HX #de2d1 elim (cpy_inv_flat1 … HX) -HX #V2 #T2 #HV02 #HT02 #HX destruct elim (IHV10 … HV02) -V0 // elim (IHT10 … HT02) -T0 /3 width=6 by cpy_flat, ex2_intro/ ] qed-.