(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2/relocation/cpy_lift.ma". include "basic_2/substitution/cpys.ma". (* CONTEXT-SENSITIVE EXTENDED MULTIPLE SUBSTITUTION FOR TERMS ***************) (* Advanced properties ******************************************************) lemma cpys_subst: ∀I,G,L,K,V,U1,i,d,e. d ≤ yinj i → i < d + e → ⇩[i] L ≡ K.ⓑ{I}V → ⦃G, K⦄ ⊢ V ▶*[0, ⫰(d+e-i)] U1 → ∀U2. ⇧[0, i+1] U1 ≡ U2 → ⦃G, L⦄ ⊢ #i ▶*[d, e] U2. #I #G #L #K #V #U1 #i #d #e #Hdi #Hide #HLK #H @(cpys_ind … H) -U1 [ /3 width=5 by cpy_cpys, cpy_subst/ | #U #U1 #_ #HU1 #IHU #U2 #HU12 elim (lift_total U 0 (i+1)) #U0 #HU0 lapply (IHU … HU0) -IHU #H lapply (ldrop_fwd_drop2 … HLK) -HLK #HLK lapply (cpy_lift_ge … HU1 … HLK HU0 HU12 ?) -HU1 -HLK -HU0 -HU12 // #HU02 lapply (cpy_weak … HU02 d e ? ?) -HU02 [2,3: /2 width=3 by cpys_strap1, yle_succ_dx/ ] >yplus_O1 ymax_pre_sn_comm /2 width=1 by ylt_fwd_le_succ/ ] qed. lemma cpys_subst_Y2: ∀I,G,L,K,V,U1,i,d. d ≤ yinj i → ⇩[i] L ≡ K.ⓑ{I}V → ⦃G, K⦄ ⊢ V ▶*[0, ∞] U1 → ∀U2. ⇧[0, i+1] U1 ≡ U2 → ⦃G, L⦄ ⊢ #i ▶*[d, ∞] U2. #I #G #L #K #V #U1 #i #d #Hdi #HLK #HVU1 #U2 #HU12 @(cpys_subst … HLK … HU12) >yminus_Y_inj // qed. (* Advanced inverion lemmas *************************************************) lemma cpys_inv_atom1: ∀I,G,L,T2,d,e. ⦃G, L⦄ ⊢ ⓪{I} ▶*[d, e] T2 → T2 = ⓪{I} ∨ ∃∃J,K,V1,V2,i. d ≤ yinj i & i < d + e & ⇩[i] L ≡ K.ⓑ{J}V1 & ⦃G, K⦄ ⊢ V1 ▶*[0, ⫰(d+e-i)] V2 & ⇧[O, i+1] V2 ≡ T2 & I = LRef i. #I #G #L #T2 #d #e #H @(cpys_ind … H) -T2 [ /2 width=1 by or_introl/ | #T #T2 #_ #HT2 * [ #H destruct elim (cpy_inv_atom1 … HT2) -HT2 [ /2 width=1 by or_introl/ | * /3 width=11 by ex6_5_intro, or_intror/ ] | * #J #K #V1 #V #i #Hdi #Hide #HLK #HV1 #HVT #HI lapply (ldrop_fwd_drop2 … HLK) #H elim (cpy_inv_lift1_ge_up … HT2 … H … HVT) -HT2 -H -HVT [2,3,4: /2 width=1 by ylt_fwd_le_succ, yle_succ_dx/ ] /4 width=11 by cpys_strap1, ex6_5_intro, or_intror/ ] ] qed-. lemma cpys_inv_lref1: ∀G,L,T2,i,d,e. ⦃G, L⦄ ⊢ #i ▶*[d, e] T2 → T2 = #i ∨ ∃∃I,K,V1,V2. d ≤ i & i < d + e & ⇩[i] L ≡ K.ⓑ{I}V1 & ⦃G, K⦄ ⊢ V1 ▶*[0, ⫰(d+e-i)] V2 & ⇧[O, i+1] V2 ≡ T2. #G #L #T2 #i #d #e #H elim (cpys_inv_atom1 … H) -H /2 width=1 by or_introl/ * #I #K #V1 #V2 #j #Hdj #Hjde #HLK #HV12 #HVT2 #H destruct /3 width=7 by ex5_4_intro, or_intror/ qed-. lemma cpys_inv_lref1_ldrop: ∀G,L,T2,i,d,e. ⦃G, L⦄ ⊢ #i ▶*[d, e] T2 → ∀I,K,V1. ⇩[i] L ≡ K.ⓑ{I}V1 → ∀V2. ⇧[O, i+1] V2 ≡ T2 → ∧∧ ⦃G, K⦄ ⊢ V1 ▶*[0, ⫰(d+e-i)] V2 & d ≤ i & i < d + e. #G #L #T2 #i #d #e #H #I #K #V1 #HLK #V2 #HVT2 elim (cpys_inv_lref1 … H) -H [ #H destruct elim (lift_inv_lref2_be … HVT2) -HVT2 -HLK // | * #Z #Y #X1 #X2 #Hdi #Hide #HLY #HX12 #HXT2 lapply (lift_inj … HXT2 … HVT2) -T2 #H destruct lapply (ldrop_mono … HLY … HLK) -L #H destruct /2 width=1 by and3_intro/ ] qed-. (* Properties on relocation *************************************************) lemma cpys_lift_le: ∀G,K,T1,T2,dt,et. ⦃G, K⦄ ⊢ T1 ▶*[dt, et] T2 → ∀L,U1,s,d,e. dt + et ≤ yinj d → ⇩[s, d, e] L ≡ K → ⇧[d, e] T1 ≡ U1 → ∀U2. ⇧[d, e] T2 ≡ U2 → ⦃G, L⦄ ⊢ U1 ▶*[dt, et] U2. #G #K #T1 #T2 #dt #et #H #L #U1 #s #d #e #Hdetd #HLK #HTU1 @(cpys_ind … H) -T2 [ #U2 #H >(lift_mono … HTU1 … H) -H // | -HTU1 #T #T2 #_ #HT2 #IHT #U2 #HTU2 elim (lift_total T d e) #U #HTU lapply (IHT … HTU) -IHT #HU1 lapply (cpy_lift_le … HT2 … HLK HTU HTU2 ?) -HT2 -HLK -HTU -HTU2 /2 width=3 by cpys_strap1/ ] qed-. lemma cpys_lift_be: ∀G,K,T1,T2,dt,et. ⦃G, K⦄ ⊢ T1 ▶*[dt, et] T2 → ∀L,U1,s,d,e. dt ≤ yinj d → d ≤ dt + et → ⇩[s, d, e] L ≡ K → ⇧[d, e] T1 ≡ U1 → ∀U2. ⇧[d, e] T2 ≡ U2 → ⦃G, L⦄ ⊢ U1 ▶*[dt, et + e] U2. #G #K #T1 #T2 #dt #et #H #L #U1 #s #d #e #Hdtd #Hddet #HLK #HTU1 @(cpys_ind … H) -T2 [ #U2 #H >(lift_mono … HTU1 … H) -H // | -HTU1 #T #T2 #_ #HT2 #IHT #U2 #HTU2 elim (lift_total T d e) #U #HTU lapply (IHT … HTU) -IHT #HU1 lapply (cpy_lift_be … HT2 … HLK HTU HTU2 ? ?) -HT2 -HLK -HTU -HTU2 /2 width=3 by cpys_strap1/ ] qed-. lemma cpys_lift_ge: ∀G,K,T1,T2,dt,et. ⦃G, K⦄ ⊢ T1 ▶*[dt, et] T2 → ∀L,U1,s,d,e. yinj d ≤ dt → ⇩[s, d, e] L ≡ K → ⇧[d, e] T1 ≡ U1 → ∀U2. ⇧[d, e] T2 ≡ U2 → ⦃G, L⦄ ⊢ U1 ▶*[dt+e, et] U2. #G #K #T1 #T2 #dt #et #H #L #U1 #s #d #e #Hddt #HLK #HTU1 @(cpys_ind … H) -T2 [ #U2 #H >(lift_mono … HTU1 … H) -H // | -HTU1 #T #T2 #_ #HT2 #IHT #U2 #HTU2 elim (lift_total T d e) #U #HTU lapply (IHT … HTU) -IHT #HU1 lapply (cpy_lift_ge … HT2 … HLK HTU HTU2 ?) -HT2 -HLK -HTU -HTU2 /2 width=3 by cpys_strap1/ ] qed-. (* Inversion lemmas for relocation ******************************************) lemma cpys_inv_lift1_le: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*[dt, et] U2 → ∀K,s,d,e. ⇩[s, d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 → dt + et ≤ d → ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*[dt, et] T2 & ⇧[d, e] T2 ≡ U2. #G #L #U1 #U2 #dt #et #H #K #s #d #e #HLK #T1 #HTU1 #Hdetd @(cpys_ind … H) -U2 [ /2 width=3 by ex2_intro/ | -HTU1 #U #U2 #_ #HU2 * #T #HT1 #HTU elim (cpy_inv_lift1_le … HU2 … HLK … HTU) -HU2 -HLK -HTU /3 width=3 by cpys_strap1, ex2_intro/ ] qed-. lemma cpys_inv_lift1_be: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*[dt, et] U2 → ∀K,s,d,e. ⇩[s, d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 → dt ≤ d → yinj d + e ≤ dt + et → ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*[dt, et - e] T2 & ⇧[d, e] T2 ≡ U2. #G #L #U1 #U2 #dt #et #H #K #s #d #e #HLK #T1 #HTU1 #Hdtd #Hdedet @(cpys_ind … H) -U2 [ /2 width=3 by ex2_intro/ | -HTU1 #U #U2 #_ #HU2 * #T #HT1 #HTU elim (cpy_inv_lift1_be … HU2 … HLK … HTU) -HU2 -HLK -HTU /3 width=3 by cpys_strap1, ex2_intro/ ] qed-. lemma cpys_inv_lift1_ge: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*[dt, et] U2 → ∀K,s,d,e. ⇩[s, d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 → yinj d + e ≤ dt → ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*[dt - e, et] T2 & ⇧[d, e] T2 ≡ U2. #G #L #U1 #U2 #dt #et #H #K #s #d #e #HLK #T1 #HTU1 #Hdedt @(cpys_ind … H) -U2 [ /2 width=3 by ex2_intro/ | -HTU1 #U #U2 #_ #HU2 * #T #HT1 #HTU elim (cpy_inv_lift1_ge … HU2 … HLK … HTU) -HU2 -HLK -HTU /3 width=3 by cpys_strap1, ex2_intro/ ] qed-. (* Advanced inversion lemmas on relocation **********************************) lemma cpys_inv_lift1_ge_up: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*[dt, et] U2 → ∀K,s,d,e. ⇩[s, d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 → d ≤ dt → dt ≤ yinj d + e → yinj d + e ≤ dt + et → ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*[d, dt + et - (yinj d + e)] T2 & ⇧[d, e] T2 ≡ U2. #G #L #U1 #U2 #dt #et #H #K #s #d #e #HLK #T1 #HTU1 #Hddt #Hdtde #Hdedet @(cpys_ind … H) -U2 [ /2 width=3 by ex2_intro/ | -HTU1 #U #U2 #_ #HU2 * #T #HT1 #HTU elim (cpy_inv_lift1_ge_up … HU2 … HLK … HTU) -HU2 -HLK -HTU /3 width=3 by cpys_strap1, ex2_intro/ ] qed-. lemma cpys_inv_lift1_be_up: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*[dt, et] U2 → ∀K,s,d,e. ⇩[s, d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 → dt ≤ d → dt + et ≤ yinj d + e → ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*[dt, d - dt] T2 & ⇧[d, e] T2 ≡ U2. #G #L #U1 #U2 #dt #et #H #K #s #d #e #HLK #T1 #HTU1 #Hdtd #Hdetde @(cpys_ind … H) -U2 [ /2 width=3 by ex2_intro/ | -HTU1 #U #U2 #_ #HU2 * #T #HT1 #HTU elim (cpy_inv_lift1_be_up … HU2 … HLK … HTU) -HU2 -HLK -HTU /3 width=3 by cpys_strap1, ex2_intro/ ] qed-. lemma cpys_inv_lift1_le_up: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*[dt, et] U2 → ∀K,s,d,e. ⇩[s, d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 → dt ≤ d → d ≤ dt + et → dt + et ≤ yinj d + e → ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*[dt, d - dt] T2 & ⇧[d, e] T2 ≡ U2. #G #L #U1 #U2 #dt #et #H #K #s #d #e #HLK #T1 #HTU1 #Hdtd #Hddet #Hdetde @(cpys_ind … H) -U2 [ /2 width=3 by ex2_intro/ | -HTU1 #U #U2 #_ #HU2 * #T #HT1 #HTU elim (cpy_inv_lift1_le_up … HU2 … HLK … HTU) -HU2 -HLK -HTU /3 width=3 by cpys_strap1, ex2_intro/ ] qed-. lemma cpys_inv_lift1_subst: ∀G,L,W1,W2,d,e. ⦃G, L⦄ ⊢ W1 ▶*[d, e] W2 → ∀K,V1,i. ⇩[i+1] L ≡ K → ⇧[O, i+1] V1 ≡ W1 → d ≤ yinj i → i < d + e → ∃∃V2. ⦃G, K⦄ ⊢ V1 ▶*[O, ⫰(d+e-i)] V2 & ⇧[O, i+1] V2 ≡ W2. #G #L #W1 #W2 #d #e #HW12 #K #V1 #i #HLK #HVW1 #Hdi #Hide elim (cpys_inv_lift1_ge_up … HW12 … HLK … HVW1 ? ? ?) // >yplus_O1 yplus_SO2 [ >yminus_succ2 /2 width=3 by ex2_intro/ | /2 width=1 by ylt_fwd_le_succ1/ | /2 width=3 by yle_trans/ ] qed-.