(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2/notation/relations/statictype_6.ma". include "basic_2/static/da.ma". (* STRATIFIED STATIC TYPE ASSIGNMENT FOR TERMS ******************************) (* activate genv *) inductive ssta (h) (g): relation4 genv lenv term term ≝ | ssta_sort: ∀G,L,k. ssta h g G L (⋆k) (⋆(next h k)) | ssta_ldef: ∀G,L,K,V,U,W,i. ⇩[i] L ≡ K.ⓓV → ssta h g G K V W → ⇧[0, i + 1] W ≡ U → ssta h g G L (#i) U | ssta_ldec: ∀G,L,K,W,U,l,i. ⇩[i] L ≡ K.ⓛW → ⦃G, K⦄ ⊢ W ▪[h, g] l → ⇧[0, i + 1] W ≡ U → ssta h g G L (#i) U | ssta_bind: ∀a,I,G,L,V,T,U. ssta h g G (L.ⓑ{I}V) T U → ssta h g G L (ⓑ{a,I}V.T) (ⓑ{a,I}V.U) | ssta_appl: ∀G,L,V,T,U. ssta h g G L T U → ssta h g G L (ⓐV.T) (ⓐV.U) | ssta_cast: ∀G,L,W,T,U. ssta h g G L T U → ssta h g G L (ⓝW.T) U . interpretation "stratified static type assignment (term)" 'StaticType h g G L T U = (ssta h g G L T U). (* Basic inversion lemmas ************************************************) fact ssta_inv_sort1_aux: ∀h,g,G,L,T,U. ⦃G, L⦄ ⊢ T •[h, g] U → ∀k0. T = ⋆k0 → U = ⋆(next h k0). #h #g #G #L #T #U * -G -L -T -U [ #G #L #k #k0 #H destruct // | #G #L #K #V #U #W #i #_ #_ #_ #k0 #H destruct | #G #L #K #W #U #l #i #_ #_ #_ #k0 #H destruct | #a #I #G #L #V #T #U #_ #k0 #H destruct | #G #L #V #T #U #_ #k0 #H destruct | #G #L #W #T #U #_ #k0 #H destruct ] qed-. lemma ssta_inv_sort1: ∀h,g,G,L,U,k. ⦃G, L⦄ ⊢ ⋆k •[h, g] U → U = ⋆(next h k). /2 width=6 by ssta_inv_sort1_aux/ qed-. fact ssta_inv_lref1_aux: ∀h,g,G,L,T,U. ⦃G, L⦄ ⊢ T •[h, g] U → ∀j. T = #j → (∃∃K,V,W. ⇩[j] L ≡ K.ⓓV & ⦃G, K⦄ ⊢ V •[h, g] W & ⇧[0, j + 1] W ≡ U ) ∨ (∃∃K,W,l. ⇩[j] L ≡ K.ⓛW & ⦃G, K⦄ ⊢ W ▪[h, g] l & ⇧[0, j + 1] W ≡ U ). #h #g #G #L #T #U * -G -L -T -U [ #G #L #k #j #H destruct | #G #L #K #V #U #W #i #HLK #HVW #HWU #j #H destruct /3 width=6 by ex3_3_intro, or_introl/ | #G #L #K #W #U #l #i #HLK #HWl #HWU #j #H destruct /3 width=6 by ex3_3_intro, or_intror/ | #a #I #G #L #V #T #U #_ #j #H destruct | #G #L #V #T #U #_ #j #H destruct | #G #L #W #T #U #_ #j #H destruct ] qed-. lemma ssta_inv_lref1: ∀h,g,G,L,U,i. ⦃G, L⦄ ⊢ #i •[h, g] U → (∃∃K,V,W. ⇩[i] L ≡ K.ⓓV & ⦃G, K⦄ ⊢ V •[h, g] W & ⇧[0, i + 1] W ≡ U ) ∨ (∃∃K,W,l. ⇩[i] L ≡ K.ⓛW & ⦃G, K⦄ ⊢ W ▪[h, g] l & ⇧[0, i + 1] W ≡ U ). /2 width=3 by ssta_inv_lref1_aux/ qed-. fact ssta_inv_gref1_aux: ∀h,g,G,L,T,U. ⦃G, L⦄ ⊢ T •[h, g] U → ∀p0. T = §p0 → ⊥. #h #g #G #L #T #U * -G -L -T -U [ #G #L #k #p0 #H destruct | #G #L #K #V #U #W #i #_ #_ #_ #p0 #H destruct | #G #L #K #W #U #l #i #_ #_ #_ #p0 #H destruct | #a #I #G #L #V #T #U #_ #p0 #H destruct | #G #L #V #T #U #_ #p0 #H destruct | #G #L #W #T #U #_ #p0 #H destruct ] qed-. lemma ssta_inv_gref1: ∀h,g,G,L,U,p. ⦃G, L⦄ ⊢ §p •[h, g] U → ⊥. /2 width=9 by ssta_inv_gref1_aux/ qed-. fact ssta_inv_bind1_aux: ∀h,g,G,L,T,U. ⦃G, L⦄ ⊢ T •[h, g] U → ∀b,J,X,Y. T = ⓑ{b,J}Y.X → ∃∃Z. ⦃G, L.ⓑ{J}Y⦄ ⊢ X •[h, g] Z & U = ⓑ{b,J}Y.Z. #h #g #G #L #T #U * -G -L -T -U [ #G #L #k #b #J #X #Y #H destruct | #G #L #K #V #U #W #i #_ #_ #_ #b #J #X #Y #H destruct | #G #L #K #W #U #l #i #_ #_ #_ #b #J #X #Y #H destruct | #a #I #G #L #V #T #U #HTU #b #J #X #Y #H destruct /2 width=3 by ex2_intro/ | #G #L #V #T #U #_ #b #J #X #Y #H destruct | #G #L #W #T #U #_ #b #J #X #Y #H destruct ] qed-. lemma ssta_inv_bind1: ∀h,g,b,J,G,L,Y,X,U. ⦃G, L⦄ ⊢ ⓑ{b,J}Y.X •[h, g] U → ∃∃Z. ⦃G, L.ⓑ{J}Y⦄ ⊢ X •[h, g] Z & U = ⓑ{b,J}Y.Z. /2 width=3 by ssta_inv_bind1_aux/ qed-. fact ssta_inv_appl1_aux: ∀h,g,G,L,T,U. ⦃G, L⦄ ⊢ T •[h, g] U → ∀X,Y. T = ⓐY.X → ∃∃Z. ⦃G, L⦄ ⊢ X •[h, g] Z & U = ⓐY.Z. #h #g #G #L #T #U * -G -L -T -U [ #G #L #k #X #Y #H destruct | #G #L #K #V #U #W #i #_ #_ #_ #X #Y #H destruct | #G #L #K #W #U #l #i #_ #_ #_ #X #Y #H destruct | #a #I #G #L #V #T #U #_ #X #Y #H destruct | #G #L #V #T #U #HTU #X #Y #H destruct /2 width=3 by ex2_intro/ | #G #L #W #T #U #_ #X #Y #H destruct ] qed-. lemma ssta_inv_appl1: ∀h,g,G,L,Y,X,U. ⦃G, L⦄ ⊢ ⓐY.X •[h, g] U → ∃∃Z. ⦃G, L⦄ ⊢ X •[h, g] Z & U = ⓐY.Z. /2 width=3 by ssta_inv_appl1_aux/ qed-. fact ssta_inv_cast1_aux: ∀h,g,G,L,T,U. ⦃G, L⦄ ⊢ T •[h, g] U → ∀X,Y. T = ⓝY.X → ⦃G, L⦄ ⊢ X •[h, g] U. #h #g #G #L #T #U * -G -L -T -U [ #G #L #k #X #Y #H destruct | #G #L #K #V #U #W #i #_ #_ #_ #X #Y #H destruct | #G #L #K #W #U #l #i #_ #_ #_ #X #Y #H destruct | #a #I #G #L #V #T #U #_ #X #Y #H destruct | #G #L #V #T #U #_ #X #Y #H destruct | #G #L #W #T #U #HTU #X #Y #H destruct // ] qed-. lemma ssta_inv_cast1: ∀h,g,G,L,X,Y,U. ⦃G, L⦄ ⊢ ⓝY.X •[h, g] U → ⦃G, L⦄ ⊢ X •[h, g] U. /2 width=4 by ssta_inv_cast1_aux/ qed-. (* Inversion lemmas on degree assignment for terms **************************) lemma ssta_inv_da: ∀h,g,G,L,T,U. ⦃G, L⦄ ⊢ T •[h, g] U → ∃l. ⦃G, L⦄ ⊢ T ▪[h, g] l. #h #g #G #L #T #U #H elim H -G -L -T -U [ #G #L #k elim (deg_total h g k) /3 width=2 by da_sort, ex_intro/ | #G #L #K #V #U #W #i #HLK #_ #_ * /3 width=5 by da_ldef, ex_intro/ | #G #L #K #W #U #l #i #HLK #HWl #_ /3 width=5 by da_ldec, ex_intro/ | #a #I #G #L #V #T #U #_ * /3 width=2 by da_bind, ex_intro/ | #G #L #V #T #U #_ * /3 width=2 by da_flat, ex_intro/ | #G #L #W #T #U #_ * /3 width=2 by da_flat, ex_intro/ ] qed-. (* Properties on degree assignment for terms ********************************) lemma da_ssta: ∀h,g,G,L,T,l. ⦃G, L⦄ ⊢ T ▪[h, g] l → ∃U. ⦃G, L⦄ ⊢ T •[h, g] U. #h #g #G #L #T #l #H elim H -G -L -T -l [ /2 width=2/ | #G #L #K #V #i #l #HLK #_ * #W #HVW elim (lift_total W 0 (i+1)) /3 width=7 by ssta_ldef, ex_intro/ | #G #L #K #W #i #l #HLK #HW #_ elim (lift_total W 0 (i+1)) /3 width=7 by ssta_ldec, ex_intro/ | #a #I #G #L #V #T #l #_ * /3 width=2 by ssta_bind, ex_intro/ | * #G #L #V #T #l #_ * /3 width=2 by ssta_appl, ssta_cast, ex_intro/ ] qed-. (* Basic_1: removed theorems 7: sty0_gen_sort sty0_gen_lref sty0_gen_bind sty0_gen_appl sty0_gen_cast sty0_lift sty0_correct *)